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Constraint Satisfaction Problems (CSP)

A CSP instance is given by describing the

variables,

domain of the variables,

constraints on the variables.

Task: Find an assignment that satisfies every constraint.

I = C1(x1, x2, x3) ∧ C2(x2, x4) ∧ C3(x1, x3, x4)

In this talk: constraints are represented by listing all the tuples.
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Hypergraphs ands CSP

Hypergraph: vertices are the variables, constraints are the hyperedges.

I = C1(x2, x1, x3) ∧ C2(x4, x3) ∧ C3(x1, x4, x2)

C2

C1 C3

x4

x1

x2

x3

CSP(H): The CSP problem restricted to instances where the hypergraph belongs

to the class H.

CSP(H) is polynomial-time solvable if there is a O(‖I‖c) time algorithm.

CSP(H) is fixed-parameter tractable (FPT) if there is a f(H) · ‖I‖c time
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Main result

Main result: Let H be a recursively enumerable set of hypergraphs.
Assuming ETH,

CSP(H) is FPT ⇐⇒ H has bounded submodular width.

Exponential Time Hypothesis (ETH):

There is no 2o(n) time algorithm for n-variable 3SAT.

Known to be equivalent to:

There is no 2o(m) time algorithm for m-clause 3SAT.
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Tractable classes

tree width

edge cover number

Bounded fractional

hypertree width

Bounded fractional hypertree width

Bounded (generalized)

Bounded 

Bounded submodular width
FPT

PTIME

not FPT
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Tree decomposition of hypergraphs

Tree decomposition: Bags of vertices are arranged in a tree structure satisfying

the following properties:

1. For every hyperedge e, there is a bag containing the vertices of e.

2. For every vertex v, the bags containing v form a connected subtree.

Standard definitions:

Width of the decomposition: size of the largest bag minus 1.

Tree width: width of the best decomposition.
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Tree decomposition of hypergraphs

Tree decomposition: Bags of vertices are arranged in a tree structure satisfying

the following properties:

1. For every hyperedge e, there is a bag containing the vertices of e.

2. For every vertex v, the bags containing v form a connected subtree.

Standard definitions:

Width of the decomposition: size of the largest bag minus 1.

Tree width: width of the best decomposition.

Let us introduce a more general framework that includes treewidth and many of its

generalizations.

Beyond fractional hypertree width – p.6/29



Width measures for decompositions

Definition: Let f : 2V (H) → R
+ be a function assigning values to the vertex

subsets of H .

The f -width(T ) of a tree decomposition T is the maximum of f(B) over all

bags B.

The f -width(H) of hypergraph H is the minimum of f -width(T ) over all tree
decompositions T of H .
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Width measures for decompositions

Definition: Let f : 2V (H) → R
+ be a function assigning values to the vertex

subsets of H .

The f -width(T ) of a tree decomposition T is the maximum of f(B) over all

bags B.

The f -width(H) of hypergraph H is the minimum of f -width(T ) over all tree
decompositions T of H .

Example: If s(B) = |B| − 1, then s-width(H) is treewidth.

Example: If ̺H (B) is the edge cover number of B, then ̺H -width(H) is

generalized hypertree width.

Example: If ̺∗

H (B) is the fractional edge cover number of B, then ̺∗

H -width(H)

is fractional hypertree width.

Note: ̺∗

H (B) ≤ ̺H (B) ≤ s(B) + 1
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Useful width measures

Definition: sol(B): number of solutions in the instance projected to B.

We say that f -width is useful if in every instance I and for every subset B,

sol(B) is at most ‖I‖O(f(B)).

Note: treewidth, hypertree width, fractional hypertree width are all useful.

Recall:

Fact: If we are given a tree decomposition of the primal graph of instance I such

that sol(B) ≤ C for any bag B, then I can be solved in time polynomial in ‖I‖
and C .

Thus if f -width is useful, then bounded f -width implies polynomial-time solvability
if a decomposition is available.

⇒ This immediately implies fixed-parameter tractability.
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Going beyond fractional hypertree width

To go beyond fractional hypertree width it is sufficient to identify a function

f(B) ≤ ̺∗

H (B) such that f -width is useful.
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Going beyond fractional hypertree width

To go beyond fractional hypertree width it is sufficient to identify a function

f(B) ≤ ̺∗

H (B) such that f -width is useful.

Unfortunately, there is no such function f :

Fact: There are arbitrarily large instances I with hypergraph H where the

projection to B has ‖I‖Ω(̺∗

H
(B)) solutions.

Thus if f -width is useful, it cannot be less than fractional hypertree width.
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F -width

Definition: Let F be a set of functions from 2V (H) to R
+. The F -width of H is

the maximum of f -width(H) over every f ∈ F .

F -width(H) ≤ w ⇐⇒
for every f ∈ F
exists a tree decomposition T of F such that
for every bag B of T , f(B) ≤ w.

Note: the tree decomposition T can be different for different functions f ∈ F .
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Submodular width

Definition: The submodular width of H is F -width(H), where F is the set of all

monotone, edge-dominated, submodular functions on the vertices of H .

Monotone: b(X) ≤ b(Y ) for every X ⊆ Y .

Edge-dominated: b(e) ≤ 1 for every hyperedge e of H .

Submodular: For arbitrary sets X, Y

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ).
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Main result

Main result: Let H be a recursively enumerable set of hyper-
graphs. Assuming ETH,

CSP(H) is FPT ⇐⇒ H has bounded submodular width.

Algorithmic side: If H has bounded submodular width, then CSP(H) is FPT.

How does it help if we know that every submodular function has a good tree
decomposition?

Hardness: If H has bounded submodular width, then CSP(H) is not FPT.

To simulate 3SAT by CSP(H), we need an efficient embedding of a graph into

a hypergraph. We know that certain submodular functions do not have good
tree decompositions. How does that help in finding good embeddings?
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Three battlefields

Submodular

functions

Hypergraphs,
embeddings

CSP instances

In uniform CSP instances
a submodular function
describes the number
of solutions

Connection between fractional
separators and submodular
cost functions

An embedding provides
a way of simulating
3SAT with CSP
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A crazy idea

Let I be a CSP instance with hypergraph H . Let N := ‖I‖ and suppose that the

submodular width of H is at most w.

Let b(B) := logN sol(B), which is edge-dominated.

Crazy assumption: b is monotone and submodular.

Then by the definition of submodular width, there is a tree decomposition where

sol(B) ≤ N w for every bag
⇒ FPT algorithm!
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A crazy idea

Let I be a CSP instance with hypergraph H . Let N := ‖I‖ and suppose that the

submodular width of H is at most w.

Let b(B) := logN sol(B), which is edge-dominated.

Crazy assumption: b is monotone and submodular.

Then by the definition of submodular width, there is a tree decomposition where

sol(B) ≤ N w for every bag
⇒ FPT algorithm!

Problems:

b is not necessarily monotone.

b is not necessarily submodular.

we don’t even know the function b.
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Small sets

Let X be M -small if sol(Y ) ≤ M for every Y ⊆ X .

Fact: In time f(H) · (‖I‖ · M )O(1), we can identify all M -small sets and

compute sol(X) for every such set X .

We will care about the value of b only on the N w -small sets, every other set will

be “too large.”

By introducing further constraints, we can ensure that b is monotone on N w -small
sets: if an assignment Y ⊂ X is not extendible to X , then we forbid it.

Now we know b and it is monotone on the sets we care about. But what about

submodularity?
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Uniformity

Definition: Instance I is c-uniform, if for every B ⊆ A, every satisfying

assignment of B has at most c · sol(A)/sol(B) extensions to a satisfying
assignment of A.

Fact: If I is 1-uniform, then b is submodular.

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ).
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Uniformity

Definition: Instance I is c-uniform, if for every B ⊆ A, every satisfying

assignment of B has at most c · sol(A)/sol(B) extensions to a satisfying
assignment of A.

Fact: If I is 1-uniform, then b is submodular.

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ).

If I is N ǫ-uniform on N w -small sets, then with some tweaking (adding low order
terms) we can make b submodular.

But why would be the instance N ǫ-uniform?
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Decomposition into uniform instances

Suppose that two N w -small sets B ⊆ A violate N ǫ-uniformity: there are

assignments on B having more than N ǫ · sol(A)/sol(B) extensions.

By adding a new constraint, we split the instance in two cases:

in Ismall every assignment on B has at most
√

N ǫ · sol(A)/sol(B) extensions,

in Ilarge every assignment has more than that many extensions.

Repeat if necessary.

We can show that the number of instances created by the procedure can be

bounded by a function of the number of variables (independent of the size of the
domain and the relations!).
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The algorithm

Algorithm for hypergraphs with submodular with at most w:

Locate the N w -small sets.

Decompose the instance into a bounded number of N ǫ-uniform instances

⇒ b = logN sol(B) is submodular (after some tweaking).

For each new instance, try every tree decomposition — there has to be one
where b(B) ≤ w and hence sol(B) ≤ N w for every bag b.

Solve the new instance using this tree decomposition.

This completes the algorithmic part of the main result.
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The algorithm

Algorithm for hypergraphs with submodular with at most w:

Locate the N w -small sets.

Decompose the instance into a bounded number of N ǫ-uniform instances

⇒ b = logN sol(B) is submodular (after some tweaking).

For each new instance, try every tree decomposition — there has to be one
where b(B) ≤ w and hence sol(B) ≤ N w for every bag b.

Solve the new instance using this tree decomposition.

This completes the algorithmic part of the main result.

Idea #1: The decomposition depends not only on the hypergraph of the
instance, but on the actual constraint relations.

Idea #2: We branch on adding further restrictions, and apply different tree

decompositions to each resulting instance.
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Three battlefields

Submodular
functions

Hypergraphs,

embeddings

CSP instances

An embedding provides
a way of simulating
3SAT with CSP

Connection between fractional
separators and submodular
cost functions

In uniform CSP instances
a submodular function
describes the number
of solutions
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Highly connected sets

For the hardness part, we want to characterize submodular width analogously to
other width measures: if submodular width is large, then there is a “large highly

connected set” in the hypergraph.
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Highly connected sets

For the hardness part, we want to characterize submodular width analogously to
other width measures: if submodular width is large, then there is a “large highly

connected set” in the hypergraph.

Separator-based approach:

W
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Highly connected sets

For the hardness part, we want to characterize submodular width analogously to
other width measures: if submodular width is large, then there is a “large highly

connected set” in the hypergraph.

Separator-based approach:

BSA
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Highly connected sets

For the hardness part, we want to characterize submodular width analogously to
other width measures: if submodular width is large, then there is a “large highly

connected set” in the hypergraph.

Separator-based approach:

B

B

S

S S

A

A
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Highly connected sets

For the hardness part, we want to characterize submodular width analogously to
other width measures: if submodular width is large, then there is a “large highly

connected set” in the hypergraph.

Separator-based approach:

A

A B

B

S

S S
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Highly connected set

Definition: A set W is b-connected, if for every disjoint X, Y ⊆ W , there is no

(X, Y )-separator S with b(S) < min{b(X), b(Y )}.

If b-width is at least w for some submodular function b, the separator-based

approach of finding tree decompositions almost gives us (there is one major
technical difficulty) a set b-connected set W with b(W ) = Ω(w).

But we want a notion of highly connected set that is determined only by the hyper-

graph H and is not related to any submodular function.
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Highly connected set

Definition: A fractional independent set of H is an assignment

µ : V (H) → {0, 1} such that µ(e) ≤ 1 for every hyperedge e (we define
µ(X) =

∑
v∈X

µ(v)).

Definition: A fractional (X, Y )-separator is an assignment E(H) → {0, 1}
such that every X − Y path is covered by total weight at least 1.

Definition: Let λ > 0 be a constant (say, 0.01) and let µ be a fractional

independent set. A set W is (µ, λ)-connected if for every disjoint X, Y ⊆ W ,
there is no fractional (X, Y )-separator of weight less than

λ · min{µ(X), µ(Y )}.

We need to connect somehow the notions of “fractional (X, Y )-separator having
small weight” and “(X, Y )-separator S with b(S) small.”
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Result on separation

What does it mean that there is a fractional (X, Y )-separator of small weight?

Fact: If there is a fractional (X, Y )-separator of weight w, then for every

edge-dominated monotone submodular function b, there is a (X, Y )-separator S

with b(S) = O(w).
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Result on separation

What does it mean that there is a fractional (X, Y )-separator of small weight?

Fact: If there is a fractional (X, Y )-separator of weight w, then for every

edge-dominated monotone submodular function b, there is a (X, Y )-separator S

with b(S) = O(w).

Definition: (repeated) A set W is b-connected, if for every disjoint X, Y ⊆ W ,
there is no (X, Y )-separator S with b(S) < min{b(X), b(Y )}.

If there is no (X, Y )-separator S with b(S) < min{b(X), b(Y )}, then there is

no fractional separator of weight λ · min{b(X), b(Y )} for some λ > 0.

So we have obtained a set W that is “highly connected” in the sense that cer-

tain fractional separators do not exist, and this takes us into the domain of purely

hypergraph properties, separators, flows, etc.
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Three battlefields

Submodular

functions

Hypergraphs,
embeddings

CSP instances

Connection between fractional
separators and submodular
cost functions

In uniform CSP instances
a submodular function
describes the number
of solutions

An embedding provides
a way of simulating
3SAT with CSP
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Embeddings

Definition: A q-embedding of graph F in hypergraph H maps a subset of V (H)

to each vertex of H such that

For every v ∈ V (F ), φ(v) is connected.

If u, v ∈ V (F ) are adjacent in F , then φ(u) and φ(v) touch: there is a

hyperedge intersecting both of them

Every hyperedge e of H intersects the images of at most q vertices of F .

Fact: For graphs F and G, if m = |E(F )| is sufficiently large and k = tw(G),
then there is a q-embedding of F in G for q = O(m log k/k).
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Embeddings

Definition: A q-embedding of graph F in hypergraph H maps a subset of V (H)

to each vertex of H such that

For every v ∈ V (F ), φ(v) is connected.

If u, v ∈ V (F ) are adjacent in F , then φ(u) and φ(v) touch: there is a

hyperedge intersecting both of them

Every hyperedge e of H intersects the images of at most q vertices of F .

Fact: For graphs F and G, if m = |E(F )| is sufficiently large and k = tw(G),
then there is a q-embedding of F in G for q = O(m log k/k).

We show:

Fact: For a graph F and hypergraph H , if m = |E(F )| is sufficiently large and

H has submodular width w, then there is a q-embedding of F in H for
q = O(m/w

1

4 ).

Combinatorial optimization techniques, linear programming, etc..
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Hardness proof

Fact: If H is a recursively enumerable class of hypergraphs with unbounded

submodular width, then CSP(H) is not fixed-parameter tractable (assuming ETH).
Proof outline:

Given a 3SAT instance with m clauses and n variables, we turn it into a CSP

instance I1 with 3m binary constraints, and domain size 3.

We use the embedding result to find a q-embedding of the primal graph F of
I1 into some Hk ∈ H (chosen appropriately).

We simulate I1 by an instance I2 whose primal graph is Hk : each edge of I2

“sees” at most q variables of I1, thus each constraint relation has size ≤ 3q .

Now the 3SAT problem can be solved by solving I2. Calculation of the running

time shows that that an FPT algorithm for CSP(H) would give a 2o(m)

algorithm for m-clause 3SAT, violating ETH.
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Three battlefields

Submodular
functions

Hypergraphs,

embeddings

CSP instances

In uniform CSP instances
a submodular function
describes the number
of solutions

Connection between fractional
separators and submodular
cost functions

An embedding provides
a way of simulating
3SAT with CSP
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Conclusions

Characterization of CSP(H) with respect to fixed-parameter tractability.

Main new definition: submodular width.

Why fixed-parameter tractability?

What happens in the “gray zone”?
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Tractable classes

tree width

edge cover number

Bounded fractional

hypertree width

Bounded fractional hypertree width

Bounded (generalized)

Bounded 

Bounded submodular width
FPT

PTIME

not FPT
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