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Overview

Main message:
Tree-structured problems are easy to solve.

If the graph/hypergraph describing the constraint of the variables has “simple
structure,” then the problem is easier to solve.

Simple structure usually means treelike structure.
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The Party Problem

PARTY PROBLEM

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.
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PARTY PROBLEM

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

Do not invite a colleague and his direct boss at the same time!
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Solving the Party Problem

Dynamic programming paradigm: We solve a large number of subproblems that

depend on each other. The answer is a single subproblem.

Tv : the subtree rooted at v.

A[v]: max. weight of an independent set in Tv

B[v]: max. weight of an independent set in Tv that does not contain v

Goal: determine A[r] for the root r.
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Solving the Party Problem

Dynamic programming paradigm: We solve a large number of subproblems that

depend on each other. The answer is a single subproblem.

Tv : the subtree rooted at v.

A[v]: max. weight of an independent set in Tv

B[v]: max. weight of an independent set in Tv that does not contain v

Goal: determine A[r] for the root r.

Method:
Assume v1, . . . , vk are the children of v. Use the recurrence relations

B[v] =
∑k

i=1 A[vi]

A[v] = max{B[v] , w(v) +
∑k

i=1 B[vi]}

The values A[v] and B[v] can be calculated in a bottom-up order (the leaves are

trivial).
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Constraint Satisfaction Problems (CSP)

A CSP instance is given by describing the

variables,

domain of the variables,

constraints on the variables.

Task: Find an assignment that satisfies every constraint.

I = C1(x2, x1, x3) ∧ C2(x4, x3) ∧ C3(x1, x4, x2)

Later: equivalent formulation as the homomorphism problem of relational struc-

tures.
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Graphs and hypergraphs related to CSP

Gaifman/primal graph: vertices are the variables, two variables are adjacent if

they appear in a common constraint.

Incidence graph: bipartite graph, vertices are the variables and constraints.

Hypergraph: vertices are the variables, constraints are the hyperedges.

I = C1(x2, x1, x3) ∧ C2(x4, x3) ∧ C3(x1, x4, x2)

C3C1

C2

Primal graph HypergraphIncidence graph

C2C1

x3

x3

x3

x2

x2

x2

x1 x1x1 x4

x4x4

C3
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Tree-shaped CSP

Fact: Binary CSP is polynomial-time solvable restricted to instances whose primal

graphs are trees.

v

u
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Tree-shaped CSP

Fact: Binary CSP is polynomial-time solvable restricted to instances whose primal

graphs are trees.

v

u

Proof 1: Dynamic programming. For v ∈ V , d ∈ D, let x[v, d] = true if there is
a partial solution on the subtree rooted at v such that variable v has value d.

The leaves are trivial. If the table is ready for the children of v, then computing

x[v, d] is easy.
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Tree-shaped CSP

Fact: Binary CSP is polynomial-time solvable restricted to instances whose primal

graphs are trees.

v

u

Proof 2: Arc consistency algorithm. If there is a constraint on (u, v) such that
value d cannot appear on u, then remove every pair from every constraint on v

that gives value d to u. Repeat.

Claim: When the algorithm stops, either every constraint is empty, or there is a
solution.
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Tree-shaped CSP

Fact: Binary CSP is polynomial-time solvable restricted to instances whose primal

graphs are trees.

v

u

Can we generalize these ideas to wider classes of graphs?
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Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree
structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag contain-
ing both of them.

2. For every vertex v, the bags containing v form a con-

nected subtree.

dcb

a

ge f h

g, hb, e, fa, b, c

d, f, gb, c, f

c, d, f
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Tree decomposition: Vertices are arranged in a tree
structure satisfying the following properties:
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Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree
structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag contain-
ing both of them.

2. For every vertex v, the bags containing v form a con-

nected subtree.

Width of the decomposition: size of the largest bag

minus 1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 ⇐⇒ graph is a forest
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Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree
structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag contain-
ing both of them.

2. For every vertex v, the bags containing v form a con-

nected subtree.

Width of the decomposition: size of the largest bag

minus 1.

treewidth: width of the best decomposition.
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Treewidth

Treewidth: A measure of how “tree-like” the graph is.

(Introduced by Robertson and Seymour.)

Tree decomposition: Vertices are arranged in a tree
structure satisfying the following properties:

1. If u and v are neighbors, then there is a bag contain-
ing both of them.

2. For every vertex v, the bags containing v form a con-

nected subtree.

Width of the decomposition: size of the largest bag

minus 1.

treewidth: width of the best decomposition.

Fact: treewidth = 1 ⇐⇒ graph is a forest
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Properties of treewidth

Fact: treewidth ≤ 2 ⇐⇒ graph is subgraph of a

series-parallel graph
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Properties of treewidth

Fact: treewidth ≤ 2 ⇐⇒ graph is subgraph of a

series-parallel graph

Fact: For every k ≥ 2, the treewidth of the k × k

grid is exactly k.
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Properties of treewidth

Fact: treewidth ≤ 2 ⇐⇒ graph is subgraph of a

series-parallel graph

Fact: For every k ≥ 2, the treewidth of the k × k

grid is exactly k.

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract

edges.
⇒ If F is a minor of G, then the treewidth of F is at most the treewidth of G.
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Properties of treewidth

Fact: treewidth ≤ 2 ⇐⇒ graph is subgraph of a

series-parallel graph

Fact: For every k ≥ 2, the treewidth of the k × k

grid is exactly k.

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract

edges.
⇒ If F is a minor of G, then the treewidth of F is at most the treewidth of G.

Fact: [Excluded Grid Theorem] If the treewidth of G is at least k4k2(k+2), then G

has a k × k grid minor.
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Properties of treewidth

Fact: treewidth ≤ 2 ⇐⇒ graph is subgraph of a

series-parallel graph

Fact: For every k ≥ 2, the treewidth of the k × k

grid is exactly k.

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract

edges.
⇒ If F is a minor of G, then the treewidth of F is at most the treewidth of G.

Fact: [Excluded Grid Theorem] If the treewidth of G is at least k4k2(k+2), then G

has a k × k grid minor.

Fact: For every clique K , there is a bag B with K ⊆ B

⇒ In the primal graph of a CSP instance, the scope of each constraint is a clique,

hence it is fully contained in a bag.
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Bounded treewidth graphs

Many problems are polynomial-time solvable for bounded treewidth graphs:

VERTEX COLORING

EDGE COLORING

HAMILTONIAN CYCLE

MAXIMUM CLIQUE

VERTEX DISJOINT PATHS
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Bounded treewidth graphs

Many problems are polynomial-time solvable for bounded treewidth graphs:

VERTEX COLORING

EDGE COLORING

HAMILTONIAN CYCLE

MAXIMUM CLIQUE

VERTEX DISJOINT PATHS

Usually, if a problem can be solved on trees by bottom-up dynamic programming,

then the same approach works for bounded treewidth graphs.

Some notable exceptions:
Fact: EDGE DISJOINT PATHS is NP-hard for graphs with treewidth 2.

Fact: LIST EDGE COLORING is NP-hard for graphs with treewidth 2.

Fact: STEINER FOREST is polynomial-time solvable for graphs with treewidth 2, but

NP-hard for treewidth 3.
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Treewidth and CSP

Fact: For every fixed k, CSP can be solved in polynomial time if the primal graph

of the instance has treewidth at most k.

Two proofs:

Using the k-consistency algorithm.

Note: solves only the decision problem, does not give directly a solution.

Using the tree decomposition.
Note: requires a tree decomposition.
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Consistency

A partial solution on S ⊆ V is a mapping f : S → D that satisfies every

constraint whose scope is in S.

Definition: An instance is k-consistent if for any subsets X ⊂ Y ⊆ V of size at

most k + 1, every partial solution on X can be extended to Y .

Structural complexity of CSPs: the role of treewidth and its generalizations – p.13/51



Consistency

A partial solution on S ⊆ V is a mapping f : S → D that satisfies every

constraint whose scope is in S.

Definition: An instance is k-consistent if for any subsets X ⊂ Y ⊆ V of size at

most k + 1, every partial solution on X can be extended to Y .

The k-Consistency algorithm generates a set of partial solutions that do no violate
the consistency requirement.

k-Consistency

1. For every S ⊆ V with |S| ≤ k + 1, generate the list LS of all partial
solutions on S.

2. If for some X ⊆ Y , there is an f ∈ LX having no extension in LY ,

then remove f and every extension of f from the lists.

3. Repeat Step 2 until there are no further changes.
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Consistency

k-Consistency

1. For every S ⊆ V with |S| ≤ k + 1, generate the list LS of all partial
solutions on S.

2. If for some X ⊆ Y , there is an f ∈ LX having no extension in LY ,
then remove f and every extension of f from the lists.

3. Repeat Step 2 until there are no further changes.

Note:

If an LS is empty, then we can conclude that there is no solution.

If f ∈ LY , then f|X ∈ LX for every X ⊂ Y .

The running time is polynomial for every fixed k: we manipulate subsets of
size at most k + 1 and the size of each LS is at most |D|k+1.
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Consistency and treewidth

Fact: If the primal graph of the instance has treewidth at most k and the LS ’s are

not empty, then there is a solution.

a, b, c b, e, f

b, c, f

c, d, f

d, f, g

g, h
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Consistency and treewidth

Fact: If the primal graph of the instance has treewidth at most k and the LS ’s are

not empty, then there is a solution.

a, b, c

c, d, f

d, f, g

g, h

b, c, f

b, e, f
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Consistency and treewidth

Fact: If the primal graph of the instance has treewidth at most k and the LS ’s are

not empty, then there is a solution.

c, f

b, e, f

b, c, f

c, d, f

d, f, g

g, ha, b, c
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Consistency and treewidth

Fact: If the primal graph of the instance has treewidth at most k and the LS ’s are

not empty, then there is a solution.

c, f

g, h

d, f, g

c, d, f

b, c, f

a, b, c b, e, f
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Consistency and treewidth

Fact: If the primal graph of the instance has treewidth at most k and the LS ’s are

not empty, then there is a solution.

b, c

g, h

d, f, g

c, d, f

b, c, f

a, b, c b, e, f
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Consistency and treewidth

Fact: If the primal graph of the instance has treewidth at most k and the LS ’s are

not empty, then there is a solution.

b, c

b, e, fa, b, c

b, c, f

c, d, f

d, f, g

g, h
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Consistency and treewidth

Fact: If the primal graph of the instance has treewidth at most k and the LS ’s are

not empty, then there is a solution.
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Consistency and treewidth

Fact: If the primal graph of the instance has treewidth at most k and the LS ’s are

not empty, then there is a solution.
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Consistency and treewidth

Fact: If the primal graph of the instance has treewidth at most k and the LS ’s are

not empty, then there is a solution.
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b, e, fa, b, c

b, c, f

c, d, f

d, f, g

g, h
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Consistency and treewidth

Fact: If the primal graph of the instance has treewidth at most k and the LS ’s are

not empty, then there is a solution.

d, f

b, e, fa, b, c

b, c, f

c, d, f

d, f, g

g, h
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Consistency and treewidth

Fact: If the primal graph of the instance has treewidth at most k and the LS ’s are

not empty, then there is a solution.

g

g, h

d, f, g

c, d, f

b, c, f

a, b, c b, e, f
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Consistency and treewidth

Fact: If the primal graph of the instance has treewidth at most k and the LS ’s are

not empty, then there is a solution.

g

b, e, fa, b, c

b, c, f

c, d, f

d, f, g

g, h
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Consistency and treewidth

Fact: If the primal graph of the instance has treewidth at most k and the LS ’s are

not empty, then there is a solution.

g

b, e, fa, b, c

b, c, f

c, d, f

d, f, g

g, h

The properties of the tree decomposition ensure that

each variable gets only a single value (connectedness property) and

every constraint is satisfied (every clique appears in a bag).

Note: proof shows that a solution exists, but (unless we have a tree decomposition),

does not show how to find one. Structural complexity of CSPs: the role of treewidth and its generalizations – p.14/51



Solving CSP using a tree decompositions

Suppose that a tree decomposition of width k is given. We build an equivalent tree

CSP where every variable represents a bag of the decomposition.

va,b,c

vb,c,f vd,f,g

vc,d,f
c, d, f

b, c, f d, f, g

a, b, c b, e, f g, h vg,hvb,e,f
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Solving CSP using a tree decompositions

Suppose that a tree decomposition of width k is given. We build an equivalent tree

CSP where every variable represents a bag of the decomposition.

va,b,c

vb,c,f vd,f,g

vc,d,f
c, d, f

b, c, f d, f, g

a, b, c b, e, f g, h vg,hvb,e,f

The domain of variable va,b,c is the set of all partial solutions on {a, b, c}.
Binary constraint between va,b,c and vb,c,f require that the two partial solutions

agree on the intersection {b, c}.
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Solving CSP using a tree decompositions

Suppose that a tree decomposition of width k is given. We build an equivalent tree

CSP where every variable represents a bag of the decomposition.

va,b,c

vb,c,f vd,f,g

vc,d,f
c, d, f

b, c, f d, f, g

a, b, c b, e, f g, h vg,hvb,e,f

The domain of variable va,b,c is the set of all partial solutions on {a, b, c}.
Binary constraint between va,b,c and vb,c,f require that the two partial solutions

agree on the intersection {b, c}.

Instance has polynomial size for fixed k: domain size ≤ |D|k+1.

There are no conflicts between the partial assignments.

Every original constraint is satisfied by one of the partial solutions.
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CSP and tree decompositions

Fact: If we are given a tree decomposition of the primal graph of instance I

together with a list (having length ≤ C) of all partial solutions for each bag B,
then I can be solved in time polynomial in ‖I‖ and C .
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CSP and tree decompositions

Fact: If we are given a tree decomposition of the primal graph of instance I

together with a list (having length ≤ C) of all partial solutions for each bag B,
then I can be solved in time polynomial in ‖I‖ and C .

Can be made a little stronger:

Fact: If we are given a tree decomposition of the primal graph of instance I

together with a list (having length ≤ C) of all solutions of the projection to B for

each bag B, then I can be solved in time polynomial in ‖I‖ and C .

The projection of instance I to B ⊆ V is an instance on B such that for every
constraint c of I with scope S such that S ∩ B 6= ∅, there is a constraint on

S ∩ B that is satisfied if it can be extended to a satisfying tuple of c.
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CSP and tree decompositions

Fact: If we are given a tree decomposition of the primal graph of instance I

together with a list (having length ≤ C) of all partial solutions for each bag B,
then I can be solved in time polynomial in ‖I‖ and C .

Can be made a little stronger:

Fact: If we are given a tree decomposition of the primal graph of instance I

together with a list (having length ≤ C) of all solutions of the projection to B for

each bag B, then I can be solved in time polynomial in ‖I‖ and C .

The projection of instance I to B ⊆ V is an instance on B such that for every
constraint c of I with scope S such that S ∩ B 6= ∅, there is a constraint on

S ∩ B that is satisfied if it can be extended to a satisfying tuple of c.

Example:
Projection to
{v1, v2, v3}

s = (v2, v3, v4, v5), R =

(1,4,1,1)
(2,3,2,4)
(2,3,5,1)
(5,5,1,1)
(5,5,2,5)

⇒ s = (v2, v3), R =

(1,4)
(2,3)
(5,5)
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Finding tree decompositions

Fact: It is NP-hard to determine the treewidth of a graph (given a graph G and a

integer k, decide if the treewidth of G is at most k), but there is a polynomial-time
algorithm for every fixed k.

Fact: [Bodlaender’s Theorem] For every fixed k, there is a linear-time algorithm
that finds a tree decomposition of width k (if exists).

⇒Treewidth is fixed-parameter tractable

Fact: There is a polynomial-time algorithm that finds a tree decomposition of width
O(k

√
log k), if the treewidth of the graph is at most k.
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Finding tree decompositions

Fact: It is NP-hard to determine the treewidth of a graph (given a graph G and a

integer k, decide if the treewidth of G is at most k), but there is a polynomial-time
algorithm for every fixed k.

Fact: [Bodlaender’s Theorem] For every fixed k, there is a linear-time algorithm
that finds a tree decomposition of width k (if exists).

⇒Treewidth is fixed-parameter tractable

Fact: There is a polynomial-time algorithm that finds a tree decomposition of width
O(k

√
log k), if the treewidth of the graph is at most k.

Two main approaches:

Game-theoretic characterization.

Separator-based approach.
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The Robber and Cops game

Game: k cops try to capture a robber in the graph.

In each step, the cops can move from vertex to vertex arbitrarily with
helicopters.

The robber moves infinitely fast, and sees where the cops will land.

Fact:
k cops can win the game ⇐⇒ the treewidth of the graph is at most k − 1.
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The Robber and Cops game

Game: k cops try to capture a robber in the graph.

In each step, the cops can move from vertex to vertex arbitrarily with
helicopters.

The robber moves infinitely fast, and sees where the cops will land.

Fact:
k cops can win the game ⇐⇒ the treewidth of the graph is at most k − 1.

The winner of the game can be determined in time nO(k) using standard

techniques (there are at most nk positions for the cops)

⇓
For every fixed k, it can be checked in polynomial-time if treewidth is at most k.
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The Robber and Cops game

Game: k cops try to capture a robber in the graph.

In each step, the cops can move from vertex to vertex arbitrarily with
helicopters.

The robber moves infinitely fast, and sees where the cops will land.

Fact:
k cops can win the game ⇐⇒ the treewidth of the graph is at most k − 1.

The winner of the game can be determined in time nO(k) using standard

techniques (there are at most nk positions for the cops)

⇓
For every fixed k, it can be checked in polynomial-time if treewidth is at most k.

Exercise 1: Show that the treewidth of the k × k grid is at least k − 1.

Exercise 2: Show that the treewidth of the k × k grid is at least k.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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The Robber and Cops game (cont.)

Example: 2 cops have a winning strategy in a tree.
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Separator-based approach

Solve the more general problem: Build a tree decomposition with the additional

restriction that some bag contains a given set W (of appropriate size).

Main step: Find a separator S that splits W in an appropriate way and recurse on
the two parts of the graph.
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Separator-based approach

Solve the more general problem: Build a tree decomposition with the additional

restriction that some bag contains a given set W (of appropriate size).

Main step: Find a separator S that splits W in an appropriate way and recurse on
the two parts of the graph.

W

Structural complexity of CSPs: the role of treewidth and its generalizations – p.20/51



Separator-based approach

Solve the more general problem: Build a tree decomposition with the additional

restriction that some bag contains a given set W (of appropriate size).

Main step: Find a separator S that splits W in an appropriate way and recurse on
the two parts of the graph.

BSA

Structural complexity of CSPs: the role of treewidth and its generalizations – p.20/51



Separator-based approach

Solve the more general problem: Build a tree decomposition with the additional

restriction that some bag contains a given set W (of appropriate size).

Main step: Find a separator S that splits W in an appropriate way and recurse on
the two parts of the graph.

B

B

S
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Separator-based approach

Solve the more general problem: Build a tree decomposition with the additional

restriction that some bag contains a given set W (of appropriate size).

Main step: Find a separator S that splits W in an appropriate way and recurse on
the two parts of the graph.

A

A B

B

S

S S

If no suitable separator S exists, then we can argue that treewidth is large.
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Overview

Part 1: Trees, treewidth and their algorithmic consequences

Part 2: Treewidth and lower bounds

Part 3: Width notions for hypergraphs
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Lower bounds

We know:

Bounded treewidth instances are “easy.”

Question:

Is there some other graph-theoretic property that
makes CSP easy to solve?
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Formal setting

Note: CSP is polynomial-time solvable for every fixed graph G, as the number of

variables is a constant. Therefore, we want to find classes of graphs where CSP
is easy.

Definition: Given a (possibly infinite) set G of graphs, CSP(G) is the CSP

restricted to instances whose primal graph is in G.

Definition: CSP(G) is polynomial-time solvable if there is an algorithm solving
every instance I of CSP(G) in time ‖I‖c for some constant c.
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Formal setting

Note: CSP is polynomial-time solvable for every fixed graph G, as the number of

variables is a constant. Therefore, we want to find classes of graphs where CSP
is easy.

Definition: Given a (possibly infinite) set G of graphs, CSP(G) is the CSP

restricted to instances whose primal graph is in G.

Definition: CSP(G) is polynomial-time solvable if there is an algorithm solving
every instance I of CSP(G) in time ‖I‖c for some constant c.

Definition: CSP(G) is fixed-parameter tractable (FPT) if there is an algorithm
solving every instance I of CSP(G) in time f(G)‖I‖c for some function f

depending only on the primal graph G and a constant c.

Note: The definition does not change if we replace f(G) with a function g(k)

depending on the number of variables.
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Dichotomy for binary CSP

We know that CSP(G) is polynomial-time solvable if G has bounded treewidth.

Are there other polynomial cases?
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Dichotomy for binary CSP

We know that CSP(G) is polynomial-time solvable if G has bounded treewidth.

Are there other polynomial cases?

Fact: Let G be a recursively enumerable class of graphs. Assuming FPT 6= W[1],
the following are equivalent:

Binary CSP(G) is polynomial-time solvable.

Binary CSP(G) is FPT.

G has bounded treewidth.
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Dichotomy for binary CSP

We know that CSP(G) is polynomial-time solvable if G has bounded treewidth.

Are there other polynomial cases?

Fact: Let G be a recursively enumerable class of graphs. Assuming FPT 6= W[1],
the following are equivalent:

Binary CSP(G) is polynomial-time solvable.

Binary CSP(G) is FPT.

G has bounded treewidth.

Note: FPT 6= W[1] is the standard assumption of parameterized complexity.

Note: Fixed-parameter tractability does not give us more power here than
polynomial-time solvability.

Note: We cannot hope a P vs. NP-complete dichotomy: there are classes G for

which the problem is equivalent to LOGCLIQUE.
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Proof outline

Suppose that G has unbounded treewidth, but CSP(G) is FPT.

Assuming FPT 6= W[1], there is no f(k)nc time algorithm for k-CLIQUE. But

we can solve k-CLIQUE the following way:

Formulate k-CLIQUE as a binary CSP instance on the k × k grid.

Find a Gk ∈ G containing a k × k minor (there is such a Gk by the Excluded
Grid Theorem).

Reduce CSP on the k × k grid to CSP with graph Gk , which is an instance of

CSP(G).

Use the assumed algorithm for CSP(G).

The running time is f(k)nc : the nonpolynomial factors in the running time
depend only on k (finding Gk , size of Gk , solving CSP(G))

⇒ k-CLIQUE is FPT, contradicting the hypothesis FPT 6= W[1].
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Can you beat treewidth?

If G has unbounded treewidth, then there is no polynomial algorithm for binary

CSP(G), but it can be solved in time ‖I‖O(k), where k is the treewidth of the
primal graph.

Is there a class G where we can do much better, for example, there is a ‖I‖O(
√

k)

or even ‖I‖O(log log log k) algorithm CSP(G)?
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Can you beat treewidth?

If G has unbounded treewidth, then there is no polynomial algorithm for binary

CSP(G), but it can be solved in time ‖I‖O(k), where k is the treewidth of the
primal graph.

Is there a class G where we can do much better, for example, there is a ‖I‖O(
√

k)

or even ‖I‖O(log log log k) algorithm CSP(G)?

Fact: [M. 2007] If G is a recursively enumerable class of graphs such that CSP(G)

can be solved in time f(G) · ‖I‖o(k/ log k) (where G is the primal graph and
k = tw(G)), then the Exponential Time Hypothesis fails.

Exponential Time Hypothesis (ETH): There is no 2o(n) time algorithm for

n-variable 3SAT (known to be equivalent with “There is no 2o(m) time algorithm
for m-clause 3SAT”).
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Embeddings

The previous proof is based on embedding the k-CLIQUE problem into a CSP

instance using the grid whose existence is guaranteed by the Excluded Grid
Theorem. However, this theorem is very weak: a k × k grid minor exists, if

treewidth is exponentially large in k.
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Embeddings

The previous proof is based on embedding the k-CLIQUE problem into a CSP

instance using the grid whose existence is guaranteed by the Excluded Grid
Theorem. However, this theorem is very weak: a k × k grid minor exists, if

treewidth is exponentially large in k.

Definition: A q-embedding φ of graph F in graph G maps a subset of V (G) to

each vertex of F such that

For every v ∈ V (F ), φ(v) is connected.

If u, v ∈ V (F ) are adjacent in F , then φ(u) and φ(v) touch: either they

intersect or there is an edge connecting them.

Every w ∈ V (G) appears in the images of at most q vertices of F .

Note: F is a minor of G ⇐⇒ there is a 1-embedding from F to G.
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An embedding result

Fact: [M. 2007] If m = |E(F )| is sufficiently large and k = tw(G), then there is

a q-embedding of F in G for q = O(m log k/k).

Note: A q-embedding for q = O(m) is trivial, thus treewidth k means that we can
gain a factor of Ω(k/ log k) compared to the trivial embedding.

Main ingredients of the proof:

characterization of treewidth by sets having no balanced separators,

results from combinatorial optimization that show that certain flows exist if
there is no balanced separator,

the q-embedding is constructed using the paths appearing in the flows.
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Proof

Fact: [M. 2007] If G is a recursively enumerable class of graphs such that binary

CSP(G) can be solved in time f(G) · ‖I‖o(k/ log k) (where G is the primal graph
and k = tw(G)), then the Exponential Time Hypothesis fails.

Proof outline:

Given a 3SAT instance with m clauses and n variables, we turn it into a CSP

instance I1 with 3m binary constraints.

We use the embedding result to find a q-embedding of the primal graph of I1

into some Gk ∈ G (chosen appropriately).

We simulate I1 by an instance I2 whose primal graph is Gk : each variable of

I2 simulates at most q variables of I1.

Now the 3SAT problem can be solved by solving I2. Calculation of the running

time shows that that a “too fast” algorithm for CSP(G) would give a 2o(m)

algorithm for m-clause 3SAT, violating ETH.
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Constraint of higher arity

How are the constraints represented in the input?

full truth table

listing the satisfying tuples

formula/circuit

oracle
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Constraint of higher arity

How are the constraints represented in the input?

full truth table

listing the satisfying tuples

formula/circuit

oracle

If the arity of every constraint is bounded by a constant, then the representations

are polynomially equivalent, but if there is no bound there can be exponential
difference between different representations.

The choice of representation changes the length of the input, thus can change the

complexity of the problem.
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Constraint of higher arity

How are the constraints represented in the input?

full truth table

listing the satisfying tuples

formula/circuit

oracle

In this talk: Each constraint is given by listing all the tuples that satisfy it.

Motivation: Applications in database theory (Conjunctive Query Evaluation,

Conjunctive Query Containment)

Constraints are known databases, “satisfying” means “appears in the database.”
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Characterization with higher arities

What are the tractable graph classes G for not necessarily binary CSP?
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Characterization with higher arities

What are the tractable graph classes G for not necessarily binary CSP?

The answer does not change:

Fact: Let G be a recursively enumerable class of graphs. Assuming FPT 6= W[1],
the following are equivalent:

CSP(G) is polynomial-time solvable.

CSP(G) is FPT.

G has bounded treewidth.

G has bounded treewidth: same algorithm works.
G has unbounded treewidth: problem was hard already in the binary case.
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Hypergraphs

Considering the hypergraph instead of the primal graph makes the complexity

analysis more precise.

I1 = C(x1, x2, . . . , xn) vs.

I2 = C(x1, x2) ∧ C(x1, x3) ∧ · · · ∧ C(xn−1, xn)

I1, I2 have the same primal graph (n-clique), but I1 is always easy, I2 can be

hard.

Goal: Characterize classes H of hypergraphs that make CSP(H) easy.

Definition: In the primal graph of a hypergraph two vertices are adjacent if they
appear together in some hyperedge.

Definition: The treewidth of a hypergraph is the treewidth of its primal graph.

Structural complexity of CSPs: the role of treewidth and its generalizations – p.32/51



Bounded arity hypergraphs

Fact: Let H be a recursively enumerable class of hypergraphs of bounded arity .

Assuming FPT 6= W[1], the following are equivalent:

CSP(H) is polynomial-time solvable.

CSP(H) is FPT.

H has bounded treewidth.
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Bounded arity hypergraphs

Fact: Let H be a recursively enumerable class of hypergraphs of bounded arity .

Assuming FPT 6= W[1], the following are equivalent:

CSP(H) is polynomial-time solvable.

CSP(H) is FPT.

H has bounded treewidth.

For unbounded-arity classes, this characterization is not correct:

Example: Let H contain every hypergraph having only a single edge (of arbitrary

size). H has unbounded treewidth, but CSP(H) is trivial (since there is only a
single constraint).
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Bounded arity hypergraphs

Fact: Let H be a recursively enumerable class of hypergraphs of bounded arity .

Assuming FPT 6= W[1], the following are equivalent:

CSP(H) is polynomial-time solvable.

CSP(H) is FPT.

H has bounded treewidth.

Before entering the world of unbounded arities, let us make a short detour to

relational structures.
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Homomorphisms of relational structures

Relational structure: a set of relations over the same universe.

A = (RA

1(x1, x2, x3), RA

2(x1), RA

3(x1, x2, x3))
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Homomorphisms of relational structures

Relational structure: a set of relations over the same universe.

A = (RA

1(x1, x2, x3), RA

2(x1), RA

3(x1, x2, x3))

B = (RB

1(x1, x2, x3), RB

2(x1), RB

3(x1, x2, x3))

Homomorphism of relational structures: If A is the universe of A and B is the

universe of B, then a homomorphism from A to B is a mapping f : A → B such
that for every relation

(a1, a2, a3) ∈ RA

1 ⇒ (f(a1), f(a2), f(a3)) ∈ RB

1.

Homomorphism problem HOM (A, B): Is there a homomorphism from A to B?

Equivalent formulation of constraint satisfaction problems:

RA

1 lists which tuples of variables have a constraint R1 imposed on them.

RB

1 lists the tuples that satisfy constraint R1.
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Restricting the left hand side

If A is a class of relational structures, then HOM(A, −) is the homomorphism

problem restricted to instances where the left side is in A.

Goal: Characterize classes A for which HOM(A, −) is in PTIME.
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Restricting the left hand side

If A is a class of relational structures, then HOM(A, −) is the homomorphism

problem restricted to instances where the left side is in A.

Goal: Characterize classes A for which HOM(A, −) is in PTIME.

Fact: Let A be a recursively enumerable class of relational structures of bounded
arity . Assuming FPT 6= W[1], the following are equivalent:

The decision problem HOM(A, −) is polynomial-time solvable.

The decision problem HOM(A, −) is FPT.

The cores of the structures in A have bounded treewidth.

Core of A: minimum subset A′ of the universe A such that there is a

homomorphism A → A[A′] (unique up to isomorphism)

If the treewidth of A is k, then the k-consistency algorithm decides HOM(A, −),
but does not produce a solution!

Structural complexity of CSPs: the role of treewidth and its generalizations – p.35/51



Overview

Part 1: Trees, treewidth and their algorithmic consequences

Part 2: Treewidth and lower bounds

Part 3: Width notions for hypergraphs
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Unbounded arities

Another example showing that unbounded treewidth of a class does not imply that

the problem is hard:

Example: Let Hd contain every hypergraph where there is a subset e1, . . . , ed of

edges that cover every vertex. Then CSP(Hd) is polynomial-time solvable for
every fixed d: try every combination of tuples for the d constraints corresponding

to the d edges (at most ‖I‖d combinations).

This gives us an idea: try to use tree decompositions where the bags are not

necessarily small, but can be covered by a small number of edges.
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Tree decompositions of hypergraphs

Tree decomposition of a hypergraph is a tree decomposition of its primal graph.

Equivalently:

Bags of vertices are arranged in a tree structure satisfying the following properties:

1. For every hyperedge e, there is a bag containing every vertex of e.

2. For every vertex v, the bags containing v form a connected subtree.
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Tree decompositions of hypergraphs

Tree decomposition of a hypergraph is a tree decomposition of its primal graph.

Equivalently:

Bags of vertices are arranged in a tree structure satisfying the following properties:

1. For every hyperedge e, there is a bag containing every vertex of e.

2. For every vertex v, the bags containing v form a connected subtree.

The generalized hypertree width of a decomposition is the minimum integer k

such that every bag can be covered by k edges. Generalized hypertree width
ghw(H) of H is the minimum width over all possible decompositions.
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Tree decompositions of hypergraphs

Tree decomposition of a hypergraph is a tree decomposition of its primal graph.

Equivalently:

Bags of vertices are arranged in a tree structure satisfying the following properties:

1. For every hyperedge e, there is a bag containing every vertex of e.

2. For every vertex v, the bags containing v form a connected subtree.

The generalized hypertree width of a decomposition is the minimum integer k

such that every bag can be covered by k edges. Generalized hypertree width
ghw(H) of H is the minimum width over all possible decompositions.

The original definition of hypertree width hw(H) adds a third technical

requirement (monotonicity condition) to the definition of tree decomposition.

Fact: ghw(H) ≤ hw(H) ≤ 3ghw(H).
⇒ H has bounded hypertree width if and only if it has bounded generalized

hypertree width.
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Using hypertree width

Recall: If we are given a tree decomposition of the primal graph of instance I

together with a list (having length ≤ C) of all solutions of the projection to B for
each bag B, then I can be solved in time polynomial in ‖I‖ and C .
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Using hypertree width

Recall: If we are given a tree decomposition of the primal graph of instance I

together with a list (having length ≤ C) of all solutions of the projection to B for
each bag B, then I can be solved in time polynomial in ‖I‖ and C .

In a tree decomposition with (generalized) hypertree width k every bag can be
covered by k hyperedges.

⇒ There are at most ‖I‖k satisfying assignments for the projection to a bag.
⇒ Polynomial-time algorithm for every fixed k.
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Using hypertree width

Recall: If we are given a tree decomposition of the primal graph of instance I

together with a list (having length ≤ C) of all solutions of the projection to B for
each bag B, then I can be solved in time polynomial in ‖I‖ and C .

In a tree decomposition with (generalized) hypertree width k every bag can be
covered by k hyperedges.

⇒ There are at most ‖I‖k satisfying assignments for the projection to a bag.
⇒ Polynomial-time algorithm for every fixed k.

If H has bounded (generalized) hypertree width, then CSP(H) is

fixed-parameter tractable.

For polynomial-time solvability, we need to be able to find decompositions with small

hypertree width.
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Finding a hypertree decompositions

Fact: It is NP-hard to decide if ghw(H) ≤ 3 for a given hypergraph H .

The Robber and Cops game characterized treewidth, the Robber and Marshals
game characterizes hypertree width.

Fact: For every fixed k, there is a polynomial-time algorithm that finds a tree

decomposition with hypertree width at most k, if exists.

⇒ Fact: For every fixed k, there is a polynomial-time algorithm that either finds a
generalized hypertree decomposition of width at most 3k, or correctly concludes

that ghw(H) > k.

⇒ Fact: If H has bounded (generalized) hypertree width, then CSP(H) is

polynomial-time solvable.
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Beyond hypertree width

Is there some hypergraph property more general than bounded hypertree width
that guarantees polynomial-time solvability?

We need to understand what hypergraph properties can guarantee that the
number of solutions in a bag is small.

This is an interesting and deep question on its own right.
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(Fractional) edge covering

An edge cover of a hypergraph is a subset of the edges such that every vertex is

covered by at least one edge.
̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.
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(Fractional) edge covering

An edge cover of a hypergraph is a subset of the edges such that every vertex is

covered by at least one edge.
̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

̺(H) = 2
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(Fractional) edge covering

An edge cover of a hypergraph is a subset of the edges such that every vertex is

covered by at least one edge.
̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

̺(H) = 2

1
2

1
2 1

2

̺∗(H) = 1.5
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(Fractional) edge covering

An edge cover of a hypergraph is a subset of the edges such that every vertex is

covered by at least one edge.
̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

1
2

1
2 1

2

(Fractional) edge cover of a set of vertices is defined analogously.
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Edge covers vs. fractional edge covers

Fact: It is NP-hard to determine the edge cover number ̺(H).

Fact: The fractional edge cover number ̺∗(H) can be determined in polynomial
time using linear programming.

The gap between ̺(H) and ̺∗(H) can be arbitrarily large.
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Edge covers vs. fractional edge covers

Fact: It is NP-hard to determine the edge cover number ̺(H).

Fact: The fractional edge cover number ̺∗(H) can be determined in polynomial
time using linear programming.

The gap between ̺(H) and ̺∗(H) can be arbitrarily large.

Example:
(

2k
k

)

vertices: all the possible strings with k 0’s and k 1’s.
2k hyperedges: edge Ei contains the vertices with 1 at the i-th position.
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Edge covers vs. fractional edge covers

Fact: It is NP-hard to determine the edge cover number ̺(H).

Fact: The fractional edge cover number ̺∗(H) can be determined in polynomial
time using linear programming.

The gap between ̺(H) and ̺∗(H) can be arbitrarily large.

Example:
(

2k
k

)

vertices: all the possible strings with k 0’s and k 1’s.
2k hyperedges: edge Ei contains the vertices with 1 at the i-th position.

Edge cover: if only k edges are selected, then there is a vertex that contains 1’s

only at the remaining k positions, hence not covered ⇒ ̺(H) ≥ k + 1.

Fractional edge cover: assign weight 1/k to each edge, each vertex is covered

by exactly k edges ⇒ ̺∗(H) ≤ 2k · 1/k = 2.
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CSP and fractional edge covering

Fact: [easy] If the hypergraph of instance I has edge cover number w, then there

are at most ‖I‖w satisfying assignments.
Proof: Assume that C1, . . . , Cw cover the instance. Fixing a satisfying

assignment for each Ci determines all the variables.

Fact: [Grohe and M. 2006] If the hypergraph of instance I has fractional edge
cover number w, then there are at most ‖I‖w satisfying assignments (and they

can be enumerated in polynomial time).
Proof: By Shearer’s Lemma.

Corollary: CSP(H) is polynomial-time solvable if H has bounded frac-
tional edge cover number.
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Shearer’s Lemma

Shearer’s Lemma: Assume we have the following random variables:

X1, . . . , Xn ,

Y1, . . . , Ym , where each Yi = (Xi1 , . . . , Xik
) is a combination of some

Xi ’s,

X = (X1, . . . , Xn).

If each Xj appears in at least q of the Yi ’s, then H(X) ≤ 1
q

∑

H(Yi).

Entropy: “information content”

H(X) = − ∑

x P (X = x) log2 P (X = x)
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Bounding the number of solutions

Lemma: If the hypergraph of instance I has fractional edge cover number w, then

there are at most ‖I‖w satisfying assignments.

Example: Let C1(x1, x2) ∧ C2(x2, x3) ∧ C3(x1, x3) be an instance where

each constraint is satisfied by at most n pairs.

Fractional edge cover number: 3/2 ⇒ we have to show that there are at most
n3/2 solutions.
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Bounding the number of solutions

Lemma: If the hypergraph of instance I has fractional edge cover number w, then

there are at most ‖I‖w satisfying assignments.

Example: Let C1(x1, x2) ∧ C2(x2, x3) ∧ C3(x1, x3) be an instance where

each constraint is satisfied by at most n pairs.

Fractional edge cover number: 3/2 ⇒ we have to show that there are at most
n3/2 solutions.

Let X = (x1, x2, x3) be a random variable with uniform distribution over the

satisfying assignments of the instance.

Y1 = (x1, x2) Y2 = (x2, x3) Y3 = (x1, x3)

H(Yi) ≤ log2 n (has at most n different values)
H(X) ≤ 1

2
(H(Y1) + H(Y2) + H(Y3)) ≤ 3

2
log2 n

X has uniform distribution, hence it has 2H(X) = 2
3

2
log2 n = n3/2 different

values.
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Fractional hypertree width

The fractional hypertree width of a tree decomposition is the minimum value w

such that every bag has a fractional cover of weight w.

Fractional cover of a bag B: a weight assignment on the edges such that for each

v ∈ B, the total weight of the edges containing v is at least 1. It can be checked
in polynomial time if such an assignment of weight at most w exists.

Fractional hypertree width fhw (H): width of the best decomposition.

Note: fractional hypertree width ≤ generalized hypertree width

Each bag is essentially an instance with bounded fractional cover number, hence
there at most ‖I‖w solutions in the projection to a bag.
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Fractional hypertree width

The fractional hypertree width of a tree decomposition is the minimum value w

such that every bag has a fractional cover of weight w.

Fractional cover of a bag B: a weight assignment on the edges such that for each

v ∈ B, the total weight of the edges containing v is at least 1. It can be checked
in polynomial time if such an assignment of weight at most w exists.

Fractional hypertree width fhw (H): width of the best decomposition.

Note: fractional hypertree width ≤ generalized hypertree width

Each bag is essentially an instance with bounded fractional cover number, hence
there at most ‖I‖w solutions in the projection to a bag.

Fact: For every w, CSP can be solved in polynomial time if a fractional
hypertree decomposition of width w is given in the input.

⇒ If H has bounded fractional hypertree width, then CSP(H) is FPT.
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Approximating fractional hypertree width

To claim polynomial-time solvability, we need a way of finding tree decompositions

whose fractional hypertree width is (approximately) fhw(H).

Fact: [M. 2009] For every fixed w, there is a polynomial-time algorithm that either

finds a decomposition of fractional hypertree width at most O(w3), or correctly
concludes that fhw(H) > w.

⇒ If H has bounded fractional hypertree width, then CSP(H) is polynomial-time

solvable.

The decomposition algorithm uses the separator-based approach.

Key task: find a set S having fractional edge cover number at most w that sepa-

rates A and B. Surprisingly tricky!

Structural complexity of CSPs: the role of treewidth and its generalizations – p.48/51



Beyond fractional hypertree width

If a tree decomposition has width/hypertree width/fractional hypertree at most w,

then in every bag “we have to consider” at most ‖I‖w satisfying assignments.

Formally, for every bag B, the projection of the instance to B has at most ‖I‖w

solutions.

Is there a measure smaller than fractional hypertree width that can be used to
bound the number of solutions in the bags of a tree decomposition?
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Beyond fractional hypertree width

If a tree decomposition has width/hypertree width/fractional hypertree at most w,

then in every bag “we have to consider” at most ‖I‖w satisfying assignments.

Formally, for every bag B, the projection of the instance to B has at most ‖I‖w

solutions.

Is there a measure smaller than fractional hypertree width that can be used to
bound the number of solutions in the bags of a tree decomposition?

No. If the fractional hypertree width of a decomposition is at least w, then there

are (arbitrarily large) instances I where the projection to some bag has ‖I‖Ω(w)

solutions.
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Beyond fractional hypertree width

It seems that there is no width measure better than fractional hypertree width. We

can get around this “optimality” using the following ideas:

Idea #1: The decomposition can depend not only on the hypergraph of the

instance, but on the actual constraint relations.

Idea #2: We can branch on adding further restrictions, and apply different tree

decompositions to each resulting instance.
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Beyond fractional hypertree width

It seems that there is no width measure better than fractional hypertree width. We

can get around this “optimality” using the following ideas:

Idea #1: The decomposition can depend not only on the hypergraph of the

instance, but on the actual constraint relations.

Idea #2: We can branch on adding further restrictions, and apply different tree

decompositions to each resulting instance.

Submodular width: a new width measure that is not larger than fractional

hypertree width.

Fact: [M. 2009] Assuming ETH, if H is a recursively enumerable class of hyper-

graphs, then CSP(H) is FPT if and only if H has bounded submodular width.
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Overview
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Overview

tree width

edge cover number

Bounded fractional
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