
The k-disjoint paths problem in directed planar
graphs

Dániel Marx1

1Computer and Automation Research Institute,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

(Joint work with Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk)

Dagstuhl Seminar 13121
March 21, 2013

Schloss Dagstuhl, Germany

1



Main result

Result of Schrijver:

A nO(k) time algorithm for the k-vertex-disjoint paths
problem in directed planar graphs.

New result:

A f (k) · nO(1) time algorithm for the k-vertex-disjoint
paths problem in directed planar graphs.

2



Overview

1 Undirected planar graphs.
2 Directed planar graphs: Schrijver’s Algorithm.
3 Directed planar graphs: new algorithm.

3



Undirected graphs

k-disjoint paths problem
Given a graph G and pairs (s1, t1), . . . , (sk , tk), find k pairwise
vertex-disjoint paths P1, . . . , Pk such that Pi connects si and ti .

s1

t1

s2 t2

s3

t3

Theorem [Robertson and Seymour GMXIII]

The k-disjoint paths problem can be solved in time f (k) · n3.

4



Undirected planar graphs

An algorithm for the special case of planar graphs appears already
in [Robertson and Seymour GMVII]. A self-contained presentation:

Theorem [Adler et al. 2011]
The k-disjoint paths problem on undirected planar graphs can be
solved in time 22O(k) · nO(1).

Main argument:
either treewidth is 2O(k) and we can use standard algorithmic
techniques of bounded treewidth graphs, or
treewidth is 2Ω(k) and we can find an irrelevant vertex whose
deletion does not change the problem.

5



Undirected planar graphs

An algorithm for the special case of planar graphs appears already
in [Robertson and Seymour GMVII]. A self-contained presentation:

Theorem [Adler et al. 2011]
The k-disjoint paths problem on undirected planar graphs can be
solved in time 22O(k) · nO(1).

Main argument:
either treewidth is 2O(k) and we can use standard algorithmic
techniques of bounded treewidth graphs, or
treewidth is 2Ω(k) and we can find an irrelevant vertex whose
deletion does not change the problem.

5



Irrelevant vertices
A vertex is irrelevant if its deletion does not change the problem,
i.e., does not make it harder.

Theorem
If treewidth of a planar graph is Ω(k), then it contains the
subdivision of a k × k wall.

Lemma [Adler et al. 2011]

If a 2O(k) × 2O(k) wall of a planar graph does not enclose any
terminals, then the middle vertex of the wall is irrelevant to the
k-disjoint paths problem.

6



Irrelevant vertices
A vertex is irrelevant if its deletion does not change the problem,
i.e., does not make it harder.

Theorem
If treewidth of a planar graph is Ω(k), then it contains the
subdivision of a k × k wall.

Lemma [Adler et al. 2011]

If a 2O(k) × 2O(k) wall of a planar graph does not enclose any
terminals, then the middle vertex of the wall is irrelevant to the
k-disjoint paths problem.

6



Irrelevant vertices

Lemma [Adler et al. 2011]

If there are 2O(k) concentric cycles in a planar graph not enclosing
any terminals, then the innermost cycle is irrelevant to the
k-disjoint paths problem.

Any solution can be rerouted to avoid the innermost cycle.

7



Undirected planar graphs

Algorithm:
If treewidth is 2Ω(k), we can find an irrelevant vertex.
By repeatedly removing irrelevant vertices, we can reduce
treewidth to 2O(k).
If treewidth is 2O(k), standard algorithmic techniques can be
used.

Running time is 22O(k) · nO(1).

Note: [Adler et al. 2011] show that there are instances with
treewidth 2Ω(k) and no irrelevant vertex, so double-exponential
dependence on k cannot be avoided with this approach.

8



Undirected planar graphs

Algorithm:
If treewidth is 2Ω(k), we can find an irrelevant vertex.
By repeatedly removing irrelevant vertices, we can reduce
treewidth to 2O(k).
If treewidth is 2O(k), standard algorithmic techniques can be
used.

Running time is 22O(k) · nO(1).

Note: [Adler et al. 2011] show that there are instances with
treewidth 2Ω(k) and no irrelevant vertex, so double-exponential
dependence on k cannot be avoided with this approach.

8



Directed graphs
There is no analog of [Robertson and Seymour GMXIII] on directed
graphs:

Theorem [Fortune, Hopcroft, and Wyllie 1980]
The directed 2-disjoint paths problem is NP-hard.

s1 t1

s2 t2

As the directed problem is hard in general, it can be important to
distinguish between slightly different versions of the problem.

9



Different planar versions

Edge-disjoint planar

[Open: Is the planar directed edge-disjoint
problem NP-hard for k = 2?]

Noncrossing edge-disjoint planar

Vertex-disjoint planar

[More general than the
noncrossing edge-disjoint planar problem]

10



Planar graphs

Fact
Polynomial-time greedy algorithm if all the terminals are on a single
face.

Theorem [Schrijver 1994]
The k-disjoint paths problem in directed planar graphs can be
solved in time nO(k).

New result
The k-disjoint paths problem in directed planar graphs can be
solved in time f (k) · nO(1).

11



Schrijver’s result

Main idea
Guess the homology type of the solution and try to realize it.

Informally, two solutions are homologous if they can be
“continuously transformed” into each other.

s1
t1

s2 t2

s3

t3

s1
t1

s2 t2

s3

t3

s1
t1

s2 t2

s3

t3

12



Flows

Flow
Informally: paths are allowed to share edges without crossing and
to go in the wrong direction on an edge.
Formally:

a word with letters from 1, 2, . . . , k , 1−1, 2−1, . . . , k−1 (or
the empty word ε) on each edge,
flow conservation and noncrossing conditions hold at each
vertex.

1

1−1

2

1−121

1−1

1

1−1

1

2

13



Homology types
Two flows f and g are homologous if there is a word w(F ) for
each face F such that w(F )−1 · f (a) · w(F ′) = g(a) for each edge
a, where F and F ′ are the left-hand and right-hand side of a,
respectively.

1

1

1−1

2

2

2

Lemma [Schrijver]
Given a flow f , we can check in polynomial time if there is a flow g
homologous to f such that g(a) ∈ {1, 2, . . . , k , ε} for every edge a.

14



Homology types
Two flows f and g are homologous if there is a word w(F ) for
each face F such that w(F )−1 · f (a) · w(F ′) = g(a) for each edge
a, where F and F ′ are the left-hand and right-hand side of a,
respectively.

εε

εε

1

1

1−1

2

2

2

ε ε

ε

εε

ε 2 1

Lemma [Schrijver]
Given a flow f , we can check in polynomial time if there is a flow g
homologous to f such that g(a) ∈ {1, 2, . . . , k , ε} for every edge a.

14



Homology types
Two flows f and g are homologous if there is a word w(F ) for
each face F such that w(F )−1 · f (a) · w(F ′) = g(a) for each edge
a, where F and F ′ are the left-hand and right-hand side of a,
respectively.

ε

ε

ε

εε

ε

ε

1

1

2

1

2

ε

εε

2 1

2

2 1

1

2

Lemma [Schrijver]
Given a flow f , we can check in polynomial time if there is a flow g
homologous to f such that g(a) ∈ {1, 2, . . . , k , ε} for every edge a.

14



Enumerating homology types

We may assume that every terminal has degree 1.
Find a spanning tree of the graph minus the terminals.
If the fundamental cycle of an edge encloses a terminal, we
call it an “ear.”

15



Enumerating homology types

We may assume that every terminal has degree 1.
Find a spanning tree of the graph minus the terminals.
If the fundamental cycle of an edge encloses a terminal, we
call it an “ear.”

15



Enumerating homology types

We may assume that every terminal has degree 1.
Find a spanning tree of the graph minus the terminals.
If the fundamental cycle of an edge encloses a terminal, we
call it an “ear.”

15



Enumerating homology types

We may assume that every terminal has degree 1.
Find a spanning tree of the graph minus the terminals.
If the fundamental cycle of an edge encloses a terminal, we
call it an “ear.”

15



Enumerating homology types
O(k) parallel classes of ears:

Homology type of the solution is described by
the number of connections between any two ear classes.
specifying which terminal is connected to which ear.

⇒ nO(k) homology types.

16



Enumerating homology types
O(k) parallel classes of ears:

Homology type of the solution is described by
the number of connections between any two ear classes.
specifying which terminal is connected to which ear.

⇒ nO(k) homology types.

16



Enumerating homology types
O(k) parallel classes of ears:

Homology type of the solution is described by
the number of connections between any two ear classes.
specifying which terminal is connected to which ear.

⇒ nO(k) homology types.

16



New algorithm

1 Irrelevant vertex rule.
2 Duality of alternation.
3 Decomposition.
4 Rerouting in rings.
5 Guessing the homology type.

17



Irrelevant vertex rule

Theorem
If an alternating sequence of f (k) cycles does not enclose any
terminals, then the middle vertex is irrelevant.

18



Duality theorem 1
Given two concentric cycles C1 and C2, either. . .

C1

C2

C1

C2

. . .there is an alternating
sequence of k paths con-
necting C1 and C2 . . .

or

. . .there is a closed curve
separating C1 from C2 and
intersecting a sequence of
edges with at most k+O(1)
alternations.

19



Duality theorem 2

Given two concentric cycles C1 and C2, either. . .
C1

C2

C1

C2

. . .there is an alternat-
ing sequence of k concen-
tric cycles between C1 and
C2 . . .

or

. . .there is a curve from
C1 to C2 intersecting a se-
quence of edges with at
most k +O(1) alternations.

20



Decomposition

With some preprocessing, we can assume that the instance has a
decomposition of the following form into f (k) components and
f (k) connecting bundles:

terminals on the boundary

one-way bundles

disk component

ring component

21



Decomposition

Suppose that there is a terminal not on the outer boundary of its
component.

If there is a curve with bounded alternation to the boundary of
the component, we can move the terminal to the boundary by
introducing a bounded number of new bundles.

If there is no such curve, by duality a large sequence of
alternating cycles separate the terminal from the boundary.

If there is a large alternating set of paths through these cycles,
then we can find an irrelevant vertex.
Otherwise, we can find a cut of bounded alternation (creating
a ring) and a curve of small alternation to this cut (moving the
terminal to the boundary).

22



Decomposition

Suppose that there is a terminal not on the outer boundary of its
component.

If there is a curve with bounded alternation to the boundary of
the component, we can move the terminal to the boundary by
introducing a bounded number of new bundles.
If there is no such curve, by duality a large sequence of
alternating cycles separate the terminal from the boundary.

If there is a large alternating set of paths through these cycles,
then we can find an irrelevant vertex.
Otherwise, we can find a cut of bounded alternation (creating
a ring) and a curve of small alternation to this cut (moving the
terminal to the boundary).

22



Decomposition

Suppose that there is a terminal not on the outer boundary of its
component.

If there is a curve with bounded alternation to the boundary of
the component, we can move the terminal to the boundary by
introducing a bounded number of new bundles.
If there is no such curve, by duality a large sequence of
alternating cycles separate the terminal from the boundary.

If there is a large alternating set of paths through these cycles,
then we can find an irrelevant vertex.
Otherwise, we can find a cut of bounded alternation (creating
a ring) and a curve of small alternation to this cut (moving the
terminal to the boundary).

22



Decomposition

We claim that we can enumerate f (k) homology types such that if
there is a solution, then there is a solution with one of these types.

terminals on the boundary

one-way bundles

disk component

ring component

23



Rerouting in a ring
Consider the subpaths crossing a “fat” ring: the number of different
homologies cannot be bounded by f (k).

Number of turns: the (signed) number of times a path crosses a
reference path connecting the inside and outside.

24



Rerouting in a ring
Consider the subpaths crossing a “fat” ring: the number of different
homologies cannot be bounded by f (k).

Number of turns: the (signed) number of times a path crosses a
reference path connecting the inside and outside.

24



Rerouting in a ring
Consider the subpaths crossing a “fat” ring: the number of different
homologies cannot be bounded by f (k).

Number of turns: the (signed) number of times a path crosses a
reference path connecting the inside and outside.

PQ

24



Rerouting in a ring
Consider the subpaths crossing a “fat” ring: the number of different
homologies cannot be bounded by f (k).

Number of turns: the (signed) number of times a path crosses a
reference path connecting the inside and outside.

PQ P ′

Lemma
Let P and Q be two sets of at most k paths with the same pattern.
Suppose that P and Q cross a ring having f (k) alternating cycles. Then
P can be rerouted (without changing its endpoints) such that it does the
same number of turns (maybe ±O(k)) as Q.

24



Routing on the torus
Observation: Routing on a ring between the inside and the outside
can be considered as finding disjoint cycles on the torus.

Theorem [Ding, Schrijver, Seymour 1993]
Given pairwise disjoint non-nullhomotopic curves on a torus, a
sufficient and necessary condition for being able to shift the curves
into pairwise disjoint cycles.

Lemma
Let P and Q be two sets of at most k paths with the same pattern.
Suppose that P and Q cross a ring having f (k) alternating cycles.
Then P can be rerouted (without changing its endpoints) such that
it does the same number of turns (maybe ±O(k)) as Q.

Main idea: If P realizes the pattern with turning number x and Q
realizes it with turning number Q, then a witness showing that P
cannot be rerouted with turning number (x + y)/2 gives a
contradiction.

25



Routing on the torus
Observation: Routing on a ring between the inside and the outside
can be considered as finding disjoint cycles on the torus.

Theorem [Ding, Schrijver, Seymour 1993]
Given pairwise disjoint non-nullhomotopic curves on a torus, a
sufficient and necessary condition for being able to shift the curves
into pairwise disjoint cycles.

Lemma
Let P and Q be two sets of at most k paths with the same pattern.
Suppose that P and Q cross a ring having f (k) alternating cycles.
Then P can be rerouted (without changing its endpoints) such that
it does the same number of turns (maybe ±O(k)) as Q.

Main idea: If P realizes the pattern with turning number x and Q
realizes it with turning number Q, then a witness showing that P
cannot be rerouted with turning number (x + y)/2 gives a
contradiction.

25



Guessing a homology type

Suppose that there are no ring components:

Main problem: a path can spiral even if there are no ring
components.

26



Guessing a homology type

Suppose that there are no ring components:

Main problem: a path can spiral even if there are no ring
components.

26



One-way spirals
Observation: if a path creates a spiral with many turns, then the
other paths in between do similar spirals.

We may assume that the number of turns these i paths do is the
minimum number of turns that i paths can do from the outside to
the inside.

27



One-way spirals
Observation: if a path creates a spiral with many turns, then the
other paths in between do similar spirals.

We may assume that the number of turns these i paths do is the
minimum number of turns that i paths can do from the outside to
the inside.

27



One-way spirals
Observation: if a path creates a spiral with many turns, then the
other paths in between do similar spirals.

We may assume that the number of turns these i paths do is the
minimum number of turns that i paths can do from the outside to
the inside.

27



Summary of the algorithm

Remove irrelevant vertices inside concentric cycles.
Find a decomposition into a bounded number of components
and bundles.
Guess the number of turns in rings.
Guess the global structure (including the structure of one-way
spirals).
Compute the number of turns for the one-way spirals.
Determine if there is a solution with this homology type.

28



A note on complexity
It could have been that the nO(k) algorithm is best possible.

W[1]-hardness: strong evidence that there is no f (k) · nO(1) time
algorithm (similar to NP-hardness).

Example:

Theorem [Dalhaus et al. 1994]
Planar Multiterminal Cut (find the minimum number of edges
pairwise separating k given terminals) can be solved in time nO(k).

Theorem [M. 2012]
Planar Multiterminal Cut is W[1]-hard.

Our goal was either
to find an f (k) · nO(1) time algorithm or
to show that the problem is W[1]-hard.

29



A note on complexity
It could have been that the nO(k) algorithm is best possible.

W[1]-hardness: strong evidence that there is no f (k) · nO(1) time
algorithm (similar to NP-hardness).
Example:

Theorem [Dalhaus et al. 1994]
Planar Multiterminal Cut (find the minimum number of edges
pairwise separating k given terminals) can be solved in time nO(k).

Theorem [M. 2012]
Planar Multiterminal Cut is W[1]-hard.

Our goal was either
to find an f (k) · nO(1) time algorithm or
to show that the problem is W[1]-hard.

29



A note on complexity
It could have been that the nO(k) algorithm is best possible.

W[1]-hardness: strong evidence that there is no f (k) · nO(1) time
algorithm (similar to NP-hardness).
Example:

Theorem [Dalhaus et al. 1994]
Planar Multiterminal Cut (find the minimum number of edges
pairwise separating k given terminals) can be solved in time nO(k).

Theorem [M. 2012]
Planar Multiterminal Cut is W[1]-hard.

Our goal was either
to find an f (k) · nO(1) time algorithm or
to show that the problem is W[1]-hard.

29


