
The Closest Substring problem with small
distances

Dániel Marx

dmarx@informatik.hu-berlin.de

Humboldt-Universität zu Berlin

July 25, 2005

The Closest Substring problem with small distances – p.1/26

The Closest String problem

CLOSEST STRING

Input: Strings s1, . . . , sk of length L

Solution: A string s of length L (center string)

Minimize: maxk
i=1 d(s, si)

d(w1, w2): the number of positions where w1 and w2 differ (Hamming

distance).

Applications: computational biology (e.g., finding common ancestors)

Problem is NP-hard even with binary alphabet [Frances and Litman, 1997].

The Closest Substring problem with small distances – p.2/26

The Closest Substring problem

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk , an integer L

Solution: — string s of length L (center string),

— a length L substring s′

i of si for every i

Minimize: maxk
i=1 d(s, s′

i)

Remark: For a given s, it is easy to find the best s′

i for every i.

Applications: finding common patterns, drug design.

The Closest Substring problem with small distances – p.3/26

The Closest Substring problem

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk , an integer L

Solution: — string s of length L (center string),

— a length L substring s′

i of si for every i

Minimize: maxk
i=1 d(s, s′

i)

Remark: For a given s, it is easy to find the best s′

i for every i.

Applications: finding common patterns, drug design.

Problem is NP-hard even with binary alphabet (CLOSEST STRING is the
special case |si| = L.)

CLOSEST SUBSTRING admits a PTAS [Li, Ma, & Wang, 2002]:

for every ǫ > 0 there is an nO(1/ǫ4) algorithm that produces a

(1 + ǫ)-approximation.
The Closest Substring problem with small distances – p.3/26

Parameterized Closest Substring

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk over Σ, integers L and d

Possible parameters: k, L, d, |Σ|

Find: — string s of length L (center string),

— a length L substring s′

i of si for every i

such that d(s, s′

i) ≤ d for every i

Possible parameters:

k: might be small

d: might be small

L: usually large

|Σ|: usually a small constant

The Closest Substring problem with small distances – p.4/26

Closest Substring—Results

parameter |Σ| is constant |Σ| is parameter |Σ| is unbounded

d ? ? W[1]-hard

k W[1]-hard W[1]-hard W[1]-hard

d,k ? ? W[1]-hard

L FPT FPT W[1]-hard

d,k,L FPT FPT W[1]-hard

(Hardness results by [Fellows, Gramm, Niedermeier 2002].)

The Closest Substring problem with small distances – p.5/26

Closest Substring—Results

parameter |Σ| is constant |Σ| is parameter |Σ| is unbounded

d W[1]-hard W[1]-hard W[1]-hard

k W[1]-hard W[1]-hard W[1]-hard

d,k W[1]-hard W[1]-hard W[1]-hard

L FPT FPT W[1]-hard

d,k,L FPT FPT W[1]-hard

(Hardness results by [Fellows, Gramm, Niedermeier 2002].)

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d,
even if |Σ| = 2. (In the rest of the talk, Σ is always {0, 1}.)

The Closest Substring problem with small distances – p.5/26

Hardness of Closest Substring

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

MAXIMUM INDEPENDENT SET

(G, t)
⇒

CLOSEST SUBSTRING

k = 22O(t)

d = 2O(t)

Corollary: No f(k, d) · nc algorithm for CLOSEST SUBSTRING unless

FPT=W[1].

The Closest Substring problem with small distances – p.6/26

Hardness of Closest Substring

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

MAXIMUM INDEPENDENT SET

(G, t)
⇒

CLOSEST SUBSTRING

k = 22O(t)

d = 2O(t)

Corollary: No f(k, d) · nc algorithm for CLOSEST SUBSTRING unless

FPT=W[1].

Corollary: No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm for CLOS-

EST SUBSTRING unless MAXIMUM INDEPENDENT SET has an f(t) · no(t) algo-

rithm.

The Closest Substring problem with small distances – p.6/26

Hardness of Closest Substring

Corollary: No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm for

CLOSEST SUBSTRING unless MAXIMUM INDEPENDENT SET has an
f(t) · no(t) algorithm.

MAXIMUM INDEPENDENT SET has an f(t) · no(t) algorithm

⇓

n variable 3-SAT can be solved in 2o(n) time

m

FPT=M[1]

The Closest Substring problem with small distances – p.7/26

Hardness of Closest Substring

Corollary: No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm for

CLOSEST SUBSTRING unless MAXIMUM INDEPENDENT SET has an
f(t) · no(t) algorithm.

MAXIMUM INDEPENDENT SET has an f(t) · no(t) algorithm

⇓

n variable 3-SAT can be solved in 2o(n) time

m

FPT=M[1]

The lower bound on the exponent of n is best possible:

Theorem: [D.M.] CLOSEST SUBSTRING can be solved in f1(d, k) · nO(log d)

time.

Theorem: [D.M.] CLOSEST SUBSTRING can be solved in f2(d, k) ·nO(log log k)

time.
The Closest Substring problem with small distances – p.7/26

Relation to approximability

PTAS: algorithm that produces a (1 + ǫ)-approximation in time nf(ǫ).

EPTAS: (efficient PTAS) a PTAS with running time f(ǫ) · nO(1).

Observation: if ǫ = 1
d+1

, then a (1 + ǫ)-approximation algorithm can

correctly decide whether the optimum is d or d + 1

⇒ if an optimization problem has an EPTAS, then it is FPT.

Corollary: CLOSEST SUBSTRING has no EPTAS, unless FPT=W[1].

Corollary: CLOSEST SUBSTRING has no f(ǫ) · no(log ǫ) time PTAS, unless

FPT=M[1].

The Closest Substring problem with small distances – p.8/26

What’s next?

f1(d, k) · nO(log d) time algorithm

Some results on hypergraphs

f2(d, k) · nO(log log k) time algorithm

Sketch of the completeness proof

Conclusions

The Closest Substring problem with small distances – p.9/26

The first algorithm

Definition: A solution is a minimal solution if
∑k

i=1 d(s, s′

i) is as small as
possible (and d(s, s′

i) ≤ d for every i).

The Closest Substring problem with small distances – p.10/26

The first algorithm

Definition: A solution is a minimal solution if
∑k

i=1 d(s, s′

i) is as small as
possible (and d(s, s′

i) ≤ d for every i).

Definition: A set of length L strings G generates a length L string s if
whenever the strings in G agree at the i-th position, then s has the same

character at this position.

Example: G1 generates s but G2 does not.

1 1 0 1 0 1
G1 0 1 0 1 1 1

1 1 0 0 1 1

s 1 1 0 1 0 1

1 1 0 1 1 1
G2 0 1 0 1 1 1

1 1 0 0 1 1

s 1 1 0 1 0 1

The Closest Substring problem with small distances – p.10/26

First algorithm

Let S be the set of all length L substrings of s1, . . . , sk . Clearly, |S| ≤ n.

Lemma: If s is the center string of a minimal solution, then S has a subset G

of size O(log d) that generates s, and the strings in G agree in all but at most
O(d log d) positions.

The Closest Substring problem with small distances – p.11/26

First algorithm

Let S be the set of all length L substrings of s1, . . . , sk . Clearly, |S| ≤ n.

Lemma: If s is the center string of a minimal solution, then S has a subset G

of size O(log d) that generates s, and the strings in G agree in all but at most
O(d log d) positions.

Algorithm:

Construct the set S .

Consider every subset G ⊆ S of size O(log d).

If there are at most O(d log d) positions in G where they disagree, then try

every center string generated by G.

Running time: |Σ|O(d log d) · nO(log d).

The Closest Substring problem with small distances – p.11/26

Proof of the lemma

Lemma: If s is the center string of a minimal solution, then S has a subset G

of size O(log d) that generates s, and the strings in G agree in all but at most
O(d log d) positions.

Proof: Let (s, s′

1, . . . , s′

k) be a minimal solution. We show that {s′

1, . . . , s′

k}

has a O(log d) subset that generates s.

The bad positions of a set of strings are the positions where they agree, but s

is different. Clearly, {s′

1} has at most d bad positions.

We show that if a set of strings has p bad positions, then we can decrease the
number of bad positions to p/2 by adding a string s′

i ⇒ no bad position

remains after adding log d strings.

The Closest Substring problem with small distances – p.12/26

Proof of the lemma (cont.)

Example: there are 4 bad positions:

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s 1 0 0 0 0 1 1 0 0

To make a bad position non-bad, we have to add a string that disagree with the

previous strings at this position.

There is a string s′

i that disagree on at least half of the bad positions,
otherwise we could change s to make

∑k
i=1 d(s, s′

i) smaller.

The Closest Substring problem with small distances – p.13/26

Proof of the lemma (cont.)

Example: there are 4 bad positions:

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s 1 0 0 0 0 1 1 0 0

⇒

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s′

i 1 1 1 0 0 0 1 1 1

s 1 0 0 0 0 1 1 0 0

To make a bad position non-bad, we have to add a string that disagree with the

previous strings at this position.

There is a string s′

i that disagree on at least half of the bad positions,
otherwise we could change s to make

∑k
i=1 d(s, s′

i) smaller.

The Closest Substring problem with small distances – p.13/26

Proof of the lemma (cont.)

Example: there are 4 bad positions:

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s 1 0 0 0 0 1 1 0 0

⇒

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s′

i 1 1 1 0 0 0 1 1 1

s 1 0 0 0 0 1 1 0 0

To make a bad position non-bad, we have to add a string that disagree with the

previous strings at this position.

There is a string s′

i that disagree on at least half of the bad positions,
otherwise we could change s to make

∑k
i=1 d(s, s′

i) smaller.

(Since every s′

i differs from s on at most d positions, the O(log d) strings will

agree on all but at most O(d log d) positions.)

The Closest Substring problem with small distances – p.13/26

(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An edge cover is a subset of the edges such that every vertex is covered by at
least one edge.

̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

The Closest Substring problem with small distances – p.14/26

(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An edge cover is a subset of the edges such that every vertex is covered by at
least one edge.

̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

̺(H) = 2

The Closest Substring problem with small distances – p.14/26

(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An edge cover is a subset of the edges such that every vertex is covered by at
least one edge.

̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

̺(H) = 2

1
2

1
2 1

2

̺∗(H) = 1.5

The Closest Substring problem with small distances – p.14/26

(Fractional) stable sets

A stable set is a subset of the vertices such that every edge contains at most

one selected vertex.
α(H): size of the largest stable set.

A fractional stable set is a weight assignment to the vertices such that the
weight covered by each edge is at most 1.

α∗(H): largest total weight of a fractional stable set.

The Closest Substring problem with small distances – p.15/26

(Fractional) stable sets

A stable set is a subset of the vertices such that every edge contains at most

one selected vertex.
α(H): size of the largest stable set.

A fractional stable set is a weight assignment to the vertices such that the
weight covered by each edge is at most 1.

α∗(H): largest total weight of a fractional stable set.

α(H) = 1

The Closest Substring problem with small distances – p.15/26

(Fractional) stable sets

A stable set is a subset of the vertices such that every edge contains at most

one selected vertex.
α(H): size of the largest stable set.

A fractional stable set is a weight assignment to the vertices such that the
weight covered by each edge is at most 1.

α∗(H): largest total weight of a fractional stable set.

α(H) = 1

1
4 1

4
1
2

1
2

α∗(H) = 1.5

The Closest Substring problem with small distances – p.15/26

(Fractional) stable sets

A stable set is a subset of the vertices such that every edge contains at most

one selected vertex.
α(H): size of the largest stable set.

A fractional stable set is a weight assignment to the vertices such that the
weight covered by each edge is at most 1.

α∗(H): largest total weight of a fractional stable set.

α(H) = 1

1
4 1

4
1
2

1
2

α∗(H) = 1.5

By linear programming duality:
1

α(H)≤
1.5

α∗(H)=
1.5

̺∗(H)≤
2

̺(H)

The Closest Substring problem with small distances – p.15/26

Finding subhypergraphs

Hypergraph H1 appears in H2 as subhypergraph at vertex set X , if there is a

mapping π between X and the vertices of H1 such that for each edge E1 of
H1, there is an edge E2 of H2 with E2 ∩ X = π(E1).

A
A B

D

C

B

D

C

The Closest Substring problem with small distances – p.16/26

Finding subhypergraphs

Hypergraph H1 appears in H2 as subhypergraph at vertex set X , if there is a

mapping π between X and the vertices of H1 such that for each edge E1 of
H1, there is an edge E2 of H2 with E2 ∩ X = π(E1).

A
A B

D

C

B

D

C

We would like to enumerate all the places where H1 appears in H2. Assume
that H2 has m edges and each has size at most ℓ.

Lemma: (easy) H1 can appear in H2 at max. f(ℓ, ̺(H1)) · m̺(H1) places.

The Closest Substring problem with small distances – p.16/26

Finding subhypergraphs

Hypergraph H1 appears in H2 as subhypergraph at vertex set X , if there is a

mapping π between X and the vertices of H1 such that for each edge E1 of
H1, there is an edge E2 of H2 with E2 ∩ X = π(E1).

A
A B

D

C

B

D

C

We would like to enumerate all the places where H1 appears in H2. Assume
that H2 has m edges and each has size at most ℓ.

Lemma: (easy) H1 can appear in H2 at max. f(ℓ, ̺(H1)) · m̺(H1) places.

Lemma: [follows from Friedgut and Kahn, 1998] H1 can appear in H2 at max.

f(ℓ, ̺∗(H1)) · m̺∗(H1) places.
The Closest Substring problem with small distances – p.16/26

Finding subhypergraphs

Lemma: H1 can appear in H2 at max. f(ℓ, ̺∗(H1)) · m̺∗(H1) places.

We want to turn this result into an algorithm (proof is based on Shearer’s
Lemma, not algorithmic).

The Closest Substring problem with small distances – p.17/26

Finding subhypergraphs

Lemma: H1 can appear in H2 at max. f(ℓ, ̺∗(H1)) · m̺∗(H1) places.

We want to turn this result into an algorithm (proof is based on Shearer’s
Lemma, not algorithmic).

Algorithm: Let {1, 2, . . . , r} be the vertices of H1, and let H
(i)
1 be the

induced subhypergraph of H1 on {1, 2, . . . , i}. For i = 1, 2, . . . , r, the
algorithm enumerates the list Li of all the places where H

(i)
1 appears in H2.

L1 is trivial.

Li+1 is easy to construct based on Li .

Since ̺∗(H
(i)
1) ≤ ̺∗(H1), the list Li cannot be too large.

Lemma: We can enumerate in f(ℓ, ̺∗(H1)) · mO(̺∗(H1)) time all the places

where H1 appears in H2.

The Closest Substring problem with small distances – p.17/26

Half-covering

Defintion: A hypergraph has the half-covering property if for every set X of

vertices there is an edge Y with |X ∩ Y | > |X |/2.

Lemma: If a hypergraph H with m edges has the half-covering property, then

̺∗(H) = O(log log m).

(The O(log log m) is best possible.)

Proof: by probabilistic arguments.

The Closest Substring problem with small distances – p.18/26

Reminder

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk over Σ, integers L and d

Possible parameters: k, L, d, |Σ|

Find: — string s of length L (center string),

— a length L substring s′

i of si for every i

such that d(s, s′

i) ≤ d for every i

The Closest Substring problem with small distances – p.19/26

The second algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

The Closest Substring problem with small distances – p.20/26

The second algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .
Then there is a hypergraph H0 with at most d vertices and k edges having the

half-covering property such that H0 appears at P in H .

The Closest Substring problem with small distances – p.20/26

The second algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .
Then there is a hypergraph H0 with at most d vertices and k edges having the

half-covering property such that H0 appears at P in H .

Algorithm: Consider every hypergraph H0 as above and enumerate all the
places where H0 appears in H .

The Closest Substring problem with small distances – p.20/26

The second algorithm (cont.)

Algorithm:

Construct the hypergraph H .

Enumerate every hypergraph H0 with at most d vertices and k edges
(constant number).

Check if H0 has the half-covering property.

If so, then enumerate every place P where H0 appears in H .

(max. ≈ nO(̺∗(H0)) = nO(log log k) places).

For each place P , check if there is a good center string that differs from s′

1

only at P .

Running time: f(k, d, Σ) · nO(log log k).

The Closest Substring problem with small distances – p.21/26

Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution. s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0
s′

5 1 0 0 1 1 1 0 0 0 0

s 0 1 1 1 1 1 0 0 0 0

The Closest Substring problem with small distances – p.22/26

Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution.

The solution gives k − 1 edges of H .

s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0
s′

5 1 0 0 1 1 1 0 0 0 0

s 0 1 1 1 1 1 0 0 0 0

The Closest Substring problem with small distances – p.22/26

Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution.

The solution gives k − 1 edges of H .

P : the positions where s′

1 and s differ.

s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0
s′

5 1 0 0 1 1 1 0 0 0 0

s 0 1 1 1 1 1 0 0 0 0
P

The Closest Substring problem with small distances – p.22/26

Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution.

The solution gives k − 1 edges of H .

P : the positions where s′

1 and s differ.

Restrict the k − 1 edges to P ⇒ H0.

s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0
s′

5 1 0 0 1 1 1 0 0 0 0

s 0 1 1 1 1 1 0 0 0 0
P

The Closest Substring problem with small distances – p.22/26

Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution.

The solution gives k − 1 edges of H .

P : the positions where s′

1 and s differ.

Restrict the k − 1 edges to P ⇒ H0.

Claim: H0 has the half-covering property.

s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0
s′

5 1 0 0 1 1 1 0 0 0 0

s 0 1 1 1 1 1 0 0 0 0
P

The Closest Substring problem with small distances – p.22/26

Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution.

The solution gives k − 1 edges of H .

P : the positions where s′

1 and s differ.

Restrict the k − 1 edges to P ⇒ H0.

Claim: H0 has the half-covering property.

s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0

s 0 1 1 1 1 1 0 0 0 0
P

The Closest Substring problem with small distances – p.22/26

Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution.

The solution gives k − 1 edges of H .

P : the positions where s′

1 and s differ.

Restrict the k − 1 edges to P ⇒ H0.

Claim: H0 has the half-covering property.

If half-covering is violated for R ⊆ P . . .

s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0

s 0 1 1 1 1 1 0 0 0 0
R

The Closest Substring problem with small distances – p.22/26

Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution.

The solution gives k − 1 edges of H .

P : the positions where s′

1 and s differ.

Restrict the k − 1 edges to P ⇒ H0.

Claim: H0 has the half-covering property.

If half-covering is violated for R ⊆ P . . .

. . . then we can change s on R.

s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0

s 0 1 1 1 0 0 0 0 0 0
R

The Closest Substring problem with small distances – p.22/26

The reduction

Theorem: CLOSEST SUBTRING is W[1]-hard with parameters k and d.

The reduction is based on the proof of previous weaker result:

Theorem: [Fellows, Gramm, Niedermeier, 2002] CLOSEST SUBTRING is
W[1]-hard with parameter k.

The Closest Substring problem with small distances – p.23/26

The reduction

Theorem: CLOSEST SUBTRING is W[1]-hard with parameters k and d.

The reduction is based on the proof of previous weaker result:

Theorem: [Fellows, Gramm, Niedermeier, 2002] CLOSEST SUBTRING is
W[1]-hard with parameter k.

Idea 1: Every string si is divided into blocks of length L. We ensure that s′

i is

one complete block of si .

How: Each block starts with the front tag (1x0)y , and there is a special string

having only one block.

s4

s3

s2

s1

The Closest Substring problem with small distances – p.23/26

The reduction

Reduction from MAXIMUM INDEPENDENT SET.

Idea 2: The center string (and each block) is divided into k segments of length
n. We ensure that each segment contains exactly one symbol “1” and these k

symbols describe an independent set of size k.

How: string si,j ensures that vertex vi and vj are not connected. The blocks
of si,j contain 1’s only in segments i and j, and there is a block for each valid

combination.

Dirty trick to ensure that there is at least one “1” in each segment, but this

requires large d.

The Closest Substring problem with small distances – p.24/26

The reduction

New idea: Instead of k segments of size n,

vertex v1 is described by a segment of size n

vertex v2 is described by 2 segments of size n1/2

vertex v3 is described by 4 segments of size n1/4

. . .

⇒ we have 2t − 1 segments.

For each subset S of the segments, there is a string that makes it impossible
that there is no “1” in S, but there is at least one in every other segment.

⇒k = 22O(k)

The Closest Substring problem with small distances – p.25/26

Conclusions

Complete parameterized analysis of CLOSEST SUBSTRING.

Tight bounds for subexponential algorithms.

“Weak” parameterized reduction ⇒ subexponential algorithms?

Subexponential algorithms ⇒ proving optimality using parameterized
complexity?

Other applications of fractional edge cover number and finding

hypergraphs?

The Closest Substring problem with small distances – p.26/26

	The Closest String problem
	The Closest 	extcolor {red}{Sub}string problem
	Parameterized Closest Substring
	Closest Substring---Results
	Hardness of Closest Substring
	Hardness of Closest Substring
	Relation to approximability
	What's next?
	The first algorithm
	First algorithm
	Proof of the lemma
	Proof of the lemma (cont.)
	(Fractional)
edge covering
	(Fractional)
stable sets
	Finding subhypergraphs
	Finding subhypergraphs
	Half-covering
	Reminder
	The second algorithm
	The second algorithm (cont.)
	Proof of the lemma
	The reduction
	The reduction
	The reduction
	Conclusions

