

The Closest Substring problem with small distances

Dániel Marx dmarx@informatik.hu-berlin.de

Humboldt-Universität zu Berlin

July 25, 2005

The Closest Substring problem with small distances – p.1/26

The Closest String problem

CLOSEST STRING

Input: Strings s_1, \ldots, s_k of length L

Solution: A string *s* of length *L* (center string)

Minimize: $\max_{i=1}^{k} d(s, s_i)$

 $d(w_1, w_2)$: the number of positions where w_1 and w_2 differ (Hamming distance).

Applications: computational biology (e.g., finding common ancestors)

Problem is NP-hard even with binary alphabet [Frances and Litman, 1997].

The Closest Substring problem

CLOSEST SUBSTRING

Input: Strings s_1, \ldots, s_k , an integer L

Solution: — string s of length L (center string),

— a length L substring s'_i of s_i for every i

Minimize: $\max_{i=1}^{k} d(s, s'_i)$

Remark: For a given s, it is easy to find the best s'_i for every i.

Applications: finding common patterns, drug design.

The Closest Substring problem

CLOSEST SUBSTRING

Input: Strings s_1, \ldots, s_k , an integer L

Solution: — string s of length L (center string),

— a length L substring s'_i of s_i for every i

Minimize: $\max_{i=1}^{k} d(s, s'_i)$

Remark: For a given s, it is easy to find the best s'_i for every i.

Applications: finding common patterns, drug design.

- ⁶ Problem is NP-hard even with binary alphabet (CLOSEST STRING is the special case $|s_i| = L$.)
- 6 CLOSEST SUBSTRING admits a PTAS [Li, Ma, & Wang, 2002]: for every $\epsilon > 0$ there is an $n^{O(1/\epsilon^4)}$ algorithm that produces a $(1 + \epsilon)$ -approximation.

Parameterized Closest Substring

CLOSEST SUBSTRING	
Input:	Strings s_1,\ldots,s_k over Σ , integers L and d
Possible parameters:	$k,L,d, \Sigma $
Find:	— string s of length L (center string),
	— a length L substring s_i^\prime of s_i for every i
	such that $d(s,s_i') \leq d$ for every i

Possible parameters:

- 6 k: might be small
- 6 d: might be small
- 6 L: usually large
- $|\Sigma|$: usually a small constant

Closest Substring—Results

parameter	$ \Sigma $ is constant $ \Sigma $ is parameter		$ \Sigma $ is unbounded		
d	?	?	W[1]-hard		
k	W[1]-hard	W[1]-hard	W[1]-hard		
d,k	?	?	W[1]-hard		
L	FPT	FPT	W[1]-hard		
d,k,L	FPT	FPT	W[1]-hard		

(Hardness results by [Fellows, Gramm, Niedermeier 2002].)

Closest Substring—Results

parameter	$ \Sigma $ is constant	$ \Sigma $ is parameter	$ \Sigma $ is unbounded		
d	W[1]-hard	W[1]-hard	W[1]-hard		
k	W[1]-hard	W[1]-hard	W[1]-hard		
d,k	W[1]-hard	W[1]-hard	W[1]-hard		
L	FPT	FPT	W[1]-hard		
d,k,L	FPT	FPT	W[1]-hard		

(Hardness results by [Fellows, Gramm, Niedermeier 2002].)

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d, even if $|\Sigma| = 2$. (In the rest of the talk, Σ is always $\{0, 1\}$.)

 \Rightarrow

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

Maximum Independent Set(G,t)

Closest Substring
$$k=2^{2^{O(t)}}$$
 $d=2^{O(t)}$

Corollary: No $f(k, d) \cdot n^c$ algorithm for CLOSEST SUBSTRING unless FPT=W[1].

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

Maximum Independent Set(G,t)

Closest Substring
$$k=2^{2^{O(t)}}$$
 $d=2^{O(t)}$

Corollary: No $f(k, d) \cdot n^c$ algorithm for CLOSEST SUBSTRING unless FPT=W[1].

Corollary: No $f(k, d) \cdot n^{o(\log d)}$ or $f(k, d) \cdot n^{o(\log \log k)}$ algorithm for CLOS-EST SUBSTRING unless MAXIMUM INDEPENDENT SET has an $f(t) \cdot n^{o(t)}$ algorithm.

Corollary: No $f(k, d) \cdot n^{o(\log d)}$ or $f(k, d) \cdot n^{o(\log \log k)}$ algorithm for CLOSEST SUBSTRING unless MAXIMUM INDEPENDENT SET has an $f(t) \cdot n^{o(t)}$ algorithm.

MAXIMUM INDEPENDENT SET has an $f(t) \cdot n^{o(t)}$ algorithm \downarrow n variable 3-SAT can be solved in $2^{o(n)}$ time \uparrow FPT=M[1]

Corollary: No $f(k, d) \cdot n^{o(\log d)}$ or $f(k, d) \cdot n^{o(\log \log k)}$ algorithm for CLOSEST SUBSTRING unless MAXIMUM INDEPENDENT SET has an $f(t) \cdot n^{o(t)}$ algorithm.

MAXIMUM INDEPENDENT SET has an $f(t) \cdot n^{o(t)}$ algorithm \downarrow n variable 3-SAT can be solved in $2^{o(n)}$ time \uparrow FPT=M[1]

The lower bound on the exponent of n is best possible:

Theorem: [D.M.] CLOSEST SUBSTRING can be solved in $f_1(d,k) \cdot n^{O(\log d)}$ time.

Theorem: [D.M.] CLOSEST SUBSTRING can be solved in $f_2(d,k) \cdot n^{O(\log \log k)}$ time.

Relation to approximability

PTAS: algorithm that produces a $(1 + \epsilon)$ -approximation in time $n^{f(\epsilon)}$.

EPTAS: (efficient PTAS) a PTAS with running time $f(\epsilon) \cdot n^{O(1)}$.

Observation: if $\epsilon = \frac{1}{d+1}$, then a $(1 + \epsilon)$ -approximation algorithm can correctly decide whether the optimum is d or d + 1

 \Rightarrow if an optimization problem has an EPTAS, then it is FPT.

Corollary: CLOSEST SUBSTRING has no EPTAS, unless FPT=W[1].

Corollary: CLOSEST SUBSTRING has no $f(\epsilon) \cdot n^{o(\log \epsilon)}$ time PTAS, unless FPT=M[1].

What's next?

- $f_1(d,k) \cdot n^{O(\log d)}$ time algorithm
- Some results on hypergraphs
- $f_2(d,k) \cdot n^{O(\log \log k)}$ time algorithm
- Sketch of the completeness proof
- 6 Conclusions

The first algorithm

Definition: A solution is a **minimal solution** if $\sum_{i=1}^{k} d(s, s'_i)$ is as small as possible (and $d(s, s'_i) \leq d$ for every *i*).

The first algorithm

Definition: A solution is a **minimal solution** if $\sum_{i=1}^{k} d(s, s'_i)$ is as small as possible (and $d(s, s'_i) \leq d$ for every *i*).

Definition: A set of length *L* strings \mathcal{G} generates a length *L* string *s* if whenever the strings in \mathcal{G} agree at the *i*-th position, then *s* has the same character at this position.

Example: \mathcal{G}_1 generates s but \mathcal{G}_2 does not.

First algorithm

Let \mathcal{S} be the set of all length L substrings of s_1, \ldots, s_k . Clearly, $|\mathcal{S}| \leq n$.

Lemma: If *s* is the center string of a minimal solution, then S has a subset G of size $O(\log d)$ that generates *s*, and the strings in G agree in all but at most $O(d \log d)$ positions.

First algorithm

Let \mathcal{S} be the set of all length L substrings of s_1, \ldots, s_k . Clearly, $|\mathcal{S}| \leq n$.

Lemma: If *s* is the center string of a minimal solution, then *S* has a subset *G* of size $O(\log d)$ that generates *s*, and the strings in *G* agree in all but at most $O(d \log d)$ positions.

Algorithm:

- \circ Construct the set \mathcal{S} .
- 6 Consider every subset $\mathcal{G} \subseteq \mathcal{S}$ of size $O(\log d)$.
- If there are at most $O(d \log d)$ positions in \mathcal{G} where they disagree, then try every center string generated by \mathcal{G} .

Running time: $|\Sigma|^{O(d \log d)} \cdot n^{O(\log d)}$.

Lemma: If *s* is the center string of a minimal solution, then S has a subset G of size $O(\log d)$ that generates *s*, and the strings in G agree in all but at most $O(d \log d)$ positions.

Proof: Let (s, s'_1, \ldots, s'_k) be a minimal solution. We show that $\{s'_1, \ldots, s'_k\}$ has a $O(\log d)$ subset that generates s.

The **bad positions** of a set of strings are the positions where they agree, but *s* is different. Clearly, $\{s'_1\}$ has at most *d* bad positions.

We show that if a set of strings has p bad positions, then we can decrease the number of bad positions to p/2 by adding a string $s'_i \Rightarrow$ no bad position remains after adding $\log d$ strings.

Proof of the lemma (cont.)

Example: there are 4 bad positions:

To make a bad position non-bad, we have to add a string that disagree with the previous strings at this position.

There is a string s'_i that disagree on at least half of the bad positions, otherwise we could change s to make $\sum_{i=1}^{k} d(s, s'_i)$ smaller.

Proof of the lemma (cont.)

To make a bad position non-bad, we have to add a string that disagree with the previous strings at this position.

There is a string s'_i that disagree on at least half of the bad positions, otherwise we could change *s* to make $\sum_{i=1}^{k} d(s, s'_i)$ smaller.

Proof of the lemma (cont.)

To make a bad position non-bad, we have to add a string that disagree with the previous strings at this position.

There is a string s'_i that disagree on at least half of the bad positions, otherwise we could change s to make $\sum_{i=1}^{k} d(s, s'_i)$ smaller.

(Since every s'_i differs from s on at most d positions, the $O(\log d)$ strings will agree on all but at most $O(d \log d)$ positions.)

(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An **edge cover** is a subset of the edges such that every vertex is covered by at least one edge.

 $\rho(H)$: size of the smallest edge cover.

A **fractional edge cover** is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

 $\rho^*(H)$: smallest total weight of a fractional edge cover.

(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An **edge cover** is a subset of the edges such that every vertex is covered by at least one edge.

 $\rho(H)$: size of the smallest edge cover.

A **fractional edge cover** is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

 $\rho^*(H)$: smallest total weight of a fractional edge cover.

(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An **edge cover** is a subset of the edges such that every vertex is covered by at least one edge.

 $\varrho(H)$: size of the smallest edge cover.

A **fractional edge cover** is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

 $\varrho^*(H)$: smallest total weight of a fractional edge cover.

A **stable set** is a subset of the vertices such that every edge contains at most one selected vertex.

 $\alpha(H)$: size of the largest stable set.

A **fractional stable set** is a weight assignment to the vertices such that the weight covered by each edge is at most 1.

A **stable set** is a subset of the vertices such that every edge contains at most one selected vertex.

 $\alpha(H)$: size of the largest stable set.

A **fractional stable set** is a weight assignment to the vertices such that the weight covered by each edge is at most 1.

A **stable set** is a subset of the vertices such that every edge contains at most one selected vertex.

 $\alpha(H)$: size of the largest stable set.

A **fractional stable set** is a weight assignment to the vertices such that the weight covered by each edge is at most 1.

A **stable set** is a subset of the vertices such that every edge contains at most one selected vertex.

 $\alpha(H)$: size of the largest stable set.

A **fractional stable set** is a weight assignment to the vertices such that the weight covered by each edge is at most 1.

Hypergraph H_1 appears in H_2 as subhypergraph at vertex set X, if there is a mapping π between X and the vertices of H_1 such that for each edge E_1 of H_1 , there is an edge E_2 of H_2 with $E_2 \cap X = \pi(E_1)$.

Hypergraph H_1 appears in H_2 as subhypergraph at vertex set X, if there is a mapping π between X and the vertices of H_1 such that for each edge E_1 of H_1 , there is an edge E_2 of H_2 with $E_2 \cap X = \pi(E_1)$.

We would like to enumerate all the places where H_1 appears in H_2 . Assume that H_2 has m edges and each has size at most ℓ .

Lemma: (easy) H_1 can appear in H_2 at max. $f(\ell, \varrho(H_1)) \cdot m^{\varrho(H_1)}$ places.

Hypergraph H_1 appears in H_2 as subhypergraph at vertex set X, if there is a mapping π between X and the vertices of H_1 such that for each edge E_1 of H_1 , there is an edge E_2 of H_2 with $E_2 \cap X = \pi(E_1)$.

We would like to enumerate all the places where H_1 appears in H_2 . Assume that H_2 has m edges and each has size at most ℓ .

Lemma: (easy) H_1 can appear in H_2 at max. $f(\ell, \varrho(H_1)) \cdot m^{\varrho(H_1)}$ places. Lemma: [follows from Friedgut and Kahn, 1998] H_1 can appear in H_2 at max. $f(\ell, \varrho^*(H_1)) \cdot m^{\varrho^*(H_1)}$ places.

Lemma: H_1 can appear in H_2 at max. $f(\ell, \varrho^*(H_1)) \cdot m^{\varrho^*(H_1)}$ places.

We want to turn this result into an algorithm (proof is based on Shearer's Lemma, not algorithmic).

Lemma: H_1 can appear in H_2 at max. $f(\ell, \varrho^*(H_1)) \cdot m^{\varrho^*(H_1)}$ places.

We want to turn this result into an algorithm (proof is based on Shearer's Lemma, not algorithmic).

Algorithm: Let $\{1, 2, ..., r\}$ be the vertices of H_1 , and let $H_1^{(i)}$ be the induced subhypergraph of H_1 on $\{1, 2, ..., i\}$. For i = 1, 2, ..., r, the algorithm enumerates the list L_i of all the places where $H_1^{(i)}$ appears in H_2 .

- \bigcirc L_1 is trivial.
- $\int L_{i+1}$ is easy to construct based on L_i .
- Since $\varrho^*(H_1^{(i)}) \leq \varrho^*(H_1)$, the list L_i cannot be too large.

Lemma: We can enumerate in $f(\ell, \varrho^*(H_1)) \cdot m^{O(\varrho^*(H_1))}$ time all the places where H_1 appears in H_2 .

Half-covering

Definition: A hypergraph has the half-covering property if for every set X of vertices there is an edge Y with $|X \cap Y| > |X|/2$.

Lemma: If a hypergraph *H* with *m* edges has the half-covering property, then $\varrho^*(H) = O(\log \log m)$.

(The $O(\log \log m)$ is best possible.)

Proof: by probabilistic arguments.

CLOSEST SUBSTRING	
Input:	Strings s_1,\ldots,s_k over $\Sigma,$ integers L and d
Possible parameters:	$k,L,d, \Sigma $
Find:	— string s of length L (center string),
	— a length L substring s_i^\prime of s_i for every i
	such that $d(s,s'_i) \leq d$ for every i

The second algorithm

First step: guess the correct $s'_1 (\leq n \text{ possibilities})$.

Consider the set S of all length L substrings of s_1, \ldots, s_k . We turn S into a hypergraph H on vertices $\{1, 2, \ldots, L\}$: if a string in S differs from s'_1 on positions $P \subseteq \{1, 2, \ldots, L\}$, then let P be an edge of H.

The second algorithm

First step: guess the correct $s'_1 (\leq n \text{ possibilities})$.

Consider the set S of all length L substrings of s_1, \ldots, s_k . We turn S into a hypergraph H on vertices $\{1, 2, \ldots, L\}$: if a string in S differs from s'_1 on positions $P \subseteq \{1, 2, \ldots, L\}$, then let P be an edge of H.

Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

The second algorithm

First step: guess the correct $s'_1 (\leq n \text{ possibilities})$.

Consider the set S of all length L substrings of s_1, \ldots, s_k . We turn S into a hypergraph H on vertices $\{1, 2, \ldots, L\}$: if a string in S differs from s'_1 on positions $P \subseteq \{1, 2, \ldots, L\}$, then let P be an edge of H.

Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

Algorithm: Consider every hypergraph H_0 as above and enumerate all the places where H_0 appears in H.

The second algorithm (cont.)

Algorithm:

- 6 Construct the hypergraph H.
- 6 Enumerate every hypergraph H_0 with at most d vertices and k edges (constant number).
- 6 Check if H_0 has the half-covering property.
- 6 If so, then enumerate every place P where H_0 appears in H. (max. $\approx n^{O(\varrho^*(H_0))} = n^{O(\log \log k)}$ places).
- 6 For each place P, check if there is a good center string that differs from s'_1 only at P.

Running time: $f(k, d, \Sigma) \cdot n^{O(\log \log k)}$.

Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

Proof:

6 Consider a minimal solution.

s_1'	0	0	0	0	0	0	0	0	0	0
s'_2	0	1	1	1	1	0	0	1	0	0
s'_3	0	1	0	0	0	1	1	0	0	0
s_4'	0	0	1	1	0	1	0	0	1	0
s'_5	1	0	0	1	1	1	0	0	0	0
\boldsymbol{s}	0	1	1	1	1	1	0	0	0	0

Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

- 6 Consider a minimal solution.
- 6 The solution gives k 1 edges of H.

Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

- 6 Consider a minimal solution.
- 6 The solution gives k 1 edges of H.
- 6 *P*: the positions where s'_1 and s differ.

Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

- 6 Consider a minimal solution.
- 6 The solution gives k 1 edges of H.
- 6 *P*: the positions where s'_1 and s differ.
- 6 Restrict the k 1 edges to $P \Rightarrow H_0$.

Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

- 6 Consider a minimal solution.
- ⁶ The solution gives k 1 edges of H.
- \bigcirc **P**: the positions where s'_1 and s differ.
- 6 Restrict the k 1 edges to $P \Rightarrow H_0$.
- 6 Claim: H_0 has the half-covering property.

Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

- 6 Consider a minimal solution.
- 6 The solution gives k 1 edges of H.
- 6 *P*: the positions where s'_1 and *s* differ.
- 6 Restrict the k 1 edges to $P \Rightarrow H_0$.
- 6 Claim: H_0 has the half-covering property.

Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

Proof:

- 6 Consider a minimal solution.
- ⁶ The solution gives k 1 edges of H.
- \bigcirc **P**: the positions where s'_1 and s differ.
- 6 Restrict the k 1 edges to $P \Rightarrow H_0$.
- 6 Claim: H_0 has the half-covering property.
- 6 If half-covering is violated for $R \subseteq P \dots$

 $s'_1 \ 0 \ 0 \ 0$ 0 0 0 0 s'_2 0 1 1 1 1 0 0 s'_{3} 0 1 0 0 0 1 1 0 0 0 s'_4 0 0 1 1 0 0 0 0 1 0 0 0 0 $\mathbf{0}$ \boldsymbol{s} 1 \boldsymbol{R}

Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

Proof:

- 6 Consider a minimal solution.
- ⁶ The solution gives k 1 edges of H.
- \bigcirc **P**: the positions where s'_1 and s differ.
- 6 Restrict the k 1 edges to $P \Rightarrow H_0$.
- 6 Claim: H_0 has the half-covering property.
- 6 If half-covering is violated for $R \subseteq P \dots$
- 6 ... then we can change s on R.

 $s'_1 \ 0 \ 0 \ 0$ 0 0 0 0 0 0 s'_2 0 1 1 1 1 0 0 s'_{3} 0 1 0 0 0 1 1 0 0 0 s'_4 0 0 1 1 0 0 0 1 0 0 0 0 $0 \ 0 \ 0$ 0 S \boldsymbol{R}

Theorem: CLOSEST SUBTRING is W[1]-hard with parameters k and d.

The reduction is based on the proof of previous weaker result:

Theorem: [Fellows, Gramm, Niedermeier, 2002] CLOSEST SUBTRING is W[1]-hard with parameter k.

Theorem: CLOSEST SUBTRING is W[1]-hard with parameters k and d.

The reduction is based on the proof of previous weaker result:

Theorem: [Fellows, Gramm, Niedermeier, 2002] CLOSEST SUBTRING is W[1]-hard with parameter k.

Idea 1: Every string s_i is divided into blocks of length L. We ensure that s'_i is one complete block of s_i .

How: Each block starts with the front tag $(1^x 0)^y$, and there is a special string having only one block.

Reduction from MAXIMUM INDEPENDENT SET.

Idea 2: The center string (and each block) is divided into k segments of length n. We ensure that each segment contains exactly one symbol "1" and these k symbols describe an independent set of size k.

How: string $s_{i,j}$ ensures that vertex v_i and v_j are not connected. The blocks of $s_{i,j}$ contain 1's only in segments *i* and *j*, and there is a block for each valid combination.

Dirty trick to ensure that there is at least one "1" in each segment, but this requires large d.

New idea: Instead of k segments of size n,

- 6 vertex v_1 is described by a segment of size n
- 6 vertex v_2 is described by 2 segments of size $n^{1/2}$
- 6 vertex v_3 is described by 4 segments of size $n^{1/4}$

6 ...

 \Rightarrow we have $2^t - 1$ segments.

For each subset *S* of the segments, there is a string that makes it impossible that there is no "1" in *S*, but there is at least one in every other segment. $\Rightarrow k = 2^{2^{O(k)}}$

Conclusions

- Complete parameterized analysis of CLOSEST SUBSTRING.
- 6 Tight bounds for subexponential algorithms.
- ⁶ "Weak" parameterized reduction \Rightarrow subexponential algorithms?
- Subexponential algorithms ⇒ proving optimality using parameterized complexity?
- Other applications of fractional edge cover number and finding hypergraphs?