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The Closest String problem

CLOSEST STRING

Input: Strings s1, . . . , sk of length L

Solution: A string s of length L (center string)

Minimize: maxk
i=1 d(s, si)

d(w1, w2): the number of positions where w1 and w2 differ (Hamming

distance).

Applications: computational biology (e.g., finding common ancestors)

Problem is NP-hard even with binary alphabet [Frances and Litman, 1997].
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The Closest Substring problem

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk , an integer L

Solution: — string s of length L (center string),

— a length L substring s′

i of si for every i

Minimize: maxk
i=1 d(s, s′

i)

Remark: For a given s, it is easy to find the best s′

i for every i.

Applications: finding common patterns, drug design.
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The Closest Substring problem

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk , an integer L

Solution: — string s of length L (center string),

— a length L substring s′

i of si for every i

Minimize: maxk
i=1 d(s, s′

i)

Remark: For a given s, it is easy to find the best s′

i for every i.

Applications: finding common patterns, drug design.

Problem is NP-hard even with binary alphabet (CLOSEST STRING is the
special case |si| = L.)

CLOSEST SUBSTRING admits a PTAS [Li, Ma, & Wang, 2002]:

for every ǫ > 0 there is an nO(1/ǫ4) algorithm that produces a

(1 + ǫ)-approximation.
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Parameterized Closest Substring

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk over Σ, integers L and d

Possible parameters: k, L, d, |Σ|

Find: — string s of length L (center string),

— a length L substring s′

i of si for every i

such that d(s, s′

i) ≤ d for every i

Possible parameters:

k: might be small

d: might be small

L: usually large

|Σ|: usually a small constant
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Closest Substring—Results

parameter |Σ| is constant |Σ| is parameter |Σ| is unbounded

d ? ? W[1]-hard

k W[1]-hard W[1]-hard W[1]-hard

d,k ? ? W[1]-hard

L FPT FPT W[1]-hard

d,k,L FPT FPT W[1]-hard

(Hardness results by [Fellows, Gramm, Niedermeier 2002].)
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Closest Substring—Results

parameter |Σ| is constant |Σ| is parameter |Σ| is unbounded

d W[1]-hard W[1]-hard W[1]-hard

k W[1]-hard W[1]-hard W[1]-hard

d,k W[1]-hard W[1]-hard W[1]-hard

L FPT FPT W[1]-hard

d,k,L FPT FPT W[1]-hard

(Hardness results by [Fellows, Gramm, Niedermeier 2002].)

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d,
even if |Σ| = 2. (In the rest of the talk, Σ is always {0, 1}.)
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Hardness of Closest Substring

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

MAXIMUM INDEPENDENT SET

(G, t)
⇒

CLOSEST SUBSTRING

k = 22O(t)

d = 2O(t)

Corollary: No f(k, d) · nc algorithm for CLOSEST SUBSTRING unless

FPT=W[1].
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Hardness of Closest Substring

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

MAXIMUM INDEPENDENT SET

(G, t)
⇒

CLOSEST SUBSTRING

k = 22O(t)

d = 2O(t)

Corollary: No f(k, d) · nc algorithm for CLOSEST SUBSTRING unless

FPT=W[1].

Corollary: No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm for CLOS-

EST SUBSTRING unless MAXIMUM INDEPENDENT SET has an f(t) · no(t) algo-

rithm.
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Hardness of Closest Substring

Corollary: No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm for

CLOSEST SUBSTRING unless MAXIMUM INDEPENDENT SET has an
f(t) · no(t) algorithm.

MAXIMUM INDEPENDENT SET has an f(t) · no(t) algorithm

⇓

n variable 3-SAT can be solved in 2o(n) time

m

FPT=M[1]

The Closest Substring problem with small distances – p.7/26



Hardness of Closest Substring

Corollary: No f(k, d) · no(log d) or f(k, d) · no(log log k) algorithm for

CLOSEST SUBSTRING unless MAXIMUM INDEPENDENT SET has an
f(t) · no(t) algorithm.

MAXIMUM INDEPENDENT SET has an f(t) · no(t) algorithm

⇓

n variable 3-SAT can be solved in 2o(n) time

m

FPT=M[1]

The lower bound on the exponent of n is best possible:

Theorem: [D.M.] CLOSEST SUBSTRING can be solved in f1(d, k) · nO(log d)

time.

Theorem: [D.M.] CLOSEST SUBSTRING can be solved in f2(d, k) ·nO(log log k)

time.
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Relation to approximability

PTAS: algorithm that produces a (1 + ǫ)-approximation in time nf(ǫ).

EPTAS: (efficient PTAS) a PTAS with running time f(ǫ) · nO(1).

Observation: if ǫ = 1
d+1

, then a (1 + ǫ)-approximation algorithm can

correctly decide whether the optimum is d or d + 1

⇒ if an optimization problem has an EPTAS, then it is FPT.

Corollary: CLOSEST SUBSTRING has no EPTAS, unless FPT=W[1].

Corollary: CLOSEST SUBSTRING has no f(ǫ) · no(log ǫ) time PTAS, unless

FPT=M[1].
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What’s next?

f1(d, k) · nO(log d) time algorithm

Some results on hypergraphs

f2(d, k) · nO(log log k) time algorithm

Sketch of the completeness proof

Conclusions
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The first algorithm

Definition: A solution is a minimal solution if
∑k

i=1 d(s, s′

i) is as small as
possible (and d(s, s′

i) ≤ d for every i).
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The first algorithm

Definition: A solution is a minimal solution if
∑k

i=1 d(s, s′

i) is as small as
possible (and d(s, s′

i) ≤ d for every i).

Definition: A set of length L strings G generates a length L string s if
whenever the strings in G agree at the i-th position, then s has the same

character at this position.

Example: G1 generates s but G2 does not.

1 1 0 1 0 1
G1 0 1 0 1 1 1

1 1 0 0 1 1

s 1 1 0 1 0 1

1 1 0 1 1 1
G2 0 1 0 1 1 1

1 1 0 0 1 1

s 1 1 0 1 0 1
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First algorithm

Let S be the set of all length L substrings of s1, . . . , sk . Clearly, |S| ≤ n.

Lemma: If s is the center string of a minimal solution, then S has a subset G

of size O(log d) that generates s, and the strings in G agree in all but at most
O(d log d) positions.
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First algorithm

Let S be the set of all length L substrings of s1, . . . , sk . Clearly, |S| ≤ n.

Lemma: If s is the center string of a minimal solution, then S has a subset G

of size O(log d) that generates s, and the strings in G agree in all but at most
O(d log d) positions.

Algorithm:

Construct the set S .

Consider every subset G ⊆ S of size O(log d).

If there are at most O(d log d) positions in G where they disagree, then try

every center string generated by G.

Running time: |Σ|O(d log d) · nO(log d).
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Proof of the lemma

Lemma: If s is the center string of a minimal solution, then S has a subset G

of size O(log d) that generates s, and the strings in G agree in all but at most
O(d log d) positions.

Proof: Let (s, s′

1, . . . , s′

k) be a minimal solution. We show that {s′

1, . . . , s′

k}

has a O(log d) subset that generates s.

The bad positions of a set of strings are the positions where they agree, but s

is different. Clearly, {s′

1} has at most d bad positions.

We show that if a set of strings has p bad positions, then we can decrease the
number of bad positions to p/2 by adding a string s′

i ⇒ no bad position

remains after adding log d strings.
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Proof of the lemma (cont.)

Example: there are 4 bad positions:

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s 1 0 0 0 0 1 1 0 0

To make a bad position non-bad, we have to add a string that disagree with the

previous strings at this position.

There is a string s′

i that disagree on at least half of the bad positions,
otherwise we could change s to make

∑k
i=1 d(s, s′

i) smaller.
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Proof of the lemma (cont.)

Example: there are 4 bad positions:

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s 1 0 0 0 0 1 1 0 0

⇒

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s′

i 1 1 1 0 0 0 1 1 1

s 1 0 0 0 0 1 1 0 0

To make a bad position non-bad, we have to add a string that disagree with the

previous strings at this position.

There is a string s′

i that disagree on at least half of the bad positions,
otherwise we could change s to make

∑k
i=1 d(s, s′

i) smaller.
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Proof of the lemma (cont.)

Example: there are 4 bad positions:

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s 1 0 0 0 0 1 1 0 0

⇒

1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 0

s′

i 1 1 1 0 0 0 1 1 1

s 1 0 0 0 0 1 1 0 0

To make a bad position non-bad, we have to add a string that disagree with the

previous strings at this position.

There is a string s′

i that disagree on at least half of the bad positions,
otherwise we could change s to make

∑k
i=1 d(s, s′

i) smaller.

(Since every s′

i differs from s on at most d positions, the O(log d) strings will

agree on all but at most O(d log d) positions.)
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(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An edge cover is a subset of the edges such that every vertex is covered by at
least one edge.

̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.
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(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An edge cover is a subset of the edges such that every vertex is covered by at
least one edge.

̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

̺(H) = 2
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(Fractional) edge covering

Hypergraph: each edge is an arbitrary set of vertices.

An edge cover is a subset of the edges such that every vertex is covered by at
least one edge.

̺(H): size of the smallest edge cover.

A fractional edge cover is a weight assignment to the edges such that every
vertex is covered by total weight at least 1.

̺∗(H): smallest total weight of a fractional edge cover.

̺(H) = 2

1
2

1
2 1

2

̺∗(H) = 1.5
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(Fractional) stable sets

A stable set is a subset of the vertices such that every edge contains at most

one selected vertex.
α(H): size of the largest stable set.

A fractional stable set is a weight assignment to the vertices such that the
weight covered by each edge is at most 1.

α∗(H): largest total weight of a fractional stable set.
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(Fractional) stable sets

A stable set is a subset of the vertices such that every edge contains at most

one selected vertex.
α(H): size of the largest stable set.

A fractional stable set is a weight assignment to the vertices such that the
weight covered by each edge is at most 1.

α∗(H): largest total weight of a fractional stable set.

α(H) = 1
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(Fractional) stable sets

A stable set is a subset of the vertices such that every edge contains at most

one selected vertex.
α(H): size of the largest stable set.

A fractional stable set is a weight assignment to the vertices such that the
weight covered by each edge is at most 1.

α∗(H): largest total weight of a fractional stable set.

α(H) = 1

1
4 1

4
1
2

1
2

α∗(H) = 1.5
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(Fractional) stable sets

A stable set is a subset of the vertices such that every edge contains at most

one selected vertex.
α(H): size of the largest stable set.

A fractional stable set is a weight assignment to the vertices such that the
weight covered by each edge is at most 1.

α∗(H): largest total weight of a fractional stable set.

α(H) = 1

1
4 1

4
1
2

1
2

α∗(H) = 1.5

By linear programming duality:
1

α(H)≤
1.5

α∗(H)=
1.5

̺∗(H)≤
2

̺(H)
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Finding subhypergraphs

Hypergraph H1 appears in H2 as subhypergraph at vertex set X , if there is a

mapping π between X and the vertices of H1 such that for each edge E1 of
H1, there is an edge E2 of H2 with E2 ∩ X = π(E1).

A
A B

D

C

B

D

C
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Finding subhypergraphs

Hypergraph H1 appears in H2 as subhypergraph at vertex set X , if there is a

mapping π between X and the vertices of H1 such that for each edge E1 of
H1, there is an edge E2 of H2 with E2 ∩ X = π(E1).

A
A B

D

C

B

D

C

We would like to enumerate all the places where H1 appears in H2. Assume
that H2 has m edges and each has size at most ℓ.

Lemma: (easy) H1 can appear in H2 at max. f(ℓ, ̺(H1)) · m̺(H1) places.
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Finding subhypergraphs

Hypergraph H1 appears in H2 as subhypergraph at vertex set X , if there is a

mapping π between X and the vertices of H1 such that for each edge E1 of
H1, there is an edge E2 of H2 with E2 ∩ X = π(E1).

A
A B

D

C

B

D

C

We would like to enumerate all the places where H1 appears in H2. Assume
that H2 has m edges and each has size at most ℓ.

Lemma: (easy) H1 can appear in H2 at max. f(ℓ, ̺(H1)) · m̺(H1) places.

Lemma: [follows from Friedgut and Kahn, 1998] H1 can appear in H2 at max.

f(ℓ, ̺∗(H1)) · m̺∗(H1) places.
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Finding subhypergraphs

Lemma: H1 can appear in H2 at max. f(ℓ, ̺∗(H1)) · m̺∗(H1) places.

We want to turn this result into an algorithm (proof is based on Shearer’s
Lemma, not algorithmic).
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Finding subhypergraphs

Lemma: H1 can appear in H2 at max. f(ℓ, ̺∗(H1)) · m̺∗(H1) places.

We want to turn this result into an algorithm (proof is based on Shearer’s
Lemma, not algorithmic).

Algorithm: Let {1, 2, . . . , r} be the vertices of H1, and let H
(i)
1 be the

induced subhypergraph of H1 on {1, 2, . . . , i}. For i = 1, 2, . . . , r, the
algorithm enumerates the list Li of all the places where H

(i)
1 appears in H2.

L1 is trivial.

Li+1 is easy to construct based on Li .

Since ̺∗(H
(i)
1 ) ≤ ̺∗(H1), the list Li cannot be too large.

Lemma: We can enumerate in f(ℓ, ̺∗(H1)) · mO(̺∗(H1)) time all the places

where H1 appears in H2.
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Half-covering

Defintion: A hypergraph has the half-covering property if for every set X of

vertices there is an edge Y with |X ∩ Y | > |X |/2.

Lemma: If a hypergraph H with m edges has the half-covering property, then

̺∗(H) = O(log log m).

(The O(log log m) is best possible.)

Proof: by probabilistic arguments.
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Reminder

CLOSEST SUBSTRING

Input: Strings s1, . . . , sk over Σ, integers L and d

Possible parameters: k, L, d, |Σ|

Find: — string s of length L (center string),

— a length L substring s′

i of si for every i

such that d(s, s′

i) ≤ d for every i
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The second algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .
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The second algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .
Then there is a hypergraph H0 with at most d vertices and k edges having the

half-covering property such that H0 appears at P in H .
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The second algorithm

First step: guess the correct s′

1 (≤ n possibilities).

Consider the set S of all length L substrings of s1, . . . , sk . We turn S into a

hypergraph H on vertices {1, 2, . . . , L}: if a string in S differs from s′

1 on
positions P ⊆ {1, 2, . . . , L}, then let P be an edge of H .

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .
Then there is a hypergraph H0 with at most d vertices and k edges having the

half-covering property such that H0 appears at P in H .

Algorithm: Consider every hypergraph H0 as above and enumerate all the
places where H0 appears in H .
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The second algorithm (cont.)

Algorithm:

Construct the hypergraph H .

Enumerate every hypergraph H0 with at most d vertices and k edges
(constant number).

Check if H0 has the half-covering property.

If so, then enumerate every place P where H0 appears in H .

(max. ≈ nO(̺∗(H0)) = nO(log log k) places).

For each place P , check if there is a good center string that differs from s′

1

only at P .

Running time: f(k, d, Σ) · nO(log log k).
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Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution. s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0
s′

5 1 0 0 1 1 1 0 0 0 0

s 0 1 1 1 1 1 0 0 0 0
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Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution.

The solution gives k − 1 edges of H .

s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0
s′

5 1 0 0 1 1 1 0 0 0 0

s 0 1 1 1 1 1 0 0 0 0
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Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution.

The solution gives k − 1 edges of H .

P : the positions where s′

1 and s differ.

s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0
s′

5 1 0 0 1 1 1 0 0 0 0

s 0 1 1 1 1 1 0 0 0 0
P
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Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution.

The solution gives k − 1 edges of H .

P : the positions where s′

1 and s differ.

Restrict the k − 1 edges to P ⇒ H0.

s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0
s′

5 1 0 0 1 1 1 0 0 0 0

s 0 1 1 1 1 1 0 0 0 0
P
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Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution.

The solution gives k − 1 edges of H .

P : the positions where s′

1 and s differ.

Restrict the k − 1 edges to P ⇒ H0.

Claim: H0 has the half-covering property.

s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0
s′

5 1 0 0 1 1 1 0 0 0 0

s 0 1 1 1 1 1 0 0 0 0
P
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Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution.

The solution gives k − 1 edges of H .

P : the positions where s′

1 and s differ.

Restrict the k − 1 edges to P ⇒ H0.

Claim: H0 has the half-covering property.

s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0

s 0 1 1 1 1 1 0 0 0 0
P
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Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution.

The solution gives k − 1 edges of H .

P : the positions where s′

1 and s differ.

Restrict the k − 1 edges to P ⇒ H0.

Claim: H0 has the half-covering property.

If half-covering is violated for R ⊆ P . . .

s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0

s 0 1 1 1 1 1 0 0 0 0
R
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Proof of the lemma

Lemma: Assume that in a minimal solution s differs from s′

1 on positions P .

Then there is a hypergraph H0 with at most d vertices and k edges having the
half-covering property such that H0 appears at P in H .

Proof:
Consider a minimal solution.

The solution gives k − 1 edges of H .

P : the positions where s′

1 and s differ.

Restrict the k − 1 edges to P ⇒ H0.

Claim: H0 has the half-covering property.

If half-covering is violated for R ⊆ P . . .

. . . then we can change s on R.

s′

1 0 0 0 0 0 0 0 0 0 0
s′

2 0 1 1 1 1 0 0 1 0 0
s′

3 0 1 0 0 0 1 1 0 0 0
s′

4 0 0 1 1 0 1 0 0 1 0

s 0 1 1 1 0 0 0 0 0 0
R

The Closest Substring problem with small distances – p.22/26



The reduction

Theorem: CLOSEST SUBTRING is W[1]-hard with parameters k and d.

The reduction is based on the proof of previous weaker result:

Theorem: [Fellows, Gramm, Niedermeier, 2002] CLOSEST SUBTRING is
W[1]-hard with parameter k.

The Closest Substring problem with small distances – p.23/26



The reduction

Theorem: CLOSEST SUBTRING is W[1]-hard with parameters k and d.

The reduction is based on the proof of previous weaker result:

Theorem: [Fellows, Gramm, Niedermeier, 2002] CLOSEST SUBTRING is
W[1]-hard with parameter k.

Idea 1: Every string si is divided into blocks of length L. We ensure that s′

i is

one complete block of si .

How: Each block starts with the front tag (1x0)y , and there is a special string

having only one block.

s4

s3

s2

s1
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The reduction

Reduction from MAXIMUM INDEPENDENT SET.

Idea 2: The center string (and each block) is divided into k segments of length
n. We ensure that each segment contains exactly one symbol “1” and these k

symbols describe an independent set of size k.

How: string si,j ensures that vertex vi and vj are not connected. The blocks
of si,j contain 1’s only in segments i and j, and there is a block for each valid

combination.

Dirty trick to ensure that there is at least one “1” in each segment, but this

requires large d.
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The reduction

New idea: Instead of k segments of size n,

vertex v1 is described by a segment of size n

vertex v2 is described by 2 segments of size n1/2

vertex v3 is described by 4 segments of size n1/4

. . .

⇒ we have 2t − 1 segments.

For each subset S of the segments, there is a string that makes it impossible
that there is no “1” in S, but there is at least one in every other segment.

⇒k = 22O(k)
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Conclusions

Complete parameterized analysis of CLOSEST SUBSTRING.

Tight bounds for subexponential algorithms.

“Weak” parameterized reduction ⇒ subexponential algorithms?

Subexponential algorithms ⇒ proving optimality using parameterized
complexity?

Other applications of fractional edge cover number and finding

hypergraphs?
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