
A subexponential parameterized algorithm for
Subset TSP on planar graphs

Philip N. Klein1 Dániel Marx2

1Brown University,
Providence, Rhode Island, USA

2Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

Dagstuhl Seminar 13331
August 15, 2013

1



TSP
TSP

Input: A set T of cities and a distance function d on T
Output: A tour on T with minimum total distance

Theorem [Held and Karp 1962]

TSP with n cities can be solved in time 2n · n2 · logD, where D is
the maximum (integer) distance.

Dynamic programming:
Let x(v ,T ′) be the minimum length of path from vstart to v
visiting all the cities T ′ ⊆ T .

2



Obligatory cartoon

http://xkcd.com/399/

3



c-change TSP

c-change operation: removing c steps of the tour and
connecting the resulting c paths in some other way.
A solution is c-OPT if no c-change can improve it.
We can find a c-OPT solution in nO(c) · D time, where D is
the maximum (integer) distance.

4



c-change TSP

c-change operation: removing c steps of the tour and
connecting the resulting c paths in some other way.
A solution is c-OPT if no c-change can improve it.
We can find a c-OPT solution in nO(c) · D time, where D is
the maximum (integer) distance.

4



c-change TSP

c-change operation: removing c steps of the tour and
connecting the resulting c paths in some other way.
A solution is c-OPT if no c-change can improve it.
We can find a c-OPT solution in nO(c) · D time, where D is
the maximum (integer) distance.

4



c-change TSP

Finding a 2-OPT or 3-OPT tour is a popular starting point for
heuristics.
Supposedly, finding a k-OPT tour for larger k is better (less
likely to get stuck in a local optimum), but more time
consuming.

Unlikely that there is a fast algorithm for finding a k-OPT
tour:

Theorem [M. 2008]

Finding a better tour in the k-change neighborhood is W[1]-hard.

5



c-change TSP

Finding a 2-OPT or 3-OPT tour is a popular starting point for
heuristics.
Supposedly, finding a k-OPT tour for larger k is better (less
likely to get stuck in a local optimum), but more time
consuming.
Unlikely that there is a fast algorithm for finding a k-OPT
tour:

Theorem [M. 2008]

Finding a better tour in the k-change neighborhood is W[1]-hard.

5



TSP on planar graphs
Assume that the cities correspond to the set of all vertices of a
(weighted) planar graph and distance is measured in this
(weighted) planar graph.

6



TSP on planar graphs
Assume that the cities correspond to the set of all vertices of a
(weighted) planar graph and distance is measured in this
(weighted) planar graph.

Can be solved in time nO(
√

n).
Admits a PTAS.

6



Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

7



Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Can be solved in time nO(
√

n).
Can be solved in time 2k · nO(1).
Question: Can we solve it in time 2O(

√
k) · nO(1)?

7



Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Theorem
Subset TSP for k cities in a unit-weight planar graph can be
solved in time 2O(

√
k log k) · nO(1).

7



Subset TSP on planar graphs
Assume that the cities correspond to a subset T of vertices of a
planar graph and distance is measured in this planar graph.

Theorem
Subset TSP for k cities in a weighted planar graph can be solved
in time (2O(

√
k log k) + W ) · nO(1) if the weights are integers not

more than W .
7



Two interpretations

Two possible interpretations for a solution of Subset TSP:

a cyclic ordering of the cities closed walk in the graph
1

2
3

4

5

6
7

8

910

11

12

13

14

We can get the second from the first by concatenating shortest
paths between adjacent cities in the ordering.

8



Technicalities
The closed walk can be degenerate in several ways:

can touch itself,
can cross itself,
can use an edge up to twice,
can visit a city more than once.

We mostly ignore these technicalities in this talk.
9



Non-self-crossing

Definition: Non-self-crossing closed walk.
Definition: A tour is non-self-crossing if there is a
non-self-crossing closed walk realizing it.

Fact
Given a tour T , one can find a non-self-crossing tour T ′ in
polynomial time that has not larger cost.

10



Non-self-crossing

Definition: Non-self-crossing closed walk.
Definition: A tour is non-self-crossing if there is a
non-self-crossing closed walk realizing it.

Fact
Given a tour T , one can find a non-self-crossing tour T ′ in
polynomial time that has not larger cost.

10



Partial solutions
General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are vstart − v paths
visiting a subset T ′ of cities.

1

2

3

4

5

6

Generalization: a partial solution is a set of at most d pairwise
disjoint paths with specified endpoints.
The type of a partial solution can be described by

the set of endpoints of the paths,
a matching between the endpoints, and
the subset T ′ of visited cities.

11



Partial solutions
General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are vstart − v paths
visiting a subset T ′ of cities.

1

2

3

4

5

6

Generalization: a partial solution is a set of at most d pairwise
disjoint paths with specified endpoints.
The type of a partial solution can be described by

the set of endpoints of the paths,
a matching between the endpoints, and
the subset T ′ of visited cities.

11



Merging partial solutions
Two compatible partial solutions can be merged in an obvious way:

1

2

3

4

5

6

0

1

2

3

6

7

⇒

0

4

5

7

Algorithm
Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

12



Merging partial solutions
Two compatible partial solutions can be merged in an obvious way:

1

2

3

4

5

6

0

1

2

3

6

7

⇒

0

4

5

7

Algorithm
Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

12



Merging partial solutions
Two compatible partial solutions can be merged in an obvious way:

1

2

3

4

5

6

0

1

2

3

6

7

⇒

0

4

5

7

Algorithm
Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

12



Running time
Algorithm

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

With careful implementation, the running time is dominated by the
number of types, whose number has two factors:

endpoints described by at most d pairs of vertices
⇒ k2d possibilities,
describing the subset T ′ of visited cities
⇒ 2k possibilities.

We can increase d up to O(
√

k), but we need to reduce somehow
the number of possible subsets of cities!

13



Running time
Algorithm

Start with an initial set of trivial partial solutions.
Combine two partial solutions as long as possible.
Keep at most one partial solution from each type: the best
one encountered so far.
Return the best partial solution that consists of a single path
(cycle) visiting all vertices.

With careful implementation, the running time is dominated by the
number of types, whose number has two factors:

endpoints described by at most d pairs of vertices
⇒ k2d possibilities,
describing the subset T ′ of visited cities
⇒ 2k possibilities.

We can increase d up to O(
√

k), but we need to reduce somehow
the number of possible subsets of cities!

13



Restricting the subset of cities
We restrict attention to a collection T of subsets of cities and
consider only partial solutions that visit a subset in T .
We need: a collection T of size kO(

√
k) that guarantees finding an

optimum solution.

Definition of T :
Find a non-self-crossing 4-OPT tour.

A subset is in T if and only if it induces O(
√

k) consecutive
intervals on the non-self-crossing 4-OPT tour.

14



Restricting the subset of cities
We restrict attention to a collection T of subsets of cities and
consider only partial solutions that visit a subset in T .
We need: a collection T of size kO(

√
k) that guarantees finding an

optimum solution.

Definition of T :
Find a non-self-crossing 4-OPT tour.

A subset is in T if and only if it induces O(
√

k) consecutive
intervals on the non-self-crossing 4-OPT tour.

14



Restricting the subset of cities
We restrict attention to a collection T of subsets of cities and
consider only partial solutions that visit a subset in T .
We need: a collection T of size kO(

√
k) that guarantees finding an

optimum solution.

Definition of T :
Find a non-self-crossing 4-OPT tour.
A subset is in T if and only if it induces O(

√
k) consecutive

intervals on the non-self-crossing 4-OPT tour.
14



Main result

Definition of T :
Find a non-self-crossing 4-OPT tour.
A subset is in T if and only if it induces O(

√
k) consecutive

intervals on the non-self-crossing 4-OPT tour.

Theorem

After setting T as above and d = O(
√

k), the Algorithm finds an
optimum solution for Subset TSP on planar graphs.

Corollary
Subset TSP for k cities in a planar graph can be solved in time
(2O(

√
k log k) + W ) · nO(1) if the weights are integers at most W .

15



The treewidth bound
Consider the union of an optimum solution and a 4-OPT solution
as a graph on k vertices:

Lemma
For every non-self-crossing 4-OPT solution, there is an optimum
solution such that their union has treewidth O(

√
k).

16



Treewidth
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.

treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

17



The treewidth bound

Lemma
For every non-self-crossing 4-OPT solution, there is an optimum
solution such that their union has treewidth O(

√
k).

The union has separators of size O(
√

k).
In each component, the set of cities visited by the optimum
solution is nice: it is the same as what O(

√
k) segments of the

4-OPT tour visited.
We can use this tree decomposition to prove that the
Algorithm finds an optimum solution.

18



Proof of the treewidth bound
Consider the closed walk corresponding to the 4-OPT solution and
pick an optimum solution and a closed walk representing that.

The union is a planar graph:

Select the optimum solution and the closed walk such that the two
tours cross each other the minimum number of times.

19



Proof of the treewidth bound
Consider the closed walk corresponding to the 4-OPT solution and
pick an optimum solution and a closed walk representing that.

The union is a planar graph:

We give an O(
√

k) bound on the treewidth of this planar graph
⇓

A O(
√

k) bound follows for the k-vertex graph, as it is a minor of
this graph after duplicating the vertices.

19



Proof of the treewidth bound
Consider the closed walk corresponding to the 4-OPT solution and
pick an optimum solution and a closed walk representing that.

The union is a planar graph:

We give an O(
√

k) bound on the treewidth of this planar graph
⇓

A O(
√

k) bound follows for the k-vertex graph, as it is a minor of
this graph after duplicating the vertices.

19



Proof of the treewidth bound
Consider the closed walk corresponding to the 4-OPT solution and
pick an optimum solution and a closed walk representing that.

The union is a planar graph:

We prove that every 3-connected component of the planar graph
has O(k) vertices

⇓
O(
√

k) treewidth bound on the 3-connected components
⇓

same bound for the whole graph.
19



Representations
The union of of the 4-OPT solution and the optimum solution can
be degenerate in several ways (two tours share edges, touch each
other, revisit vertices etc.).

We work with a representation of the union, which is a 4-regular
planar graph where every vertex (except the cities) is a crossing.

20



Representations
The union of of the 4-OPT solution and the optimum solution can
be degenerate in several ways (two tours share edges, touch each
other, revisit vertices etc.).

We work with a representation of the union, which is a 4-regular
planar graph where every vertex (except the cities) is a crossing.

20



Representations
The union of of the 4-OPT solution and the optimum solution can
be degenerate in several ways (two tours share edges, touch each
other, revisit vertices etc.).

We work with a representation of the union, which is a 4-regular
planar graph where every vertex (except the cities) is a crossing.

20



Representations
The union of of the 4-OPT solution and the optimum solution can
be degenerate in several ways (two tours share edges, touch each
other, revisit vertices etc.).

We work with a representation of the union, which is a 4-regular
planar graph where every vertex (except the cities) is a crossing.

20



Grids
A grid is a 16-vertex subgraph of the representation of the union of
the 4-OPT solution and the optimum solution:

Lemma
If a 3-connected component of the representation has size Ω(k),
then there is a grid.

Proof idea: 4-regular and O(k) faces have length < 4
⇒ Euler’s formula implies that most of the faces have length 4
⇒ a 4-face surrounded by 4-faces should be a grid.

21



Grids
A grid is a 16-vertex subgraph of the representation of the union of
the 4-OPT solution and the optimum solution:

Lemma
If a 3-connected component of the representation has size Ω(k),
then there is a grid.

Proof idea: 4-regular and O(k) faces have length < 4
⇒ Euler’s formula implies that most of the faces have length 4
⇒ a 4-face surrounded by 4-faces should be a grid.

21



Grids
Suppose that the grid is used like this by two tours:

Let us exchange these two sets of edges between the two tours.
The 4-OPT tour cannot improve.
The optimum tour cannot improve.
We get another optimum tour such that the representation has
fewer crossings.

22



Grids
Suppose that the grid is used like this by two tours:

Let us exchange these two sets of edges between the two tours.

The 4-OPT tour cannot improve.
The optimum tour cannot improve.
We get another optimum tour such that the representation has
fewer crossings.

22



Grids
Suppose that the grid is used like this by two tours:

Let us exchange these two sets of edges between the two tours.
The 4-OPT tour cannot improve.
The optimum tour cannot improve.
We get another optimum tour such that the representation has
fewer crossings.

22



Grids — other cases:

C type + S type:

23



Grids — other cases:

C type + S type:

23



Grids — other cases:

C type + S type:

23



Grids — other cases:

S type + S type:

23



Grids — other cases:

S type + S type:

23



Grids — other cases:

S type + S type:

23



Grids — other cases:

S type + inverted S type:

23



Grids — other cases:

S type + inverted S type:

23



Grids — other cases:

S type + inverted S type:

23



Overview

Algorithm:
Find a 4-OPT tour.
Partial solutions: O(

√
k) disjoint paths, visiting O(

√
k)

consecutive intervals on the 4-OPT tour.
Merge partial solutions until the optimum solution is found.

Treewidth bound: the union of the 4-OPT tour and some
optimum tour is a k-vertex graph with treewidth O(

√
k).

Study the union in the planar graph.
Every 3-connected component has O(k) vertices, otherwise
there is a grid and an exchange argument could be used.
Union in the planar graph has treewidth O(

√
k) ⇒ the

k-vertex graph has treewidth O(
√

k).

24


