A subexponential parameterized algorithm for Subset TSP on planar graphs

Philip N. Klein¹ Dániel Marx²

¹Brown University, Providence, Rhode Island, USA

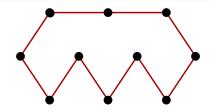
²Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

> Dagstuhl Seminar 13331 August 15, 2013

TSP

TSP

Input: A set T of cities and a distance function d on T*Output:* A tour on T with minimum total distance



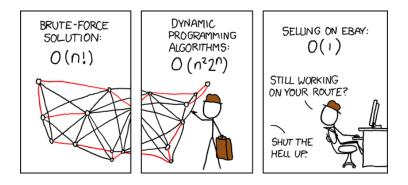
Theorem [Held and Karp 1962]

TSP with *n* cities can be solved in time $2^n \cdot n^2 \cdot \log D$, where *D* is the maximum (integer) distance.

Dynamic programming:

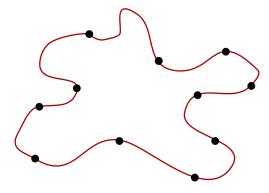
Let x(v, T') be the minimum length of path from v_{start} to v visiting all the cities $T' \subseteq T$.

Obligatory cartoon

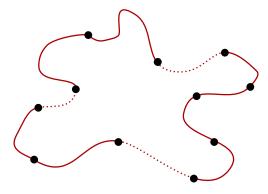


http://xkcd.com/399/

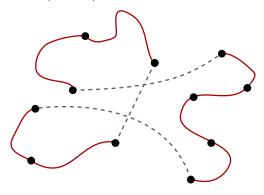
- *c*-change operation: removing *c* steps of the tour and connecting the resulting *c* paths in some other way.
- A solution is *c*-OPT if no *c*-change can improve it.
- We can find a *c*-OPT solution in $n^{O(c)} \cdot D$ time, where *D* is the maximum (integer) distance.



- *c*-change operation: removing *c* steps of the tour and connecting the resulting *c* paths in some other way.
- A solution is *c*-OPT if no *c*-change can improve it.
- We can find a *c*-OPT solution in $n^{O(c)} \cdot D$ time, where *D* is the maximum (integer) distance.



- *c*-change operation: removing *c* steps of the tour and connecting the resulting *c* paths in some other way.
- A solution is **c**-OPT if no **c**-change can improve it.
- We can find a *c*-OPT solution in $n^{O(c)} \cdot D$ time, where *D* is the maximum (integer) distance.



- Finding a 2-OPT or 3-OPT tour is a popular starting point for heuristics.
- Supposedly, finding a *k*-OPT tour for larger *k* is better (less likely to get stuck in a local optimum), but more time consuming.

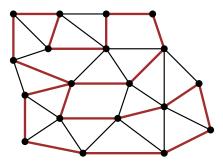
- Finding a 2-OPT or 3-OPT tour is a popular starting point for heuristics.
- Supposedly, finding a *k*-OPT tour for larger *k* is better (less likely to get stuck in a local optimum), but more time consuming.
- Unlikely that there is a fast algorithm for finding a k-OPT tour:

Theorem [M. 2008]

Finding a better tour in the k-change neighborhood is W[1]-hard.

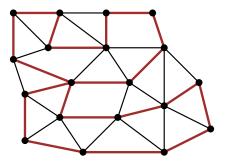
TSP on planar graphs

Assume that the cities correspond to the set of all vertices of a (weighted) planar graph and distance is measured in this (weighted) planar graph.



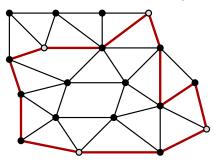
TSP on planar graphs

Assume that the cities correspond to the set of all vertices of a (weighted) planar graph and distance is measured in this (weighted) planar graph.

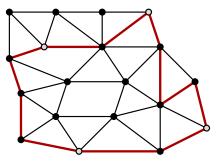


- Can be solved in time $n^{O(\sqrt{n})}$.
- Admits a PTAS.

Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.

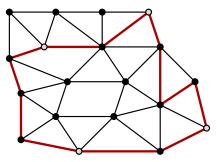


Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.



- Can be solved in time $n^{O(\sqrt{n})}$.
- Can be solved in time $2^k \cdot n^{O(1)}$.
- Question: Can we solve it in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$?

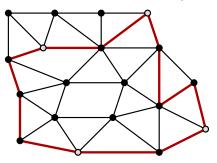
Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.



Theorem

SUBSET TSP for k cities in a unit-weight planar graph can be solved in time $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.

Assume that the cities correspond to a subset T of vertices of a planar graph and distance is measured in this planar graph.

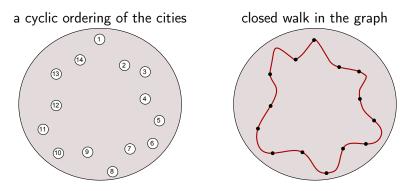


Theorem

SUBSET TSP for k cities in a weighted planar graph can be solved in time $(2^{O(\sqrt{k}\log k)} + W) \cdot n^{O(1)}$ if the weights are integers not more than W.

Two interpretations

Two possible interpretations for a solution of SUBSET TSP:

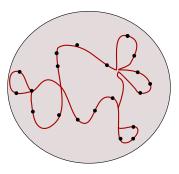


We can get the second from the first by concatenating shortest paths between adjacent cities in the ordering.

Technicalities

The closed walk can be degenerate in several ways:

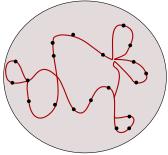
- can touch itself,
- can cross itself,
- can use an edge up to twice,
- can visit a city more than once.



We mostly ignore these technicalities in this talk.

Non-self-crossing

Definition: Non-self-crossing closed walk. **Definition:** A tour is non-self-crossing if there is a non-self-crossing closed walk realizing it.

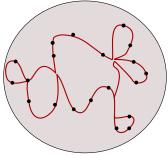


Fact

Given a tour T, one can find a non-self-crossing tour T' in polynomial time that has not larger cost.

Non-self-crossing

Definition: Non-self-crossing closed walk. **Definition:** A tour is non-self-crossing if there is a non-self-crossing closed walk realizing it.



Fact

Given a tour T, one can find a non-self-crossing tour T' in polynomial time that has not larger cost.

Partial solutions

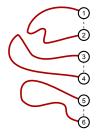
General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are $v_{\text{start}} - v$ paths visiting a subset T' of cities.

Partial solutions

General idea: build larger and larger partial solutions.

Held-Karp algorithm: the partial solutions are $v_{\text{start}} - v$ paths visiting a subset T' of cities.



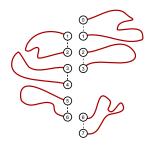
Generalization: a partial solution is a set of at most d pairwise disjoint paths with specified endpoints.

The type of a partial solution can be described by

- the set of endpoints of the paths,
- a matching between the endpoints, and
- the subset T' of visited cities.

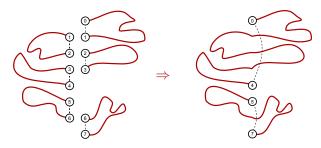
Merging partial solutions

Two compatible partial solutions can be merged in an obvious way:



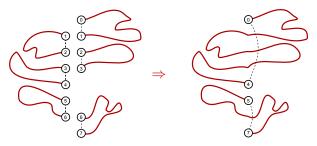
Merging partial solutions

Two compatible partial solutions can be merged in an obvious way:



Merging partial solutions

Two compatible partial solutions can be merged in an obvious way:



Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

Running time

Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

Running time

Algorithm

- Start with an initial set of trivial partial solutions.
- Combine two partial solutions as long as possible.
- Keep at most one partial solution from each type: the best one encountered so far.
- Return the best partial solution that consists of a single path (cycle) visiting all vertices.

With careful implementation, the running time is dominated by the number of types, whose number has two factors:

- endpoints described by at most *d* pairs of vertices $\Rightarrow k^{2d}$ possibilities,
- describing the subset T' of visited cities

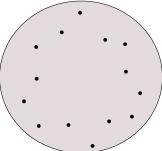
 $\Rightarrow 2^k$ possibilities.

We can increase d up to $O(\sqrt{k})$, but we need to reduce somehow the number of possible subsets of cities!

Restricting the subset of cities

We restrict attention to a collection \mathcal{T} of subsets of cities and consider only partial solutions that visit a subset in \mathcal{T} .

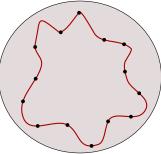
We need: a collection \mathcal{T} of size $k^{O(\sqrt{k})}$ that guarantees finding an optimum solution.



Restricting the subset of cities

We restrict attention to a collection \mathcal{T} of subsets of cities and consider only partial solutions that visit a subset in \mathcal{T} .

We need: a collection \mathcal{T} of size $k^{O(\sqrt{k})}$ that guarantees finding an optimum solution.



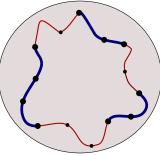
Definition of \mathcal{T} :

• Find a non-self-crossing 4-OPT tour.

Restricting the subset of cities

We restrict attention to a collection \mathcal{T} of subsets of cities and consider only partial solutions that visit a subset in \mathcal{T} .

We need: a collection \mathcal{T} of size $k^{O(\sqrt{k})}$ that guarantees finding an optimum solution.



Definition of \mathcal{T} :

- Find a non-self-crossing 4-OPT tour.
- A subset is in \mathcal{T} if and only if it induces $O(\sqrt{k})$ consecutive intervals on the non-self-crossing 4-OPT tour.

Main result

Definition of \mathcal{T} :

- Find a non-self-crossing 4-OPT tour.
- A subset is in \mathcal{T} if and only if it induces $O(\sqrt{k})$ consecutive intervals on the non-self-crossing 4-OPT tour.

Theorem

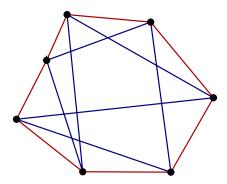
After setting \mathcal{T} as above and $d = O(\sqrt{k})$, the Algorithm finds an optimum solution for SUBSET TSP on planar graphs.

Corollary

SUBSET TSP for k cities in a planar graph can be solved in time $(2^{O(\sqrt{k}\log k)} + W) \cdot n^{O(1)}$ if the weights are integers at most W.

The treewidth bound

Consider the union of an optimum solution and a 4-OPT solution as a graph on k vertices:



Lemma

For every non-self-crossing 4-OPT solution, there is an optimum solution such that their union has treewidth $O(\sqrt{k})$.

Treewidth

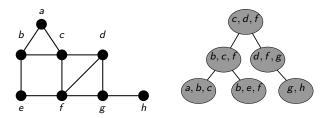
Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

If u and v are neighbors, then there is a bag containing both of them.

2 For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

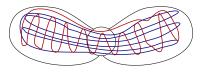
treewidth: width of the best decomposition.



The treewidth bound

Lemma

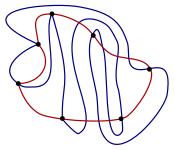
For every non-self-crossing 4-OPT solution, there is an optimum solution such that their union has treewidth $O(\sqrt{k})$.



- The union has separators of size $O(\sqrt{k})$.
- In each component, the set of cities visited by the optimum solution is nice: it is the same as what $O(\sqrt{k})$ segments of the 4-OPT tour visited.
- We can use this tree decomposition to prove that the Algorithm finds an optimum solution.

Consider the closed walk corresponding to the 4-OPT solution and pick an optimum solution and a closed walk representing that.

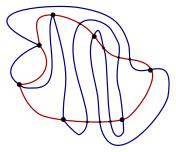
The **union** is a planar graph:



Select the optimum solution and the closed walk such that the two tours cross each other the minimum number of times.

Consider the closed walk corresponding to the 4-OPT solution and pick an optimum solution and a closed walk representing that.

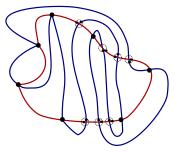
The **union** is a planar graph:



We give an $O(\sqrt{k})$ bound on the treewidth of this planar graph \downarrow A $O(\sqrt{k})$ bound follows for the *k*-vertex graph, as it is a minor of this graph after duplicating the vertices.

Consider the closed walk corresponding to the 4-OPT solution and pick an optimum solution and a closed walk representing that.

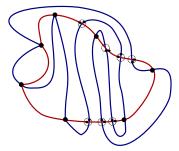
The **union** is a planar graph:



We give an $O(\sqrt{k})$ bound on the treewidth of this planar graph \downarrow A $O(\sqrt{k})$ bound follows for the *k*-vertex graph, as it is a minor of this graph after duplicating the vertices.

Consider the closed walk corresponding to the 4-OPT solution and pick an optimum solution and a closed walk representing that.

The **union** is a planar graph:

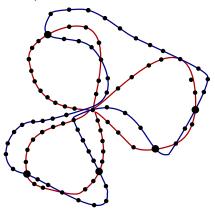


We prove that every 3-connected component of the planar graph has O(k) vertices

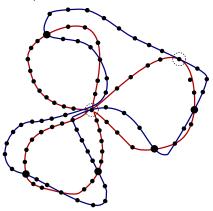
 $O(\sqrt{k})$ treewidth bound on the 3-connected components \Downarrow

same bound for the whole graph.

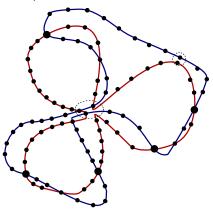
The union of the 4-OPT solution and the optimum solution can be degenerate in several ways (two tours share edges, touch each other, revisit vertices etc.).



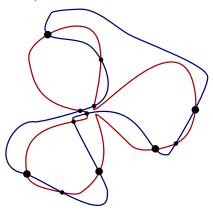
The union of the 4-OPT solution and the optimum solution can be degenerate in several ways (two tours share edges, touch each other, revisit vertices etc.).



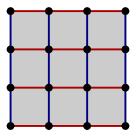
The union of the 4-OPT solution and the optimum solution can be degenerate in several ways (two tours share edges, touch each other, revisit vertices etc.).



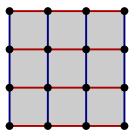
The union of the 4-OPT solution and the optimum solution can be degenerate in several ways (two tours share edges, touch each other, revisit vertices etc.).



A **grid** is a 16-vertex subgraph of the representation of the union of the 4-OPT solution and the optimum solution:



A **grid** is a 16-vertex subgraph of the representation of the union of the 4-OPT solution and the optimum solution:



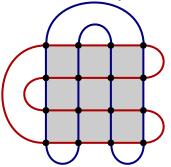
Lemma

If a 3-connected component of the representation has size $\Omega(k)$, then there is a grid.

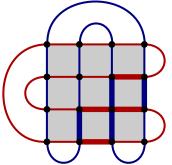
Proof idea: 4-regular and O(k) faces have length < 4 \Rightarrow Euler's formula implies that most of the faces have length 4 \Rightarrow a 4-face surrounded by 4-faces should be a grid.

${\sf Grids}$

Suppose that the grid is used like this by two tours:

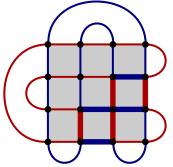


Suppose that the grid is used like this by two tours:



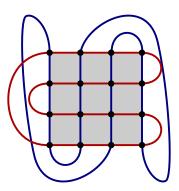
• Let us exchange these two sets of edges between the two tours.

Suppose that the grid is used like this by two tours:

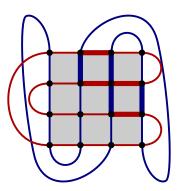


- Let us exchange these two sets of edges between the two tours.
- The 4-OPT tour cannot improve.
- The optimum tour cannot improve.
- We get another optimum tour such that the representation has fewer crossings.

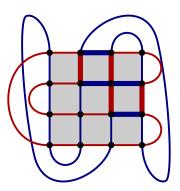
C type + S type:



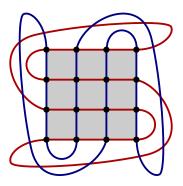
C type + S type:



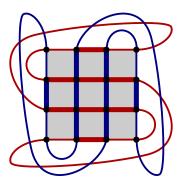
C type + S type:



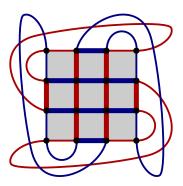
S type + S type:



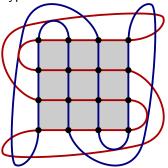
S type + S type:



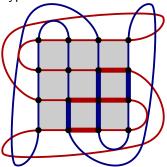
S type + S type:



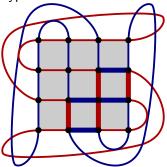
S type + inverted S type:



S type + inverted S type:



S type + inverted S type:



Overview

- Algorithm:
 - Find a 4-OPT tour.
 - Partial solutions: $O(\sqrt{k})$ disjoint paths, visiting $O(\sqrt{k})$ consecutive intervals on the 4-OPT tour.
 - Merge partial solutions until the optimum solution is found.
- Treewidth bound: the union of the 4-OPT tour and some optimum tour is a k-vertex graph with treewidth $O(\sqrt{k})$.
 - Study the union in the planar graph.
 - Every 3-connected component has O(k) vertices, otherwise there is a grid and an exchange argument could be used.
 - Union in the planar graph has treewidth $O(\sqrt{k}) \Rightarrow$ the *k*-vertex graph has treewidth $O(\sqrt{k})$.