The square root phenomenon in planar graphs

Dániel Marx¹

¹Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

> Dagstuhl Seminar 13421 October 14, 2013

Are NP-hard problems easier on planar graphs? Yes, usually.

By how much?

Often by exactly a square root factor.

Overview

Chapter 1: Subexponential algorithms using treewidth.

Chapter 2: Grid minors and bidimensionality.

Chapter 3: Finding bounded-treewidth solutions.

Better exponential algorithms

Most NP-hard problems (e.g., 3-COLORING, INDEPENDENT SET, HAMILTONIAN CYCLE, STEINER TREE, etc.) remain NP-hard on planar graphs,¹ so what do we mean by "easier"?

¹Notable exception: MAX CUT is in P for planar graphs.

Better exponential algorithms

Most NP-hard problems (e.g., 3-COLORING, INDEPENDENT SET, HAMILTONIAN CYCLE, STEINER TREE, etc.) remain NP-hard on planar graphs,¹ so what do we mean by "easier"?

The running time is still exponential, but significantly smaller:

$$2^{O(n)} \Rightarrow 2^{O(\sqrt{n})}$$

$$n^{O(k)} \Rightarrow n^{O(\sqrt{k})}$$

$$2^{O(k)} \cdot n^{O(1)} \Rightarrow 2^{O(\sqrt{k})} \cdot n^{O(1)}$$

¹Notable exception: MAX CUT is in P for planar graphs.

Chapter 1: Subexponential algorithms using treewidth

Treewidth is a measure of "how treelike the graph is."

We need only the following basic facts:

Treewidth

- If a graph G has treewidth k, then many classical NP-hard problems can be solved in time 2^{O(k)} ⋅ n^{O(1)} or 2^{O(k log k)} ⋅ n^{O(1)} on G.
- 2 A planar graph on *n* vertices has treewidth $O(\sqrt{n})$.

Treewidth — a measure of "tree-likeness"

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

Treewidth — a measure of "tree-likeness"

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

A subtree communicates with the outside world only via the root of the subtree.

Finding tree decompositions

Various algorithms for finding optimal or approximate tree decompositions if treewidth is w:

- optimal decomposition in time 2^{O(w³)} · n [Bodlaender 1996].
- 4-approximate decomposition in time 2^{O(w)} · n² [Robertson and Seymour].
- 5-approximate decomposition in time 2^{O(w)} · n [Bodlaender et al. 2013].
- $O(\sqrt{\log w})$ -approximation in polynomial time [Feige, Hajiaghayi, Lee 2008].

As we are mostly interested in algorithms with running time $2^{O(w)} \cdot n^{O(1)}$, we may assume that we have a decomposition.

$\operatorname{3-COLORING}$ and tree decompositions

Theorem

Given a tree decomposition of width w, 3-COLORING can be solved in time $3^w \cdot w^{O(1)} \cdot n$.

 B_x : vertices appearing in node x.

 V_x : vertices appearing in the subtree rooted at x.

For every node x and coloring $c : B_x \rightarrow \{1, 2, 3\}$, we compute the Boolean value E[x, c], which is true if and only if c can be extended to a proper 3-coloring of V_x .

Claim:

We can determine E[x, c] if all the values are known for the children of x.

Subexponential algorithm for $\operatorname{3-COLORING}$

Theorem 3-COLORING can be solved in time $2^{O(w)} \cdot n^{O(1)}$ on graphs of treewidth w.

+ Theorem [Robertson and Seymour] A planar graph on *n* vertices has treewidth $O(\sqrt{n})$. \downarrow Corollary 3-COLORING can be solved in time $2^{O(\sqrt{n})}$ on planar graphs.

textbook algorithm + combinatorial bound ↓ subexponential algorithm

Lower bounds

Corollary

3-COLORING can be solved in time $2^{O(\sqrt{n})}$ on planar graphs.

Two natural questions:

- Can we achieve this running time on general graphs?
- Can we achieve even better running time (e.g., 2^{O(³√n)}) on planar graphs?

Lower bounds

Corollary

3-COLORING can be solved in time $2^{O(\sqrt{n})}$ on planar graphs.

Two natural questions:

- Can we achieve this running time on general graphs?
- Can we achieve even better running time (e.g., 2^{O(³√n)}) on planar graphs?

 $P \neq NP$ is not a sufficiently strong hypothesis: it is compatible with 3SAT being solvable in time $2^{O(n^{1/1000})}$ or even in time $n^{O(\log n)}$. We need a stronger hypothesis!

Exponential Time Hypothesis (ETH)

Hypothesis introduced by Impagliazzo, Paturi, and Zane:

Exponential Time Hypothesis (ETH) There is no $2^{o(n)}$ -time algorithm for *n*-variable 3SAT. Note: current best algorithm is 1.30704^{*n*} [Hertli 2011]. Note: an *n*-variable 3SAT formula can have $\Omega(n^3)$ clauses.

Exponential Time Hypothesis (ETH)

Hypothesis introduced by Impagliazzo, Paturi, and Zane:

Exponential Time Hypothesis (ETH) There is no $2^{o(n)}$ -time algorithm for *n*-variable 3SAT. Note: current best algorithm is 1.30704^{*n*} [Hertli 2011]. Note: an *n*-variable 3SAT formula can have $\Omega(n^3)$ clauses.

Sparsification Lemma [Impagliazzo, Paturi, Zane 2001]

There is a $2^{o(n)}$ -time algorithm for *n*-variable 3SAT. \uparrow There is a $2^{o(m)}$ -time algorithm for *m*-clause 3SAT.

Exponential Time Hypothesis (ETH)

There is no $2^{o(m)}$ -time algorithm for *m*-clause 3SAT.

The textbook reduction from 3SAT to 3-Coloring:

Corollary

Assuming ETH, there is no $2^{o(n)}$ algorithm for 3-COLORING on an *n*-vertex graph *G*.

Exponential Time Hypothesis (ETH)

There is no $2^{o(m)}$ -time algorithm for *m*-clause 3SAT.

The textbook reduction from 3SAT to 3-Coloring:

Corollary

Assuming ETH, there is no $2^{o(n)}$ algorithm for 3-COLORING on an *n*-vertex graph *G*.

What about 3-COLORING on planar graphs?

The textbook reduction from 3-COLORING to PLANAR

 $\operatorname{3-Coloring}$ uses a "crossover gadget" with 4 external connectors:

- In every 3-coloring of the gadget, opposite external connectors have the same color.
- Every coloring of the external connectors where the opposite vertices have the same color can be extended to the whole gadget.
- If two edges cross, replace them with a crossover gadget.

What about 3-COLORING on planar graphs?

The textbook reduction from 3-COLORING to PLANAR

 $\operatorname{3-Coloring}$ uses a "crossover gadget" with 4 external connectors:

- In every 3-coloring of the gadget, opposite external connectors have the same color.
- Every coloring of the external connectors where the opposite vertices have the same color can be extended to the whole gadget.
- If two edges cross, replace them with a crossover gadget.

What about 3-COLORING on planar graphs?

The textbook reduction from 3-COLORING to PLANAR

 $\operatorname{3-Coloring}$ uses a "crossover gadget" with 4 external connectors:

- In every 3-coloring of the gadget, opposite external connectors have the same color.
- Every coloring of the external connectors where the opposite vertices have the same color can be extended to the whole gadget.
- If two edges cross, replace them with a crossover gadget.

- The reduction from 3-COLORING to PLANAR 3-COLORING introduces *O*(1) new edge/vertices for each crossing.
- A graph with *m* edges can be drawn with $O(m^2)$ crossings.

$$\begin{array}{c|c} 3\text{SAT formula } \phi \\ n \text{ variables} \\ m \text{ clauses} \end{array} \Rightarrow \begin{array}{c} \text{Graph } G \\ O(m) \text{ vertices} \\ O(m) \text{ edges} \end{array} \Rightarrow \begin{array}{c} \text{Planar graph } G' \\ O(m^2) \text{ vertices} \\ O(m^2) \text{ edges} \end{array}$$

Corollary

Assuming ETH, there is no $2^{o(\sqrt{n})}$ algorithm for 3-COLORING on an *n*-vertex planar graph *G*.

(Essentially observed by [Cai and Juedes 2001])

Summary of Chapter 1

Streamlined way of obtaining tight upper and lower bounds for planar problems.

• Upper bound:

Standard bounded-treewidth algorithm + treewidth bound on planar graphs give $2^{O(\sqrt{n})}$ time subexponential algorithms.

• Lower bound:

Textbook NP-hardness proof with quadratic blow up + ETH rule out $2^{o(\sqrt{n})}$ algorithms.

Works for Hamiltonian Cycle, Vertex Cover, Independent Set, Feedback Vertex Set, Dominating Set, Steiner Tree, ...

Chapter 2: Grid minors and bidimensionality

More refined analysis of the running time: we express the running time as a function of input size n and a parameter k.

Definition

A problem is **fixed-parameter tractable (FPT)** parameterized by k if it can be solved in time $f(k) \cdot n^{O(1)}$ for some computable function f.

Examples of FPT problems:

- Finding a vertex cover of size *k*.
- Finding a feedback vertex set of size *k*.
- Finding a path of length *k*.
- Finding *k* vertex-disjoint triangles.

• ...

Note: these four problems have $2^{O(k)} \cdot n^{O(1)}$ time algorithms, which is best possible on general graphs.

W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is W[1]-hard, then the problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:

- Finding a clique/independent set of size *k*.
- Finding a dominating set of size *k*.
- Finding *k* pairwise disjoint sets.

• ...

For these problems, the exponent of n has to depend on k (the running time is typically $n^{O(k)}$).

Subexponential parameterized algorithms

What kind of upper/lower bounds we have for f(k)?

- For most problems, we cannot expect a 2^{o(k)} · n^{O(1)} time algorithm on general graphs.
 (As this would imply a 2^{o(n)} algorithm.)
- For most problems, we cannot expect a 2^{o(√k)} · n^{O(1)} time algorithm on planar graphs. (As this would imply a 2^{o(√n)} algorithm.)

Subexponential parameterized algorithms

What kind of upper/lower bounds we have for f(k)?

- For most problems, we cannot expect a 2^{o(k)} · n^{O(1)} time algorithm on general graphs.
 (As this would imply a 2^{o(n)} algorithm.)
- For most problems, we cannot expect a 2^{o(√k)} · n^{O(1)} time algorithm on planar graphs. (As this would imply a 2^{o(√n)} algorithm.)
- However, $2^{O(\sqrt{k})} \cdot n^{O(1)}$ algorithms do exist for several problems on planar graphs, even for some W[1]-hard problems.
- Quick proofs via grid minors and bidimensionality. [Demaine, Fomin, Hajiaghayi, Thilikos 2004]

Minors

Definition

Graph *H* is a **minor** of *G* ($H \le G$) if *H* can be obtained from *G* by deleting edges, deleting vertices, and contracting edges.

Note: length of the longest path in H is at most the length of the longest path in G.

Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a $k \times k$ grid minor.

Note: for general graphs, we need treewidth at least $k^{4k^4(k+2)}$ for a $k \times k$ grid minor [Diestel et al. 1999] (A $k^{O(1)}$ bound was just announced [Chekuri and Chuznoy 2013]!)

Bidimensionality for k-PATH

Observation: If the treewidth of a planar graph *G* is at least $5\sqrt{k}$ \Rightarrow It has a $\sqrt{k} \times \sqrt{k}$ grid minor (Planar Excluded Grid Theorem)

 \Rightarrow The grid has a path of length at least k.

 \Rightarrow G has a path of length at least k.

Bidimensionality for k-PATH

Observation: If the treewidth of a planar graph *G* is at least $5\sqrt{k}$ \Rightarrow It has a $\sqrt{k} \times \sqrt{k}$ grid minor (Planar Excluded Grid Theorem) \Rightarrow The grid has a path of length at least *k*. \Rightarrow *G* has a path of length at least *k*.

We use this observation to find a path of length at least k on planar graphs:

- Set $w := 5\sqrt{k}$.
- Find an O(1)-approximate tree decomposition.
 - If treewidth is at least *w*: we answer "there is a path of length at least *k*."
 - If we get a tree decomposition of width O(w), then we can solve the problem in time 2^{O(w log w)} ⋅ n^{O(1)} = 2^{O(√k log k)} ⋅ n^{O(1)}

Bidimensionality

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Bidimensionality

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Bidimensionality

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Summary of Chapter 2

Tight bounds for minor-bidimensional planar problems.

• Upper bound:

Standard bounded-treewidth algorithm + planar excluded grid theorem give $2^{O(\sqrt{k})} \cdot n^{O(1)}$ time FPT algorithms.

• Lower bound:

Textbook NP-hardness proof with quadratic blow up + ETH rule out $2^{o(\sqrt{n})}$ time algorithms \Rightarrow no $2^{o(\sqrt{k})} \cdot n^{O(1)}$ time algorithm.

Variant of theory works for contraction-bidimensional problems, e.g., INDEPENDENT SET, DOMINATING SET.

Chapter 3: Finding bounded-treewidth solutions

So far the way we have used treewidth is to find something (e.g., Hamiltonian cycle) in a large bounded-treewidth graph:

Chapter 3: Finding bounded-treewidth solutions

So far the way we have used treewidth is to find something (e.g., Hamiltonian cycle) in a large bounded-treewidth graph:

Chapter 3: Finding bounded-treewidth solutions

But we can also find small bounded-treewidth objects in an arbitrary large graph.

Theorem [Alon, Yuster, Zwick 1994]

Given a graph *H* and weighted graph *G*, we can find a minimum weight subgraph of *G* isomorphic to *H* in time $2^{O(|V(H)|)} \cdot n^{O(tw(H))}$.

Chapter 3: Finding bounded-treewidth solutions

But we can also find small bounded-treewidth objects in an arbitrary large graph.

Theorem [Alon, Yuster, Zwick 1994]

Given a graph *H* and weighted graph *G*, we can find a minimum weight subgraph of *G* isomorphic to *H* in time $2^{O(|V(H)|)} \cdot n^{O(tw(H))}$.

If the problem can be formulated as finding a graph of treewidth $O(\sqrt{k})$, then we get an $n^{O(\sqrt{k})}$ time algorithm.

Examples

Three examples:

- PLANAR *k*-TERMINAL CUT Improvement from $n^{O(k)}$ to $2^{O(k)} \cdot n^{O(\sqrt{k})}$.
- PLANAR STRONGLY CONNECTED SUBGRAPH Improvement from $n^{O(k)}$ to $2^{O(k \log k)} \cdot n^{O(\sqrt{k})}$.
- SUBSET TSP with k cities in a planar graph Improvement from $2^{O(k)} \cdot n^{O(1)}$ to $2^{O(\sqrt{k}\log k)} \cdot n^{O(1)}$.

A classical problem

s - t CUT Input: A graph G, an integer p, vertices s and t Output: A set S of at most p edges such that removing S separates s and t.

Theorem [Ford and Fulkerson 1956]

A minimum s - t cut can be found in polynomial time.

What about separating more than two terminals?

More than two terminals

k-TERMINAL CUT (aka MULTIWAY CUT)

Input: A graph G, an integer p, and a set T of k terminals Output: A set S of at most p edges such that removing S separates any two vertices of T

Theorem [Dalhaus et al. 1994] NP-hard already for k = 3.

More than two terminals

k-TERMINAL CUT (aka MULTIWAY CUT)

Input: A graph G, an integer p, and a set T of k terminals Output: A set S of at most p edges such that removing S separates any two vertices of T

Theorem [Dalhaus et al. 1994] [Hartvigsen 1998] [Bentz 2012] PLANAR *k*-TERMINAL CUT can be solved in time $n^{O(k)}$.

Theorem [Klein and M. 2012]

PLANAR *k*-TERMINAL CUT can be solved in time $2^{O(k)} \cdot n^{O(\sqrt{k})}$.

Dual graph

The first step of the algorithms is to look at the solution in the dual graph:

Dual graph

The first step of the algorithms is to look at the solution in the dual graph:

Recall:

Primal graph		Dual graph
vertices	\Leftrightarrow	faces
faces	\Leftrightarrow	vertices
edges	\Leftrightarrow	edges

Dual graph

Recall:

The first step of the algorithms is to look at the solution in the dual graph:

We slightly transform the problem in such a way that the terminals are represented by **vertices** in the dual graph (instead of faces).

 \Leftrightarrow

edges

edges

Finding the dual solution

Main ideas of [Dalhaus et al. 1994] [Hartvigsen 1998] [Bentz 2012]:
The dual solution has O(k) branch vertices.

- **2** Guess the location of branch vertices $(n^{O(k)}$ guesses).
- Oeep magic to find the paths connecting the branch vertices (shortest paths are not necessarily good!)

Finding the dual solution

Idea for $n^{O(\sqrt{k})}$ time algorithm:

- Guess the graph H representing the branch vertices.
- Build a weighted complete graph G representing the distances in the planar graph.
- Find in time $n^{O(tw(H))} = n^{O(\sqrt{k})}$ a minimum weight copy of H in G.

Problem: How to ensure that the solution separates the terminals?

We find a minimum cost Steiner tree T of the terminals in the **dual** and cut open the graph along the tree. (Steiner tree: $3^k \cdot n^{O(1)}$ time by [Dreyfus-Wagner 1972] or $2^k \cdot n^{O(1)}$ time by [Björklund 2007])

Key idea: the paths of the dual solution between the branch points/crossing points can be assumed to be shortest paths.

Topology

Key idea: the paths of the dual solution between the branch points/crossing points can be assumed to be shortest paths.

- Thus a solution can be completely described by the location of these points and which of them are connected.
- A "topology" just describes the connections without the locations.
- We can bound the size of the topology by O(k) and its treewidth by $O(\sqrt{k})$.

Lower bounds

Theorem [Klein and M. 2012]

PLANAR *k*-TERMINAL CUT can be solved in time $2^{O(k)} \cdot n^{O(\sqrt{k})}$.

Natural questions:

- Is there an $f(k) \cdot n^{o(\sqrt{k})}$ time algorithm?
- Is there an f(k) · n^{O(1)} time algorithm (i.e., is it fixed-parameter tractable)?

Lower bounds

Theorem [Klein and M. 2012]

PLANAR *k*-TERMINAL CUT can be solved in time $2^{O(k)} \cdot n^{O(\sqrt{k})}$.

Natural questions:

- Is there an $f(k) \cdot n^{o(\sqrt{k})}$ time algorithm?
- Is there an $f(k) \cdot n^{O(1)}$ time algorithm (i.e., is it fixed-parameter tractable)?

The previous lower bound technology is of no help here: showing that there is no $2^{o(\sqrt{n})}$ time algorithm does not answer the question.

Lower bounds:

Theorem [M. 2012]

PLANAR *k*-TERMINAL CUT is W[1]-hard and has no $f(k) \cdot n^{o(\sqrt{k})}$ time algorithm (assuming ETH).

W[1]-hardness

Definition

A parameterized reduction from problem A to B maps an instance (x, k) of A to instance (x', k') of B such that

- $(x,k) \in A \iff (x',k') \in B$,
- $k' \leq g(k)$ for some computable function g.
- (x', k') can be computed in time $f(k) \cdot |x|^{O(1)}$.

Easy: If there is a parameterized reduction from problem A to problem B and B is FPT, then A is FPT as well.

Definition

A problem P is W[1]-hard if there is a parameterized reduction from k-CLIQUE to P.

W[1]-hardness

Definition

A parameterized reduction from problem A to B maps an instance (x, k) of A to instance (x', k') of B such that

- $(x,k) \in A \iff (x',k') \in B$,
- $k' \leq g(k)$ for some computable function g.
- (x', k') can be computed in time $f(k) \cdot |x|^{O(1)}$.

Easy: If there is a parameterized reduction from problem A to problem B and B is FPT, then A is FPT as well.

Definition

A problem P is W[1]-hard if there is a parameterized reduction from k-CLIQUE to P.

W[1]-hardness vs. NP-hardness

 $\mathsf{W}[1]\text{-hardness}$ proofs are more delicate than NP-hardness proofs: we need to control the new parameter.

Example: *k*-INDEPENDENT SET can be reduced to k'-VERTEX COVER with k' := n - k. But this is **not** a parameterized reduction.

W[1]-hardness vs. NP-hardness

 $\mathsf{W}[1]\text{-hardness}$ proofs are more delicate than NP-hardness proofs: we need to control the new parameter.

Example: *k*-INDEPENDENT SET can be reduced to k'-VERTEX COVER with k' := n - k. But this is **not** a parameterized reduction.

NP-hardness proof

Reduction from some graph problem. We build n vertex gadgets of constant size and m edge gadgets of constant size.

W[1]-hardness proof

Reduction from *k*-CLIQUE. We build *k* large vertex gadgets, each having *n* states (and/or $\binom{k}{2}$ large edge gadgets with *m* states).

Tight bounds

Theorem [Chen et al. 2004]

Assuming ETH, there is no $f(k) \cdot n^{o(k)}$ algorithm for k-CLIQUE for any computable function f.

Transfering to other problems:

Bottom line:

To rule out $f(k) \cdot n^{o(\sqrt{k})}$ algorithms, we need a parameterized reduction that blows up the parameter at most quadratically.

Grid Tiling

GRID TILING

- *Input:* A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- *Find:* A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - Horizontal neighbors agree in the first component.
 - Vertical neighbors agree in the second component.

$(1,1) \\ (1,3) \\ (4,2)$	(1,5) (4,1) (3,5)	$(1,1) \\ (4,2) \\ (3,3)$	
(2,2) (4,1)	(1,3) (2,1)	(2,2) (3,2)	
(3,1) (3,2) (3,3)	(1,1) (3,1)	(3,2) (3,5)	
k = 3, D = 5			

Grid Tiling

GRID TILING

- *Input:* A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- *Find:* A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - Horizontal neighbors agree in the first component.
 - Vertical neighbors agree in the second component.

(1,1)	(1,5)	(1,1)	
(1,3)	(4,1)	(4,2)	
(4,2)	(3,5)	(3,3)	
(2,2) (4,1)	(1,3) (2,1)	<mark>(2,2)</mark> (3,2)	
(3,1) (3,2) (3,3)	(1,1) (3,1)	<mark>(3,2)</mark> (3,5)	
k = 3, D = 5			

Grid Tiling

GRID TILING

- *Input:* A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- *Find:* A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - Horizontal neighbors agree in the first component.
 - Vertical neighbors agree in the second component.

Fact

There is a parameterized reduction from k-CLIQUE to $k \times k$ GRID TILING.

Reduction from *k*-CLIQUE

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

Each diagonal cell defines a value $v_i \dots$

Reduction from *k*-CLIQUE

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

... which appears on a "cross"

Reduction from *k*-CLIQUE

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

 v_i and v_j are adjacent for every $1 \le i < j \le k$.

Reduction from *k*-CLIQUE

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

 v_i and v_j are adjacent for every $1 \le i < j \le k$.

Reduction from $k \times k$ GRID TILING to PLANAR k^2 -TERMINAL CUT

For every set $S_{i,j}$, we construct a gadget with 4 terminals such that

- for every $(x, y) \in S_{i,j}$, there is a minimum multiway cut that represents (x, y).
- every minimum multiway cut represents some $(x, y) \in S_{i,j}$.

Main part of the proof: constructing these gadgets.

Reduction from $k \times k$ GRID TILING to PLANAR k^2 -TERMINAL CUT

For every set $S_{i,j}$, we construct a gadget with 4 terminals such that

- for every $(x, y) \in S_{i,j}$, there is a minimum multiway cut that represents (x, y).
- every minimum multiway cut represents some $(x, y) \in S_{i,j}$.

Main part of the proof: constructing these gadgets.

A cut representing (2,4).

Reduction from $k \times k$ GRID TILING to PLANAR k^2 -TERMINAL CUT

For every set $S_{i,j}$, we construct a gadget with 4 terminals such that

- for every $(x, y) \in S_{i,j}$, there is a minimum multiway cut that represents (x, y).
- every minimum multiway cut represents some $(x, y) \in S_{i,j}$.

Main part of the proof: constructing these gadgets.

A cut not representing any pair.

Putting together the gadgets

Putting together the gadgets

Putting together the gadgets

PLANAR *k*-TERMINAL CUT

• Upper bound:

Looking at the dual + cutting open a Steiner tree + guessing a topology + finding a graph of treewidth $O(\sqrt{k})$.

• Lower bound:

ETH + reduction from GRID TILING + tricky gadget construction rule out $f(k) \cdot n^{o(\sqrt{k})}$ time algorithms.

STRONGLY CONNECTED SUBGRAPH

Undirected graphs:

STEINER TREE: Find a minimum weight connected subgraph that contains all k terminals.

Theorem [Dreyfus-Wagner 1972]

STEINER TREE can be solved in time $2^{O(k)} \cdot n^{O(1)}$.

STRONGLY CONNECTED SUBGRAPH

Undirected graphs:

STEINER TREE: Find a minimum weight connected subgraph that contains all k terminals.

Theorem [Dreyfus-Wagner 1972]

STEINER TREE can be solved in time $2^{O(k)} \cdot n^{O(1)}$.

Directed graphs:

STRONGLY CONNECTED SUBGRAPH: Find a minimum weight strongly connected subgraph that contains all k terminals.

Theorem

STRONGLY CONNECTED SUBGRAPH on general directed graphs

- can be solved in time $n^{O(k)}$ [Feldman and Ruhl 2006],
- is W[1]-hard parameterized by *k* [Guo, Niedermeier, Suchý 2011].

STRONGLY CONNECTED SUBGRAPH on planar graphs

Theorem [Feldman and Ruhl 2006]

STRONGLY CONNECTED SUBGRAPH can be solved in time $n^{O(k)}$ on general directed graphs.

Natural questions:

- Is there an $f(k) \cdot n^{o(k)}$ time algorithm on planar graphs?
- Is there an f(k) · n^{O(1)} time algorithm (i.e., is it fixed-parameter tractable) on planar graphs?

STRONGLY CONNECTED SUBGRAPH on planar graphs

Theorem [Feldman and Ruhl 2006]

STRONGLY CONNECTED SUBGRAPH can be solved in time $n^{O(k)}$ on general directed graphs.

Natural questions:

- Is there an $f(k) \cdot n^{o(k)}$ time algorithm on planar graphs?
- Is there an $f(k) \cdot n^{O(1)}$ time algorithm (i.e., is it fixed-parameter tractable) on planar graphs?

Theorem [Chitnis, Hajiaghayi, M.]

STRONGLY CONNECTED SUBGRAPH on planar directed graphs

- can be solved in time $2^{O(k \log k)} \cdot n^{O(\sqrt{k})}$,
- has no $f(k) \cdot n^{o(\sqrt{k})}$ time algorithm.

Optimum solutions

Closely looking at the $n^{O(k)}$ algorithm of [Feldman and Ruhl 2006] shows that an optimum solution consists of directed paths and "bidirectional strips":

With some work, we can bound the number paths/strips by O(k).

Algorithm

[Ignore the bidirectional strips for simplicity]

- We guess the topology of the solution $(2^{O(k \log k)} \text{ possibilities})$.
- Treewidth of the topology is $O(\sqrt{k})$.
- We can find the best realization of this topology (matching the location of the terminals) in time $n^{O(\sqrt{k})}$.

Algorithm

[Ignore the bidirectional strips for simplicity]

- We guess the topology of the solution $(2^{O(k \log k)} \text{ possibilities})$.
- Treewidth of the topology is $O(\sqrt{k})$.
- We can find the best realization of this topology (matching the location of the terminals) in time $n^{O(\sqrt{k})}$.

Lower bound

Theorem [Chitnis, Hajiaghayi, M.]

STRONGLY CONNECTED SUBGRAPH has no $f(k) \cdot n^{o(\sqrt{k})}$ time algorithm on planar directed graphs (assuming ETH).

The proof is by reduction from $\ensuremath{\mathrm{GRID}}$ $\ensuremath{\mathrm{TILING}}$ and complicated construction of gadgets.

TSP

TSP

Input: A set T of cities and a distance function d on T*Output:* A tour on T with minimum total distance

Theorem [Held and Karp]

TSP with k cities can be solved in time $2^k \cdot n^{O(1)}$.

Dynamic programming:

Let x(v, T') be the minimum length of path from v_{start} to v visiting all the cities $T' \subseteq T$.

$\operatorname{SUBSET}\,\operatorname{TSP}$ on planar graphs

Assume that the cities correspond to a subset T of a planar graph and distance is measured in this planar graph.

$\operatorname{SUBSET}\,\operatorname{TSP}$ on planar graphs

Assume that the cities correspond to a subset T of a planar graph and distance is measured in this planar graph.

- Can be solved in time $2^{O(\sqrt{n})}$.
- Can be solved in time $2^k \cdot n^{O(1)}$.
- Question: Can we solve it in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$?

$\operatorname{SUBSET}\,\operatorname{TSP}$ on planar graphs

Assume that the cities correspond to a subset T of a planar graph and distance is measured in this planar graph.

Theorem [Klein and M.]

SUBSET TSP for k cities in a (unit-weight) planar graph can be solved in time $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.

TSP and treewidth

- We wanted to formulate the problem as finding a low treewidth subgraph.
- A cycle has treewidth 2, is this of any help?

Problem:

We have to remember the subset of cities visited by the partial tour $(2^k \text{ possibilities})$.

c-change TSP

- *c*-change operation: removing *c* steps of the tour and connecting the resulting *c* paths in some other way.
- A solution is *c*-OPT if no *c*-change can improve it.
- We can find a *c*-OPT solution in $k^{O(c)} \cdot D$ time, where *D* is the maximum distance (if distances are integers).

c-change TSP

- *c*-change operation: removing *c* steps of the tour and connecting the resulting *c* paths in some other way.
- A solution is *c*-OPT if no *c*-change can improve it.
- We can find a *c*-OPT solution in $k^{O(c)} \cdot D$ time, where *D* is the maximum distance (if distances are integers).

c-change TSP

- *c*-change operation: removing *c* steps of the tour and connecting the resulting *c* paths in some other way.
- A solution is *c*-OPT if no *c*-change can improve it.
- We can find a *c*-OPT solution in $k^{O(c)} \cdot D$ time, where *D* is the maximum distance (if distances are integers).

The treewidth bound

Consider the union of an optimum solution and a 4-OPT solution as a graph on k vertices:

Lemma

The union of an optimum solution and a 4-OPT solution has treewidth $O(\sqrt{k})$ [some techincal details omitted].

The treewidth bound

Lemma

The union of an optimum solution and a 4-OPT solution has treewidth $O(\sqrt{k})$ [some techincal details omitted].

- The union has separators of size $O(\sqrt{k})$.
- In each component, the set of cities visited by the optimum solution is nice: it is the same as what O(√k) segments of the 4-OPT tour visited (k^{O(√k)} possibilities).

Summary of Chapter 3

Parameterized problems where bidimensionality does not work.

• Upper bounds:

Algorithms based on finding a bounded-treewidth subgraph. Treewidth bound is problem-specific:

- k-TERMINAL CUT: dual solution has O(k) branch vertices.
- PLANAR STRONGLY CONNECTED SUBGRAPH: solution consists of O(k) paths/strips.
- SUBSET TSP on planar graphs: the union of an optimum solution and a 4-OPT solution has treewidth O(k).

Lower bounds:

To rule out $f(k) \cdot n^{o(\sqrt{k})}$ time algorithms, we have to prove W[1]-hardness by reduction from GRID TILING.

- Chapter 1: Subexponential algorithms using treewidth.
 - Algorithms: standard treewidth algorithms.
 - Lower bounds: textbook NP-completeness proofs + ETH.
- Chapter 2: Grid minors and bidimensionality.
 - Algorithms: standard treewidth algorithms + excluded grid theorem.
 - Lower bounds: textbook NP-completeness proofs + ETH.
- Chapter 3: Finding bounded-treewidth solutions.
 - Algorithms: the solution can be represented by a graph of treewidth $O(\sqrt{k})$.
 - Lower bounds: grid-like W[1]-hardness proofs to rule out $f(k) \cdot n^{o(\sqrt{k})}$ algorithms.

• A robust understanding of why certain problems can be solved in time $2^{O(\sqrt{n})}$ etc. on planar graphs and why the square root is best possible.

- A robust understanding of why certain problems can be solved in time $2^{O(\sqrt{n})}$ etc. on planar graphs and why the square root is best possible.
- Going beyond the basic toolbox requires new problem-specific algorithmic techniques and hardness proofs with tricky gadget constructions.

- A robust understanding of why certain problems can be solved in time $2^{O(\sqrt{n})}$ etc. on planar graphs and why the square root is best possible.
- Going beyond the basic toolbox requires new problem-specific algorithmic techniques and hardness proofs with tricky gadget constructions.
- The lower bound technology on planar graphs cannot give a lower bound without a square root factor. Does this mean that there are matching algorithms for other problems as well?
 - $2^{O(\sqrt{k})} \cdot n^{O(1)}$ time algorithm for STEINER TREE with k terminals in a planar graph?
 - $2^{O(\sqrt{k})} \cdot n^{O(1)}$ time algorithm for finding a cycle of length exactly k in a planar graph?
 - . . .