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Parameterized problems

Main idea
Instead of expressing the running time as a function T (n) of n, we
express it as a function T (n, k) of the input size n and some
parameter k of the input.

In other words: we do not want to be efficient on all inputs of size
n, only for those where k is small.

What can be the parameter k?
The size k of the solution we are looking for.
The maximum degree of the input graph.
The dimension of the point set in the input.
The length of the strings in the input.
The length of clauses in the input Boolean formula.
. . .
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Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm No no(k) algorithm
exists known
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Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1
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Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

u2 v2
≤ k

Height of the search tree ≤ k ⇒ at most 2k leaves ⇒ 2k · nO(1)

time algorithm.
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Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if
there is an f (k)nc time algorithm for some constant c .

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .
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FPT techniques

Treewidth

Color coding

Iterative compression

Kernelization

Algebraic techniques

Bounded-depth search trees
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W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is
W[1]-hard, then the problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:
Finding a clique/independent set of size k .
Finding a dominating set of size k .
Finding k pairwise disjoint sets.
. . .
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Parameterized complexity

Rod G. Downey
Michael R. Fellows

Parameterized
Complexity

Springer 1999

The study of parameterized complexity was initiated by
Downey and Fellows in the early 90s.
First monograph in 1999.
By now, strong presence in most algorithmic conferences.
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Parameterized Algorithms

Marek Cygan, Fedor V. Fomin,
Lukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk,
Michał Pilipczuk, Saket Saurabh

Springer 2015
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Shift of focus

FPT or W[1]-hard?
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Shift of focus

FPT or W[1]-hard?

What is the best possible
multiplier f (k) in the
running time f (k) · nO(1)?

What is the best possible
exponent g(k) in the
running time f (k) · ng(k)?

FPT
W[1]-hard
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2k? 1.0001k? 2
√
k? nO(k)? nlog k? nlog log k?
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Better algorithms for Vertex Cover

We have seen a 2k · nO(1) time algorithm.
Easy to improve to, e.g., 1.618k · nO(1).
Current best f (k): 1.2738k · nO(1) [Chen, Kanj, Xia 2010].
Lower bounds?

Is, say, 1.001k · nO(1) time possible?
Is 2k/ log k · nO(1) time possible?

Of course, for all we know, it is possible that P = NP and Vertex
Cover is polynomial-time solvable.

⇒ We can hope only for conditional lower bounds.
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Exponential Time Hypothesis (ETH)
Hypothesis introduced by Impagliazzo, Paturi, and Zane:

Exponential Time Hypothesis (ETH) [consequence of]

There is no 2o(n)-time algorithm for n-variable 3SAT.

Note: current best algorithm is 1.30704n [Hertli 2011].

Note: an n-variable 3SAT formula can have m = Ω(n3) clauses.

Are there algorithms that are subexponential in the size n + m of
the 3SAT formula?

Sparsification Lemma [Impagliazzo, Paturi, Zane 2001]

There is a 2o(n)-time algorithm for n-variable 3SAT.
m

There is a 2o(n+m)-time algorithm for n-variable m-clause 3SAT.
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Lower bounds based on ETH

Exponential Time Hypothesis (ETH)

There is no 2o(n+m)-time algorithm for n-variable m-clause 3SAT.

The textbook reduction from 3SAT to 3-Coloring:

3SAT formula φ
n variables
m clauses

⇒
Graph G

O(n + m) vertices
O(n + m) edges

v1 v2 v3 v4 v5 v6

C1 C2 C3 C4

Corollary

Assuming ETH, there is no 2o(n) algorithm for 3-Coloring on an
n-vertex graph G .
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Other problems
There are polytime reductions from 3SAT to many problems such
that the reduction creates a graph with O(n + m) vertices/edges.

Consequence: Assuming ETH, the following problems cannot be
solved in time 2o(n) and hence in time 2o(k) · nO(1) (but
2O(k) · nO(1) time algorithms are known):

Vertex Cover

Longest Cycle

Feedback Vertex Set

Multiway Cut

Odd Cycle Transversal

Steiner Tree

. . .

Seems to be the natural behavior of FPT problems?
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The race for better FPT algorithms

Single exponential Subexponential

Double
exponential

"Slightly super-
exponential"

Tower of
exponentials
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Graph Minors Theory

Neil Robertson Paul Seymour

Theory of graph minors devel-
oped in the monumental series

Graph Minors I–XXIII.
J. Combin. Theory, Ser. B
1983–2012

Structure theory of graphs excluding
minors (and much more).
Galactic combinatorial bounds and
running times.
Important early influence for
parameterized algorithms. [figure by Felix Reidl]
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Disjoint paths

k-Disjoint Paths
Given a graph G and pairs of vertices (s1, t1), . . . , (sk , tk),
find pairwise vertex-disjoint paths P1, . . . , Pk such that Pi

connects si and ti .

s1 s2 s3 s4

t1 t2 t3 t4
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Disjoint paths

k-Disjoint Paths
Given a graph G and pairs of vertices (s1, t1), . . . , (sk , tk),
find pairwise vertex-disjoint paths P1, . . . , Pk such that Pi

connects si and ti .

NP-hard, but FPT parameterized by k : can be solved in time
f (k)n3 for some horrible function f (k) [Robertson and Seymour].
More “efficient” algorithm where f (k) is only quadruple
exponential [Kawarabayashi and Wollan 2010].
The Polynomial Excluded Grid Theorem improves this to triple
exponential [Chekuri and Chuzhoy 2014].
Double-exponential is possible on planar graphs
[Adler et al. 2011].

Open: can we have a 2k
O(1) · nO(1) time algorithm?
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover
the edges of G with at most k cliques.

(the cliques need not be edge disjoint)

Equivalently: can G be represented as an intersection graph over a
k element universe?

18
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Edge Clique Cover: Given a graph G and an integer k , cover
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(the cliques need not be edge disjoint)

Equivalently: can G be represented as an intersection graph over a
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover
the edges of G with at most k cliques.

(the cliques need not be edge disjoint)

Simple algorithm (sketch)
If two adjacent vertices have the same neighborhood (“twins”),
then remove one of them.
If there are no twins and isolated vertices, then |V (G )| > 2k

implies that there is no solution.
Use brute force.

Running time: 22O(k) ·nO(1) — double exponential dependence on k!
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Edge Clique Cover

Edge Clique Cover: Given a graph G and an integer k , cover
the edges of G with at most k cliques.

(the cliques need not be edge disjoint)

Double-exponential dependence on k cannot be avoided!

Theorem [Cygan, Pilipczuk, Pilipczuk 2013]

Assuming ETH, there is no 22o(k) · nO(1) time algorithm for Edge
Clique Cover.

Proof: Reduce an n-variable 3SAT instance into an instance of
Edge Clique Cover with k = O(log n).

18



Slightly superexponential algorithms

Running time of the form 2O(k log k) · nO(1) appear naturally in
parameterized algorithms usually because of one of two reasons:

1 Branching into k directions at most k times explores a search
tree of size kk = 2O(k log k).

2 Trying k! = 2O(k log k) permutations of k elements (or
partitions, matchings, . . .)

Can we avoid these steps and obtain 2O(k) · nO(1) time algorithms?
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Slightly superexponential algorithms
The improvement to 2O(k) often required significant new ideas:

k-Path:

2O(k log k) · nO(1) using representative sets [Monien 1985]
⇓

2O(k) · nO(1) using color coding [Alon, Yuster, Zwick 1995]

Feedback Vertex Set:

2O(k log k) · nO(1) using k-way branching [Downey and Fellows 1995]
⇓

2O(k) · nO(1) using iterative compression [Guo et al. 2005]

Planar Subgraph Isomorphism:

2O(k log k) · nO(1) using tree decompositions [Eppstein et al. 1995]
⇓

2O(k) · nO(1) using sphere cut decompositions [Dorn 2010]
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Closest String
Closest String
Given strings s1, . . . , sk of length L over alphabet Σ, and an
integer d , find a string s (of length L) such that Hamming distance
d(s, si ) ≤ d for every 1 ≤ i ≤ k .

s1 C B D C C A C B B
s2 A B D B C A B D B
s3 C D D B A C C B D
s4 D D A B A C C B D
s5 A C D B D D C B C

Theorem [Gramm, Niedermeier, Rossmanith 2003]

Closest String can be solved in time 2O(d log d) · nO(1).

Theorem [Lokshtanov, M., Saurabh 2011]

Assuming ETH, Closest String has no 2o(d log d)nO(1) algorithm.
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The race for better FPT algorithms

Single exponential Subexponential

Double
exponential

"Slightly super-
exponential"

Tower of
exponentials
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Treewidth

Treewidth is a measure of “tree-likeness.”
Dynamic programming algorithms for
trees can be often generalized to
bounded-treewidth graphs.
These algorithms formalize the concept
of “solving the problem recursively on
small separators.”
Treewidth pops up in unexpected places,
e.g., in algorithms for planar graphs.
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Treewidth
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

24



Treewidth
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

hgfe

a

b c d

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.

24



Optimal algorithms for tree decompositions

Assuming ETH, these running times are best possible:

Maximum Independent Set 2O(w)

Hamiltonian Cycle 2O(w logw)

Cut & Count [Cygan et al. 2011] 2O(w)

Chromatic Number 2O(w logw)
[Lokshtanov et al. 2011]

Hitting Candy Graphs

2O(w c)
Hc :

1
2

c

[Cygan et al. 2014]

3-Choosability 22
O(w)

[M. and Mitsou 2016]
3-Choosability Deletion

22
2O(w)

[M. and Mitsou 2016]
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Best possible bases

Algorithms given a tree decomposition of width w :

Independent Set 2w

Dominating Set 3w

c-Coloring cw

Odd Cycle Transversal 3w

Partition into Triangles 2w

Max Cut 2w

#Perfect Matching 2w

Are these constants best possible?

Can we improve 2 to 1.99?
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Best possible bases
We need a new complexity assumption:

Strong Exponential-Time Hypothesis (SETH) [consequence of]
There is no (2− ε)n time algorithm for n-variable CNF-SAT for
any ε > 0.

Assuming SETH. . .

Independent Set no (2− ε)w

Dominating Set no (3− ε)w

c-Coloring no (c − ε)w

Odd Cycle Transversal no (3− ε)w

Partition into Triangles no (2− ε)w

Max Cut no (2− ε)w

#Perfect Matching no (2− ε)w
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The race for better FPT algorithms

Single exponential Subexponential

Double
exponential

"Slightly super-
exponential"

Tower of
exponentials
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Subexponential parameterized algorithms
There are two main domains where subexponential parameterized
algorithms appear:

1 Some graph modification problems:
Chordal Completion [Fomin and Villanger 2013]
Interval Completion [Bliznets et al. 2016]
Unit Interval Completion [Bliznets et al. 2015]
Feedback Arc Set in Tournaments [Alon et al. 2009]

2 “Square root phenomenon” for planar graphs and geometric
objects: most NP-hard problems are easier and usually exactly
by a square root factor.

Planar graphs Geometric objects
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Minors
Definition
Graph H is a minor of G (H ≤ G ) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv

Note: length of the longest path in H is at most the length of the
longest path in G .
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Minors
Definition
Graph H is a minor of G (H ≤ G ) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.
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Bidimensionality for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

Win/Win approach for finding a path of length k in planar graphs:
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Bidimensionality for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

Win/Win approach for finding a path of length k in planar graphs:

If treewidth w of G is at least 5
√
k :

we answer “there is a path of length at
least k .”
If treewidth w of G is less than 5

√
k ,

then we can solve the problem in time
2O(w) · nO(1) = 2O(

√
k) · nO(1).
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Shift of focus

FPT or W[1]-hard?

What is the best possible
multiplier f (k) in the
running time f (k) · nO(1)?

What is the best possible
exponent g(k) in the
running time f (k) · ng(k)?

FPT
W[1]-hard
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Better algorithms for W[1]-hard problems

O(nk) algorithm for k-Clique by brute force.
O(n0.79k) algorithms using fast matrix
multiplication.
W[1]-hardness of k-Clique gives evidence
that there is no f (k) · nO(1) time algorithm.
But what about improvements of the
exponent O(k)?

n
√
k

nk/log log k

nlog k

n
√
k

22k · nlog log log k

Theorem [Chen et al. 2004]

Assuming ETH, k-Clique has no f (k) · no(k) time algorithm for
any computable function f .
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Better algorithms for W[1]-hard problems

O(nk) algorithm for Dominating Set by
brute force.
W[1]-hardness of Dominating Set gives
evidence that there is no f (k) · nO(1) time
algorithm.
But what about improvements of the
exponent O(k)?

n
√
k

nk/log log k

n0.01k

22k · n0.99k

nlog log log k

Theorem [Pătraşcu and Williams 2010]

Assuming SETH, Dominating Set has no f (k) · nk−ε time
algorithm for any ε > 0 and computable function f .
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What did we learn, Palmer?

Asking quantitative questions instead of FPT vs. W[1]-hard
reveals a rich complexity landscape of parameterized problems.
Conditional hardness results based on ETH and SETH.
Algorithm design and computational complexity have healthy
influence on each other: optimality program needs both.
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