
CLOSEST SUBSTRING PROBLEMS WITH SMALL DISTANCES∗

DÁNIEL MARX†

Abstract.

We study two pattern matching problems that are motivated by applications in computational
biology. In the Closest Substring problem k strings s1, . . ., sk are given, and the task is to find a
string s of length L such that each string si has a consecutive substring of length L whose distance is
at most d from s. We present two algorithms that aim to be efficient for small fixed values of d and k:
for some functions f and g, the algorithms have running time f(d) ·nO(log d) and g(d, k) ·nO(log log k),
respectively. The second algorithm is based on connections with the extremal combinatorics of hy-
pergraphs. The Closest Substring problem is also investigated from the parameterized complexity
point of view. Answering an open question from [13, 14, 20, 21], we show that the problem is W[1]-
hard even if both d and k are parameters. It follows as a consequence of this hardness result that our
algorithms are optimal in the sense that the exponent of n in the running time cannot be improved
to o(log d) or to o(log log k) (modulo some complexity-theoretic assumptions).

Consensus Patterns is the variant of the problem where, instead of the requirement that each
si has a substring that is of distance at most d from s, we have to select the substrings in such a way
that the average of these k distances is at most δ. By giving an f(δ) · n9 time algorithm, we show
that the problem is fixed-parameter tractable. This answers an open question from [14].

Key words. closest substring, consensus pattern, parameterized complexity, fixed-parameter
tractability, computational complexity

AMS subject classifications. 68W01, 68Q17

1. Introduction. Computational biology applications provide a steady source
of interesting stringology problems. In this paper we investigate two pattern match-
ing problems that received considerable attention lately. Finding similar regions in
multiple DNA, RNA, or protein sequences plays an important role in many appli-
cations, for example, in locating binding sites [27] and in finding conserved regions
in unaligned sequences [24, 28, 34]. This task can be formalized the following way.
Given k strings s1, . . ., sk over an alphabet Σ and an integer L, the task is to find
a pattern that appears (possibly with some errors) in each string si. More precisely,
we have to find a length L string s and a length L substring s′i of each si such that s
is “close” to every s′i. We investigate two variants of the problem that differ in how
closeness is defined. In the Closest Substring problem the goal is to find a string
s such that the Hamming-distance of s is at most d from every s′i. An equally natural
optimization goal is to minimize the sum of the distances of s from the substrings s′i:
in the Consensus Patterns problem we have to find a string s such that this sum
is at most D. An equivalent way of formulating this problem is to require that the
average distance is at most δ := D/k.

The Closest Substring problem is NP-hard even in the special case when
Σ = {0, 1} and every string si has length L [18]. This means that most probably there
are only exponential-time algorithms for the problem. However, an exponential-time
algorithm can still be efficient if the exponential dependence is restricted to parame-
ters that are typically small in practice (for example, the size of the alphabet or the
maximum number of mismatches that we allow) and the running time depends poly-

∗A preliminary version of the paper was presented at FOCS 2005. Research partially supported
by the Magyary Zoltán Felsőoktatási Közalaṕıtvány and the Hungarian National Research Fund
(Grant Number OTKA 67651).

†Department of Computer Science and Information Theory, Budapest University of Technology
and Economics, Budapest H-1521, Hungary. dmarx@cs.bme.hu

1

nomially on all the other parameters (such as the lengths of the strings, length of the
pattern). Parameterized complexity is the systematic study of problem parameters,
with the goal of restricting the exponential increase of the running time to as few
parameters of the instance as possible.

1.1. Parameterized complexity. In classical complexity theory, the running
time of an algorithm is usually expressed as a function of the input size. Parameterized
complexity provides a more refined, two-dimensional analysis of the running time: the
goal is to study how the different parameters of the input instance affect the running
time. We assume that every input instance has an integer number k associated to it,
which will be called the parameter. For example, in the case of (the decision version
of) Maximum Clique, we can associate to each instance the size of the clique that
has to be found. When evaluating an algorithm for a parameterized problem we take
into account both the input size n and the parameter k, and we try to express the
running time as a function of n and k. The goal is to develop algorithms that run in
uniformly polynomial time: the running time is f(k) · nc, where c is a constant and
f is a (possibly exponential) function depending only on k. We call a parameterized
problem fixed-parameter tractable if such an algorithm exists. This means that the
exponential increase of the running time can be restricted to the parameter k. It
turns out that several NP-hard problems are fixed-parameter tractable, for example
Minimum Vertex Cover, Longest Path, and Disjoint Triangles. Therefore,
for small values of k, the f(k) term is just a constant factor in the running time, and
the algorithms for these problems can be efficient even for large values of n. This has
to be contrasted with algorithms that have running time such as nk: in this case the
algorithm becomes practically useless for large values of n even if k is as small as 10.
Analogously to NP-completeness in classical complexity, the theory of W[1]-hardness
can be used to show that a problem is unlikely to be fixed-parameter tractable, which
means that for every algorithm the parameter has to appear in the exponent of n.
For example, for Maximum Clique and Minimum Dominating Set the running
time of the best known algorithms is nΩ(k), and the W[1]-hardness of these problems
tells us that it is unlikely that an algorithm with running time, say, O(2k · n) can be
found.

For a particular problem, there are many possible parameters that can be defined.
For example, in the case of the Maximum Clique problem, the maximum degree of
the graph, the genus of the graph, or the treewidth of the graph are also natural
choices for the parameter. Different applications might suggest different parameters:
whether a particular choice of parameter is relevant to an application depends on
whether it can be assumed that this parameter is typically “small” in practice. The
theory can be extended in a straightforward way to the case when there are more
than one parameters: if there are two parameters k1 and k2, then the goal is to
develop algorithms with running time f(k1, k2) · nc. For more details, see Section 2
and [12, 16].

1.2. Previous work on Closest Substring. The NP-completeness of Clos-

est Substring was first shown by Frances and Litman [18] by considering an equiv-
alent problem in coding theory. Li et al. [30] presented a polynomial-time approxi-
mation scheme, but the running time of their approximation algorithm is prohibitive.
Heuristic approaches for the problem are discussed in [6, 31, 32, 26]; see also the
references therein.

Under the standard complexity-theoretic assumptions, the NP-completeness of
Closest Substring means that any exact algorithm has to run in exponential time.

2

However, there can be great qualitative differences between exponential-time algo-
rithms: for example, it can be a crucial difference whether the running time is ex-
ponential in the length of the strings or in the number of the strings. This question
was investigated in the framework of parameterized complexity by several papers.
Formally, the following problem is studied:

Closest Substring

Input:
k strings s1, . . ., sk over an alphabet Σ, integers d and L.

Parameters:
k, |Σ|, d, L
Task:
Find a string s of length L such that for every 1 ≤ i ≤ k, the string
si has a length L consecutive substring s′i with d(s, s′i) ≤ d.

The Hamming-distance of two strings w1 and w2 (i.e., the number of positions
where they differ) is denoted by d(w1, w2). The string s in the solution is called the
center string. Observe that for a given center string s, it is easy to check in polynomial
time whether the substrings s′i exist: we have to try every length L consecutive
substring of the strings si. Therefore, the real difficulty of the problem lies in finding
the best center string s. We will denote by n the size of the input, which is an upper
bound on the total length of the strings. In the following, “substring” will always
mean consecutive substring (and not an arbitrary subsequence of the symbols).

The problem can be solved in polynomial time if k, d, or L is fixed to a con-
stant. For every fixed value of L, the problem can be solved in polynomial time by
enumerating all the |Σ|L = O(nL) possible center strings. If d is a fixed constant,
then the problem can be solved in polynomial time by making a guess at s′1 (at most
n possibilities) and then trying every center string s that is of distance at most d
from s′1 (at most (|Σ|L)d = O(n2d) possibilities). For fixed values of k, the problem
can be solved in polynomial time as follows. First we guess the k substrings s′k (at
most nk possibilities). Now we have to find a center string s that is of distance at
most d from each s′i. This can be done by dynamic programming in O(nk) time or
by applying the linear-time algorithm of Gramm et al. [21] for Closest String that
is based on integer linear programming. Therefore, for fixed values of L, d, or k, the
problem can be solved in polynomial time. However, the algorithms described above
are not uniformly polynomial: the exponent of n increases as we consider greater and
greater fixed values. The parameterized complexity analysis of the problem can reveal
whether it is possible to remove these parameters from the exponent of n, and obtain
algorithms with running time such as f(k) · nc.

In [14] and [13] it is shown that the problem is W[1]-hard even if all three of k,
d, and L are parameters. Therefore, if the size of the alphabet Σ is not bounded
in the input, then we cannot hope for an efficient exact algorithm for the problem.
Fortunately, in the computational biology applications the strings are typically DNA
or protein sequences, hence the number of different symbols is a small constant (4 or
20). Therefore, we will focus on the case when the size of Σ is a parameter. Restricting
|Σ| only does not make the problem tractable, since Closest Substring is NP-hard
even if the alphabet is binary. On the other hand, if |Σ| and L are both parameters,
then the problem becomes fixed-parameter tractable: we can enumerate and check
all the |Σ|L possible center strings. However, if the strings are long (which is often

3

Table 1.1

Complexity of Closest Substring with different parameterizations. Asterisk denotes the new
results of the paper.

Parameters |Σ| is constant |Σ| is parameter |Σ| is unbounded

d W[1]-hard (*) W[1]-hard (*) W[1]-hard

d, k W[1]-hard (*) W[1]-hard (*) W[1]-hard

k W[1]-hard W[1]-hard W[1]-hard

L FPT FPT W[1]-hard

d, k, L FPT FPT W[1]-hard

the case in practical applications), then it makes much more sense to assume that the
number of strings k or the distance constraint d are parameters. In [14] it is shown
that Closest Substring is W[1]-hard with parameter k, even if the alphabet is
binary. However, the complexity of the problem with parameter d or with combined
parameters d, k remained an open question.

1.3. New results for Closest Substring. We show that the problem is W[1]-
hard with combined parameters k and d, even if the alphabet is binary. This resolves
an open question asked in [13, 14, 20, 21]. Therefore, even in the binary case, there
is no f(k, d) · nc algorithm for Closest Substring (unless FPT = W[1]); the expo-
nential increase cannot be restricted to the parameters k and d. This completes the
parameterized complexity analysis of Closest Substring (see Table 1.1; the results
of this paper are marked with an asterisk.)

As a first step of the reduction, we introduce a technical problem called Set Bal-

ancing, and prove W[1]-hardness for this problem. This part of the proof contains
most of the new combinatorial ideas. The Set Balancing problem is reduced to
Closest Substring by a reduction very similar to the one presented in [14].

We present two exact algorithms for the Closest Substring problem. These
algorithms can be efficient if d, or both d and k are small (say, o(log n)). The first al-
gorithm runs in |Σ|d(log d+2)nO(log d) time. Notice that this algorithm is not uniformly
polynomial, but only the logarithm of the parameter appears in the exponent of n.
Therefore, the algorithm might be efficient for small values of d. The second algorithm
has running time |Σ|d · 2kd · dO(d log log k) · nO(log log k). Here the parameter k appears
in the exponent of n, but log log k is a very slowly growing function. This algorithm
is based on defining certain hypergraphs and enumerating all the places where one
hypergraph appears in the other. Using some results from extremal combinatorics, we
develop techniques that can speed up the search for hypergraphs. It turns out that if
hypergraph H has bounded fractional edge cover number, then we can enumerate in
uniformly polynomial time all the places where H appears in some larger hypergraph
G. This result might be of independent interest.

Notice that the running times of our two algorithms are incomparable. Assume
that |Σ| = 2. If d = logn and k =

√
n, then the running time of the first algorithm

is nO(log log n) · nO(log log n) = nO(log log n), while the second algorithm needs at least
2kd = 2

√
n log n = n

√
n steps, which can be much larger. On the other hand, if

d = k = log logn, then the first algorithm runs in something like nO(log log log n) time,
while the running time of the second algorithm is dominated by the nO(log log k) factor,

4

which is only nO(log log log log n).
Our W[1]-hardness proof combined with some recent results on subexponential

algorithms shows that the two exact algorithms are in some sense best possible.
The exponents are optimal: we show that if there is an f1(k, d, |Σ|) · no(log d) or
an f2(k, d, |Σ|) · no(log log k) algorithm for Closest Substring, then n-variable 3-

Sat can be solved in 2o(n) time. It is widely believed that 3-Sat does not have
subexponential-time algorithms; this conjecture is called the Exponential Time Hy-
pothesis (cf. [25, 35]).

1.4. Relation to approximability. Li et al. [30] studied the optimization ver-
sion of Closest Substring, where the task is to find the smallest d that makes the
problem feasible. They presented a polynomial-time approximation scheme (PTAS)

for the problem: for every ǫ > 0, there is an nO(1/ǫ4) time algorithm that produces a
solution that is at most (1 + ǫ)-times worse than the optimum. This PTAS was im-

proved to nO(log(1/ǫ)/ǫ2) time by Andoni et al. [2] using an idea from an earlier version
of this paper. However, such a PTAS becomes practically useless for large n, even if
we ask for an error bound of, say, 20%. As pointed out in [11], there are numerous
approximation schemes in the literature where the degree of the algorithm increases
very rapidly as we decrease ǫ: having O(n1,000,000) or worse for 20% error is not un-
common. Clearly, such approximation schemes do not yield efficient approximation
algorithms. Nevertheless, these results show that there are no theoretical limitations
on the approximation ratio that can be achieved.

An efficient PTAS (EPTAS) is an approximation scheme that produces a (1+ ǫ)-
approximation in f(ǫ) · nc time for some constant c. If f(ǫ) is e.g., 21/ǫ, then such
an approximation scheme can be practical even for ǫ = 0.1 and large n. A standard
consequence of W[1]-hardness is that there is no EPTAS for the optimization version
of the problem [7, 4]. Hence our hardness result shows that the approximation schemes
of [30] and [2] for Closest Substring cannot be improved to an EPTAS.

1.5. Previous work on Consensus Patterns. The Consensus Patterns

problem is the same as Closest Substring, but instead of minimizing the max-
imum distance between the center string and the substrings s′i, now the goal is to
minimize the sum of the distances. Similarly to Closest Substring, the problem
is NP-complete and it admits a polynomial-time approximation scheme [29]. Heuris-
tic algorithms for Consensus Patterns and some generalizations are given in e.g.,
[31, 23, 17, 33, 5].

We will study the decision version of the problem:

Consensus Patterns

Input:
k strings s1, . . ., sk over an alphabet Σ, integers D and L.

Parameters:
k, |Σ|, D, L

Task:
Find a string s of length L, and a length L consecutive substring s′i
of si for every 1 ≤ i ≤ k such that

∑k
i=1 d(s, s

′
i) ≤ D holds.

The string s in the solution is called the median string. Similarly to Closest

Substring, the problem is fixed-parameter tractable if both |Σ| and L are parameters:
we can enumerate and test every possible median string. Fellows et al. [14] showed

5

Table 1.2

Complexity of Consensus Patters with different parameterizations. Asterisk denotes the new
results of the paper.

Parameters |Σ| is constant |Σ| is parameter |Σ| is unbounded

δ FPT (*) FPT (*) W[1]-hard

D FPT (*) FPT (*) W[1]-hard

k W[1]-hard W[1]-hard W[1]-hard

L FPT FPT W[1]-hard

k, L FPT FPT W[1]-hard

D, k, L FPT FPT W[1]-hard

that their hardness results for Closest Substring can be adapted for Consensus

Patterns. Thus the problem is W[1]-hard with combined parameters L, k, D in the
unbounded alphabet case, and W[1]-hard with parameter k in the binary alphabet
case. The complexity of the problem in the binary alphabet case with parameter D
or combined parameters k and D remained open.

Notice that if D < k, then the problem can be solved in polynomial time. To see
this, observe that

∑k
i=1 d(s, s

′
i) ≤ D < k is only possible if d(s, s′i) = 0 for at least one

i. This means that the median string is a substring of some si, thus a solution can
be found by trying every length L substring of the input strings. Therefore, we can
assume that D ≥ k holds in the problem instance. It follows that the complexity of
Consensus Patterns is the same with parameter D and with combined parameters
k, D.

1.6. New results for Consensus Patterns. We define and investigate the
new parameter δ := D/k, which is the average error that is allowed between the
median string and the substrings s′i. Parameterization by δ (and not by k) is relevant
for applications where we want to find a solution with small average error, but the
number of strings is allowed to be large.

By presenting an algorithm with running time δO(δ) · |Σ|δ · n9, we show that
Consensus Patterns is fixed-parameter tractable if both |Σ| and δ are parameters.
The algorithm uses similar hypergraph techniques as the f(k, d, |Σ|) ·nO(log log k) time
algorithm for Closest Substring. However, a subtle difference in the combinatorics
of the two problems allows us to replace the O(log log k) term in the exponent of n
with a constant.

Since parameter δ is not greater than parameter D, it follows trivially that the
problem is fixed-parameter tractable with combined parameters |Σ| and D. This
settles another open question from [14]. The results for Consensus Patterns are
summarized in Table 1.2, with an asterisk marking the results of the current paper.

1.7. Organization. The paper is organized as follows. Section 2 briefly reviews
the most important notions of parameterized complexity. The first algorithm for
Closest Substring is presented in Section 3. In Section 4 we discuss techniques
for finding one hypergraph in another. In Section 5 we present the second algorithm
for Closest Substring. This section introduces a new hypergraph property called
half-covering, which plays an important role in the algorithm. The algorithm for

6

Consensus Patterns is presented in Section 6. We define the Set Balancing

problem in Section 7 and prove that it is W[1]-hard. In Section 8 the Set Balanc-

ing problem is used to show that Closest Substring is W[1]-hard with combined
parameters d and k. We conclude the paper with a summary in Section 9.

Algorithm 1 (Section 3) and Algorithm 2 (Sections 4 and 5) for the Closest

Substring problem are independent from each other. The algorithm for Consensus

Patterns (Section 6) is very similar to the algorithm in Section 5, but it is presented
in a self-contained way. The algorithm of Section 6 is also based on the hypergraph
techniques developed in Section 4.

The hardness results in Section 7 and 8 are independent from the algorithms; the
reductions can be understood without the preceding sections. However, the combi-
natorics of the reduction in Section 7 has subtle connections with the half-covering
property discussed in Section 5. In some sense, Section 5 explains why the reduction
in Section 7 has to be done that way.

2. Parameterized complexity. We follow [16] for the standard definitions of
parameterized complexity. Let Σ be a finite alphabet. A decision problem is rep-
resented by a set Q ⊆ Σ∗ of strings over Σ. A parameterization of a problem is a
polynomial-time computable function κ : Σ∗ → N. A parameterized decision problem
is a pair (Q, κ), where Q ⊆ Σ∗ is an arbitrary decision problem and κ is a parameter-
ization. Intuitively, we can imagine a parameterized problem as a decision problem
where each input instance x ∈ Σ∗ has a positive integer κ(x) associated with it. A pa-
rameterized problem (Q, κ) is fixed-parameter tractable (FPT) if there is an algorithm
that decides whether x ∈ Q in time f(κ(x)) · |x|c for some constant c and computable
function f . An algorithm with such running time is called an fpt-time algorithm or
simply fpt-algorithm.

Many NP-hard problems were investigated in the parameterized complexity lit-
erature, with the goal of identifying fixed-parameter tractable problems. There is a
powerful toolbox of techniques for designing fpt-algorithms: kernelization, bounded
search trees, color coding, well-quasi ordering—just to name some of the more impor-
tant ones. On the other hand, certain problems resisted every attempt at obtaining
fpt-algorithms. Analogously to NP-completeness in classical complexity, the theory of
W[1]-hardness can be used to give strong evidence that certain problems are unlikely
to be fixed-parameter tractable. We omit the somewhat technical definition of the
complexity class W[1], see [12, 16] for details. Here it will be sufficient to know that
there are several problems, including Maximum Clique, that were proved to be W[1]-
hard. Furthermore, we also expect that there is no no(k) (or even f(k)·no(k)) algorithm
for Maximum Clique: recently it was shown that if there exists an f(k) ·no(k) algo-
rithm for n-vertex Maximum Clique, then n-variable 3-Sat can be solved in time
2o(n) (see [8] and [15]).

To prove that a parameterized problem (Q′, κ′) is W[1]-hard, we have to present
a parameterized reduction from a known W[1]-hard problem (Q, κ) to (Q′, κ′). A
parameterized reduction from problem (Q, κ) to problem (Q′, κ′) is a function that
transforms a problem instance x of Q into a problem instance x′ of Q′ in such a way
that

1. x′ ∈ Q′ if and only if x ∈ Q,
2. κ′(x) can be bounded by a function of κ(x), and
3. the transformation can be computed in time f(κ(k)) · |x|c for some constant

c and function f(k).

It is easy to see that if there is a parameterized reduction from (Q, κ) to (Q′, κ′),

7

and (Q′, κ′) is fixed-parameter tractable, then it follows that (Q, κ) is fixed-parameter
tractable as well. The most important difference between parameterized reductions
and classical polynomial-time many-to-one reductions is the second requirement: in
most NP-completeness proofs the new parameter is not a function of the old param-
eter. Therefore, finding parameterized reductions is usually more difficult, and the
constructions have somewhat different flavor than classical reductions.

There are many possible parameters that can be defined for a particular problem;
different parameters can be relevant in different applications. Usually, the parameter
is either some property of the solution we seek (number of vertices, quality of the so-
lution, etc.) or describes some aspect of the input structure (degree/genus/treewidth
of the input graph, number of variables/clauses in the input formula, etc.) The com-
plexity of the problem can be different with different parameters. Observe that if
parameter k1 is never greater than parameter k2, then the problem cannot be easier
with parameter k1 than with k2: an f(k1) ·nc time algorithm implies the existence of
an f(k2) · nc time algorithm.

In some cases we want to investigate the complexity of the problem by considering
two or more parameters at the same time, i.e., we assume that both parameter k1

and parameter k2 are typically small in applications. The problem is fixed-parameter
tractable with combined parameters k1 and k2 if there is an algorithm with running
time f(k1, k2) · nO(1). For a particular problem, we can investigate several different
combination of parameters. In general, if we increase the set of parameters, then
we cannot make the problem harder: for example, if the problem is fixed-parameter
tractable with parameter k1, then clearly it is fixed-parameter tractable with combined
parameters k1 and k2.

3. Finding generators. In this section we present an algorithm for Closest

Substring that has running time proportional to roughly nlog d. The algorithm is
based on the following observation: if all the strings s′1, . . ., s

′
k agree at some position

p in the solution, then we can safely assume that the same symbol appears at the p-th
position of the center string s. However, if we look at only a subset of the strings s′1,
. . ., s′k, then it is possible that they all agree at some position, but the center string
contains a different symbol at this position. We will be interested in sets of strings
that do not have this problem:

Definition 3.1. Let G = {g1, g2, . . . , gℓ} be a set of length L strings. We say
that G is a generator of the length L string s if whenever every gi has the same
character at some position p, then string s has this character at position p. The size
of the generator is ℓ, the number of strings in G. The conflict size of the generator is
the number of those positions where not all of the strings gi have the same character.

As we have argued above, it can be assumed that the strings s′1, . . ., s
′
k of a

solution form a generator of the center string s. Furthermore, these strings have a
subset of size at most log d+ 2 that is also a generator:

Lemma 3.2. If an instance of Closest Substring is solvable, then there is a
solution s that has a generator G having the following properties:

1. each string in G is a substring of some si,
2. G has size at most log d+ 2,
3. the conflict size of G is at most d(log d+ 2).

Proof. Let s, s′1, . . ., s
′
k be a solution such that

∑k
i=1 d(s, s

′
i) is minimal. We prove

by induction that for every j we can select a subset Gj of j strings from {s′1, . . . , s′k}
such that there are less than (d + 1)/2j−1 bad positions where the strings in Gj all
agree, but this common character is different from the character in s at this position.

8

The lemma follows from j = ⌈log(d + 1)⌉ + 1 ≤ log d + 2: the set Gj has no bad
positions, hence it is a generator of s. Furthermore, each string in Gj is at distance
at most d from s, thus the conflict size of Gj can be at most d(log d+ 2).

For the case j = 1 we can set G1 = {s′1}, since s′1 differs from s at not more than
d positions. Now assume that the statement is true for some j. Let P be the set of
bad positions, where the j strings in Gj agree, but they differ from s. We claim that
there is some string s′t in the solution and a subset P ′ ⊆ P with |P ′| > |P |/2 such that
s′t differs from all the strings in Gj at every position of P ′. If this is true, then we add
s′t to the set Gj to obtain Gj+1. Only the positions in P \P ′ are bad for the set Gj+1:
for every position p in P ′, the strings cannot all agree at p, since s′t do not agree with
the other strings at this position. Thus there are at most |P \P ′| < |P |/2 < (d+1)/2j

bad positions, completing the induction.

Assume that there is no such string s′t. In this case we modify the center string
s the following way: for every position p ∈ P , let the character at position p be the
same as in string s′1. Denote by s∗ the new center string. We show that d(s∗, s′i) ≤
d(s, s′i) ≤ d for every 1 ≤ i ≤ k, hence s∗ is also a solution. By assumption, every
string s′i in the solution agrees with s′1 on at least |P |/2 positions of P . Therefore, if we
replace s with s∗, the distance of s′i from the center string decreases on at least |P |/2
positions, and the distance can increase only on the remaining at most |P |/2 positions.
Therefore, d(s∗, s′i) ≤ d(s, s′i) follows. Furthermore, d(s∗, s′1) = d(s, s′1) − |P | implies
∑k

i=1 d(s
∗, s′i) <

∑k
i=1 d(s, s

′
i), which contradicts the minimality of s.

We note that Lemma 3.2 (appearing in an earlier version of this paper) was used
by Andoni et al. [2] to improve the running time of the PTAS of Li et al. [30] to

nO(log(1/ǫ)/ǫ2) time.

Our algorithm first creates a set S containing all the length L substrings of s1,
. . ., sk. For every subset G ⊆ S of log d + 2 strings, we check whether G generates
a center string s that solves the problem. Since |S| ≤ n, there are at most nlog d+2

possibilities to try. By Lemma 3.2 we have to consider only those generators whose
conflict size is at most d(log d+ 2), hence at most |Σ|d(log d+2) possible center strings
have to be tested for each G.

Theorem 3.3. Closest Substring can be solved in time |Σ|d(log d+2)nlog d+O(1).

Proof. The algorithm is presented in pseudocode in Figure 3.1. Let S be the set
of all length L substrings in s1, . . ., sk, clearly |S| ≤ n (recall that n is the total length
of the input). If there is a solution s, then Lemma 3.2 ensures that there is a subset
G ⊆ S of size at most log d+2 that generates s. We test every size log d+2 subset of S
whether it can generate a solution. First, by Lemma 3.2 we can restrict our attention
to those G where the strings in G agree on all but at most d(log d + 2) positions. If
such a G generates a string s, then the characters of s are determined everywhere
except on the conflicting positions of G. Therefore, G can be the generator of at
most |Σ|d(log d+2) different strings. We try all the possible combinations of assigning
characters on the conflicting positions of G, and we check for each resulting string
s whether it is true for every 1 ≤ i ≤ k that there is a substring s′i of si such that
d(s, s′i) ≤ d. This method will eventually find a solution, if there exits one.

We try O(nlog d+2) different subsets G (Line 2), and each G can generate at
most |Σ|d(log d+2) different center strings s (Line 4). It can be checked in polynomial
time whether a center string s is a solution (Line 5), hence the total running time is
|Σ|d(log d+2)nlog d+O(1).

We remark here that the algorithm can be made slightly more efficient: it is suffi-

9

Closest-Substring-1(k, L, d, (s1, . . . , sk))
1. Construct S, the set of all length L substrings of the input strings.
2. for every G ⊆ S with |G| = log d+ 2 do

3. if the strings in G agree on all but at most d(log d+ 2) positions
4. for every string s that is generated by G do

5. if maxk
i=1 min{s′i is a substring of si}

d(s, s′i) ≤ d then

6. s is a solution, STOP.
7. There is no solution, STOP.

Figure 3.1. Algorithm 1 for Closest Substring

cient to check those generators where the log d+ 2 strings come from different strings
si. However, this observation does not improve the asymptotics of the running time,
and we did not want to complicate the notation to accommodate this improvement.

4. Finding hypergraphs. Let us recall some standard definitions concerning
hypergraphs. A hypergraph H(VH , EH) consists of a set of vertices VH and a collection
of edges EH , where each edge is a subset of VH . Let H(VH , EH) and G(VG, EG) be
two hypergraphs. We say that H appears at V ′ ⊆ VG as partial hypergraph if there
is a bijection π between the elements of VH and V ′ such that for every edge E ∈ EH

we have that π(E) is an edge of G (where the mapping π is extended to the edges
the obvious way). For example, if H has the edges {1, 2}, {2, 3}, and G has the edges
{a, b}, {b, c}, {c, d}, thenH appears as a partial hypergraph at {a, b, c} and at {b, c, d}.
We say that H appears at V ′ ⊆ VG as subhypergraph if there is such a bijection π
where for every E ∈ EH , there is an edge E′ ∈ EG with π(E) = E′∩V ′. For example,
let the edges of H be {1, 2}, {2, 3}, and let the edges of G be {a, c, d}, {b, c, d}. Now
H does not appear in G as partial hypergraph, but H appears as subhypergraph at
{a, b, c} and at {a, b, d}. If H appears at some V ′ ⊆ VG as partial hypergraph, then
it appears there as subhypergraph as well.

A stable set in H(VH , EH) is a subset S ⊆ VH such that every edge of H contains
at most one element from S. The stable number α(H) is the size of the largest
stable set in H . A fractional stable set is an assignment φ: VH → [0, 1] such that
∑

v∈E φ(v) ≤ 1 for every edge E of H . The fractional stable number α∗(H) is the
maximum of

∑

v∈VH
φ(v) taken over all fractional stable sets φ. The incidence vector

of a stable set is a fractional stable set, hence α∗(H) ≥ α(H).

An edge cover of H is a subset E′ ⊆ EH such that each vertex of VH is contained
in at least one edge of E′. The edge cover number ρ(H) is the size of the smallest edge
cover in H . (The hypergraphs considered in this paper do not have isolated vertices,
hence every hypergraph has an edge cover.) A fractional edge cover is an assignment
ψ: EH → [0, 1] such that

∑

E:v∈E ψ(E) ≥ 1 for every vertex v. The fractional cover
number ρ∗(H) is the minimum of

∑

E∈EH
ψ(E) taken over all fractional edge covers

ψ, clearly ρ∗(H) ≤ ρ(H). It follows from the duality theorem of linear programming
that α∗(H) = ρ∗(H) for every hypergraph H with no isolated vertices.

Friedgut and Kahn [19] determined the maximum number of times a hypergraph
H(VH , EH) can appear as partial hypergraph in a hypergraph G with m edges. That
is, we are interested in the maximum number of different subsets V ′ ⊆ VG where H
can appear in G. A trivial upper bound is m|EH |: if we fix π(E) ∈ EG for each edge
E ∈ EH , then this uniquely determines π(VH). This trivial bound can be improved
to mρ(H): if edges E1, E2, . . ., Eρ(H) cover every vertex of VH , then by fixing π(E1),

10

π(E2), . . ., π(Eρ(H)) the set π(VH) is determined. The result of Friedgut and Kahn
says that ρ can be replaced with the (possibly smaller) ρ∗:

Theorem 4.1. [19] Let H be a hypergraph with fractional cover number ρ∗(H),
and let G be a hypergraph with m edges. There are at most |VH ||VH | ·mρ∗(H) different
subsets V ′ ⊆ VG such that H appears in G at V ′ as partial hypergraph. Furthermore,
for every H and sufficiently large m, there is a hypergraph with m edges where H
appears mρ∗(H) times.

We remark here that Theorem 4.1 was proved for the special case of graphs in
the first published paper of Alon [1].

To appreciate the strength of Theorem 4.1, it is worth pointing out that ρ∗(H)
can be much smaller than ρ(H), hence the upper bound can be much stronger than
mρ(H). For example, consider the hypergraph where the vertices correspond to the
k-element subsets of {1, 2, . . . , n}, and edge Ei (1 ≤ i ≤ n) contains those vertices
that correspond to sets containing i. Now ρ = n− k + 1: if we select less than
n − k + 1 edges, then there is a k-element set that is not covered by the less than
n−k+1 elements corresponding to the edges. On the other hand, we can construct a
fractional edge cover of total weight n/k by assigning weight 1/k to each edge. This
is a fractional edge cover, since each vertex is contained in exactly k edges. Therefore,
the ratio ρ/ρ∗ = (n− k + 1)/(n/k) can be arbitrarily large.

Theorem 4.1 does not remain valid if we replace “partial hypergraph” with “sub-
hypergraph.” For example, let H contain only one edge {1, 2}, and let G have one
edge E of size ℓ. Now H appears at each of the

(

ℓ
2

)

two element subsets of E as
subhypergraph. However, if we bound the size of the edges in G, then we can state a
subhypergraph analog of Theorem 4.1:

Corollary 4.2. Let H be a hypergraph with fractional cover number ρ∗(H), and
let G be a hypergraph with m edges, each of size at most ℓ. Hypergraph H can appear
in G as subhypergraph at most |VH ||VH | · ℓ|VH |ρ∗(H) ·mρ∗(H) times.

Proof. Let G′(VG, EG′) be a hypergraph over VG where E′ ∈ EG′ if and only
if |E′| ≤ |VH | and E′ is a subset of some edge E ∈ EG. An edge of G contributes
at most ℓ|VH | edges to G′, hence G′ has at most ℓ|VH | · m edges. If H appears as
subhypergraph at V ′ ⊆ VG in G, then H appears as partial hypergraph at V ′ in G′.
By Theorem 4.1, hypergraph H can appear at most |VH ||VH | ·ℓ|VH |ρ∗(H) ·mρ∗(H) times
in G′ as partial hypergraph, proving the lemma.

Given hypergraphs H(VH , EH) and G(VG, EG), we would like to find all the
places V ′ ⊆ VG in G where H appears as subhypergraph. If there are t such places,
then obviously we cannot enumerate all of them in less than t steps. Therefore,
our aim is to find an algorithm with running time polynomial in the upper bound
|VH ||VH | · ℓ|VH |ρ∗(H) ·mρ∗(H) on t given by Corollary 4.2. The proof of Theorem 4.1
is not algorithmic (it is based on Shearer’s Lemma [10], which is proved by entropy
arguments), hence it does not directly imply an efficient way of enumerating all the
places where H appears. However, in Theorem 4.3, we show that there is a very
simple algorithm for enumerating all these places. Corollary 4.2 is used to bound the
running time of the algorithm. This result might be useful in other applications as
well.

Theorem 4.3. Let H(VH , EH) be a hypergraph with fractional cover number
ρ∗(H), and let G(VH , EH) be a hypergraph where each edge has size at most ℓ. There
is an algorithm that enumerates in time |VH |O(VH) · ℓ|VH |ρ∗(H)+1 · |EG|ρ

∗(H)+1 · |VG|2
every subset V ′ ⊆ VG where H appears in G as subhypergraph.

Proof. Let VH = {1, 2, . . . , r}. For each 1 ≤ i ≤ r, let Hi(Vi, Ei) be the subhy-

11

pergraph of H induced by Vi = {1, 2, . . . , i}; that is, if E is an edge of H , then E ∩Vi

is an edge of Hi. For each i = 1, 2, . . . , r, we find all the places where Hi appears in
G as subhypergraph. Since H = Hr this method will solve the problem.

For i = 1 the problem is trivial, since Vi has only one vertex. Assume now that we
have a list Li of all the i-element subsets of VG where Hi appears as subhypergraph.
The important observation is that if Hi+1 appears as subhypergraph at some (i+ 1)-
element subset V ′ ⊆ VG, then V ′ has an i-element subset V ′′ ∈ Li where Hi appears
as subhypergraph. Thus for each set X ∈ Li, we try all the |VG \X | different ways
of extending X to an (i+ 1)-element set X ′, and check whether Hi+1 appears at X ′

as subhypergraph. This can be checked by trying all the (i+ 1)! possible bijections π
between Vi+1 and X ′, and by checking for each edge E of Hi+1 whether there is an
edge E′ in G with π(E) = E′ ∩X ′.

The structure of the algorithm is presented in Figure 4.1. Let us make a rough
estimate of the running time. The loop in Step 2 consists of |VH |−1 iterations. Notice
first that ρ∗(Hi) ≤ ρ∗(H), since a fractional edge cover of H can be used to obtain a
fractional edge cover of Hi. Therefore, by Corollary 4.2, each list Li has size at most
|VH ||VH | · ℓ|VH |ρ∗(H) · |EG|ρ∗(H), which bounds the maximum number of times the loop
in Step 3 is iterated. When we determine the list Li+1, we have to check for at most
|Li| · |VG| different sets X ′ of size i+1 whether Hi+1 appears at X ′ as subhypergraph
(Step 4). Adding duplicate entries into the list Li+1 should be avoided, otherwise we
would not have the bound on the size of Li claimed above. Therefore, in Step 6, we
check whether X ′ is already in Li. If the list Li is implemented as a trie structure,
then the test in Step 6 can be performed in time O(|VH | · |VG|). The trie structure
can increase the time required to enumerate the list Li by a factor of |VH |. Checking
one X ′ requires us to test (i+ 1)! different bijections π (Step 7). Testing a bijection
π means that for each E ∈ Ei+1 (Step 8), it has to be checked whether there is a
corresponding E′ ∈ EG (Step 9) such that E′ ∩ X ′ = E (Step 10). Hypergraph H
has at most 2|VH | edges, hence the loop of Step 8 is iterated at most 2|VH | times. If
the edges of G are represented as lists of vertices, then the check in Step 10 can be
implemented in O(ℓ) time. Adding a new element into the trie structure (Step 13)
can be done in O(|VH | · |VG|) time.

The dominating part of the running time comes from Steps 7–13, which are re-
peated |VH |O(VH) · ℓ|VH |ρ∗(H) · |EG|ρ∗(H) · |VG| times. The loop in Steps 7–12 takes
O(|VH |! · 2|VH | · |EG| · ℓ) = |VH |O(VH) · |EG| · ℓ time, while Step 13 takes O(|VH | · |VG|)
time. Therefore, the total running time can be bounded by |VH |O(VH) · ℓ|VH |ρ∗(H)+1 ·
|EG|ρ

∗(H)+1 · |VG|2.
We can use a similar technique to find all the places where H appears in G as

partial hypergraph. This result is not used in this paper, but might be useful in some
other applications.

Corollary 4.4. Let H(VH , EH) be a hypergraph with fractional cover number
ρ∗(H), and let G(VG, EG) be an arbitrary hypergraph. There is an algorithm that
enumerates in time |VH |O(|VH |ρ∗(H)) · |EG|ρ∗(H)+1 · |VG|2 all the subsets V ′ ⊆ VG

where H appears in G as partial hypergraph.

Proof. We can throw away from G every edge larger than |VH | without chang-
ing the problem. Now Theorem 4.3 can be used to find in time |VH |O(|VH |ρ∗(H)) ·
|EG|ρ

∗(H)+1 · |VG|2 the list L of all the subsets V ′ ⊆ VG where H appears in G as
subhypergraph. If H appears at V ′ as partial hypergraph, then this is only possible
if H appears at V ′ as subhypergraph. Therefore, the algorithm returns a list that is
a superset of the expected result. Let us modify the algorithm of Theorem 4.3 such

12

Find-Subhypergraph(H,G)
1. L1 := all the places where H1 appears in G
2. for i := 1 to r − 1 do

3. for every X ∈ Li do

4. for every x ∈ VG \X do

5. X ′ := X ∪ {x}
6. if X ′ 6∈ Li+1 then

7. for every bijection π : Vi+1 → X ′ do

8. for every E ∈ Ei+1 do

9. for every E′ ∈ EG do

10. if π(E) = E′ ∩X ′ then

11. Go to Step 8, select next E
12. Go to Step 7, select next π
13. Add X ′ to Li+1

14. return Lr

Figure 4.1. Algorithm for enumerating all the places where hypergraph H appears in G as
subhypergraph.

that in iteration i = r − 1, Step 10 tests π(E) = E′ instead of π(E) = E′ ∩X ′. This
ensures that Lr contains only those positions where H appears as partial hypergraph.

5. Half-covering and the Closest Substring problem. The following hy-
pergraph property plays a crucial role in our second algorithm for the Closest Sub-

string problem:
Definition 5.1. We say that a hypergraph H(V,E) has the half-covering property

if for every non-empty subset Y ⊆ V there is an edge X ∈ E with |X ∩ Y | > |Y |/2.
Theorem 4.3 says that finding a hypergraph H is easy if H has small fractional

cover number. In our algorithm for the Closest Substring problem (described later
in this section), we have to find hypergraphs satisfying the half-covering property. The
following combinatorial lemma shows that such hypergraphs have small fractional
cover number, hence they are easy to find:

Lemma 5.2. If H(V,E) is a hypergraph with m edges satisfying the half-covering
property, then the fractional cover number ρ∗ of H is O(log logm).

Proof. The fractional cover number equals the fractional stable number, thus there
is a function φ: V → [0, 1] such that

∑

v∈X φ(v) ≤ 1 holds for every edge X ∈ E, and
∑

v∈V φ(v) = ρ∗. The lemma is proved by a probabilistic argument: we show that if
a random subset Y ⊆ V is selected such that the probability of selecting a vertex v
is proportional to φ(v), then with nonzero probability no edge covers more than half
of Y , unless the number of edges is double exponential in ρ∗. The idea is to show
that for each edge X , the expected size of Y is ρ∗ times the expected size of Y ∩X ,
hence the Chernoff Bound can be used to show that there is only a small probability
that X covers more than half of Y . However, the straightforward application of this
idea gives only an exponential lower bound on the number of edges. To improve the
bound to double exponential, we have to restrict our attention to a suitable subset T
of vertices, and scale the probabilities appropriately.

Let v1, v2, . . ., v|V | be an ordering of the vertices by nonincreasing value of φ(vi).
First we give a bound on the sum of the largest φ(vi)’s:

Proposition 5.3.
∑i

j=1 φ(vj) ≤ −4 log2 φ(vi) + 4 holds for every 1 ≤ i ≤ |V |.
13

Proof. The proof is by induction on i. Since φ(v1) ≤ 1, the claim is trivial for
i = 1. For an arbitrary i > 1, let i′ ≤ i be the smallest value such that φ(vi′) ≤ 2φ(vi).
By assumption, there is an edge X of H that covers more than half of the set S =
{vi′ , . . . , vi}. Every weight in S is at least φ(vi), hence X can cover at most 1/φ(vi)

elements of S. Thus |S| ≤ 2/φ(vi), and
∑i

j=i′ φ(vj) ≤ 4 follows from the fact that

φ(vj) ≤ 2φ(vi) for i′ ≤ j ≤ i. If i′ = 1, then we are done. Otherwise
∑i′−1

j=1 φ(vj) ≤
−4 log2 φ(vi′−1) + 4 < −4(log2 φ(vi) + 1) + 4 follows from the induction hypothesis

and from φ(vi′−1) > 2φ(vi). Therefore,
∑i

j=1 φ(vj) =
∑i′−1

j=1 φ(vj) +
∑i

j=i′ φ(vj) ≤
−4 log2 φ(vi) + 4, what we had to show.

In the rest of the proof, we assume that ρ∗ is sufficiently large, say ρ∗ ≥ 100.

Let i be the largest value such that
∑|V |

j=i φ(vj) ≥ ρ∗/2. By the definition of i,
∑|V |

j=i+1 φ(vj) < ρ∗/2, hence
∑i

j=1 φ(vj) ≥ ρ∗/2. Thus by Prop. 5.3, the weight of

vi (and every vj with j ≥ i) is at most 2−(ρ∗/2−4)/4 ≤ 2−ρ∗/10 (assuming that ρ∗

is sufficiently large). Define T := {vi, . . . , v|V |}, and let us select a random subset
Y ⊆ T : independently each vertex vj ∈ T is selected into Y with probability p(vj) :=

2ρ∗/10 · φ(vj) ≤ 1. We show that if H does not have 22Ω(ρ∗)

edges, then with nonzero
probability every edge of H covers at most half of Y , contradicting the assumption
that H satisfies the half-covering property.

The size of Y is the sum of |T | independent 0-1 random variables. The expected

value of this sum is µ =
∑|V |

j=i p(vj) = 2ρ∗/10 · ∑|V |
j=i φ(vj) ≥ 2ρ∗/10 · ρ∗/2. We show

that with nonzero probability |Y | ≥ µ/2, but |X ∩ Y | ≤ µ/4 for every edge X . To
bound the probability of the bad events, we use the following form of the Chernoff
Bound:

Theorem 5.4. [3] Let X1, X2, . . ., Xn be independent 0-1 random variables with
Pr [Xi = 1] = pi. Denote X =

∑n
i=1Xi and µ = E [X]. Then

Pr [X ≤ (1 − β)µ] ≤ exp(−β2µ/2) for 0 < β ≤ 1,

Pr [X ≥ (1 + β)µ] ≤
{

exp(−β2µ/3) for 0 < β ≤ 1,
exp(−β2µ/(2 + β)) for β > 1.

Thus by setting β = 1
2 , the probability that Y is too small can be bounded as

Pr [|Y | ≤ µ/2] ≤ exp(−µ/8).

For each edge X , the random variable |X ∩ Y | is the sum of |X ∩ T | independent
0-1 random variables. The expected value of this sum is µX =

∑

v∈X∩T p(v) =

2ρ∗/10 ·∑v∈X∩T φ(v) ≤ 2ρ∗/10 ≤ µ/(ρ∗/2), where the first inequality follows from the
fact that φ is a fractional stable set, hence the total weight X can cover is at most 1.
Notice that if ρ∗ is sufficiently large, than the expected size of X ∩ Y is much smaller
than the expected size of Y . We want to bound the probability that |X ∩ Y | is at
least µ/4. Setting β = (µ/4)/µX − 1 ≥ ρ∗/8 − 1, the Chernoff Bound gives

Pr
[

|X ∩ Y | ≥ µ/4
]

= Pr
[

|X ∩ Y | ≥ (1 + β)µX

]

≤ exp(−β2µX/(2 + β)) ≤
exp(−β2µX/(2β)) = exp(−µ/8 + µX/2) ≤ exp(−µ/16).

Here we assumed that ρ∗ is sufficiently large that β ≥ 2 (second inequality) and
µX/2 ≤ µ/16 (third inequality) hold. If H has m edges, then the probability that
|Y | ≤ µ/2 holds or an edge X covers at least µ/4 vertices of Y is at most

exp(−µ/8) +m · exp(−µ/16) ≤ (m+ 1) exp(−2ρ∗/10 · ρ∗/32) ≤ m · 2−2Ω(ρ∗)

.(5.1)

14

If H satisfies the half-covering property, then for every Y there has to be at least
one edge that covers more than half of Y . Therefore, the upper bound (5.1) cannot

be smaller than 1. This is only possible if m is 22Ω(ρ∗)

, and it follows that ρ∗ =
O(log logm), what we had to show.

The following example shows that the bound O(log logm) is tight in Lemma 5.2.
Fix an integer r, and consider the 2r−1 vertices V := {1, 2, . . . , 2r−1}. We construct
a hypergraph that has not more than 22r

edges and its fractional cover number is at
least r/2. Given a finite nonempty set F of positive integers, define up(F) to be the
largest ⌈(|F |+1)/2⌉ elements of this set. For every nonempty subset X of V , add the
edge up(X) to the set system. This results in not more than 22r−1 − 1 edges. (There
will be lots of parallel edges, but let us not worry about that.) Clearly, the set system
satisfies the half-covering property: for every set Y , the set up(Y) covers more than
half of Y .

We claim that the fractional cover number of the hypergraph is at least r/2. This
can be proved by presenting a fractional stable set of weight r/2. Let the weight of
v1 be 1/2, the weight of v2 and v3 be 1/4, the weight of v4, v5, v6, v7 be 1/8, and
so on. It is easy to see that the total weight assigned is exactly r/2. Furthermore,
observe that the weight of vt is at most 1/(t+ 1) (there is equality if t is of the form
2k −1, otherwise vt is strictly smaller). To show that this weight assignment is indeed
a fractional stable set, suppose that the vertices covered by some edge have total
weight more than 1. Let this edge be up(X) for some subset X of V . Let t be the
smallest element in up(X). Vertex vt has weight at most 1/(t + 1), and if t is the
smallest element in up(X), then up(X) contains at most t + 1 elements. Therefore,
the total weight of the vertices covered by this edge is at most (t+1)/(t+1) = 1. We
remark that the W[1]-hardness proof in Section 7 is essentially based on this example
(see the construction of the enforcer systems in the proof of Prop. 7.2).

Now we are ready to prove the main result of this section:

Theorem 5.5. Closest Substring can be solved in time |Σ|d ·2kd ·dO(d log log k) ·
nO(log log k).

Proof. Let us fix the first substring s′1 ∈ s1 of the solution. We will repeat
the following algorithm for each possible choice of s′1. Since there are at most n
possibilities for choosing s′1, the running time of the algorithm presented below has
to be multiplied by a factor of n, which is dominated by the nO(log log k) term.

The center string s can differ on at most d positions from s′1. Therefore, if we
can find the set P of these positions, then the problem can be solved by trying all the
|Σ||P | ≤ |Σ|d possible assignments on the positions in P . We show how to enumerate
efficiently all the possible sets P .

We construct a hypergraph G over the vertex set {1, . . . , L}. The edges of the
hypergraph describe the possible substrings in the solution. If w is a length L substring
of some string si and the distance of w is at most 2d from s′1, then we add an edge E to
G such that p ∈ E if and only if the p-th character of w differs from the p-th character
of s′1. Clearly, G has at most n edges, each of size at most 2d. If (s, s′1, . . . , s

′
k) is a

solution, then let H be the partial hypergraph of G that contains only the k−1 edges
corresponding to the k − 1 substrings s′2, . . ., s

′
k. (Note that the distance of s′1 and

s′i is at most 2d, hence G indeed contains the corresponding edges.) Denote by P the
set of at most d positions where s and s′1 differ. Let H0 be the subhypergraph of H
induced by P : the vertex set of H0 is P , and for each edge E of H there is an edge
E ∩ P in H0. Hypergraph H0 is subhypergraph of H and H is partial hypergraph of
G, thus H0 appears in G at P as subhypergraph.

15

We say that a solution is minimal if
∑k

i=1 d(s, s
′
i) is minimal. In Prop. 5.6, we show

that if the solution (s, s′1, . . . , s
′
k) is minimal, then H0 has the half-covering property.

Therefore, we can enumerate all the possible P ’s by considering every hypergraph H0

on at most d vertices that has the half-covering property (there are only a constant
number of them), and for each such H0, we enumerate all the places in G where H0

appears as subhypergraph. Lemma 5.2 ensures that every H0 considered has small
fractional cover number. By Lemma 4.3, this means that we can enumerate efficiently
all the places P where H0 appears in G as subhypergraph. As discussed above, for
each such P we can check whether there is a solution where the center string s differs
from s′1 only on P . By repeating this method for every hypergraph H0 having the
half-covering property, we eventually find a solution, if exists.

Proposition 5.6. For every minimal solution (s, s′1, . . . , s
′
k), the corresponding

hypergraph H0 has the half-covering property.

Proof. To see thatH0 has the half-covering property, assume that for some Y ⊆ P ,
every edge of H0 covers at most half of Y . We show that in this case the solution is
not minimal. Modify s such that it is the same as s′1 on every position of Y , let s∗ be
the new center string. Clearly, d(s∗, s′1) = d(s, s′1) − |Y |. Furthermore, we show that
this modification does not increase the distance for any i, that is, d(s∗, s′i) ≤ d(s, s′i)
for every i. It follows that s∗ is also a good center string, contradicting the minimality
of the solution.

Let Ei be the edge of H0 corresponding to the substring s′i. This means that
s′1 and s′i differ on Y ∩ Ei, and they are the same on Y \ Ei. Therefore, d(s∗, s′i) ≤
d(s, s′i) + |Y ∩ Ei| − |Y \ Ei|. By assumption, Ei can cover at most half of Y , hence
d(s∗, s′i) ≤ d(s, s′i), as required.

The overall algorithm is presented in Figure 5.1. There are at most n different
possibilities for the string s′1 in Step 1. The construction of the hypergraphG in Step 2
takes polynomial time. There are not more than 2kd different hypergraphs on at most
d vertices having at most k edges, since there are at most 2d possibilities for each
edge. Therefore, the loop in Step 3 is iterated at most 2kd times. In Step 4 the half-
covering property can be tested by complete enumeration: we have to test for at most
2d different subsets whether there is an edge that covers more than half of it. If H0

satisfies the half-covering property, then by Lemma 5.2 its fractional cover number is
at most O(log log k). Therefore, by Theorem 4.3, Step 5 takes dO(d log log k) ·nO(log log k)

time. If H0 appears at P in G as subhypergraph, then in Step 6 we have to try at most
|Σ|d possible center strings. Testing each center string can be done in polynomial time
(Step 7). Therefore, the total running time is n · 2kd · dO(d log log k) · nO(log log k) · |Σ|d.

6. Algorithm for Consensus Patterns. The aim of this section is to show
that Consensus Patterns is fixed-parameter tractable in the bounded alphabet
case if the parameter is δ := D/k, the average distance. The algorithm is very similar
to the algorithm of Theorem 5.5. The crucial difference is that here we can obtain a
constant bound on the fractional cover number of the small hypergraphs H0, instead
of the weaker O(log log k) bound coming from the half-covering property. This means
that the exponent of n in the running time of the Find-Subhypergraph algorithm
of Theorem 4.3 is a constant and we obtain a uniformly polynomial algorithm.

Theorem 6.1. Consensus Patterns can be solved in time δO(δ) · |Σ|δ · n9.

Proof. If {s, s′1, . . . , s′k} is a solution for an instance of Consensus Patterns,
then d(s, s′i) ≤ δ for at least one i. Therefore, if there is a solution for the instance,
then it can be found by considering every string s0 that is a length L substring of

16

Closest-Substring-2(k, L, d, (s1, . . . , sk))
1. for each substring s′1 of s1 having length L do

2. Construct the hypergraph G on {1, . . . , L}
3. for every hypergraph H0 having ≤ d vertices and ≤ k edges do

4. if H0 has the half-covering property then

5. for every place P where H0 appears in G as subhypergraph do

(Algorithm Find-Subhypergraph of Theorem 4.3)
6. for every string s that differs from s′1 only at P do

7. if maxk
i=1 min{s′i is a substring of si}

d(s, s′i) ≤ d then

8. s is a solution, STOP.
9. There is no solution, STOP.

Figure 5.1. Algorithm 2 for Closest Substring

some si, and by checking for each such s0 whether there is a solution with d(s, s0) ≤ δ.
Below we describe how to perform this check for a particular s0. There are at most
n possibilities for s0, hence the total running time is at most n times greater than for
a single s0. We will assume that δ ≥ 2, otherwise it is easy to check every possible s
with d(s, s0) ≤ δ.

We construct a hypergraph G over the vertex set {1, . . . , L}. If w is a length L
substring of some string si, then we add an edge E to G such that p ∈ E if and only
if the p-th character of w differs from the p-th character of s0. (Note that, unlike
in the proof of Theorem 5.5, the hypergraph G can have edges larger than 2d.) If
(s, s′1, . . . , s

′
k) is a solution, then let H be the partial hypergraph of G that contains

only the k edges corresponding to the k substrings s′1, . . ., s
′
k.

Let (s, s1, . . . , sk) be a minimal solution, that is,
∑k

i=1 d(s, s
′
i) is as small as

possible. Denote by P the set of positions where s and s0 differ. Let H0 be the
subhypergraph of H induced by P : the vertex set of H0 is P , and for each edge E
of H there is an edge E ∩ P in H0. Hypergraph H0 is subhypergraph of H and H is
partial hypergraph of G, thus H0 appears in G at P as subhypergraph.

We follow the same path as in the proof of Theorem 5.5. It can be shown that
the fractional cover number of H0 is at most 2 (see the proof of Prop. 6.2 below).
Therefore, we can find all the possible places P by enumerating every suitable hyper-
graph H0, and by using Theorem 4.3 to enumerate all the places where H0 appears
in G as subhypergraph. The problem is that there can be large edges in G, and the
algorithm of Theorem 4.3 can be used only if the size of the edges is bounded by the
parameter. However, we argue that the same technique works even if the large edges
are thrown away from G.

Remove every edge of size greater than 20δ from G (resp., H), let G∗ (resp., H∗)
be the resulting hypergraph and let H∗

0 be the subhypergraph of H∗ induced by P .
It is clear that H∗

0 is a subhypergraph of G∗. Furthermore, the fractional edge cover
number of H∗

0 can be bounded by a constant:

Proposition 6.2. For every minimal solution (s, s′1, . . . , s
′
k), the corresponding

hypergraph H∗
0 has fractional cover number at most 5/2.

Proof. We claim that every element of P is covered by at least k/2 edges of H0.
Assume that only k′ < k/2 edges of H0 cover some p ∈ P . This means that only
k′ of the strings s′1, . . ., s

′
k differ from s0 at position p. Let us change position p of

the median string s: let this character be the same as the character at position p of

17

s0. Now d(s, s′i) decreases for k − k′ > k/2 values of i, and it increases for at most

k′ < k/2 values of i. Therefore,
∑k

i=1 d(s, s
′
i) strictly decreases, contradicting the

minimality of s. This shows that every vertex of H0 is covered by at least k/2 of the
k edges, hence the fractional cover number of H0 is at most 2.

From d(s, s0) ≤ δ and
∑k

i=1 d(s, s
′
i) ≤ D = kδ, it follows that

∑k
i=1 d(s0, s

′
i) ≤

2kδ. Therefore, the total size of the edges in H is at most 2kδ, which means that
there are at most 2k/20 ≤ k/10 edges in H that have size greater than 20δ. Each
element of P is covered by at least k/2 edges of H0, hence even if the edges greater
than 20δ are thrown away, there remain at least k/2 − k/10 = 2k/5 edges in H∗

0 to
cover each element. Therefore, if we set the weight of each edge to (5/2) · (1/k), then
we obtain a fractional edge cover with total weight 5/2.

Prop. 6.2 shows that we can find all the possible places P by enumerating ev-
ery hypergraph H∗

0 on δ vertices having fractional cover number at most 5/2, and
then enumerating every place in G∗ where H∗

0 appears. To reduce the number of
hypergraphs H∗

0 that has to be considered, we show that it is sufficient to restrict our
attention to hypergraphs having O(log δ) edges:

Proposition 6.3. Assume δ ≥ 2. If (s, s′1, . . . , s
′
k) is a minimal solution and

H∗
0 is the corresponding hypergraph, then it is possible to select 200 ln δ edges of H∗

0

in such a way that if we delete all the other edges, then the resulting hypergraph H∗∗
0

has fractional cover number at most 5.
Proof. Let us select each edge of H∗

0 independently with probability (150 ln δ)/k.
The expected number of selected edges is 150 ln δ; from Theorem 5.4 (β = 1/3) it fol-
lows that the probability of selecting more than 200 ln δ edges is at most exp((−150 ln δ)/27) <
1/δ2. We have seen in Prop. 6.2 that each vertex of H∗

0 is covered by at least 2k/5
edges, thus the expected number of edges that cover a given vertex of H∗∗

0 is at least
60 ln δ. Furthermore, by Theorem 5.4 (β = 1/3) the probability that a given ver-
tex of H∗∗

0 is covered by less than 40 ln δ edges is at most exp(−60 ln δ/18) ≤ 1/δ3.
Therefore, with probability at least 1 − 1/δ2 − δ · 1/δ3 > 0, we select not more than
200 ln δ edges and each vertex is covered by at least 40 ln δ edges. This means that
the fractional cover number of H∗∗

0 is at most 5: setting the weight of each edge to
1/(40 ln δ) gives a fractional edge cover.

The overall algorithm is presented in Figure 6.1. There are at most n different
possibilities for the string s0 in Step 1. The rest of the algorithm checks whether
there is a solution where the median string differs from s0 on at most δ positions.
The construction of the hypergraph G∗ can be done in O(Ln) time in Step 2. Since
we try to find solutions with d(s0, s) ≤ δ, it can be assumed that H∗∗

0 has at most δ
vertices. There are not more than 2O(δ ln δ) = δO(δ) different hypergraphs on at most
δ vertices having at most 200 ln δ edges, since there are at most 2δ possibilities for
each edge. Therefore, the loop in Step 3 is iterated at most 2O(δ ln δ) times. The test
in Step 4 is trivial. Since the fractional cover number of H∗∗

0 is at most 5 and every
edge of G∗ has size at most 20δ, Step 5 takes δO(δ) · n6L2 time. If H∗∗

0 appears at P
in G∗ as subhypergraph, then in Step 6 we have to try at most |Σ|δ possible median
strings. Testing each median string can be done in O(Ln) time (Step 7). Therefore,
the total running time is δO(δ) · |Σ|δ · n9.

7. Set Balancing. In this section we introduce a new problem called Set Bal-

ancing. The problem is somewhat technical, it is not motivated by practical appli-
cations. However, as we will see it in Section 8, the problem is useful in proving the
W[1]-hardness of Closest Substring.

18

Consensus-Patterns(k, L, δ, (s1, . . . , sk))
1. for each substring s0 of s1, . . . , sk having length L do

2. Construct the hypergraph G∗ on {1, . . . , L}
3. for every hypergraph H∗∗

0 having ≤ δ vertices and ≤ 200 ln δ edges do

4. if every vertex of H∗∗
0 is covered by at least 1/5 part of the edges then

5. for every place P where H∗∗
0 appears in G∗ as subhypergraph do

(Algorithm Find-Subhypergraph of Theorem 4.3)
6. for every string s that differs from s0 only at P do

7. if
∑k

i=1 min{s′i is a substring of si}
d(s, s′i) ≤ δk then

8. s is solution, STOP
9. There is no solution, STOP

Figure 6.1. Algorithm for Consensus Patterns

Set Balancing

Input:
A collection of m set systems Si = {Si,1, . . . , Si,|Si|} (1 ≤ i ≤ m)
over the same ground set A and a positive integer d. The size of each
set Si,j is at most ℓ, and there is an integer weight wi,j associated
to each set Si,j .

Parameters:
m, d, ℓ

Task:
Find a set X ⊆ A of size at most d and select a set Si,ai

∈ Si for
every 1 ≤ i ≤ m in such a way that

|X △ Si,ai
| ≤ wi,ai

(7.1)

holds for every 1 ≤ i ≤ m.

Here X △Si,ai
denotes the symmetric difference (X \Si,ai

)∪ (Si,ai
\X). We have

to select a set X and a set from each set system in such a way that the balancing
requirement (7.1) is satisfied: every selected set is close to X . The weight wi,j of
each set Si,j prescribes the maximum distance of X from this set. The smaller the
weight, the more restrictive the requirement. The distance is measured by symmetric
difference; therefore, adding an element outside Si,j to X can be compensated by
adding an element from Si,j to X . If (7.1) holds for some set Si,ai

, then we say that
Si,ai

is balanced, or X balances Si,ai
.

It can be assumed that the weight of each set is at most ℓ + d, otherwise the
requirement would be automatically satisfied for every possible X . If a set appears in
multiple set systems, then it can have different weights in the different systems.

In this section we show that Set Balancing is W[1]-hard even when all of m,
d, and ℓ are parameters. It is not very difficult to show that the problem is W[1]-
hard if we consider the variant of the problem where the size of X has to be exactly
d. However, the proof becomes significantly more complicated if we only have the
requirement |X | ≤ d. Intuitively, now the problem is that we have to ensure that the
reduction does not construct instances that can be solved by a “small” X , since such
an X could be found with an exhaustive search. An easy way to ensure that X is
large would be to have a set that can be balanced only by selecting d elements from

19

this set. However, this would reduce the search space to the d-element subsets of this
set, and the problem would be easy, since there are at most

(

ℓ
d

)

such sets. The main
combinatorial challenge in the proof is to ensure that there are no small solutions, but
there are lots of possible sets that could form a solution. It should be the combined
effect of several set systems that prevent |X | from being small. Furthermore, each
set in a set system should be useful for many possible solutions, since the set systems
cannot be too large.

Theorem 7.1. Set Balancing is W[1]-hard with combined parameters m, d,
and ℓ.

Proof. The proof is by reduction from the Maximum Clique problem. Assume
that a graph G(V,E) is given with n vertices and e edges, the task is to find a

clique of size t. It can be assumed that n = 22C

for some integer C: we can ensure
that the number of vertices has this form by adding at most |V |2 isolated vertices.

Furthermore, we can assume that C ≥ t (i.e., n ≥ 22t

): if n < 22t

, then Maximum

Clique can be solved directly in time O((22t

)t ·n) by enumerating every set of size t.
The ground set A of the constructed instance of Set Balancing is partitioned

into t groups A0, . . ., At−1. The group Ai is further partitioned into 2i blocks Ai,1,

. . ., Ai,2i ; the total number of blocks is 2t − 1. The block Ai,j contains n1/2i

= 22C−i

elements. Set d := 2t − 1. Later we will argue that it is sufficient to restrict our
attention to solutions where X contains exactly one element from each block Ai,j .
Let us call such a solution a standard solution. We construct the set systems in such a
way that there is one-to-one correspondence between the standard solutions and the
size t cliques of G. In a standard solution X contains exactly 2i elements from group
Ai, and there are (n1/2i

)2
i

= n different possibilities for selecting these 2i elements
from the blocks of Ai. Let Xi,1, . . ., Xi,n be these n different 2i-element sets. These
n possibilities will correspond to the choice of the i-th vertex of the clique.

The set systems are of two types: the verifier systems and the enforcer systems.
The role of the verifier systems is to ensure that every standard solution corresponds
to a clique of size t, while the enforcer systems ensure that there are only standard
solutions.

For each 0 ≤ i1 < i2 ≤ t− 1 the verifier system Si1,i2 ensures that the i1-th and
the i2-th vertices of the clique are adjacent. The set system Si1,i2 contains 2e sets
of size 2i1 + 2i2 each. If vertices u and v are adjacent in G, then Xi1,u ∪ Xi2,v is in
Si1,i2 . The weight of every set in Si1,i2 is (2t − 1) − (2i1 + 2i2).

Proposition 7.2. There is a standard solution if and only if G has a size t
clique.

Proof. Assume that v0, . . ., vt−1 is a clique in G. Let

X =

t−1
⋃

i=0

Xi,vi
.

The size of X is
∑t−1

i=0 2i = 2t − 1. Select the set Xi1,vi1
∪ Xi2,vi2

from the verifier

system Si1,i2 . This set is balanced by X : it is a size 2i1 + 2i2 subset of X having
weight (2t − 1) − (2i1 + 2i2).

To prove the other direction, assume now that there is a standard solution X . In
a standard solution, X ∩Ai is a 2i-element set Xi,vi

for some vi. We claim that these
vi’s form a size t clique in G.

Suppose that for some i1 < i2 vertices vi1 and vi2 are not connected by an edge
(including the possibility vi1 = vi2). Consider the set S ∈ Si1,i2 selected in the

20

solution. The size of X is 2t − 1 in a standard solution, thus the set X contains at
least 2t − 1 − (2i1 + 2i2) elements outside the set S. Therefore, S can be balanced
only if all the 2i1 + 2i2 elements of S are in X . Assume that the set S selected from
Si1,i2 is Xi1,u ∪Xi2,v. Now Xi1,u ∪Xi2,v ⊆ X , which means that u = vi1 and v = vi2 .
By construction, if Xi1,u ∪Xi2,v is in Si1,i2 , then u and v are adjacent, hence vi1 and
vi2 are indeed neighbors.

The job of the enforcer systems is to ensure that every solution of weight at most
d = 2t − 1 is standard. The 2t − 1 blocks Ai,j are indexed by two indices i and j. In
the following, it will be more convenient to index the blocks by a single variable. Let
B1, . . ., B2t−1 be an ordering of the blocks such that B1 is the only block of group
A0, the blocks B2, B3 are the blocks of A1, the next four blocks after that are the
blocks of A2, etc.

A naive way of constructing the enforcer set systems would be to have for each
block Bi a corresponding set system Si that contains |Bi| one-element sets: there is
one set of weight 2t−2 for each element of Bi. This ensures that if a solution contains
at least one element from every block other than Bi (i.e., it contains at least 2t − 2
elements outside Bi), then it has to contain an element of Bi as well (otherwise the
symmetric difference is at least 2t − 1). The problem with this construction is that
every set of Si is balanced by the solution X = ∅, hence such systems cannot ensure
that every solution is standard.

There are 22t−1 − 1 enforcer set systems: there is a set system SF corresponding
to each nonempty subset F of {1, 2, . . . , 2t − 1}. The job of SF is to rule out the
possibility that a solution X contains no elements from the blocks indexed by F , but
X contains at least one element from every other block. Clearly, these systems will
ensure that no block is empty in a solution, hence every solution of weight 2t − 1 is
standard. One possible way of constructing the system SF is to have one set of size
|F | and weight 2t − 1 − |F | for each possible way of selecting one element from each
block indexed by F . Clearly, this makes it impossible to have at least one element in
each of the 2t − 1 − |F | blocks outside F , but none in F . Now the problem is that
the size of SF can be too large, in particular when F = {1, 2, . . . , 2t − 1}. We use a
somewhat more complicated construction to keep the size of the systems small.

Recall the definition of up(F) from Section 5: given a finite set F of positive
integers, up(F) is defined to be the largest ⌈(|F | + 1)/2⌉ elements of this set. The
enforcer system corresponding to F is defined as

SF =
∏

p∈up(F)

Bp.(7.2)

That is, we consider the blocks indexed by the upper half of F , and put into SF all
the possible combinations of selecting one element from each block. Let the weight of
each set in SF be 2t − 1 − |up(F)|. Notice that it is possible that up(F1) = up(F2)
for some F1 6= F2, which means that for such F1 and F2 the systems SF1 and SF2

are in fact the same. However, we do not care about that.
We have to verify that these set systems are not too large, i.e., they can be

constructed in uniformly polynomial time:
Proposition 7.3. For every nonempty F ⊆ {1, 2, . . . , 2t−1}, the enforcer system

SF contains at most n2 sets.
Proof. Let x be the smallest element of up(F), assume that 2p ≤ x < 2p+1 for

some integer p. There is one block of size n, there are 2 blocks of size n1/2, . . ., there
are 2i blocks of size n1/2i

, hence the size of B2p is n1/2p

. The size of the blocks are

21

decreasing, thus all the sets in the product (7.2) are of size at most n1/2p

. If the
smallest element of up(F) is x, then it can contain at most x + 1 elements. This
means that we take the direct product of at most x+1 sets of size at most n1/2p

each.
Therefore, the total number of sets in SF is at most (n1/2p

)x+1 ≤ (n1/2p

)2
p+1

= n2.

The following proposition completes the proof of the first direction: if the solu-
tion is standard, then we can select a set from each enforcer system. Together with
Prop. 7.2, it follows that if there is a clique of size t, then there is a (standard) solution
for the constructed instance of Set Balancing.

Proposition 7.4. If X is a standard solution, then each SF contains a set that
is balanced by X.

Proof. For the enforcer system SF , let us select the set

SF = X ∩
⋃

p∈up(F)

Bp.

That is, SF contains those elements of X that belong to the blocks indexed by up(F).
The set SF is a size |up(F)| subset of X . Therefore, |X △ SF | = 2t − 1 − |up(F)|,
which is exactly the weight of the selected set. Thus SF is balanced.

On the other hand, if there is a solution for the constructed instance of Set

Balancing with |X | ≤ d = 2t − 1, then this solution has to be standard, and by
Prop. 7.2 there is a clique of size t in G. This completes the proof of the second
direction.

Proposition 7.5. If |X | ≤ 2t − 1, then X contains exactly one element from
each block.

Proof. Assume first that X does not contain elements from some of the blocks.
Let F contain the indices of those blocks that are disjoint from X . This means that
X contains at least one element from each block not in F , hence |X | ≥ 2t − 1 − |F |.
Assume that some set S is selected from SF in the solution. This set contains
elements only from blocks indexed by up(F) ⊆ F , hence S is disjoint from X . Thus
|X △S| = |X |+ |S| ≥ 2t −1−|F |+ |up(F)| > 2t −1−|up(F)|, which means that S is
not balanced (here we used |F | − |up(F)| < |up(F)|). Therefore, each block contains
at least one element of X . Since there are 2t − 1 blocks, this is only possible if each
block contains exactly one element of X .

The distance d = 2t − 1 is a function of the original parameter t. The number m
of the constructed set systems is

(

t
2

)

+ 22t−1 − 1, which is also a function of t. Each
set in the constructed systems has size at most ℓ := 2t−1. We have seen that the size
of each set system is polynomial in n, hence the reduction is a correct parameterized
reduction.

8. Hardness of Closest Substring. In this section we show that Closest

Substring is W[1]-hard with combined parameters k and d. The reduction is very
similar to the reduction presented in [14], where it is proved that problem is W[1]-hard
with parameter k only. As in that reduction, the main technical trick is that each
string si is divided into blocks and we ensure that the string s′i is one of these blocks
in every solution. However, here the reduction is from Set Balancing, and not from
Maximum Clique. This allows us to construct an instance of Closest Substring

where the distance parameter d is bounded by a constant.
Theorem 8.1. Closest Substring is W[1]-hard with parameters d and k, even

if Σ = {0, 1}.
22

Proof. The reduction is from the Set Balancing problem, whose W[1]-hardness
was shown in Section 7. Assume that m set systems Si = {Si,1, . . . , Si,|Si|} and an
integer d are given. Let 0 ≤ wi,j ≤ d+ ℓ be the weight of Si,j in Si, and assume that
each set has size at most ℓ. We construct an instance of Closest Substring with
distance parameter d′ := d+ ℓ where d′ + 1 strings si,1, si,2, . . ., si,d′+1 correspond to
each set system Si, and there is one additional string s0 called the template string.
Thus there are k := (d′ + 1)m+ 1 strings in total.

Set L := 6d′ + 3d′(3d′ + 1) + |A|+ d′ − d+ 2d′m(d′ + 1), where A is the common
ground set of the set systems. The template string s0 has length L, hence s′0 = s0
in every solution. The string si,j is the concatenation of blocks Bi,j,1, . . ., Bi,j,|Si|
of the same length L, each block corresponds to a set in Si. We will ensure that
in a solution the substring s′i,j is one complete block from si,j . Therefore, selecting
s′i,j from si,j in the constructed Closest Substring instance plays the same role as
selecting a set Si from Si in Set Balancing.

Each block Bi,j,k of the string Si,j is the concatenation of four parts: the front tag,
the core, the complete tag, and the back tag. The front tag is the same in every block:
13d′

(103d′

)3d′

13d′

. The core corresponds to the ground set A in the Set Balancing

problem. The length of the core is |A|, and the p-th character of the core in block
Bi,j,k is 1 if and only if the set Si,k ∈ Si contains the p-th element of A. The complete

tag is 1d′−d in every block. The back tag is the concatenation of m(d′ + 1) segments
Ci,j (1 ≤ i ≤ m, 1 ≤ j ≤ d′ + 1) (the order in which these segments are concatenated
will not be important). The length of each segment is 2d′. In block Bi,j,k of string
si,j the back tag contains 1’s only in segment Ci,j : there is 1 on the first d′−wi,k ≥ 0
positions of Ci,j , the rest of Ci,j is 0. This completes the description of the strings
si,j . Notice that the blocks Bi,j1,k and Bi,j2,k differ only in the back tag. The length
L template string s0 is similar to the blocks defined above: it has the same front tag
as all the other blocks, but its core, complete tag, and back tag contain only 0’s.

The first direction of the proof is shown in the following proposition:

Proposition 8.2. If the Set Balancing instance has a solution, then the
constructed instance of Closest Substring also has a solution.

Proof. Let X ⊆ A and S1,a1 ∈ S1, . . ., Sm,am
∈ Sm be a solution of Set Bal-

ancing. Let the center string s be the concatenation of the front tag, the incidence
vector of X , the string 1d′−d, and the string 02d′m(d′+1). The distance of s and s0 is
|X | + d′ − d ≤ d′: the distance is |X | on the core and d′ − d on the complete tag.
Furthermore, we claim that the block Bi,j,ai

in string si,j is at distance at most d′

from s. If we can show this, then it follows that Closest Substring has a solution.

The front tag of Bi,j,ai
is the same as the front tag of s. In the core the distance

is the symmetric difference of X and Si,ai
. The complete tag is the same in s and

Bi,j,ai
. The back tag of s is all 0, while the back tag of Bi,j,ai

contains d′ − wi,k

characters 1 (in the segment Ci,j). Therefore,

d(s,Bi,j,ai
) = |X △ Si,ai

| + d′ − wi,k ≤ d′,

where the inequality follows from the fact that X balances the set Si,ai
, that is,

|X △ Si,ai
| ≤ wi,k.

To prove the reverse direction, first we show that each substring s′i,j has to be a
complete block of the string si,j . By the triangle inequality, d(s0, s

′
i,j) = d(s′0, s

′
i,j) ≤

d(s′0, s) + d(s, s′i,j) ≤ 2d′ has to hold in every solution. We show that d(s0, s
′
i,j) ≤ 2d′

implies that s′i,j is a complete block:

23

Proposition 8.3. If d(s0, s
′
i,j) ≤ 2d′ for some substring s′i,j of si,j, then s′i,j is

the block Bi,j,b for some b.

Proof. Assume that s′i,j starts on the p-th character of some block Bi,j,b. This
means that s′i,j contains the last L − p + 1 characters from Bi,j,b and the first p− 1
characters from the next block Bi,j,b+1. We show that if p 6= 1, then d(s0, s

′
i,j) > 2d′.

Denote by f = 6d′ + 3d′(3d′ + 1) the length of the front tag. Assume first that
3d′ < p ≤ L − f . In this case the first 3d′ characters of Bi,j,b+1 (all of them are 1’s)
are aligned with characters L+1− p, . . ., L+3d′− p of s0 (all of them are 0’s), hence
d(s0, s

′
i,j) > 2d′ follows. Assume now that L − f < p ≤ L − 3d′, a similar argument

shows that the last 3d′ characters in the front tag of Bi,j,b+1 causes 3d′ mismatches. If

1 < p ≤ 3d′, then the 1’s in the (103d′

)3d′

part of the front tag are not aligned, which
increases the difference to more than 2d′. The same thing happens if L− 3d′ < p ≤ L
holds. This concludes the proof that p = 1, that is, the string s′i,j is one complete
block Bi,j,b.

Since the template string and each block begins with the front tag, it cannot hurt
if the center string also begins with the front tag:

Proposition 8.4. If there is a solution for the constructed instance of Closest

Substring, then there is such a solution where the front tag of the center string s is
the same as the front tag of s0.

It can be assumed that the back tag of the center string s contains only 0’s:

Proposition 8.5. If there is a solution for the constructed instance of Closest

Substring, then there is such a solution where the back tag of the center string s
contains only 0’s.

Proof. Let s be the center string of a solution. Since the back tag of s0 contains
only 0’s, in the back tag of s at most d′ characters can be 1. This means that with
the exception of at most d′ segments, the segments of the back tag contain only 0’s.
Thus for every 1 ≤ i ≤ m, there is a 1 ≤ xi ≤ d′ + 1 such that segment Ci,xi

of the
back tag of s contains only 0’s. Let s∗ be the same as s but with the back tag set to
0’s. It is clear that d(s∗, s0) ≤ d(s, s0) ≤ d′: the back tag of s0 is empty, hence setting
the back tag to 0 cannot increase the distance.

We claim that a block can be selected from each string si,j in such a way that the
distance of each selected block is at most d′ from s∗. For the string si,xi

we can select
the same s′i,xi

as before: the back tag of s′i,xi
contains 1’s only in segment Ci,xi

, but s
does not contain any 1’s in Ci,xi

. This means that setting to 0 the back tag of s does
not increase the distance between s and s′i,xi

. Assume that s′i,xi
is block Bi,xi,t for

some t. For every j 6= xi, select block Bi,j,t from the string si,j . The only difference
between blocks Bi,xi,t and Bi,j,t is in the back tag: they have the same number of 1’s
in the back tag, but in different segments. However, s∗ has only 0’s in the back tag,
hence d(Bi,j,t, s

∗) = d(Bi,xi,t, s
∗) ≤ d′. Therefore, s∗ and the selected blocks form a

solution where the back tag of the center string s∗ contains only 0’s.

We can assume that the complete tag is 1d′−d in s:

Proposition 8.6. If there is a solution for the constructed instance of Closest

Substring, then there is such a solution where the complete tag of the center string
s contains only 1’s.

Proof. Let s be a solution where the number of 0’s in the complete tag of the center
string is minimal. Assume first that there is a 1 in the core of s. In this case replace
this 1 with a 0, and set one of the 0’s in the complete tag to 1. This modification
does not change the difference of s from s0. Furthermore, it does not increase the
distance of s from s′i,j : replacing the 0 with a 1 in the complete tag decreases the

24

distance, while replacing the 1 with 0 in the core may or may not increase the distance.
Therefore, the new center string contradicts the minimality of s.

Assume now that the core of s contains only 0’s. We have already seen that the
front tag of s is the same as the front tag of s0 (Prop. 8.4), and the back tag contains
only 0’s (Prop. 8.5). Therefore, s differs from s0 only in the complete tag. This means
that in the complete tag of s we can replace every 0 with 1: the distance between
s and s0 increases only to d′ − d, while the distance decreases between s and every
string s′i,j .

The proofs of Prop. 8.4–8.6 are independent in the sense that we can assume that
there is a solution where the center string s satisfies all three requirements at the
same time. Assuming that s is of this form, it is not difficult to prove the converse of
Prop. 8.2:

Proposition 8.7. If there is a solution for the constructed instance of Closest

Substring, then there is a solution for the Set Balancing problem.
Proof. Consider a solution where the complete tag of s contains only 1’s, and the

back tag of s contains only 0’s. Define the set X ⊆ A based on the core of s: let an
element of A be in X if and only if the corresponding character is 1 in the core of s.
The string s differs from the template string s0 at |X | positions in the core and at
d′ − d positions in the complete tag. Since d(s, s0) ≤ d′, it follows that |X | ≤ d.

We claim that for every 1 ≤ i ≤ s, a set can be selected from Si that is balanced
by X . Assume that s′i,1 is the block Bi,1,t of si,1 for some t. We show that Si,t ∈ Si

is balanced by X . Let us determine the distance d(Bi,1,t, s), which is by assumption
at most d′. In the core, the two strings differ on the symmetric difference of Si,t and
X . The strings do not differ on the complete tag, but they differ on every position of
the back tag where Bi,1,t is 1. There are exactly d′ − wi,t such positions, hence

d(s, s′i,j) = |X △ Si,k| + d′ − wi,t ≤ d′,

which means that |X △ Si,t| ≤ wi,t and the set Si,t is balanced.
Prop. 8.2 and 8.7 together prove the correctness of the reduction.
Putting together Theorem 7.1 and 8.1 gives a two-step reduction from Maxi-

mum Clique to Closest Substring. Let us follow how the parameters depend
on each other during this reduction. If an instance of Maximum Clique is given
with parameter t, then Theorem 7 constructs an instance of Set Balancing with
parameters

d := 2t − 1

m :=

(

t

2

)

+ 22t−1 − 1 = 22O(t)

ℓ := 2t−1.

Theorem 8.1 transforms this instance into an instance of Closest Substring with
the following parameters:

k := (d+ ℓ+ 1)m+ 1 = 22O(t)

d′ := d+ ℓ = 2O(t).

Theorem 3.3 gives an |Σ|d(log d+2)nlog d+O(1) time algorithm for Closest Sub-

string and Theorem 5.5 gives an algorithm with running time 2kd · dO(d log log k) ·
nO(log log k) · |Σ|d. We argue that in some sense these algorithms are best possible:

25

the exponent of n cannot be improved to o(log d) or to o(log log k) (modulo some
complexity-theoretic assumptions).

Assume that there is an f1(k, d)·no(log d) time algorithm for Closest Substring.
We can construct an algorithm for Maximum Clique by reducing it to Closest

Substring and using our assumed algorithm for the latter problem. The running

time of this algorithm for finding a size t clique is f1(k, d) · no(log d) = f1(2
2O(t)

, 2t) ·
no(log 2t) = f ′

1(t) · no(t) (it can be assumed that the running time of the reduction
to Closest Substring is dominated by the time required to solve the Closest

Substring instance.) By a result of [9], the existence of an f ′
1(t) ·no(t) algorithm for

Maximum Clique would imply that n-variable 3-Sat can be solved in 2o(n) time, i.e.,
the Exponential Time Hypothesis would be violated. Therefore, it is highly unlikely
that there is an algorithm for Closest Substring with o(log d) in the exponent.

Corollary 8.8. There is no f1(k, d) · no(log d) time algorithm for Closest

Substring, unless n-variable 3-Sat can be solved in time 2o(n).
Similarly, an f2(k, d) · no(log log k) time algorithm for Closest Substring would

imply that there is an f2(2
2O(t)

, 2t) ·no(log log 22O(t)
) = f ′

2(t) ·no(t) algorithm for Max-

imum Clique.
Corollary 8.9. There is no f2(k, d) · no(log log k) time algorithm for Closest

Substring, unless n-variable 3-Sat can be solved in time 2o(n).
In our reduction from Maximum Clique to Closest Substring, the blow-up of

the parameters is unusually large: double exponential. It might seem that with some
more careful construction we could give a simpler reduction, where the parameters
of the constructed instance are smaller. However, the connection with subexponen-
tial algorithms show that the double exponential increase cannot be avoided, it is a
necessary part of any reduction from Maximum Clique to Closest Substring.
Assume that there is an f(t) · nc time parameterized reduction where d = g1(t) and

k = g2(t) = 22o(t)

. This reduction and the h(k, d) · nO(log log k) time algorithm of
Theorem 5.5 would give an algorithm for Maximum Clique with running time

f(t)nc + h(g1(t), g2(t)) · (f(t)nc)O(log log g2(t))

= h′(t) · nO(log log 22o(t)
) = h′(t) · no(t),

which is not possible, unless 3-Sat has subexponential algorithms.
Cesati and Trevisan [7] and Bazgan [4] have shown that if a problem is W[1]-

hard, then the corresponding optimization problem cannot have an EPTAS (i.e., a
PTAS with running time f(ǫ) · nc), unless FPT = W[1]. Let us recall the argument
here. Assume that there is an approximation scheme with running time f(ǫ) · nc for
Closest Substring. Running the algorithm with ǫ = 1/2k decides whether there
is a solution with d ≤ k: if there is such a solution, then the approximation scheme
always produces a solution with d at most (1 + ǫ)k < k + 1. This would imply an
f(1/2k) ·nc algorithm for Closest Substring, and it would follow that the problem
is fixed-parameter tractable, which is not possible, unless FPT = W[1].

We can push this argument a bit further: it can be shown that there is no PTAS
with running time f(ǫ) · no(log 1/ǫ). The same reasoning as in the previous paragraph
shows that such a PTAS would imply an f(1/2k) · no(log 2k) algorithm for Closest

Substring. In Corollary 8.8, we have seen that this is not possible, unless there are
subexponential algorithms for 3-Sat.

Corollary 8.10. There is no f(ǫ) · no(log 1/ǫ) time PTAS for Closest Sub-

string, unless n-variable 3-Sat can be solved in time 2o(n).

26

The lower bound of Corollary 8.10 does not match the known approximation
schemes for the problem. Using a different approach, Andoni et al. [2] proved an
essentially tight lower bound. However, in a strict technical sense, their lower bound
is not directly comparable with Corollary 8.10.

9. Conclusions. We have presented algorithms and complexity results for two
string matching problems, Closest Substring and Consensus Patterns. We
have proved that Closest Substring parameterized by the distance parameter d
and by the number of strings k is W[1]-hard, even if the alphabet is binary. This
improves the previous result of [14], where it is proved that the problem is W[1]-hard
with parameter k only (and binary alphabet). Our hardness result also improves [20],
where it is proved that Distinguishing Substring Selection (a generalization
of Closest Substring) is W[1]-hard with parameters k and d (again with binary
alphabet). In our reduction we used some of the techniques from these results, but
new ideas were also required. In particular, we had to ensure that in the constructed
instance of Closest Substring there is no solution where the center string is very
close to some substring. This is easy to ensure if d is unbounded, or if we can use the
additional features of Distinguishing Substring Selection. However, if d is a
parameter, then we have to develop new combinatorial machinery to make sure that
no solution can be close to some substring.

The W[1]-hardness of a problem is usually interpreted as evidence that the prob-
lem is unlikely to be fixed-parameter tractable, that is, the parameter has to appear
in the exponent of n. Furthermore, using recent connections with subexponential
algorithms, we can even give a lower bound on the exponent of n. Our reduction
for Closest Substring is “weak” in the sense that the parameters are significantly
increased (exponentially and double exponentially). Therefore, we obtain only weak
lower bounds on the exponent of n: all we can show is that the exponent cannot
be o(log d) or o(log log k). However, it turned out that these bounds are tight: we
presented two algorithms where the exponent of n is O(log d) and O(log log k), re-
spectively. The second algorithm is based on some surprising connections with the
extremal combinatorics of hypergraphs. We have introduced and investigated the
half-covering property, which played an important role in the algorithm. Further-
more, we have shown that all the copies of hypergraph H in hypergraph G can be
efficiently found if H has small fractional cover number. This result might be useful
in some other applications as well. More generally, the fractional cover number and
Shearer’s Lemma (which is the main combinatorial idea behind Lemma 4.1 and hence
behind Theorem 4.3) can be useful algorithmic tools in other contexts, see [22].

The same hypergraph techniques can be used in the case of the Consensus

Patterns problem. However, the combinatorial structure of this problem is slightly
different, and this slight difference allows us to obtain a uniformly polynomial time
algorithm with running time f(|Σ|, δ) · n9. Therefore, in the constant alphabet case
the problem is fixed-parameter tractable with parameter δ (and also with the larger
parameter D). This resolves another open question from [14].

The algorithms of Theorem 5.5 and Theorem 6.1 are based on the same idea: we
want to enumerate all the “small” places P in a large hypergraph G that are “well-
covered” in a certain sense. Our algorithms do this in a somewhat cumbersome way:
first every small well-covered hypergraph is enumerated, and then for each suchH , the
algorithm enumerates all the places where H appears in G. It might be possible to do
this in a more direct and elegant way. What we need is an algorithm that enumerates
maximal subset of vertices having the property that they can be fractionally covered

27

by weight k, and the running time is something like nO(k). Developing such an
algorithm could improve the running time of our algorithms, and, more importantly,
would give us more insight into the nature of fractional edge covers.

Our results present an example where parameterized complexity and subexponen-
tial algorithms are closely connected. First, a weak parameterized reduction might
be the sign that some kind of subexponential algorithm is possible for the problem.
On the other hand, a parameterized reduction can be used to show the optimality of
a subexponential algorithm. It is possible that this interplay between parameterized
complexity and subexponential algorithms appears in the case of some other problems
as well.

Acknowledgment. I’m grateful to Mike Fellows for directing my attention to
this problem and to Ildi Schlotter for reading the manuscript.

REFERENCES

[1] N. Alon, On the number of subgraphs of prescribed type of graphs with a given number of
edges, Israel J. Math., 38 (1981), pp. 116–130.

[2] A. Andoni, P. Indyk, M. Pǎtraşcu, On the optimality of the dimensionality reduction
method, in Proceedings of the 47th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’06), 2006, pp. 449–458.

[3] D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and
matchings, J. Comput. System Sci., 18 (1979), pp. 155–193.

[4] C. Bazgan, Schémas d’approximation et complexité paramétrée, tech. report, Université Paris
Sud, 1995.

[5] M. Blanchette, B. Schwikowski, and M. Tompa, Algorithms for phylogenetic footprinting,
J. Comput. Biol., 9 (2002), pp. 211–223.

[6] J. Buhler and M. Tompa, Finding motifs using random projections, in Proceedings of the
Fifth Annual International Conference on Computational Biology (RECOMB’01), 2001,
pp. 69–76.

[7] M. Cesati and L. Trevisan, On the efficiency of polynomial time approximation schemes,
Inform. Process. Lett., 64 (1997), pp. 165–171.

[8] J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I. Kanj, and G. Xia, Tight lower
bounds for certain parameterized NP-hard problems, in Proceedings of 19th Annual IEEE
Conference on Computational Complexity, 2004, pp. 150–160.

[9] J. Chen, X. Huang, I. A. Kanj, and G. Xia, Linear FPT reductions and computational lower
bounds, in Proceedings of the 36th Annual ACM Symposium on Theory of Computing, New
York, 2004, ACM, pp. 212–221.

[10] F. R. K. Chung, R. L. Graham, P. Frankl, and J. B. Shearer, Some intersection theorems
for ordered sets and graphs, J. Combin. Theory Ser. A, 43 (1986), pp. 23–37.

[11] R. G. Downey, Parameterized complexity for the skeptic, in Proceedings of the 18th IEEE
Annual Conference on Computational Complexity, 2003, pp. 147–169.

[12] R. G. Downey and M. R. Fellows, Parameterized Complexity, Monographs in Computer
Science, Springer-Verlag, New York, 1999.

[13] P. A. Evans, A. D. Smith, and H. T. Wareham, On the complexity of finding common
approximate substrings, Theoret. Comput. Sci., 306 (2003), pp. 407–430.

[14] M. R. Fellows, J. Gramm, and R. Niedermeier, On the parameterized intractability of motif
search problems, Combinatorica, 26 (2006), pp. 141–167.

[15] J. Flum and M. Grohe, Parameterized complexity and subexponential time, Bull. Eur. Assoc.
Theor. Comput. Sci. EATCS, (2004), pp. 71–100.

[16] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer-Verlag, Berlin, 2006.
[17] Y. M. Fraenkel, Y. Mandel, D. Friedberg, and H. Margalit, Identification of common

motifs in unaligned DNA sequences: application to Escherichia coli Lrp regulon, Computer
Applications in the Biosciences, 11 (1995), pp. 379–387.

[18] M. Frances and A. Litman, On covering problems of codes, Theory Comput. Syst., 30 (1997),
pp. 113–119.

[19] E. Friedgut and J. Kahn, On the number of copies of one hypergraph in another, Israel J.
Math., 105 (1998), pp. 251–256.

28

[20] J. Gramm, J. Guo, and R. Niedermeier, On exact and approximation algorithms for distin-
guishing substring selection, in Fundamentals of computation theory, vol. 2751 of Lecture
Notes in Comput. Sci., Springer, Berlin, 2003, pp. 195–209.

[21] J. Gramm, R. Niedermeier, and P. Rossmanith, Fixed-parameter algorithms for closest
string and related problems, Algorithmica, 37 (2003), pp. 25–42.

[22] M. Grohe and D. Marx, Constraint solving via fractional edge covers, in Proceedings of the
17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’06), New York, NY,
USA, 2006, ACM Press, pp. 289–298.

[23] D. Gusfield, Algorithms on strings, trees, and sequences, Cambridge University Press, Cam-
bridge, 1997.

[24] G. Hertz and G. Stormo, Identification of consensus patterns in unaligned DNA and protein
sequences: a large-deviation statistical basis for penalizing gaps., in Proceedings of the 3rd
International Conference on Bioinformatics and Genome Research, 1995, pp. 201–216.

[25] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential com-
plexity?, J. Comput. System Sci., 63 (2001), pp. 512–530. Special issue on FOCS 98 (Palo
Alto, CA).

[26] U. Keich and P. A. Pevzner, Finding motifs in the twilight zone, in Proceedings of the
Sixth Annual International Conference on Computational Biology (RECOMB’02), 2002,
pp. 195–204.

[27] J. K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang, Distinguishing string selection
problems, Inform. and Comput., 185 (2003), pp. 41–55.

[28] C. Lawrence and A. Reilly, An expectation maximization (EM) algorithm for the identifica-
tion and characterization of common sites in unaligned biopolymer sequences., Proteins,
7 (1990), pp. 41–51.

[29] M. Li, B. Ma, and L. Wang, Finding similar regions in many sequences, J. Comput. System
Sci., 65 (2002), pp. 73–96. Special issue on STOC, 1999 (Atlanta, GA).

[30] M. Li, B. Ma, and L. Wang, On the closest string and substring problems, J. ACM, 49 (2002),
pp. 157–171.

[31] P. A. Pevzner and S.-H. Sze, Combinatorial approaches to finding subtle signals in DNA
sequences, in Proceedings of the Eighth International Conference on Intelligent Systems
for Molecular Biology, AAAI Press, 2000, pp. 269–278.

[32] A. Price, S. Ramabhadran, and P. Pevzner, Finding subtle motifs by branching from sample
strings, Bioinformatics, 19 (2003), pp. II149–II155.

[33] I. Rigoutsos and A. Floratos, Combinatorial pattern discovery in biological sequences: The
TEIRESIAS algorithm, Bioinformatics, 14 (1998).

[34] G. Stormo, Consensus patterns in DNA., Methods in Enzymology, 183 (1990), pp. 211–221.
[35] G. J. Woeginger, Exact algorithms for NP-hard problems: a survey, in Combinatorial opti-

mization - eureka, you shrink!, Springer-Verlag New York, Inc., 2003, pp. 185–207.

29

