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Abstract

A k-clique-coloring of a graph G is an assignment of k colors to the vertices of G such that
every maximal (i.e., not extendable) clique of G contains two vertices with different colors. We
show that deciding whether a graph has a k-clique-coloring is Σp

2
-complete for every k ≥ 2. The

complexity of two related problems are also considered. A graph is k-clique-choosable, if for
every k-list-assignment on the vertices, there is a clique coloring where each vertex receives a
color from its list. This problem turns out to be Πp

3
-complete for every k ≥ 2. A graph G is

hereditary k-clique-colorable if every induced subgraph of G is k-clique-colorable. We prove that
deciding hereditary k-clique-colorability is also Πp

3
-complete for every k ≥ 3. Therefore, for all

the problems considered in the paper, the obvious upper bound on the complexity turns out to
be the exact class where the problem belongs.

1 Introduction

Clique coloring is a variant of the classical vertex coloring. In this problem, we have to satisfy weaker
requirements than in ordinary vertex coloring: instead of requiring that the two end points of each
edge have two different colors, we only require that every inclusionwise maximal (not extendable)
clique contains at least two different colors. It is possible that a graph is k-clique-colorable, but its
chromatic number is greater than k. For example, a clique of size n is 2-clique-colorable, but its
chromatic number is n. For recent results on clique coloring, see [1, 5, 2, 7, 8].

Clique coloring can be also thought of as coloring the clique hypergraph. Given a graph G(V,E),
the clique hypergraph C (G) of G is defined on the same vertex set V , and a subset V ′ ⊆ V is a
hyperedge of C (G) if and only if |V ′| > 1 and V ′ induces an inclusionwise maximal clique of G.
Duffus et al. [3] raised the question of k-coloring the hypergraph C (G), that is, assigning k colors
to the vertices of the C (G) such that every hyperedge contains at least two colors. Clearly, a graph
G is k-clique-colorable if and only if the hypergraph C (G) is k-colorable. Note that if the graph G

is triangle-free, then the maximal cliques are the edges, hence C (G) is the same as G and therefore
in this case G is k-clique-colorable if and only if it is k-vertex-colorable.

In general, clique coloring can be a very different problem from ordinary vertex coloring. The
most notable difference is that clique coloring is not a hereditary property: it is possible that a graph
is k-clique-colorable, but it has an induced subgraph that is not. The reason why this can happen is
that deleting vertices can create new inclusionwise maximal cliques: it is possible that in the original
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graph a clique is contained in a larger clique, but after deleting some vertices this clique becomes
maximal. Another difference is that a large clique is not an obstruction for clique colorability: even
2-clique-colorable graphs can contain arbitrarily large cliques. In fact, it is conjectured that every
prefect graph (or perhaps every odd-hole free graph) is 3-clique-colorable (see [1]). There are no
counterexamples known for this conjecture, but so far only some special cases have been proved.

In this paper we prove complexity results for clique coloring and related problems. Clique
coloring is harder than ordinary vertex coloring: it is coNP-complete even to check whether a 2-
clique-coloring is valid [1]. The complexity of 2-clique-colorability is investigated in [8], where they
show that it is NP-hard to decide whether a perfect graph is 2-clique-colorable. However, it is not
clear whether this problem belongs to NP. A valid 2-clique-coloring is not a good certificate, since
we cannot verify it in polynomial time: as mentioned above, it is coNP-complete to check whether a
2-clique-coloring is valid. In Section 3 we determine the exact complexity of the problem: we show
that it is Σp

2-complete to check whether a graph is 2-clique-colorable.
A graph is k-clique-choosable if whenever a list of k colors is assigned to each vertex (the lists of

the different vertices do not have to be the same), then the graph has a clique coloring where the
color of each vertex is taken from its list. This notion is an adaptation of choosability introduced
for graphs independently by Erdős, Rubin, and Taylor [4] and by Vizing [13]. In [10] it is shown
that every planar or projective planar graph is 4-clique-choosable. In Section 4 we investigate the
complexity of clique-choosability. It turns out that the complexity of clique-choosability lies higher
in the polynomial hierarchy than either clique-coloring or choosability: we show that for every k ≥ 2
it is Πp

3-complete to decide whether a graph is k-clique-choosable or not.
As mentioned above, a k-clique-colorable graph can contain an induced subgraph that is not k-

clique-colorable. Therefore, it is natural to investigate graphs that are hereditary k-clique-colorable:
graphs where every induced subgraph is k-clique-colorable. For example, Bacsó et al. [1] asked
the complexity of recognizing hereditary 2-clique-colorable graphs. While we cannot answer this
question for the case of 2 colors, in Section 5 we show that recognizing such graphs is Πp

3-complete
for every k ≥ 3.

The results of the paper determine the exact complexity of certain fairly natural coloring prob-
lems. It turns out that these problems are complete for higher levels the polynomial hierarchy, which
is interesting, since there are relatively few natural complete problems known for these classes (see
[12]). These completeness results give us more information than knowing that the problems are
NP-hard, because they also rule out the possibility that the problems are in NP or coNP (unless
the polynomial hierarchy collapses). The message of these results is that the problems are “as hard
as possible”: they are complete for the classes they obviously belong to. If we know that a problem
belongs to, say, Πp

3, then with some clever insight or structural understanding we might be able to
show that the problem actually belongs to a class on a lower level, e.g., Πp

2 or NP. However, for the
problems considered in the paper, the completeness results show that there are no such insights to
look for.

2 Preliminaries

In this section we introduce notation and make some preliminary observations about clique colorings.
We also introduce the complexity classes that appear in our completeness results.

Clique coloring. A clique is a complete subgraph of at least 2 vertices. A clique is maximal if
it cannot be extended to a larger clique. An edge is flat if it is not contained in any triangle. Since
a flat edge is a maximal clique of size 2, the two end vertices of a flat edge receive different colors in
every proper clique coloring. The core of G is the subgraph containing only the flat edges. Clearly,
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Figure 1: The graph is 2-clique-colorable, but it does not remain 2-clique-colorable after deleting
the central vertex.

a proper clique coloring of G is a proper vertex coloring of the core of G. A vertex v of G is simple
if it is not contained in any triangle, or, equivalently, all the edges incident to it are flat.

Unlike k-vertex-coloring, a k-clique-coloring of the graph G does not necessarily give a proper
k-clique-coloring for the induced subgraphs of G. It is possible that deleting vertices from G makes it
impossible to k-clique-color it. For example, the 5-wheel shown in Figure 1 is 2-clique-colorable, but
after deleting the central vertex, the remaining C5 is not (since it is triangle free and not 2-vertex-
colorable). On the other hand, the following proposition shows that G remains k-clique-colorable if
we delete only simple vertices:

Proposition 1. Let S ⊆ V be a set of simple vertices in G(V,E). If ψ is a proper clique coloring
of G, then ψ induces a proper clique coloring of G \ S.

Proof. Consider the coloring ψ′ of G\S induced by ψ. If ψ′ is not a clique coloring of G, then there
is a monochromatic maximal clique K in G \ S. This is not a maximal clique in G, otherwise ψ
would not be a proper k-clique-coloring. Therefore, K is properly contained in a maximal clique K ′

of G. Since K ′ is not a maximal clique of G \S, it contains at least one vertex v of S. However, K ′

has size at least 3, contradicting the assumption that vertex v ∈ S is simple.

The following two propositions will also be useful:

Proposition 2. Let S ⊆ V be an arbitrary subset of the vertices in G(V,E). If ψ induces a proper
clique coloring of G \ S, and every vertex in S has different color from its neighbors, then ψ is a
proper clique coloring of G.

Proof. Suppose that G has a monochromatic maximal clique K in coloring ψ. If K contains a
vertex v ∈ S, then K is not monochromatic, as v has different color from its neighbors. Thus K
is completely contained in G \ S and hence it is a maximal clique of G \ S. This contradicts the
assumption that ψ induces a proper clique coloring of G \ S.

Proposition 3. Let S ⊆ V be the set of simple vertices in G(V,E). If ψ is a k-clique-coloring of
G, then it induces a proper k-vertex-coloring of G[S], the graph induced by S.

Proof. Observe that every edge in G[S] is a flat edge and hence they are maximal cliques in G.
Therefore, ψ assigns different colors to the end vertices of every edge in G[S], thus it induces a
proper k-vertex-coloring of G[S].

Polynomial hierarchy. We briefly recall the definitions of the complexity classes in the poly-
nomial hierarchy; for more details and background, the reader is referred to any standard textbook
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on computational complexity, e.g., [11]. The complexity class Σp
2 = NPNP contains those problems

that can be solved by a polynomial-time nondeterministic Turing machine equipped with an NP-
oracle. An oracle can be thought of as a subroutine that is capable of solving a certain problem in
one step. More formally, let L be a language. A Turing machine equipped with an L oracle has
a special tape called the oracle tape. Whenever the Turing machine wishes, it can ask the oracle
whether the contents of the oracle tape is a word from L or not (there are special states for this
purpose). Asking the oracle counts as only one step. If the language L is simple, then this oracle
does not help very much. On the other hand, if L is a computationally hard language, then this
oracle can increase the power of the Turing machine. We say that a Turing machine is equipped
with an NP-oracle, if the language L is NP-complete. Note that here it is not really important
which particular NP-complete language is L: any NP-complete language gives the same power to
the Turing machine, up to a polynomial factor. Thus the class Σp

2 contains those problems that can
be solved by a polynomial-time nondeterministic Turing machine if one NP-complete problem (say,
the satisfiability problem) can be solved in constant time.

Similarly to SAT, which is the canonical complete problem for NP, the problem QSAT2 is the
canonical Σp

2-complete problem:

2-Quantified Satisfiability (QSAT2)

Input: An n + m variable boolean 3DNF formula ϕ(x,y) (where x =
(x1, . . . , xn), y = (y1, . . . , ym))

Question: Is there a vector x ∈ {0, 1}n such that for every y ∈
{0, 1}m, ϕ(x,y) is true? (Shorthand notation: Is it true that
∃x∀yϕ(x,y)?)

Recall that a 3DNF (disjunctive normal form) formula is a disjunction of terms, where each term is
a conjunction of 3 literals. The complexity class Πp

2 contains those languages whose complements
are in Σp

2.
The class Σp

3 contains the problems solvable by a polynomial-time nondeterministic Turing ma-
chine equipped with a Σp

2 oracle. The following problem is complete for Σp
3:

3-Quantified Satisfiability (QSAT3)

Input: An n + m + p variable boolean 3CNF formula ϕ(x,y, z) (x =
(x1, . . . , xn), y = (y1, . . . , ym), z = (z1, . . . , zp))

Question: Is there a vector x ∈ {0, 1}n such that for every y ∈ {0, 1}m, there
is a vector z ∈ {0, 1}p with ϕ(x,y, z) true? (Shorthand notation:
Is it true that ∃x∀y∃zϕ(x,y, z)?)

Similarly to NP, the classes Σp
2, Σp

3, etc. have equivalent characterizations using certificates. A
problem is in NP if there is a polynomial-size certificate for each yes-instance, and verifying this
certificate is a problem in P. The characterization of the class Σp

2 is similar, but here we require only
that verifying the certificate is in coNP(cf. [11] for more details). For example, to see that QSAT2

is in Σp
2
, observe that if the formula ϕ(x,y) is a yes-instance, then an assignment x0 satisfying

∀yϕ(x0,y) is a good certificate. To verify the certificate, we have to check that ∀yϕ(x0,y) holds,
or equivalently, we have to check whether there is a y such that ϕ(x0,y) is false. This verification
problem is in coNP, hence QSAT2 is in Σp

2. For the proof that QSAT2 is hard for Σp
2, see e.g., [11].

A problem is in Πp
2 if there is a polynomial-size certificate for every no-instance, and verifying

this certificate is a problem in NP. The higher levels can be obtained by requiring that verifying
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the certificate is a problem on the previous level: for example, for Πp
3, we require that verifying the

certificates for the no-instances is a problem in Σp
2.

Repeating this construction, we obtain the polynomial hierarchy: let Σp
i+1

contain those problems
that can be solved by a polynomial-time nondeterministic Turing machine equipped with a Σp

i -oracle.
The class Πp

i contains a language if its complement is in Σp
i . The definition of these classes might

seem very technical, but as the results in this paper and in the compendium [12] demonstrate, there
exist fairly natural problems whose complexities are exactly characterized by these classes.

3 Complexity of clique coloring

In this section we investigate the complexity of the following problem:

k-Clique-Coloring

Input: A graph G(V,E)
Question: Is there a k-clique-coloring of G, i.e., an assignment c: V →

{1, 2, . . . , k} such that for every maximal clique K of G, there are
two vertices u, v ∈ K with c(u) 6= c(v)?

Unlike ordinary vertex coloring, which is easy for two colors, this problem is hard even for k = 2:

Theorem 4. 2-Clique-Coloring is Σp
2-complete.

Proof. To see that k-Clique-Coloring is in Σp
2, notice that the problem of verifying whether a coloring

is a proper k-clique-coloring is in coNP: a monochromatic maximal clique is a polynomial-time
verifiable certificate that the coloring is not proper. A proper k-clique-coloring is a certificate that
the graph is k-clique-colorable, and this certificate can be verified in polynomial time if an NP-oracle
is available. Thus clearly the problem is in NPNP = Σp

2.
We prove that 2-Clique-Coloring is Σp

2-hard by a reduction from QSAT2. For a formula ϕ(x,y),
we construct a graph G that is 2-clique-colorable if and only if there is an x ∈ {0, 1}n such that
ϕ(x,y) is true for every y ∈ {0, 1}m. Graph G has 4(n +m) + 2q vertices, where q is the number
of terms in ϕ. For every variable xi (1 ≤ i ≤ n), the graph contains a path on 4 vertices xi, x

′
i, x

′
i,

xi. For every variable yj (1 ≤ j ≤ m), the graph contains 4 vertices yj, y
′
j, yj , y

′
j . Vertices y′j and

yj are adjacent, and vertices y′j and yj are adjacent for every 1 ≤ j ≤ m. Furthermore, the vertices
xi, xi, yj, yj form a clique of size 2(n+m) minus a matching: there are no edges between xi and xi

(1 ≤ i ≤ n), and between yj and yj (1 ≤ j ≤ m).
For every term Pℓ (1 ≤ ℓ ≤ q) of the DNF formula ϕ, the graph contains two vertices pℓ and

p′ℓ. These vertices form a path p1, p
′
1, p2, p

′
2, . . . , pq, p

′
q of 2q vertices. For every 1 ≤ i ≤ m, vertex

p′q is connected to y′i and y′i. Vertex pℓ is connected to those literals that correspond to literals not
contradicting Pℓ. That is, if xi (resp., xi) is in Pℓ, then pℓ and xi (resp., xi) are connected. (We
can assume that at most one of xi and xi appears in a term, otherwise this term is never satisfied
and can be removed without changing the problem.) If neither xi nor xi appears in Pℓ, then pℓ

is connected to both xi and xi. Vertices yj and yj are connected to pℓ in a similar fashion. This
completes the description of the graph G. An example is shown in Figure 2. Notice that ϕ(x,y) is
true for some variable assignment x, y if and only if there is a vertex pℓ such that it is connected to
all the n+m vertices corresponding to the true literals of x, y.

Assume that x ∈ {0, 1}n is such that ϕ(x,y) is true for every y ∈ {0, 1}m. We define a 2-clique-
coloring of the graph G based on x. Vertices pℓ (1 ≤ ℓ ≤ q) and y′j, y

′
j (1 ≤ j ≤ m) are colored

white. If xi is true in x, then vertices x′i and xi are colored white, while vertices xi and x′i are
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x2 x2 x3 x3 y1 y1 y2 y2

y′2

x1

p3

p′3

p′2p2p′1p1

x′1 x′1 x′2 x′2 x′3 x′3 y′1 y′1 y′2

x1

Figure 2: The construction for the formula ϕ = (x1 ∧ x2 ∧ y2) ∨ (x1 ∧ x3 ∧ y2) ∨ (x1 ∧ x2 ∧ y1). The
vertices x1, x1, x2, . . . , y2, y2 form a clique minus the five dashed edges. The strong edges are all
flat. The coloring shown on the figure is a proper 2-clique-coloring, implying that x1 = 1, x2 = 0,
x3 = 1 satisfy ϕ regardless of the values of y1 and y2.

black; if xi is false in x, then vertices x′i and xi are colored black, and vertices xi, x
′
i are white. The

remaining vertices are black.
It can be verified that the coloring defined above properly colors every flat edge of the graph.

Now suppose that there is a monochromatic maximal clique K of size greater than two. Since
vertices x′i, x

′
i, y

′
j, y

′
j, p

′
ℓ are simple vertices, they cannot appear in K. Assume first that K is

colored white, then it contains some of the 2n vertices xi, xi (1 ≤ i ≤ n), and at most one of the
vertices pℓ (1 ≤ ℓ ≤ q) (the vertices yj, yj are all black). However, this clique is not maximal:
pℓ is connected to at least one of y1 and y1, therefore K can be extended by one of these two
vertices. Now suppose that K is colored black, then it can contain only vertices of the form xi, xi,
yj , yj . Furthermore, for every 1 ≤ i ≤ n, clique K contains exactly one of xi and xi, and for every
1 ≤ j ≤ m, clique K contains exactly one of yj and yj , otherwise K is not a maximal clique. Define
the vector y such that variable yj is true if and only if vertex yj is in K. By the assumption on x,
the value of ϕ(x,y) is true, therefore there is a term Pℓ that is satisfied in ϕ(x,y). We claim that
K ∪ {pℓ} is a clique, contradicting the maximality of K. To see this, observe that xi ∈ K if and
only if the value of variable xi is true in x. Therefore, K contains those vertices that correspond to
true literals in the assignment (x,y). This assignment satisfies term Pℓ, thus these literals do not
contradict Pℓ. By construction, these vertices are connected to pℓ, and K ∪ {pℓ} is indeed a clique.

Now assume that G is 2-clique-colored, and suppose without loss of generality that p1 is white.
Since {pℓ, p

′
ℓ} and {p′ℓ, pℓ+1} are maximal cliques, pℓ is white and p′ℓ is black for every 1 ≤ ℓ ≤ q.

Because {p′q, y
′
j} and {p′q, y

′
j} are maximal cliques for every 1 ≤ j ≤ m, every y′j and every y′j is

white. Since {yj , y
′
j}, {y

′
j, y

′
j} are maximal cliques, we also have that yj and yj are colored black for

every 1 ≤ j ≤ m. Finally, {xi, x
′
i}, {x

′
i, x

′
i}, {x

′
i, xi} are also maximal cliques, thus xi and xi have

different color.
Define the vector x as variable xi is true if and only if the color of vertex xi is black. We show

that ϕ(x,y) is true for every y. Let K be the set of n + m vertices that correspond to the true
literals in the assignment x, y; note that K induces a clique in G. By the way x is defined and
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yx

Figure 3: The graph D4, which is the Mycielski graph M4 (the Grötzch graph) minus the edge xy.
In every 3-vertex-coloring, x and y have the same color.

from the fact that every yj, yj is black, we have that every vertex of K is black. Since the coloring
is a proper 2-clique-coloring, clique K is not a maximal clique of G. The only way to increase it
is by adding a pℓ, that is, some pℓ is adjacent with every vertex representing a true literal. By
construction, this means that none of the true literals contradict the term Pℓ, implying that ϕ(x,y)
is true.

We show that the hardness result holds for every k > 2 as well. The proof is by reducing k-
clique-colorability to (k+1)-clique-colorability. The reduction uses the Mycielski graphs as gadgets.

For every k ≥ 2, the construction of Mycielski gives a triangle-free graph Mk with chromatic
number k. For completeness, we recall the construction here. For k = 2, the graph M2 is a K2, i.e.,
two vertices connected by an edge. To obtain the graph Mk+1, take a copy of Mk, let v1, v2, . . . , vn

be its vertices. Add n+1 new vertices u1, u2, . . . , un, w, connect ui to the neighbors of vi in Mk, and
connect w to every vertex ui. It can be shown that Mk+1 is triangle-free, and χ(Mk+1) = χ(Mk)+1.
Moreover, Mk is edge-critical (see [9, Problem 9.18]): for every edge e of Mk, the graph Mk \ e is
(k − 1)-colorable. Remove an arbitrary edge e = xy of Mk and denote by Dk the resulting graph
(see D4 in Figure 3). It follows that in every (k − 1)-coloring of Dk, the vertices x and y have the
same color, otherwise it would be a proper (k − 1)-coloring of Mk.

The following corollary shows that k-Clique-Coloring remains Σp
2-complete for every k > 2 (note

that the problem becomes trivial for k = 1).

Corollary 5. k-Clique-Coloring is Σp
2-complete for every k ≥ 2.

Proof. For every k ≥ 2, we give a polynomial-time reduction from k-Clique-Coloring to (k + 1)-
Clique-Coloring. By Theorem 4, 2-Clique-Coloring is Σp

2-complete, thus the theorem follows by
induction.

Let G be a graph with n vertices v1, v2, . . . , vn. Add n+1 vertices u1, u2, . . . , un, w, and connect
every vertex ui with vi. Furthermore, add n copies of the graph Dk+2 such that vertex x of the
i-th copy is identified with w, and vertex y is identified with ui. Denote the new vertices added
to G by W , observe that every vertex in W is simple. We claim that the resulting graph G′ is
(k + 1)-clique-colorable if and only if G is k-clique-colorable.

Assume first that there is a (k + 1)-clique-coloring ψ of G′, we show that it induces a k-clique-
coloring of G. By Prop. 3, G′[W ] is (k + 1)-vertex-colored in ψ, thus the construction of the graph
Dk+2 implies that ψ(w) = ψ(u1) = · · · = ψ(un) = α, and none of the vertices v1, v2, . . . , vn has color
α. Hence ψ uses at most k colors on G = G′ \W , and by Prop. 1, it is a proper k-clique-coloring.

On the other hand, if there is a proper k-clique-coloring of G, then color the vertices u1, . . . , un, w

with color k + 1, and extend this coloring to the copies of the graph Dk+2 in such a way that the
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coloring is a proper (k + 1)-vertex-coloring on every copy of Dk+2. By Prop. 2, this results in a
proper (k+1)-clique coloring of G′, since each vertex in W has different color from its neighbors.

4 Clique choosability

In this section we investigate the list coloring version of clique coloring. In a k-clique-coloring the
vertices can use only the colors 1, 2, . . . , k. In the list coloring version, each vertex v has a set L(v)
of k admissible colors, the color of the vertex has to be selected from this set. A list assignment
L is a k-list assignment if the size of L(v) is k for every vertex v. We say that a graph G(V,E) is
k-clique-choosable, if for every k-list assignment L: V → 2N there is a proper clique coloring ψ of G
with ψ(v) ∈ L(v). We investigate the computational complexity of the following problem:

k-Clique-Choosability

Input: A graph G(V,E)
Question: Is G k-clique-choosable?

Rubin [4] characterized 2-vertex-choosable graphs. In particular, trees and cycles of even length
are 2-vertex-choosable. The characterization can be turned into a polynomial-time algorithm for
recognizing 2-vertex-choosable graphs. Therefore, 2-vertex-coloring and 2-vertex-choosability have
the same complexity, both can be solved in polynomial time. However, 3-vertex-choosability is harder
than 3-vertex-coloring: the former is Πp

2-complete [6], whereas the latter is “only” NP-complete. The
situation is different in the case of clique coloring: we show that the 2-Clique-Choosability problem
is more difficult than 2-Clique-Coloring, it lies one level higher in the polynomial hierarchy.

Theorem 6. 2-Clique-Choosability is Πp
3
-complete.

Proof. Notice first that deciding whether a graph has a proper clique coloring with the given lists
is in Σp

2: a proper clique coloring is a certificate proving that such a coloring exists, and verifying
this certificate is in coNP. Therefore, k-Clique-Choosability is in Πp

3: if the graph is not k-clique-
choosable, then an uncolorable list assignment exists, which is a Σp

2 certificate showing that the
graph is not k-clique-choosable.

We prove that the 2-Clique-Choosability problem is Πp
3-hard by reducing QSAT3 to the comple-

ment of 2-Clique-Choosability. That is, for every 3CNF formula ϕ(x,y, z), a graph G is constructed
in such a way that G is not 2-clique-choosable if and only if ∃x∀y∃zϕ(x,y, z) holds.

Before describing the construction of the graph G in detail, we present the outline of the proof.
Assume first that a vector x exists with ∀y∃zϕ(x,y, z), it has to be shown that G is not 2-clique-
choosable. Based on this vector x, we define a 2-list assignment L of G, and claim that G is not
clique colorable with this assignment. If, on the contrary, such a coloring ψ exists, then a vector y
is defined based on this coloring. By assumption, there is a vector z with ϕ(x,y, z) true. Based on
vectors x, y, z, we construct a clique K that is monochromatic in ψ, a contradiction. This direction
of the proof is summarized in the following diagram:

A vector
x with

∀y∃zϕ(x,y, z)
⇒

A list
assignment L

for G

⇒
An L-coloring

ψ of G′ ⇒ A vector y ⇒
A vector
z with

ϕ(x,y, z) = 1
⇒

A
monochromatic
clique K in ψ

The other direction is to prove that if G is not 2-clique-choosable, then ∃x∀y∃zϕ(x,y, z). The
outline of this direction is the following. Given an uncolorable 2-list assignment L, we define a
vector x. Assume indirectly that there is a vector y with ∄zϕ(x,y, z). Based on this vector y, an
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L-coloring ψ of G is defined. By assumption, ψ is not a proper clique coloring, thus it contains a
monochromatic maximal clique K. Based on K, a vector z is constructed satisfying ϕ(x,y, z), a
contradiction. The summary of this direction:

A list
assignment L

for G

⇒ A vector x ⇒
A vector y with

∄zϕ(x,y, z)
⇒

An L-coloring
ψ of G

⇒
A

monochromatic
clique K in ψ

⇒
A vector
z with

ϕ(x,y, z) = 1

Now we define graph G. The three different types of variables are represented by vertices that
have different roles. The vertices representing the x-variables can be forced by a list assignment to
a coloring representing an assignment to the variable. The color of the vertices representing the y-
variables cannot be forced to a fixed color, thus a coloring can freely choose a coloring that represents
an assignment to a variable. Finally, the vertices corresponding to the z-variables can be forced to
have the same color, thus these vertices play a role only in the selection of the monochromatic
maximal clique.

For every variable xi (1 ≤ i ≤ n), the graph G contains a cycle on 4 the vertices xi, x
′
i, xi, x

′
i

(see Figure 4). For every variable yj (1 ≤ j ≤ m), there is a path on 4 the vertices yj, y
′
j, y

′
j, yj .

For every variable zk (1 ≤ k ≤ p), there are two 4-cycles zk, z
1
k, z2

k, z3
k and zk, z

1
k, z

2
k, z

3
k. For every

clause Cℓ of ϕ (1 ≤ ℓ ≤ q), there is a 4-cycle cℓ, c
1
ℓ , c

′
ℓ, c

2
ℓ . The edges defined so far are all flat

edges in G, they form the core of G. The following edges appear in cliques greater than 2. The
2n+2m+2p+q vertices H = {xi, xi, yj, yj , zk, zk, c

′
ℓ} almost form a clique: the n+m+p edges xixi,

yiyi, zkzk are missing from the graph. Observe that every edge in H is contained in a triangle: c′1 is
adjacent to every other vertex in H. For every 1 ≤ ℓ ≤ q, vertex cℓ is connected to every vertex that
corresponds to a literal not satisfying clause Cℓ. That is, if variable xi does not appear in clause
Cℓ, then ci is connected to xi and xi, and if variable xi appears in Cℓ (but xi does not), then ci is
connected to xi. Note that we can assume that a variable and its negation do not appear in the
same clause, since in this case every assignment satisfies the clause. Thus cℓ is adjacent to at least
one of the two literals representing each variable. As the vertices representing different variables are
adjacent and there are at least two variables in φ, the edges connecting cℓ and H are not flat edges.
This completes the description of the graph G.

The maximal cliques of G are of the following type. Every flat edge is a maximal clique of size
2. Among the vertices outside H, only {c1, . . . , cq} are not simple and they form an independent
set. Thus if K is of size greater than 2, then K contains at most one vertex of cℓ and K \ {cℓ} is
fully contained in H. Furthermore, K \{cℓ} contains exactly one of xi and xi, exactly one of yj and
yj , and exactly one of zj and zk for every i, j, and k: for example, cℓ is connected to at least one
of xi and xi, thus if neither of this two vertices is in the clique, then the clique cannot be maximal.

Assume first that there is an x ∈ {0, 1}n such that ∀y∃zϕ(x,y, z) holds, we show that there is
a list assignment L to the vertices of G such that no proper clique coloring is possible with these
lists. We make the following list assignments:

• If xi is true in x, then set L(xi) = {1, 2}, L(x′i) = {2, 3}, L(xi) = {1, 3}, L(x′i) = {1, 2}. This
list assignment forces xi to color 1: giving color 2 to xi would imply that there is color 3 on
x′i and there is color 1 on x′i, which means that there is no color left for xi.

• If xi is false, then set L(xi) = {1, 3}, L(x′i) = {2, 3}, L(xi) = {1, 2}, L(x′i) = {1, 2}, forcing xi

to color 1.

• For every 1 ≤ k ≤ p, we set L(zk) = L(zk) = {1, 2}, L(z1
k) = L(z1

k) = {2, 3}, L(z2
k) = L(z2

k) =
{1, 3}, L(z3

k) = L(z3
k) = {1, 2}, forcing zk and zk to color 1.
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Figure 4: The structure of graph G in the proof of Theorem 6 for n = 2, m = 2, p = 2, q = 3. The
set H almost forms a clique, the pairs connected by dashed lines are not neighbors. For the sake of
clarity, the edges connecting the clause vertices c1, c2, c3 to the vertices representing the literals are
omitted.

• For every 1 ≤ ℓ ≤ q, we set L(cℓ) = {1, 2}, L(c1ℓ ) = {1, 3}, L(c′ℓ) = {1, 3}, L(c2ℓ ) = {2, 3},
forcing c′ℓ to color 1.

Set L(v) = {1, 2} for every other vertex v. We claim that there is no proper clique coloring with
these list assignments.

Assume that, on the contrary, there is a proper clique coloring ψ. For every 1 ≤ j ≤ m,
exactly one of yj and yj have color 1, since edges yjy

′
j, y

′
jy

′
j, y

′
jyj are flat edges. Define the vector

y ∈ {0, 1}m such that variable yj is true if and only if yj has color 1. By assumption, there is a
vector z such that ϕ(x,y, z) holds. Based on x, y, and z, we can define a clique K of G as follows:

• xi ∈ K iff xi is true,

• xi ∈ K iff xi is false,

• yj ∈ K iff yj is true,

• yj ∈ K iff yj is false,

• zk ∈ K iff zk is true,

• zk ∈ K iff zk is false, and

• c′ℓ for every 1 ≤ ℓ ≤ q.

Notice that every vertex in clique K has color 1: if xi is true (resp., false) then the list assignments
force xi (resp., xi) to color 1. Moreover, exactly one of yj and yj have color 1, and the definition of y
and K implies that from these two vertices, the one with color 1 is selected into K. By assumption,
ψ is a proper clique coloring, therefore K is not a maximal clique. It is clear that only a vertex cℓ
can extend K to a larger clique, thus there is a cℓ such that K ∪ {cℓ} is also a clique. However, by
the construction, this means that in ϕ(x,y, z), no variable satisfies clause Cℓ, a contradiction.

To prove the other direction, we show that if there is a list assignment L not having a proper
clique coloring, then ∃x∀y∃zϕ(x,y, z) holds. The core of G is the disjoint union of trees and even
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cycles, hence it is 2-choosable (see [4]). We need the following observation, which can be proved by
a simple case analysis:

Claim 7. Consider a 2-list assignment L of a 4-cycle x1, x2, x3, x4 such that c(x1) = 1 for every
list coloring c. Then there is a list coloring c with c(x3) 6= 1.

That is, if a list assignment forces a vertex to some color, then it cannot force the opposite vertex
to the same color.

Let us choose a coloring of the core of G. If c′1, . . . , c
′
ℓ are not all of the same color, then this is a

proper clique coloring: we have seen above that every maximal clique of size greater than 2 contains
{c′1, . . . , c

′
q}. Thus we can assume that the list assignment of the 4-cycles on c′1, . . . , c

′
ℓ force them

to the same color 1. By Claim 7, we can choose a coloring where none of c1, . . . , cℓ has color 1.
The 4-cycle formed by the vertices xi, x

′
i, xi, x

′
i is 2-choosable, thus it can be colored with the

given lists. By Claim 7, we can choose a coloring that does not assign color 1 to both xi,1 and xi,1.
Define the vector x ∈ {0, 1}n such that variable xi is true if and only if vertex xi has color 1.

By assumption, ∃x∀y∃zϕ(x,y, z) does not hold, thus in particular ∀y∃zϕ(x,y, z) is false. There-
fore, there is a vector y ∈ {0, 1}m such that ∃zϕ(x,y, z) does not hold. Based on the vector y, we
continue the coloring of G. The path yj, y

′
j, y

′
j , yj can be colored with the lists. Moreover, this path

has a coloring such that yj does not have color 1, and it has another coloring where yj does not have
color 1. If yj is true (resp., false), then let us color the path in such a way that yj (resp., yj) has a
color different from 1. We claim that this coloring is a proper clique coloring. Since the coloring is
a proper vertex coloring of the core of G, it is sufficient to check the maximal cliques greater than
2. Suppose that K is such a monochromatic maximal clique. As K contains the vertices c′1, . . . ,
c′ℓ having color 1, every vertex in K has color 1. This implies that K does not contain any of the
vertices cℓ, since we have assigned colors different from 1 to these vertices. Therefore, K is fully
contained in H. For every 1 ≤ k ≤ p, clique K contains exactly one of zk and zk. Define the vector
z ∈ {0, 1}p such that variable zk is true if and only if zk ∈ K. Clique K contains exactly one of
xi and xi. Since K contains only vertices with color 1, and at most one of xi and xi has color 1,
we have that xi ∈ K if and only if xi is true. Similarly, K contains exactly one of yi and yi, more
precisely, yi ∈ K if and only if yi is true. To arrive to a contradiction, we show that ϕ(x,y, z) is true.
Suppose that clause Cℓ is not satisfied by this variable assignment. The vertices in K correspond
to the true literals in the variable assignment x,y, z, therefore by the construction, cℓ is connected
to every vertex in K, contradicting the assumption that K is a maximal clique.

The k-Clique-Choosability problem remains Πp
3-complete for every k > 2. The proof is similar

to the proof of Corollary 5: the case k is reduced to the case k+1 by attaching some special graphs.
However, here we attach complete bipartite graphs instead of Mycielski graphs.

Lemma 8. There is a k-vertex-choosable bipartite graph Bk with a distinguished vertex x such that
for every color c there is a k-list assignment where every list coloring assigns color c to vertex x.

Proof. We claim that the complete bipartite graph Bk = Kk,kk−1 is such a graph, with x ∈ V1 being
any vertex of the smaller class V1. To see that Bk is k-vertex-choosable, consider a k-list assignment
L and assume first that L(u) ∩ L(v) 6= ∅ for some u, v ∈ V1. In this case the k vertices in V1 can be
colored such that they receive at most k − 1 distinct colors, thus every vertex w ∈ V2 can be given
a color from L(w) that is not used by the vertices in V1. If the lists in V1 are disjoint, then V1 can
be colored in kk different ways, every such coloring assigns a different set of k colors to the vertices
in V1. A coloring of V1 can be extended to V2 unless there is a vertex w ∈ V2 whose list contains
exactly the k colors used by V1. Since there are only kk − 1 vertices in V2, they can exclude at most
kk − 1 colorings of V1, thus at least one of the kk different colorings of V1 can be extended to V2.
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On the other hand, let V1 = {v1, . . . , vk} and L(vi) = {ci,1, ci,2, . . . , ci,k}. There are kk sets of
the form {c1,i1 , c2,i2 , . . . , ck,ik} with 1 ≤ i1, i2, . . . , ik ≤ k. Assign these sets, with the exception
of {c1,1, c2,1, . . . , ck,1}, to the vertices in V2. It is easy to see that with these list assignments,
every coloring gives color ci,1 to vertex vi. Therefore, setting x = v1 and c = c1,1 satisfies the
requirements.

Corollary 9. For every k ≥ 2, k-Clique-Choosability is Πp
3-complete.

Proof. For every k ≥ 2, we give a polynomial-time reduction from k-Clique-Choosability to (k+ 1)-
Clique-Choosability. By Theorem 6, the problem 2-Clique-Choosability is Πp

3-complete, thus the
theorem follows by induction.

Let G(V,E) be a graph with n vertices v1, v2, . . . , vn. Add n disjoint copies of the graph Bk+1

(Lemma 8) such that vertex xi, which is the distinguished vertex x of the i-th copy, is connected
to vi. Denote by W the new vertices added to G. Observe that every vertex in W is simple (Bk+1

is bipartite, thus it does not contain triangles). We claim that the resulting graph G′(V ∪W,E′) is
(k + 1)-clique-choosable if and only if G is k-clique-choosable.

Assume first that G′ is (k+ 1)-clique-choosable, we show that G is k-clique-choosable. Let L be
an arbitrary k-assignment of G. Let c be a color not appearing in L. Define the (k+ 1)-assignment
L′ as L′(v) = L(v) ∪ {c} for every v ∈ V , and extend L′ to W (i.e., to the copies of Bk+1) in such a
way that in every list coloring of G′, the vertex xi of every copy receives the color c. By assumption,
G′ has a clique coloring ψ with the lists L′. By Prop. 3, ψ is a proper vertex coloring of W , therefore
ψ(xi) = c for every 1 ≤ i ≤ n. Thus ψ(vi) 6= c and ψ(vi) ∈ L(vi) follow, hence ψ induces a list
coloring of G. Moreover, by Prop. 1, ψ is a proper clique coloring of G, proving this direction of the
reduction.

Now assume that G is k-clique-choosable, it has to be shown that G′ is (k+ 1)-clique-choosable.
Let L be a (k + 1)-list assignment of V ∪W . Since Bk+1 is (k + 1)-choosable, every copy of Bk+1

can be colored with these lists, let ψ be this coloring of W . Define the k-assignment L′ of V as
L′(vi) = L(vi)\{ψ(xi)} if ψ(xi) ∈ L(vi), otherwise let L′(vi) an arbitrary k element subset of L(vi).
By assumption, there is a proper clique coloring of V with the lists L′, extend ψ to V with these
assignment of colors. By Prop. 2, ψ is also a proper clique coloring of G′.

5 Hereditary clique coloring

Graph G is hereditary k-clique-colorable if every induced subgraph of G is k-clique-colorable. Since
clique coloring is not a hereditary property in general, an induced subgraph of a k-clique-colorable
graph G is not necessarily k-clique-colorable. Thus hereditary k-clique-colorability is not the same as
k-clique-colorability. The main result of this section is showing that the decision problem Hereditary
k-Clique-Coloring is Πp

3-complete for every k ≥ 3, that is, it lies one level higher in the polynomial
hierarchy than k-clique-colorability.

Hereditary k-Clique-Coloring

Input: A graph G(V,E)
Question: Is it true that every induced subgraph of G is k-clique-colorable?

The proof follows the same general framework as the proof of Theorem 6, but selecting an induced
subgraph of G plays here the same role as selecting a list assignment in that proof. To show that
∃x∀y∃zϕ(x,y, z) implies that G is not hereditary 3-clique-colorable, assume that a vector x exists
with ∀y∃zϕ(x,y, z). Based on this vector x, we select an induced subgraph G(x) of G. If subgraph
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G(x) has a 3-clique-coloring ψ, then a vector y can be defined based on ψ. By assumption, there is
a vector z such that ϕ(x,y, z) is true. We arrive to a contradiction by showing that vectors x,y, z
can be used to find a monochromatic maximal clique K in ψ. The overview of this direction:

A vector
x with

∀y∃zϕ(x,y, z)
⇒

A subgraph
G(x) of G

⇒
An arbitrary

coloring
ψ of G(x)

⇒ A vector y ⇒
A vector
z with

ϕ(x,y, z) = 1
⇒

A
monochromatic
clique K in ψ

The proof of the reverse direction is much more delicate. We have to show that if there is an
induced subgraph G′ of G that is not 3-clique-colorable, then ∃x∀y∃zϕ(x,y, z) holds. If G′ is a
subgraph G(x) for some vector x (as defined by the first direction of the proof), then we proceed
as follows. Assume that ∃x∀y∃zϕ(x,y, z) does not hold, then there is vector y with ∄zϕ(x,y, z).
Based on this vector y, one can define a 3-coloring ψ of G′. By assumption, G′ is not 3-clique-
colorable, thus ψ contains a monochromatic maximal clique K. Based on this maximal clique K,
we can find a vector z satisfying ϕ(x,y, z), a contradiction.

A subgraph G′

of G
⇒ A vector x ⇒

A vector y with
∄zϕ(x,y, z)

⇒ A coloring ψ of
G′

⇒
A

monochromatic
clique K in ψ

⇒
A vector
z with

ϕ(x,y, z) = 1

However, it might be possible that the uncolorable induced subgraph G′ is “nonstandard” in
the sense that it does not correspond to a subgraph G(x) for any vector x. In this case the above
proof does not work, we cannot define x based on the subgraph. In order to avoid this problem,
we implement a delicate “self-destruct” mechanism, which ensures that every such nonstandard
subgraph can be easily 3-clique-colored. This will be done the following way. We start with a graph
G0, and G is obtained by attaching several gadgets to G0. Graph G0 is easy to color, but a coloring
of G0 can be extended to the gadgets only if the coloring of G0 satisfies certain requirements (some
pairs of vertices have the same color, some pairs have different colors). If G′ is a nonstandard
subgraph of G (e.g., a vertex is missing from G′ that cannot be missing in any subgraph G(x)),
then the gadgets are “turned off,” and every coloring of G0 can be extended easily to G′. The
important thing is that a single missing vertex will turn off every gadget. We define these gadgets
in the following two lemmas.

Lemma 10. There is a graph Z1 (called the γ-copier), with distinguished vertices α, β, γ, satisfying
the following properties:

1. Z1 is triangle free.

2. In every 3-vertex-coloring of Z1, vertices α and β receive the same color.

3. Z1 can be 3-vertex-colored such that γ has the same color as α and β, and it can be 3-vertex-
colored such that the color of γ is different from the color of α and β.

4. In Z1 \γ, every assignment of colors to α and β can be extended to a proper 3-vertex-coloring.

5. The distance between any two of α, β, γ is greater than 2 in Z1.

Proof. The graph Z ′
1 shown in Figure 5a is not triangle free, but it can be proved by inspection

that Z ′
1 satisfies properties 2–4. The graph Z1 is created from Z ′

1 as follows. Every edge e = uv is
replaced by a new vertex e that is adjacent to u. Furthermore, the edge between vertex e and vertex
v is replaced by a copy of D4 (see Figure 3) in such a way that the distinguished vertices x and y

are identified with vertices e and v, respectively. It is clear that every 3-coloring of Z1 induces a
3-coloring of Z ′

1: vertices u and v have different colors, since vertices e and v have the same color in
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Figure 5: The γ-copier Z1. Figure (a) shows the graph Z ′
1 that served as base for constructing Z1.

In Figure (b), every shaded ellipse is a copy of D4.

γ1 γ2 γ3 γ4 γ5

α = v1

v2 v3 v4 v5

β = v6

Figure 6: The n-copier Zn. Every shaded ellipse is a copy of the γ-copier.

every 3-coloring of Z1 (because of the properties of the graph D4) and e, u are neighbors. Moreover,
every 3-coloring of Z ′

1 can be extended to a coloring of Z1. Therefore, properties 2–4 hold for Z1 as
well. It is obvious that Property 5 holds for Z1.

Thus the γ-copier ensures that α and β have the same color, but deleting γ turns off the gadget.
The gadget defined by the following lemma is similar, but the role of γ is played by several vertices
γ1, . . . , γn, and deleting any of them turns off the gadget.

Lemma 11. For every n ≥ 1, there is a graph Zn (called the n-copier), with distinguished vertices
α, β, γ1, γ2, . . . , γn, satisfying the following properties:

1. Zn is triangle free.

2. In every 3-vertex-coloring of Zn, vertices α and β receive the same colors.

3. Every coloring of the vertices α, β, γ1, γ2, . . . , γn can be extended to a 3-vertex-coloring of Zn,
if α and β have the same color.

4. For every 1 ≤ i ≤ n, every assignment of colors to α, β, γ1, γ2, . . . , γi−1, γi+1, . . . , γn can be
extended to a proper 3-vertex-coloring of Zn \ γi.

5. The distance between any two of α, β, γ1, γ2, . . . , γn is greater than 2 in Zn.

Proof. Graph Zn is created by concatenating n copies of the graph Z1 defined in Lemma 10. Take
n+1 vertices v1, v2, . . . , vn+1 and add n copies of Z1 such that vertex α of the i-th copy is identified
with vertex vi, and vertex β is identified with vertex vi+1 (see Figure 6). Let α = v1, β = vn+1, and
let γi be vertex γ of the i-th copy.
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It is clear that Zn is triangle free. Property 2 holds, since by Property 2 of Lemma 10, vertices
vi and vi+1 have the same color for 1 ≤ i ≤ n. To see that Property 3 holds, observe that if α
and β have the same color c, then by Property 3 of Lemma 10, the coloring can be extended to
every copy of Z1 such that all the vertices vi (1 ≤ i ≤ n + 1) are colored with c. Property 4
follows from Property 3 if the same color is assigned to α and β. Otherwise assign the same color
to v1 = α, v2, . . . , vi, and the same color to vi+1, . . . , vn+1 = β. This coloring can be extended to a
3-vertex-coloring on every copy of Z1: for every copy but the i-th, the distinguished vertices α and
β have the same color, thus there is such a coloring by Property 3 of Lemma 10. For the i-th copy,
the distinguished vertex γi is missing, thus there is such an extension by Property 4 of Lemma 10.
Property 5 follows from Property 5 of Lemma 10 and from the way Zn is constructed.

The n-edge is obtained from the n-copier by renaming vertex β to β′, and connecting a new
vertex β to β′. It has the same properties as the n-copier defined in Lemma 11, except that in
Properties 2 and 3, vertices α and β must have different colors.

Now we are ready to prove the main result of the section:

Theorem 12. Hereditary 3-Clique-Coloring is Πp
3-complete.

Proof. The problem is in Πp
3: if G is not hereditary 3-clique-colorable, then it has an induced

subgraph G′ that is not 3-clique-colorable. This subgraph can serve as a certificate proving that
G is not hereditary 3-clique-colorable. Checking 3-clique-colorability is in Σp

2, thus verifying this
certificate is in Σp

2, implying that the problem is in Πp
3.

The Πp
3-hardness of the problem is proved by reducing the Σp

3-complete problem QSAT3 to
the complement of Hereditary 3-Clique-Choosability. That is, for every 3CNF formula ϕ(x,y, z),
a graph G is constructed in such a way that G is not hereditary 3-clique-colorable if and only if
∃x∀y∃zϕ(x,y, z) holds.

The graphG(V,E) is obtained from a graphG0(V0, E0) with some n-copiers and n-edges attached
to it. G0 contains

• 5 vertices xi, x
′
i, xi, x

′
i, x

∗
i for every variable xi (1 ≤ i ≤ n),

• 2 vertices yj, yj for every variable yj (1 ≤ j ≤ m),

• 2 vertices zk, zk for every variable zk (1 ≤ k ≤ p),

• a vertex cℓ for every clause Cℓ (1 ≤ ℓ ≤ q),

• 2n vertices ti, t
′
i (1 ≤ i ≤ n),

• 3 vertices f1, f2, f3.

Graph G0 has the following edges. The 4n+ 2m+ 2p+ 1 vertices xi, xi, yj, yj, zk, zk, ti, t
′
i, f1

(1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p) almost form a clique, except that the edges xixi, yjyj, zkzk are
missing. For every 1 ≤ i ≤ n, the 3 vertices xi, x

′
i, x

∗
i , and the 3 vertices xi, x

′
i, x

∗
i form a triangle.

Every vertex cℓ is connected to those vertices that correspond to literals not satisfying clause Cℓ.
Note that we can assume that a variable and its negation do not appear in the same clause, since
in this case every assignment satisfies the clause. This means that cℓ is connected to at least one of
xi and xi. Furthermore, vertex cℓ is also connected to vertices f1, ti, t

′
i (1 ≤ i ≤ n).

To obtain the graph G, several n-copiers and n-edges are added to G0. Let S contain every
vertex defined above, except xi and xi (1 ≤ i ≤ n), thus S has size 5n + 2m + 2p + q + 3. Adding
an S-copier between a and b means the following: let S′ = S \ {a, b}, we add an |S′|-copier to the
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graph such that distinguished vertices α, β are identified with a, b, and the vertices γ1, . . . , γ|S′| are
identified with the vertices in S′ (in any order). Adding an S-edge is defined similarly. Adding an
xi-copier between a and b means that we add a γ-copier to the graph, and identify α, β, and γ with
a, b, and xi, respectively. The description of G is completed by adding an

• S-edge between f1 and f2, between f2 and f3, between f1 and f3,

• S-copier between f1 and xi (1 ≤ i ≤ n),

• S-copier between f1 and xi (1 ≤ i ≤ n),

• S-edge between f3 and x′i (1 ≤ i ≤ n),

• S-edge between f3 and x′i (1 ≤ i ≤ n),

• S-copier between x′i and t′i (1 ≤ i ≤ n),

• S-copier between x′i and t′i (1 ≤ i ≤ n),

• S-copier between f2 and x∗i (1 ≤ i ≤ n),

• xi-copier between f1 and ti (1 ≤ i ≤ n),

• xi-copier between f1 and ti (1 ≤ i ≤ n),

• S-edge between f3 and yj (1 ≤ j ≤ m),

• S-edge between f3 and yj (1 ≤ j ≤ m),

• S-edge between yj and yj (1 ≤ j ≤ m),

• S-copier between f1 and zk (1 ≤ k ≤ p),

• S-copier between f1 and zk (1 ≤ k ≤ p),

• S-copier between f3 and cℓ (1 ≤ ℓ ≤ q).

The graph G for n = m = p = 2, q = 3 is shown in Figure 7. It can be verified that the maximal
cliques of G can be divided into the following three types:

1. The flat edges of G.

2. The xi-triangles xi, x
∗
i , x

′
i, and the xi-triangles xi, x

∗
i , x

′
i.

3. The assignment cliques that contain the vertices f1, ti, t
′
i (1 ≤ i ≤ n). Besides these vertices,

an assignment clique contains exactly one of xi and xi, exactly one of yj, yj, exactly one of
zk, zk, and at most one cℓ (1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p, 1 ≤ ℓ ≤ q).

Note that the edges inside a copier or edge gadget are flat. The gadgets are triangle free and no
new triangle is created even if two distinguished vertices of a gadget become connected in the above
construction (for example, this is the case with the xi-copier between f1 and t1): the distance of the
connected vertices is greater than 2 in the gadget.

First we show that if there is an x ∈ {0, 1}n such that ∀y∃zϕ(x,y, z), then there is an induced
subgraph G(x) of G that is not 3-clique-colorable. To obtain G(x), delete vertex xi from G if
variable xi is true in x, and delete vertex xi from G if variable xi is false. Recall that xi and xi are
not in S.
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Figure 7: Sketch of the construction used in the proof of Theorem 12. The vertices f1, f2, f3 are
shown multiple times, e.g., every appearance of the white vertex 1 is identical to f1. The two double
edges between f1 and t1 represent the x1-copier and the x1-copier. In the rounded box, every vertex
is connected to every other vertex, except the pairs xixi, yjyj, and zkzk. Depending on the formula
ϕ, vertex cℓ is connected to some vertices representing literals.

Assume that there is a 3-clique-coloring ψ of G(x). Since every vertex of S is present in G(x),
the S-edge between f1 and f2 ensures that ψ(f1) 6= ψ(f2), it can be assumed that ψ(f1) = 1 and
ψ(f2) = 2. Because of the S-edge between f1 and f3, and between f2 and f3, we also have that
ψ(f3) = 3. We claim that xi, xi (if they are present in G(x)), ti, t

′
i, zk, zk all have color 1. Assume

that xi is in G(x) (the argument is similar, if xi is in G(x), and xi is not). Vertex xi has color 1
because of the S-copier between f1 and xi. There is an S-copier between f2 and x∗i , thus ψ(x∗i ) = 2.
Since xi ∈ G(x), the xi-copier between f1 and ti ensures that ψ(ti) = 1. If xi is in G(x), then xi is
not in G(x) and the edge x∗ix

′
i is a maximal clique, thus ψ(x′i) 6= ψ(x∗i ) = 2. Moreover, because of

the S-edge between x′i and f3, we have ψ(x′i) 6= 3, implying ψ(x′i) = 1. Since there is an S-copier
between x′i and t′i, we have ψ(t′i) = 1. Finally, the S-copier between f1 and zk, and between f1 and
zk imply that ψ(zk) = ψ(zk) = 1.

The S-edges between f3 and yj, and between f3 and yj ensure that yj and yj have color 1 or
2. Furthermore, because of the S-edge between yj and yj , one of them has color 1, and the other
has color 2. Define the vector y ∈ {0, 1}m such that variable yj is true if and only if ψ(yj) = 1. By
assumption, there is a vector z ∈ {0, 1}p such that ϕ(x,y, z) is true. Let K contain all the vertices
that correspond to true literals in x,y, z; note that all these vertices are in G(x). Moreover, add to
K the vertices f1, ti, t

′
i (1 ≤ i ≤ n). Clearly, K is a clique. Furthermore, because of the way K was

constructed, every vertex in K has color 1. We claim that K is a monochromatic maximal clique,
contradicting the assumption that ψ is a proper 3-clique-coloring of G(x). Suppose that there is
a clique K ′ ⊃ K of G(x). The clique K ′ is a subset of a maximal clique of G. As K ′ contains
the vertices f1, ti, t

′
i (1 ≤ i ≤ n), this maximal clique has to be an assignment clique. Since K

contains already 1 + 2n +m + p + q vertices, the only possibility is that K ′ \K contains a vertex
cℓ corresponding to a clause. However, in this case the assignment x, y, z does not satisfy ϕ since
clause Cℓ is not satisfied: otherwise there is a vertex in K that corresponds to a literal satisfying
Cℓ, and by the construction cℓ is not connected to this vertex.
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To prove the other direction of the reduction, assume that there is an induced subgraph G′ of G
that is not 3-clique-colorable, we have to show that ∃x∀y∃zϕ(x,y, z) holds. By Prop. 1, it can be
assumed that G′ contains all the simple vertices of G: adding simple vertices to G′ does not make
it 3-clique-colorable. In particular, G′ contains the internal vertices of all the gadgets.

Call an induced subgraph of G standard, if for every 1 ≤ i ≤ n, it contains exactly one of xi and
xi, and it contains every other vertex of G (in particular, it contains every vertex of S). First we
show that every nonstandard subgraph of G is 3-clique-colorable, thus G′ must be standard. Next
we show that if there is a standard subgraph G′ of G that is not 3-clique-colorable, then there is an
x ∈ {0, 1}n satisfying ∀y∃zϕ(x,y, z). These two lemmas complete the proof of this direction of the
reduction.

Lemma 13. If G′ is a nonstandard induced subgraph of G, then G′ is 3-clique-colorable.

Proof. Let G′ be a nonstandard subgraph of G. By Prop. 1 it can be assumed that G′ contains every
simple vertex of G. We show that G′ contains every vertex of S. Assume that a vertex v ∈ S is
missing from G′. The absence of v turns off the S-copiers and the S-edges, which makes the coloring
very easy. However, the xi-copiers might still be working, thus we have to pay attention that the
coloring can be extended to the internal vertices of these gadgets. Let G′

0 be the induced subgraph
of G′ containing only those vertices that are in G0. We show that there is a 3-clique-coloring of G′

0

with the following property:

If both f1 and ti are in G′
0 for some 1 ≤ i ≤ n, and at least one of xi, xi is in G′

0, then
f1 and ti have the same color.

If this is true, then this coloring can be extended to a 3-clique-coloring of G′: by Property 4 of
Lemma 11 and since by assumption v ∈ S is missing from G′, the coloring can be extended to the
internal vertices of every S-copier and S-edge. Here we use Proposition 2: if we extend the coloring
of G′

0 such that every gadget is 3-vertex-colored, then it gives a 3-clique-coloring of G. Moreover,
the internal vertices of the xi-copier and the xi-copier between f1 and ti can be colored as well,
since either both xi and xi are missing (Property 4 of Lemma 10), or f1 and ti have the same color
(Property 3 of Lemma 10).

We consider the following 3 cases:

Case 1: xi, xi, yj, yj , zk, zk 6∈ G′
0 (1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p). In this case, we color G′

0 as
follows:

• Vertices x′i, x
′
i have color 1 (1 ≤ i ≤ n).

• Vertex f2 has color 2.

• One of f1, ti, t
′
i (1 ≤ i ≤ n) has color 1, the rest has color 2.

• Vertices f3, x
∗
i , cℓ have color 3 (1 ≤ i ≤ n, 1 ≤ ℓ ≤ q).

It is clear that there is no monochromatic clique of color 1 or 3, since these color classes are
independent sets. A monochromatic clique K with color 2 cannot contain f2 (since it is not adjacent
to any other vertex with color 2), thus K can be extended to the clique f1, ti, t

′
i (1 ≤ i ≤ n), which

contains a vertex of color 1.

Case 2: f1, ti, t
′
i 6∈ G′

0 (1 ≤ i ≤ n). Consider the following coloring G′
0:

• If x∗i ∈ G′
0, then vertices x′i, x

′
i have color 1; otherwise they have color 3 (1 ≤ i ≤ n).
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• Vertices f2, xi, xi, yj, yj, zk, zk have color 2 (1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p).

• Vertices f3, x
∗
i , cℓ have color 3 (1 ≤ i ≤ n, 1 ≤ ℓ ≤ q).

We change the coloring defined above on at most 2 vertices. Because we are not in Case 1, there is
a pair (xi, xi), or (yj, yj), (zk, zk) such that at least one vertex of the pair is in G′

0. Let us fix such
a pair and recolor the vertices of the pair with color 1.

Color class 3 induces an independent set. The only possibility of two adjacent vertices having
color 1 is that the pair (xi, xi) was recolored to color 1 and x′i, x

′
i also have color 1. However, in

this case x∗i ∈ G′
0 and has color 3, thus {xi, x

′
i} and {xi, x

′
i} are not maximal cliques: they can be

extended with x∗i .
Finally, a monochromatic clique with color 2 cannot contain f2, since it is not adjacent to any

other vertex with color 2. Thus such a clique cannot be maximal, as it can be extended with a
vertex of the recolored pair.

Case 3: G′
0 contains a vertex w1 ∈ {f1, ti, t

′
i | 1 ≤ i ≤ n} and a vertex w2 ∈ {xi, xi, yj, yj , zk, zk |

1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p}. In this case, consider the following assignment of colors:

• Vertices f1, x
′
i, x

′
i, ti, t

′
i have color 1 (1 ≤ i ≤ n).

• Vertices f2, xi, xi, yj, yj, zk, zk have color 2 (1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ p).

• Vertices f3, x
∗
i , cℓ have color 3 (1 ≤ i ≤ n, 1 ≤ ℓ ≤ q).

A monochromatic clique of color 1 has to be a subset of {f1, ti, t
′
i | 1 ≤ i ≤ n}, hence it can be

extended by w2 having color 2. A monochromatic clique of color 2 cannot contain f2 (since it is
not adjacent to any other vertex of color 2), thus it can be extended with vertex w1 having color 1.
Color class 3 induces an independent set. This completes Case 3.

We have shown that every nonstandard induced subgraph G′ is 3-clique-colorable if a vertex of
S is missing from G′. Now assume that G′ is a nonstandard subgraph of G and every vertex of S
is in G′. Since the graph is nonstandard, there is an 1 ≤ i0 ≤ n such that either G′ contains both
xi0 and xi0 , or G′ contains neither xi0 nor xi0 . The following coloring of G′

0 can be extended to a
proper 3-clique-coloring of G′:

• Vertices f1, xi, xi, x
′
i, x

′
i, ti, t

′
i have color 1, where 1 ≤ i ≤ n and i 6= i0.

• Vertices yj, yj , zk, zk have color 1 (1 ≤ j ≤ m, 1 ≤ k ≤ p)

• Vertices f2, x
∗
i have color 2 (1 ≤ i ≤ n).

• Vertices f3, cℓ have color 3 (1 ≤ ℓ ≤ q).

• If both xi0 and xi0 are in G′, then x′i0 , x
′
i0

, t′i0 have color 2 and xi0 , xi0, ti0 have color 1.

• If neither xi0 nor xi0 is in G′, then x′i0 , x
′
i0

, t′i0 have color 1 and ti0 has color 2.

This coloring can be extended to G′ in such a way that the flat edges are properly colored (that
is, it can be extended to the internal vertices of the copier and edge gadgets). Indeed, it can be
verified by inspection that the two distinguished vertices of the S-copiers (resp., S-edges) have the
same (resp., different) colors, respectively. Moreover, for i 6= i0, both f1 and ti have color 1, thus
the coloring can be extended to the xi-copier and xi-copier between f1 and ti. However, if both xi0

and xi0 are missing from G′, then f1 has color 1 and ti0 has color 2. But in this case the absence of
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xi0 and xi0 ensures that the two copiers between f1 and ti0 can be colored, regardless of the color
of f1 and ti0 (Property 4 of Lemma 10).

The triangles xi, x
∗
i , x

′
i and xi, x

∗
i , x

′
i contain both color 1 and 2. Therefore, only the assignment

cliques can be monochromatic in this coloring. However, every assignment clique contains ti0 and
t′i0 , and these two vertices have different colors.

Therefore, we can assume that G′ is a standard subgraph. We show that based on G′ we can
define an assignment x such that ∀y∃zϕ(x,y, z). The proof is similar to the proof of the first
direction.

Lemma 14. If there is a standard subgraph G′ of G that is not 3-clique-colorable, then there is an
x ∈ {0, 1}n satisfying ∀y∃zϕ(x,y, z).

Proof. Define vector x ∈ {0, 1}n by setting variable xi to true if xi ∈ G′, and to false if xi ∈ G′. We
claim that ∀y∃zϕ(x,y, z). Suppose that, on the contrary, there is a vector y ∈ {0, 1}m such that
ϕ(x,y, z) is false for every z ∈ {0, 1}p.

Consider the following coloring of G′:

• Vertices f1, xi, xi, x
′
i, x

′
i, t

′
i, ti, zk, zk have color 1 (1 ≤ i ≤ n, 1 ≤ k ≤ p).

• Vertices f2, x
∗
i have color 2 (1 ≤ i ≤ n).

• Vertices f3, cℓ have color 3 (1 ≤ ℓ ≤ q).

• If variable yj is true in y, then vertex yj has color 1 and vertex yj has color 2 (1 ≤ j ≤ m).

• If variable yj is false in y, then vertex yj has color 2 and vertex yj has color 1 (1 ≤ j ≤ m).

As in the proof of Lemma 13, this coloring can be extended to the whole G′ in such a way that every
flat edge and every xi-triangle is properly colored. By assumption, this coloring is not a proper
3-clique-coloring, thus there is a monochromatic maximal clique K, which must be an assignment
clique. Since every assignment clique contains f1, therefore every vertex of K has color 1. By the
definition of the coloring, this means that K contains yj if and only if yj is true in y. For every
1 ≤ k ≤ p, an assignment clique contains exactly one of zk and zk, define the vector z ∈ {0, 1}p by
setting variable zk to true if and only if zk ∈ K. Notice that apart from f1, ti, t

′
i, clique K contains

those vertices that correspond to true literals in the assignment x,y, z.
We claim that ϕ(x,y, z) is true. To see this, assume that clause Cℓ is not satisfied by this assign-

ment. Vertex cℓ is not in K, since cℓ has color 3. Now clique K contains the vertices f1, ti, t
′
i, and

vertices corresponding to literals not satisfying Cℓ, therefore K ∪ {cℓ} is also a clique, contradicting
the maximality of K.

Putting together these two lemmas completes the proof of the theorem.

Hereditary k-clique-coloring remains Πp
3-complete for every k > 3. The proof is analogous to

the proof of Corollary 5, the same construction can be used to reduce the case of k colors to k + 1
colors.

Corollary 15. For every k ≥ 3, Hereditary k-Clique-Coloring is Πp
3-complete.

The complexity of the case k = 2 remains an open question. The problem seems to be very
different if there are only 2 colors. The proofs of this section used gadgets having only certain
kind of 3-clique-colorings; more precisely, the gadget were triangle free, thus 3-clique-coloring and
3-vertex-coloring coincides, and we can control the possible 3-clique-colorings by controlling the
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possible 3-vertex-colorings. However, in the case of 2 colors, such an approach is unlikely to work,
since there are only two possible ways of 2-vertex-coloring a connected graph, hence we cannot build
such versatile gadgets this way.
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