
Optimal parameterized algorithms for planar
facility location problems using Voronoi diagrams

and sphere cut decompositions

Dániel Marx

Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

(Joint work with Michał Pilipczuk)

International Workshop on Graph Decomposition
CIRM, Marseille, France

Januar 19, 2015

1



The square root phenomenon
Most parameterized problems can be solved faster on planar
graphs:

General graphs Planar graphs
Vertex Cover,
k-Path, . . .

2O(k) · nO(1) 2O(
√

k) · nO(1)

Independent Set,
Dominating Set, . . .

nO(k) 2O(
√

k) · nO(1)

Strongly Connected
Steiner Subgraph, . . .

nO(k) nO(
√

k)

These running times are optimal under the Exponential Time
Hypothesis (≈ n-variable 3SAT cannot be solved in time 2o(n)).

This talk:

A general family of packing/covering problems on planar graphs
and on 2D geometric objects that can be solved in time nO(

√
k).
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Bidimensionality for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:
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Bidimensionality for k-Path
Observation: If the treewidth of a planar graph G is at least 5

√
k

⇒ It has a
√
k ×
√
k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a path of length at least k .
⇒ G has a path of length at least k .

We use this observation to find a path of length at least k on
planar graphs:

Set w := 5
√
k .

Find an O(1)-approximate tree
decomposition.

If treewidth is at least w : we answer
“there is a path of length at least k.”
If we get a tree decomposition of
width O(w), then we can solve the
problem in time
2O(w log w) ·nO(1) = 2O(

√
k log k) ·nO(1).
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Bidimensionality
Definition
A graph invariant x(G ) is minor-bidimensional if

x(G ′) ≤ x(G ) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.
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Bidimensionality

Algorithms based on bidimensionality:
1 If treewidth is Ω(

√
k), then we can find a Ω(

√
k)× Ω(

√
k)

grid minor.
2 The problem is trivial if there is a Ω(

√
k)×Ω(

√
k) grid minor.

3 If treewidth is O(
√
k), we can solve the problem in time

2O(
√

k) · nO(1).
Variant of theory works for contraction-bidimensional problems,
e.g., Independent Set, Dominating Set.

However, for some problems, large treewidth (e.g., Multiway
Cut, Subset TSP) is not of any apparent help.

General principle
Exploit the fact that some auxiliary planar graph related to the
solution has size O(k) and hence treewidth O(

√
k).
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Outline

A 2D geometric problem: Independent Set problem for
unit disks.

A simple nO(
√

k) algorithm using shifting.
A more complicated algorithm via Voronoi diagrams (idea
essentially comes from recent work on QPTASs for geometric
problems, e.g., [Har-Peled SOCG 2014]).

Several generalizations/variants.
Planar graphs.
Some lower bounds.
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Independent Set for Unit Disks
Theorem [Alber and Fiala 2004]

The Independent Set problem for unit (diameter) disks can be
solved in time nO(

√
k).

Simple solution by shifting strategy. Consider a family of vertical
lines at distance b

√
kc from each other, going through (i , 0) for

some integer 0 ≤ i < b
√
kc.

Claim: Exists i such that the lines hit O(
√
k) disks of the solution.
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Independent Set for Unit Disks
Theorem [Alber and Fiala 2004]

The Independent Set problem for unit (diameter) disks can be
solved in time nO(

√
k).

Simple solution by shifting strategy. Consider a family of vertical
lines at distance b

√
kc from each other, going through (i , 0) for

some integer 0 ≤ i < b
√
kc.

Algorithm: Guess i and the O(
√
k) disks hit by the lines⇒ Remove

every disk intersected by the lines or disks⇒ Problem falls apart into
strips of height O(

√
k); can be solved optimally in time nO(

√
k). 7



Challenges

Key idea

We were able to find a separator that hits O(
√
k) disks of the

solution and breaks the instance in a nice way.

Two natural directions:
1 Can we solve Independent Set for disks with arbitrary

radius in time nO(
√

k)?
2 Can we solve Scattered Set (find k vertices that are at

distance at least d from each other) on planar graphs in time
nO(
√

k), if d is part of the input?

Problem:
The algorithm for unit disks crucially uses the fact that the disks
have similar area.
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Branch Decompositions
Definition
A branch decomposition of a graph G = (V ,E ) is a tuple (T , µ)
where

T is a tree with degree 3 for all internal nodes.
µ is a bijection between the leaves of T and E (G ).

8
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Edge e ∈ T partitions the edge set of G into Ae and Be
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Definition
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T is a tree with degree 3 for all internal nodes.
µ is a bijection between the leaves of T and E (G ).

8

4 6

1 3
a b

f g

c d m

h i j k

l

j

l

b m

k

g
{2, 5, 7}

c

a d

f
h

i
e

c
5

7

2

The width of a branch decomposition is maxe∈T |mid(e)|.
The branch width of a graph G is the minimum width over
all branch decompositions of G .
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Sphere cut decomposition
Let G be a planar graph embedded on the sphere (or a plane) S0

A sphere cut decomposition of G is a branch decomposition
(T , τ) where for every e ∈ E (T ), the vertices in mid(e) are the
vertices in a Jordan curve of S0 that meets no edges of G and goes
through every face at most once (a noose).
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Sphere cut decompositions

Theorem [Seymour-Thomas 1994, Dorn et al. 2005]

Every 2-edge connected planar graph G of branchwidth ` has a
sphere cut decomposition of width `. This decomposition can be
constructed in O(n3) steps.
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Sphere cut decompositions

Theorem [Seymour-Thomas 1994, Dorn et al. 2005]

Every 2-edge connected planar graph G of branchwidth ` has a
sphere cut decomposition of width `. This decomposition can be
constructed in O(n3) steps.

α-edge-balanced noose: at most α fraction of the edges are in-
side/outside the noose.

Corollary
Every connected 3-regular planar multigraph with n vertices has a
2
3 -edge-balanced noose of length O(

√
n).
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Sphere cut decompositions

Theorem [Seymour-Thomas 1994, Dorn et al. 2005]

Every 2-edge connected planar graph G of branchwidth ` has a
sphere cut decomposition of width `. This decomposition can be
constructed in O(n3) steps.

α-face-balanced noose: at most α fraction of the faces are strictly
inside/outside the noose.

Corollary
Every connected 3-regular planar multigraph with n vertices has a
2
3 -face-balanced noose of length O(

√
n).
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Voronoi diagrams
Voronoi diagram: we partition the points of the plane according
to the closest center.

Observation: every cell is convex.
Assume that the branch points of the diagram have degree 3.
Ignore what happens at infinity.
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Voronoi separators
Consider the Voronoi diagram of the centers of the solution disks.
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Voronoi separators
Consider the Voronoi diagram of the centers of the solution disks.

There is a 2
3 -face-balanced noose of length O(

√
k).

⇒ There is a corresponding polygon of length O(
√
k).
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Voronoi separators
Consider the Voronoi diagram of the centers of the solution disks.

Algorithm: guess O(
√
k) disks and a polygon going through them,

remove any disks intersecting the polygon or the guessed disks, re-
cursion on the inside and the outside.
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Running time
Number of candidate polygons
Number of centers: n.
Potential locations of Voronoi branch points: n3.
⇒ Number of polygons of length O(

√
k): nO(

√
k).

Recursion
T (n, k): running time with n centers and solution size at most k .

T (n, k)= nO(
√

k)T (n,
2
3
k)

= nO(
√

k) · nO(
√

2
3k) · nO(

√
( 2
3 )

2k) · nO(
√

( 2
3 )

3k) · · ·

= nO((1+( 2
3 )

1
2 +( 2

3 )
2
2 +( 2

3 )
3
2 +... )

√
k) = nO(

√
k).

This gives another nO(
√

k) time algorithm for Independent Set
for unit disks. But what about general disks?
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Additively weighted Voronoi diagrams
Each center ci has a weight wi and we classify each point v
according to dist(v , ci )− wi .

Alternative view: distance is measured from a disk of radius wi
centered at ci .
Observation: The cells are star convex, that is, the segment
between the center and a point of the cell is in the cell.

15



Independent Set for general disks
Theorem
The Independent Set problem for disks (of arbitrary radius) can
be solved in time nO(

√
k).

Use the additively weighted Voronoi diagram. Algorithm for unit
disks go through.

16



Independent Set for general disks
Theorem
The Independent Set problem for disks (of arbitrary radius) can
be solved in time nO(

√
k).

Use the additively weighted Voronoi diagram. Algorithm for unit
disks go through.

16



Independent Set for general disks
Theorem
The Independent Set problem for disks (of arbitrary radius) can
be solved in time nO(

√
k).

Use the additively weighted Voronoi diagram. Algorithm for unit
disks go through.

16



Independent Set for general disks
Theorem
The Independent Set problem for disks (of arbitrary radius) can
be solved in time nO(

√
k).

Use the additively weighted Voronoi diagram. Algorithm for unit
disks go through.

16



Independent Set for convex polygons
We can define Voronoi diagrams for arbitrary objects.
Problem: The cells are not necessarily star convex.

P1 p1

a1

v1 b1
p2

P2

a2 v2

b2

P3
p3

Fix: the polygon is now of the form

· · · — branch point — polygon boundary — polygon
center — polygon boundary — branch point — · · ·.

Can be further generalized to nonconvex polygons. 17



Covering points with unit disks
Task: Given n unit disks and m points, select k disks covering the
maximum number of points in total.
Consider again the Voronoi diagram of the solution centers.

We guess O(
√
k) centers and a polygon.

Remove the points covered by the selected centers.
Remove any center that is closer to a point of the polygon
than the selected centers.
We solve recursively the inside/outside (why?)
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Covering points with arbitrary disks
Task: Given n arbitrary disks and m points, select k disks covering
the maximum number of points in total.

Can be solved in time nO(
√

k)mO(1) using the additively weighted
Voronoi diagram.
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Planar graphs
So far we have considered

selecting k disjoint connected objects in the plane,
selecting k disks covering the maximum number of points.

Similar algorithms can be worked out for planar graphs.

Packing problems:

Theorem
Given a set D of connected subgraphs in a planar graph, we can
find k vertex-disjoint subgraphs in time |D|O(

√
k) · nO(1).

Covering problems:

Theorem
Given a set D of center points equipped with a radius and a set C
of client points, we can find k center points satisfying the
maximum number of client points in time |D|O(

√
k) · nO(1).
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Planar graphs — challenges
The (analog of) Voronoi diagram is not necessarily connected.

21



Planar graphs — challenges
We need to define the analog of branch points and find candidate
branch points efficiently (to have |D|O(

√
k) instead of nO(

√
k)).

p1

p2

p3

f

p1

p2

p3

v3

v2

v1 f

P3

P1

P2

p1 p2

p0

p3

v3

v2

v1
f

P3 P1 P2
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The general planar graph problem

We have the following setting:
A planar graph with weighted edges.
Set D of connected subgraphs, equipped with cost and radius.
Set C of client points, equipped with sensitivity and prize.
Task: find a set of exactly k vertex-disjoint objects from D.
An object satisfies a client point if

distance ≤ radius + sensitivity.

We want to maximize the total prize minus the total cost.

Theorem
The general problem on planar graphs can be solved in time
|D|O(

√
k) · nO(1) (where n is the length of the input).

22



Consequences
Packing problems:

Theorem

Scattered Set on planar graphs can be solved in time nO(
√

k).

Theorem
Given a set D of connected subgraphs in a planar graph, we can
find k vertex-disjoint subgraphs in time |D|O(

√
k) · nO(1).
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Consequences
Packing problems:

Theorem

Scattered Set on planar graphs can be solved in time nO(
√

k).

Theorem
Given a set D of connected subgraphs in a planar graph, we can
find k vertex-disjoint subgraphs in time |D|O(

√
k) · nO(1).

Covering problems:

Theorem

d-Dominating Set on planar graphs can be solved in nO(
√

k)

(d is part of the input).

Theorem
Given a set D of metric balls in a planar graph, we can find k
vertex-disjoint balls in time |D|O(

√
k) · nO(1). 23



Consequences
Packing problems:

Theorem

Scattered Set on planar graphs can be solved in time nO(
√

k).

Theorem
Given a set D of connected subgraphs in a planar graph, we can
find k vertex-disjoint subgraphs in time |D|O(

√
k) · nO(1).

Covering problems:

What about covering points by arbitrary objects?
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Lower bounds
Strong Exponential Time Hypothesis (SETH):
No (2− ε)n time algorithm for CNF-SAT.

Theorem
Given a set D of convex polygons and a set C of points, there is no
f (k)(|D|+ |C|)k−ε time algorithm for the problem of covering C
with k polygons from D (unless SETH fails).
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Lower bounds
Strong Exponential Time Hypothesis (SETH):
No (2− ε)n time algorithm for CNF-SAT.

Theorem
Given a set D of convex polygons and a set C of points, there is no
f (k)(|D|+ |C|)k−ε time algorithm for the problem of covering C
with k polygons from D (unless SETH fails).

We use the following result:

Theorem [Pătraşcu and Williams 2010]

There is no f (k)nk−ε time algorithm for Dominating Set (unless
SETH fails).
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Lower bounds
Strong Exponential Time Hypothesis (SETH):
No (2− ε)n time algorithm for CNF-SAT.

Theorem
Given a set D of convex polygons and a set C of points, there is no
f (k)(|D|+ |C|)k−ε time algorithm for the problem of covering C
with k polygons from D (unless SETH fails).

Transparent reduction from Dominating Set:

p0 = (0, 0)p1
p2

p3

p4

p5

p6

p7

p8 = ((n + 1)2, (n + 1)2)(0, (n + 1)2)

24



Lower bounds
Exponential Time Hypothesis (ETH):
No 2o(n) time algorithm for n-variable 3SAT.

Theorem
Given a set D of axis-parallel rectangles and a set C of points, there
is no f (k)(|D|+ |C|)o(k) time algorithm for the problem of covering
C with k rectangles from D (unless ETH fails).

Remains true if every rectangle is either 1× k or k × 1.
Slightly weaker bound f (k)(|D|+ |C|)o(k/ log k) remains true if
every rectangle has width and height in the range [1, 1 + ε].
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Lower bounds
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(4(k + 1), 0)
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Summary

Main result: nO(
√

k) time algorithms for natural
packing/covering problems.
Main technical tool: find balanced separators in the Voronoi
diagram of the solution (comes from recent results on QPTASs
for geometric problems, e.g., [Har-Peled SOCG 2014]).
Lower bounds show that the square root phenomenon does not
hold for certain natural covering problems.
It seems essential that the covering problems are defined in a
metric way.
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