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Abstract

In the precoloring extension problem (PrExt) we are given a graph with
some of the vertices having a preassigned color and it has to be decided whether
this coloring can be extended to a proper k-coloring of the graph. 1-PrExt

is the special case where every color is assigned to at most one vertex in the
precoloring. Answering an open question of Hujter and Tuza [HT96], we show
that the 1-PrExt problem can be solved in polynomial time for chordal graphs.

1 Introduction

In graph vertex coloring we have to assign colors to the vertices such that neighboring
vertices receive different colors. Starting with [ERT80] and [Viz76], a generalization
of coloring was investigated: in the list coloring problem each vertex can receive a
color only from its list of available colors. A special case is the precoloring extension
problem: a subset W of the vertices have a preassigned color and we have to extend
this to a proper coloring of the whole graph, using only colors from a color set C. It
can be viewed as a special case of list coloring: the list of a precolored vertex consists
of a single color, while the list of every other vertex is C. A thorough survey on list
coloring, precoloring extension, and list chromatic number can be found in [Tuz97].

Since vertex coloring is the special case when W = ∅, the precoloring extension
problem is NP-complete in every class of graphs where vertex coloring is NP-complete.
Therefore we can hope to solve precoloring extension efficiently only on graphs that
are easy to color. Biró, Hujter and Tuza [BHT92, HT93, HT96] started a systematic
study of precoloring extension in perfect graphs, where coloring can be done in poly-
nomial time. It turns out that for some classes of perfect graphs, e.g., split graphs,
complements of bipartite graphs, and cographs, the precoloring extension problem can
be solved in polynomial time. On the other hand, for some other classes like bipartite
graphs, line graphs of bipartite graphs, and interval graphs, precoloring extension is
NP-complete.

The d-PrExt problem is the restriction of the precoloring extension problem where
every color is used at most d-times in the precoloring. It is easy to reduce PrExt
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to 1-PrExt: collapse the vertices precolored with the same color to a single vertex.
Therefore 1-PrExt is not easier than PrExt on classes of graphs that are closed for
this operation. One can also show that 1-PrExt is NP-complete on bipartite graphs
[HT93, BJW94].

However, there are cases where 1-PrExt is strictly easier than PrExt. For pla-
nar bipartite graphs, if the set of colors C contains only 3 colors, then PrExt is
NP-complete [Kra93], while 1-PrExt can be solved in polynomial time [MTW98].
For interval graphs already 2-PrExt is NP-complete [BHT92], but 1-PrExt can be
solved in polynomial time [BHT92]. For the special case of unit interval graphs PrExt

remains NP-complete [Mar04], and obviously 1-PrExt remains polynomial-time solv-
able.

Every chordal graph is perfect and interval graphs form a subset of chordal graphs
(cf. [Gol80]). Therefore by [BHT92], the 2-PrExt problem is NP-complete for chordal
graphs. The complexity of 1-PrExt on chordal graphs is posed by Hujter and Tuza
as an open question [HT96]. Here we show that 1-PrExt can be solved in polynomial
time also for chordal graphs. The algorithm is a generalization of the method of
[BHT92] for interval graphs. As in [BHT92], 1-PrExt is reduced to a network flow
problem, but for chordal graphs a more elaborate construction is required than for
interval graphs.

The paper is organized as follows. In Section 2 we review some known properties of
chordal graphs. In Section 3 we define a set system that will be crucial in the analysis
of the algorithm. The algorithm is presented in Section 4. In Section 5 we discuss
some connections of the problem with matroid theory.

2 Tree decomposition

A graph is chordal if every cycle of length greater than 3 contains at least one chord,
i.e., an edge connecting two vertices not adjacent in the cycle. Equivalently, a graph
is chordal if and only if it does not contain a cycle of length greater than 3 as an
induced subgraph. This section summarizes some well-known properties of chordal
graphs. First, chordal graphs can be also characterized as the intersection graphs of
subtrees of a tree (see e.g., [Gol80]):

Theorem 2.1. The following two statements are equivalent:

1. G(V,E) is chordal.

2. There exists a tree T (U, F ) and a subtree Tv ⊆ T for each v ∈ V such that
u, v ∈ V are neighbors in G(V,E) if and only if Tu ∩ Tv 6= ∅.

The tree T together with the subtrees Tv is called the tree decomposition of G.
Given a chordal graph G, a tree decomposition can be found in polynomial time (see
[Gol80, RTL76]).

For clarity, we will use the word “vertex” when we refer to the graph G(V,E), and
“node” when referring to T (U, F ). We assume that T is a rooted tree with some root
r ∈ U . For a node x ∈ U , let T x be the subtree of T rooted at x. Consider those
subtrees that contain at least one node of T x, denote by Vx the corresponding vertices.
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Figure 1: Nice tree decomposition of a chordal graph.

The subgraph of G induced by Vx will be denoted by Gx = G[Vx]. For a node x ∈ U

of T , denote by Kx the union of v’s where x ∈ Tv. Clearly, the vertices of Kx are in
Vx, and they form a clique in Gx, since the corresponding trees intersect in T at node
x. An important property of the tree decomposition is the following: for every node
x ∈ U , the clique Kx separates Vx \Kx and V \Vx. That is, among the vertices of Vx,
only the vertices in Kx can be adjacent to V \ Vx.

Every inclusion-wise maximal clique of a chordal graph G is a clique Kx of the tree
decomposition. This is a consequence of the fact that subtrees of a tree satisfy the
Helly property (a family of sets is said to satisfy the Helly property if for each pairwise
intersecting collection of sets from the family it follows that the sets in the collection
have a common element). If K is a clique of G, then its vertices correspond to pairwise
intersecting subtrees, hence by the Helly property, these trees have a common node x,
implying K ⊆ Kx. Since every chordal graph is perfect, the chromatic number of G
equals its clique number, and it follows that G is k-colorable if and only if |Kx| ≤ k for
every node x ∈ T . Clearly, the precoloring can exist only if G is |C|-colorable, hence
we assume in the following that |Kx| ≤ |C| holds for every x ∈ T .

A tree decomposition will be called nice [Klo94], if it satisfies the following addi-
tional requirements (see Figure 1):

• Every node x ∈ U has at most two children.

• If x ∈ U has two children y, z ∈ U , then Kx = Ky = Kz.

• If x ∈ U has only one child y ∈ U , then either Kx = Ky ∪ {v} or Kx = Ky \ {v}
for some v ∈ V .

• If x ∈ U has no children, then Kx contains exactly one vertex.

It is easy to see that by splitting the nodes of the tree in an appropriate way, a tree
decomposition of G can be transformed into a nice tree decomposition in polynomial
time. In such a decomposition, the nodes are of the following types:

• A node x with two children is a join node.

• A node x with one child y and Kx = Ky \ {v} is a forget node (of v).

• A node x with one child y and Kx = Ky ∪ {v} is an add node (of v).

• A node x without children is a leaf node.
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Figure 2: Nice tree decomposition of the graph shown on Figure 1, after adding the
vertices v′, v1, v2 to the graph. Dashed lines show the new parts of the tree decompo-
sition.

A vertex v can have multiple add nodes, but at most one forget node (the vertices in
clique Kr of the root r have no forget nodes, but every other vertex has exactly one).
For a vertex v, its subtree Tv is the subtree rooted at the forget node of v (if it exists,
otherwise at the root) and whose leaves are exactly the add nodes and leaf nodes of v.

Given a graph G and a precolored set of vertices, we slightly modify the graph
to obtain an even nicer tree decomposition. For each precolored vertex v, we add a
clique K of |C| − 1 new vertices to the graph, each vertex of K is connected to v;
and we also add a new vertex v′ that is connected to each vertex of K (but not to
v). The precoloring of vertex v is removed and v′ becomes a precolored vertex, the
color of v is assigned to v′. It is easy to see that this transformation does not change
the solvability of the instance: vertices v and v′ receive the same color in every |C|-
coloring of the new graph G′ (since they are both connected to the same clique of
|C|−1 vertices), thus a precoloring extension of G′ induces a precoloring extension for
G. Although the transformation increases the size of the graph and hence the size of
the tree decomposition, it will be very useful, since now we can assume that the nice
tree decomposition has the following additional properties:

• If x ∈ U is the add node of v, then v is not a precolored vertex.

• If x ∈ U is a join node, then Kx does not contain precolored vertices.

We show how a nice tree decomposition T of G can be modified to obtain a nice tree
decomposition T ′ of G′ satisfying these two additional properties. Let v1, v2, . . . ,
v|C|−1 be the neighbors of v′ in G′. Let x be an arbitrary node containing vertex v, let
Kx = {v, w1, w2, . . . , wt}. Insert a new join node between x and its parent, we attach
a new branch to the parent of x, which will describe the vertices v′, v1, . . . , v|C|−1.
This new branch is a path, containing the following nodes (see Figure 2):

• Leaf node containing v′.

• Add node of v1, add node of v2, . . . , add node of v|C|−1.

• Forget node of v′.
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• Add node of v.

• Forget node of v1, forget node of v2, . . . , forget node of v|C|−1.

• Add node of w1, add node of w2, . . . , add node of wt.

It is clear that this modification results in a nice tree decomposition, and if we perform
it for each precolored vertex v, then we obtain a decomposition of G′.

3 System of extensions

Let H be an induced subgraph of G, and let K be a clique of H . We define a
set system S (H,K) over K that will play an important role in the analysis of the
algorithm. Denote by CH ⊆ C those colors that the precoloring assigns to vertices in
H . The set system S (H,K) is defined as follows:

Definition 3.1. For S ⊆ K, the set S is in S (H,K) if and only if there is a precol-
oring extension ψ: V (H) → C of subgraph such that

• ψ(v) ∈ CH for every v ∈ S, and

• ψ(v) 6∈ CH for every v ∈ K \ S.

Thus the set system S (H,K) describes all the possible colorings that can appear
on K in a precoloring extension of H , but this description only distinguishes between
colors in CH and colors not in CH . In particular, the precoloring can be extended to
H if and only if S (H,K) is not empty. If H contains no precolored vertices, but it
can be colored with |C| colors, then S (H,K) contains only the empty set.

The following observation bounds the possible size of a set in S (H,K):

Observation 3.2. If S ∈ S (H,K), then

|K| − |C \ CH | ≤ |S| ≤ |CH |

Proof. If S ∈ S (H,K), then there is a coloring ψ that assigns exactly |S| colors from
CH to the vertices of K. Clearly, in ψ at most |CH | vertices of the clique K can receive
colors from CH , proving the upper bound. Coloring ψ assigns colors from C \ CH to
the vertices in K \ S, hence |C \ CH | ≥ |K| − |S|, and the lower bound follows. �

The definition of this set system might seem somewhat technical, but it precisely
captures the information necessary for solving the precoloring extension problem. Let
K be a clique separator of G, that is, K is a clique such that its removal separates
the graph into two or more components. Let V \K = V1 ∪ V2 be a partition of the
remaining vertices such that there is no edge between V1 and V2 (that is, each of V1

and V2 contains one or more connected components of V \K). Let G1 = G[V1 ∪K]
and G2 = G[V2 ∪ K]. Assume that we have already extended the precoloring to G1

(coloring ψ1) and to G2 (coloring ψ2). If ψ1(v) = ψ2(v) for every vertex v of the clique
K, then they can be merged to obtain a coloring of G. Therefore G has a precoloring
extension if and only if there is a precoloring extension ψ1 of G1, and a precoloring
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extension ψ2 of G2 such that they agree on K. This means that if we have the list
of all possible colorings that a precoloring extension of G1 can assign to K, then to
decide if G has a precoloring extension this list is all the information required from
the graph G1. More formally, if we replace G1 with a graph that has the same list
of possible colorings on K, then this does not change the existence of a precoloring
extension on G.

However, the following lemma shows that even less information is sufficient: we do
not need the list of all possible colorings that can appear on clique K in a coloring of
G1, the set system S (G1,K) is enough. More precisely, the set system S (G,K) can
be constructed from S (G1,K) and S (G2,K), hence these two systems are sufficient
to decide whether G has a precoloring extension.

Lemma 3.3. Let K be a clique separator of G(V1∪K∪V2, E) containing no precolored
vertices, let G1 = G[V1 ∪K] and G2 = G[V2 ∪K]. A set S ⊆ K is in S (G,K) if and
only if |S| ≥ |K| − |C \CG| and S can be partitioned into disjoint sets S1 ∈ S (G1,K)
and S2 ∈ S (G2,K).

Proof. Assume first that S ∈ S (G,K) and let ψ be a coloring corresponding to the set
S. Observation 3.2 implies that |S| ≥ |K|−|C \CG|, as required. Coloring ψ induces a
coloring ψi of Gi, let Si ∈ S (Gi,K) be the set corresponding to ψi (i = 1, 2). Coloring
ψ can assign three different types of colors to the vertices in K:

• If ψ(v) 6∈ CG (i.e., ψ(v) is not used in the precoloring), then v 6∈ S, S1, S2.

• If the precoloring uses ψ(v) in V1, then v ∈ (S ∩ S1) \ S2. (Since each color is
used at most once in the precoloring, ψ(v) cannot appear in V2 on a precolored
vertex.)

• If the precoloring uses ψ(v) in V2, then v ∈ (S ∩ S2) \ S1.

Note that v cannot be a precolored vertex, hence the precoloring cannot use ψ(v) in
K. Therefore S is the disjoint union of S1 and S2, as required.

Now assume that S can be partitioned into disjoint sets S1 ∈ S (G1,K) and
S2 ∈ S (G2,K), let ψ1 and ψ2 be the two corresponding colorings. In general, ψ1 and
ψ2 might be different on K, thus they cannot be combined to obtain a coloring of G.
However, with some permutations of colors we modify the two colorings in such a way
that they assign the same color to every vertex of K. Let C1 (resp. C2) be the colors
of the precolored vertices in V1 (resp. V2). Notice that both ψ1 and ψ2 assign colors
from C \ C1 to S2, (since S1 and S2 are disjoint). Modify coloring ψ1: permute the
colors of C \ C1 such that ψ1(v) = ψ2(v) holds for every v ∈ S2 (this can be done
since K is a clique, hence both ψ1 and ψ2 assign distinct colors to the vertices in S2).
Since the precolored vertices in V1 have colors only from C1, coloring ψ1 remains a
valid precoloring extension for G1. Similarly, in coloring ψ2, permute the colors of
C \ C2 such that ψ1(v) = ψ2(v) for every v ∈ S1. Now we have that ψ1 and ψ2 agree
on S, there might be differences only on K \ S. Moreover, ψ1 uses only colors from
C \ C1 on K \ S, and ψ2 uses colors only from C \ C2 on this set. Now select a set
C ′ ⊆ C \CG such that |C ′| = |K \S| (here we use the assumption |S| ≥ |K|−|C \CG|,
which implies that there are enough colors in C \ CG). Permute again the colors of
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C \C1 in coloring ψ1 such that ψ1 assigns to K \S exactly the colors in C ′. Similarly,
permute the colors of C \ C2 in coloring ψ2 such that ψ2 also uses C ′ on K \ S. Now
the colorings ψ1 and ψ2 agree on K, hence we can combine them to obtain a coloring ψ
of G. This coloring proves that S = S1 ∪ S2 is in S (G,K), what we had to show. �

Lemma 3.3 implies that if we know the set systems S (G1,K) and S (G2,K), then
the set system S (G,K) can be also determined. This suggests the following algorithm:
for each node x of the tree decomposition, determine S (Gx,Kx). In principle, this can
be done in a bottom-up fashion: the set system for node x can be determined from the
systems of its children. Unfortunately, the size of S (Gx,Kx) can be exponential, thus
it cannot be constructed explicitly during the algorithm. However, if G is a chordal
graph, then these set systems have nice combinatorial structure that allows a compact
representation. The main idea of the algorithm in Section 4 is to use network flows
to represent the set systems S (Gx,Kx). In Section 5 we discuss formally what is this
nice structure that makes possible the representation with flows: it turns out that if
G is chordal and K is a clique of G, then S (G,K) is the projection of a matroid.

4 The algorithm

In this section we prove the main result of the paper:

Theorem 4.1. 1-PrExt can be solved in polynomial time for chordal graphs.

Given an instance of the 1-PrExt problem, we construct a network flow problem
that has a feasible flow if and only if there is a solution to 1-PrExt. We use the
following variant of the flow problem. The network is a directed graph D(U,A), each
arc e ∈ A has an integer capacity c(e). The set of arcs entering (resp. leaving) node v
will be denoted by δ−(v) (resp. δ+(v)). The set of sources is S ⊆ U , and T ⊆ U is the
set of terminals in the network (we require S ∩ T = ∅). Every source v ∈ S produces
exactly one unit amount of flow, and every terminal v ∈ T has a capacity w(v), it can
consume up to w(v) units. Formally, a feasible flow is a function f : A → Z

+ that
satisfies 0 ≤ f(e) ≤ c(e) for every arc e ∈ A, and the following holds for every node
v ∈ U :

• If v ∈ S, then
∑

e∈δ−(v) f(e) −
∑

e∈δ+(v) f(e) = −1.

• If v ∈ T , then 0 ≤
∑

e∈δ−(v) f(e) −
∑

e∈δ+(v) f(e) ≤ w(v).

• If v ∈ U \ (T ∪ S), then
∑

e∈δ−(v) f(e) =
∑

e∈δ+(v) f(e).

Using standard techniques, the existence of a feasible flow can be tested by a
maximum flow algorithm. It is sufficient to add two new vertices s and t, an arc with
capacity 1 from s to every vertex v ∈ S, and an arc with capacity w(v) to t from every
vertex v ∈ T . Clearly, there is a feasible flow in the original network if and only if
there is an

−→
st flow with value |S| in the modified network. The maximum flow can

be determined using at most |S| iterations of the Edmonds-Karp augmenting path
algorithm, hence the existence of a feasible flow in a network D(U,A) can be tested in
O(|S||A|) time.
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Figure 3: Construction of the network when node x is of the following types: (a) add
node for v 6∈ W , (b) forget node for v (either in W or not), (c) leaf node for v ∈ W ,
(d) join node.

Given a chordal graph G(V,E), its nice tree decomposition T (U, F ), {Tv | v ∈ V },
and the set of precolored vertices W ⊆ V , we construct a network as follows. Direct
every edge of T towards the root r. For every v ∈ V and for every x ∈ Tv add a node
xv to the network. Denote by Ux the |Kx| nodes corresponding to x. If the edge xy
is in Tv, then connect xv ∈ Ux and yv ∈ Uy by an arc. If y is the child of x, then
direct this arc from yv to xv . These new arcs −−→yvxv have capacity 1, while the arcs −→yx
of the tree T have capacity |C| − |Ky| (recall that if the graph is |C|-colorable, then
|Ky| ≤ |C|).

For each node x ∈ T , depending on the type of x, we do one of the following:

• If x is an add node of some vertex v 6∈ W , and y is the child of x, then add an
arc −−→yxv to the network.

• If leaf node x contains some vertex v ∈ W , then add a new node x′v to the

network, add an arc
−−→
x′vxv with capacity 1, and set x′v to be a source.

• If x is a forget node of some vertex v (either in W or not), and y is the child of
x, then add an arc −→yvx to the network.

For join nodes and for leaf nodes containing vertices outsideW we do nothing. Figure 3
sketches the construction for the different types of nodes.

So far there are no terminals in the network. The definition of the network is
completed by adding terminals as follows. Here we define not only a single network,
but several subnetworks that will be useful in the analysis of the algorithm. For every
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node x ∈ U of the tree T , the networkNx contains only those nodes of the network that
correspond to nodes in T x (recall that T x is the subtree of T rooted at x). Formally,
the network Nx has the node set T x ∪

⋃
y∈T x Uy, and the sources nodes (if available)

corresponding to the leaves of T x. Moreover, in network Nx the nodes in Ux are set to
be terminals with capacity 1, and node x is a terminal with capacity |C| − |Kx|. This
completes the description of the network Nx.

Notice that there are sources only at the leaf nodes of precolored vertices. Therefore
the number of sources in network Nx is the same as the number of precolored vertices
in Vx (recall that Vx is the set of those vertices v whose tree Tv has at least one node
in T x, and Gx = G[Vx]). We will denote by Cx the set of colors that appear on the
precolored vertices of Vx. In network Nx, there are terminals only at x and Ux, these
terminals must consume all the flow.

Observation 4.2. The number of sources in Nx equals the number of precolored ver-
tices in Vx, which is |Cx|. Consequently, in every feasible flow of Nx, the amount of
flow consumed by the terminals at x and Ux is exactly |Cx|. �

To prove Theorem 4.1, we show that the precoloring of G can be extended to the
whole graph if and only if there is a feasible flow in Nr, where r is the root of T . This
gives a polynomial-time algorithm for 1-PrExt in chordal graphs, since constructing
network Nr and finding a feasible flow in Nr can be done in polynomial time. The
proof of this claim uses induction on the tree decomposition of the graph. For every
node x ∈ U of T , we prove the following more general statement: the network Nx has
a feasible flow if and only if the precoloring of G can be extended to Gx.

More precisely, we show that the networkNx represents (in some well-defined sense)
the set system S (Gx,Kx): every feasible flow corresponds to a set in the system.
Therefore Nx has no feasible flows if and only if S (Gx,Kx) is empty, or, equivalently,
the precoloring cannot be extended to Gx.

We say that a feasible integer flow ofNx represents the set S ⊆ Kx if for every v ∈ S,
the terminal at xv consumes one unit of flow, while for every v 6∈ S, there is no flow
entering xv . The following lemma establishes the connection between the constructed
networks and the set systems S (Gx,Kx). The proof of this lemma completes the
proof of Theorem 4.1, as it reduces the 1-PrExt problem to finding a feasible flow in
Nr.

Lemma 4.3. For an arbitrary node x ∈ U of T , the network Nx has a feasible flow
representing a set S ⊆ Kx if and only if S ∈ S (Gx,Kx).

Proof. The lemma is proved for every node x of T by a bottom-up induction on the
tree T . After checking the lemma for the leaf nodes, we show that it is true for a
node x assuming that it is true for the children of x. The proof is done separately for
the different types of nodes. Verifying the lemma in each case is tedious, but it does
not require any new ideas. The way the networks are constructed ensures that the set
systems represented by the networks have the required properties.

Leaf node. For a leaf node x, the lemma is trivial: if the vertex v inKx is precolored,
then every flow of Nx represents {v}, otherwise Nx contains no sources, and every flow
represents ∅.

9



Add node for v 6∈ W . Let x be an add node of v 6∈ W , and let y be the child
of x. For every S ∈ S (Gx,Kx), it has to be shown that there is a feasible flow
of Nx representing the set S. Assume first that v 6∈ S. Since Gy = Gx \ v and
Ky = Kx \{v}, it follows that S ∈ S (Gy ,Ky). Therefore by the induction hypothesis,
there is a flow fy in Ny representing S. We modify this flow to obtain a flow fx

of Nx also representing S. For every u ∈ S, in flow fy there is one unit of flow
consumed by the terminal at yu. To obtain flow fx, direct this unit flow towards xu,
and consume it by the terminal at that node. Similarly, in the flow fy, there is some
amount of flow consumed by the terminal at y, direct this flow to x, and consume it
by that terminal. By Observation 4.2, the amount of flow consumed at x is exactly
|Cx| − |S|. Moreover, the lower bound of Observation 3.2 implies that this is at most
|Cx| − |Kx|+ |C \Cx| = |C| − |Kx| < |C| − |Ky|, hence the capacity of the arc −→yx and
the terminal at x is sufficient for the flow. Thus we obtained a feasible flow of Nx, and
obviously it represents S.

We proceed similarly if v ∈ S. In this case S\{v} ∈ S (Gy ,Ky), thus Ny has a flow
fy representing S \ {v}. To obtain a flow fx of Nx representing S, the flow consumed
at yu is directed to xu, as in the previous paragraph. However, now we do not direct
all the flow consumed at y to x, but we direct one unit amount through the arc −−→yxv ,
and only the rest goes through arc −→yx. Therefore the amount of flow consumed by the
terminal at x is one unit less than the flow consumed at y in flow fy, hence the capacity
of the terminal at x is sufficient. Clearly, this results in a flow fx of Nx representing
S, as required. The only thing to verify is that there is at least one unit of flow
consumed at y in flow fy. The flow fy represents S \ {v}, and by Observation 4.2, the
amount of flow consumed in Uy ∪ {y} is exactly |Cy|, hence the flow consumed at y is
|Cy|−|S|+1. Since v is not a precolored vertex, we have that Cy = Cx. We know that
S ∈ S (Gx,Kx), therefore by the upper bound of Observation 3.2, |Cy| − |S| + 1 ≥ 1,
hence there is nonzero flow consumed at y in flow fy.

Now assume that there is a flow fx in Nx representing S ⊆ Kx, it has to be
shown that S ∈ S (Gx,Kx). Let y be the child of x. Assume first that v 6∈ S, we
show that Ny has a flow fy in Ny representing S. To obtain this fy, the flow fx

is modified the following way. For every vertex xw ∈ Ux, where w 6= v, if there is
flow on the arc −−−→ywxw, then consume it by the terminal at yw. Similarly, the flow
on the arc −→yx can be consumed by the terminal at y (the capacity of the terminal
at y equals the capacity of arc −→yx). It is clear that these modifications result in a
feasible flow for Ny that represents S. By the induction hypothesis, this means that
S ∈ S (Gy ,Ky), and there is a corresponding coloring ψ. Since v is the only vertex
in Vx \ Vy , to prove S ∈ S (Gx,Kx) it is sufficient to show that coloring ψ can be
extended to v in such a way that v receives a color not in Cx. If there is no such
extension, then this means that ψ uses every color of C \ Cx on the neighbors of v,
that is, on the clique Ky. By construction, ψ assigns exactly |S| colors from Cx to the
clique Ky, hence if every color of C \ Cx is used on Ky, then |Ky| = |C \ Cx| + |S|.
Therefore |Kx| = |Ky| + 1 = |C \ Cx| + |S| + 1 and the capacity of the terminal at x
is |C| − |Kx| = |Cx| − |S| − 1. However, in flow fx of Nx that represents S, exactly
|Cx| − |S| unit of flow is consumed at x (Observation 4.2), a contradiction. Thus ψ
can be extended to v, and S ∈ S (Gx,Kx) follows.
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The case v ∈ S can be handled similarly. If there is a flow fx in Nx that represents
S, then this is only possible if there is flow on the arc −−→yxv . Therefore by restricting
the flow to Ny as in the previous paragraph, we can obtain a flow representing S \{v}.
(Notice that the capacity of the terminal at y equals the combined capacity of the
terminals at x and xv , hence it can consume the flow on the arcs −−→yxv and −→yx.)

By the induction hypothesis, it follows that S \ {v} ∈ S (Gy ,Ky), and there is a
corresponding coloring ψ. Now it has to be shown that ψ can be extended to vertex
v such that v receives a color from Cx. Coloring ψ assigns exactly |S| − 1 colors from
Cx to Ky. The extension is not possible only in the case if every color of Cx is already
used on Ky, that is, if |Cx| = |S| − 1. This would imply that in flow fx of Nx, the
amount of flow consumed at Ux is |S| = |Cx| + 1. However, by Observation 4.2, this
is strictly larger than the number of sources in Nx, a contradiction.

Forget node for v (vertex v is either in W or not). Let x be the forget node of v,
and let y be the child of x. Let S ∈ S (Gx,Kx), it has to be shown that there is a
feasible flow fx of Nx representing S. Since Gx = Gy, if S ∈ S (Gx,Kx), then either S
or S∪{v} is in S (Gy ,Ky). In the first case, if S ∈ S (Gy ,Ky), then the flow fy in Ny

that represents S can be extended to a flow in Nx that also represents S. As before,
the flow consumed at yw is directed to xw, and the flow consumed at y is directed
to x. Recall that the capacity of the arc −→yx equals the capacity of the terminal at y,
while the capacity of the terminal at x is strictly greater. Therefore the resulting flow
is feasible in Nx, and clearly it represents S. If S ∪ {v} ∈ S (Gy,Ky), then we do the
same, but the flow consumed at yv is directed to x through the arc −→yvx. The resulting
flow is feasible in Nx and represents S.

To prove the other direction, assume that Nx has a flow fx representing S ⊆ Kx.
Restrict this flow to Ny, that is, modify the flow such that the terminals at y and
Uy consume all the flow. This results in a feasible flow fy of Ny that represents S or
S ∪{v}. Notice that the terminal at y has the same capacity as the arc −→yx, hence this
terminal can consume all the flow going through the arc. Therefore, by the induction
hypothesis, either S or S ∪ {v} is in S (Gy ,Ky) (depending on whether there is flow
consumed at yv or not). In either case, S ∈ S (Gx,Ky) follows since Gx = Gy and
Kx = Ky \ {v}.

Join node. Let y and z be the two children of the join node x. Let S ∈ S (Gx,Kx),
by Lemma 3.3 this means that

|S| ≥ |Kx| − |C \ Cx| (1)

and S can be partitioned into disjoint sets S1 ∈ S (Gy,Ky) and S2 ∈ S (Gz ,Kz). By
the induction hypothesis, this implies that there are flows fy, fz in Ny and Nz that
represent the sets S1 and S2, respectively. We combine these two flows to obtain a
flow fx of Nx that represents the set S. If there is flow consumed at a node yv ∈ Uy

(resp. zv ∈ Uz) in fy (resp. fz), then direct this flow on the arc −−→yvxv (resp. −−→zvxv)
to node xv , and consume it there. The capacity of the terminal at xv is 1, but the
disjointness of S1 and S2 implies that at most one unit of flow is directed to xv . The
flow consumed at node y and z is directed to x on the arc −→yx, −→zx, respectively. Since
there are exactly |S| units of flow consumed in Ux, therefore |Cx| − |S| units of flow
has to be consumed at x. By (1), this is at most |Cx| − |Kx| + |C \ Cx| = |C| − |Kx|,
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thus the capacity of the terminal at x is sufficient for consuming this flow. Therefore
we have obtained a flow fx in network Nx that represents S.

Now assume that Nx has a flow fx that represents S. Since the terminal at x has
capacity at most |C| − |Kx|, and by Observation 4.2, the amount of flow consumed in
x ∪ Ux is |Cx|, it follows that

|S| ≥ |Cx| − (|C| − |Kx|) = |Kx| − |C \Cx|. (2)

If flow is consumed at a node xv ∈ Ux, then the flow arrives to this node either from
yv or from zv. Define the sets S1, S2 ⊆ Kx such that v ∈ S1 (resp. v ∈ S2) if there is
flow on arc −−→yvxv (resp. −−→zvxv).

Based on the flow fx of Nx representing S, we create a flow fy of Ny that represents
S1 and a flow fz of Nz that represents S2. The flows fy and fz are constructed as
follows. For every yv ∈ Uy, if there is flow going through the arc −−→yvxv, then consume
this flow at yv, and similarly for the nodes zv ∈ Uz. The flow on arcs −→yx and −→zx
are consumed at y and z, respectively (the capacity of nodes x, y, and z are the
same |C| − |Kx| = |C| − |Ky| = |C| − |Kz|). Clearly, flows fy and fz represent S1

and S2, respectively. By the induction hypothesis, the flows fx and fy imply that
S1 ∈ S (Gy,Ky) and S2 ∈ S (Gz,Kz). Furthermore, it is clear that S1 and S2 are
disjoint, and S = S1 ∪ S2. Therefore by Lemma 3.3 and Inequality (2), this proves
that S ∈ S (Gx,Kx), as required.

�

To determine the running time of the algorithm, we have to consider two main
steps: the construction of the network and the solution of the flow problem. First of
all, the transformation introduced at the end of Section 2 can increase the size of the
graph by at most a factor of n. Given a chordal graph G(V,E), its tree decomposition
can be constructed by first finding a perfect vertex elimination scheme [Gol80, RTL76].
Based on this ordering of the vertices, one can build a tree T (U, F ) of size |V |, and one
subtree for each vertex of the graph. This tree decomposition can be found in time
linear in the size of the output, that is, in O(|V |2) time. Converting T (U, F ) to a nice
tree decomposition can introduce an increase of factor at most |V |, thus it can be done
in O(|V |3) time. The network defined by the algorithm has size linear in the total size
of the tree decomposition (size of T (U, F ) and the sum of the size of the subtrees),
and clearly it can be constructed in linear time. Therefore the constructed network
has O(|V |3) nodes and O(|V |3) arcs, and the construction takes O(|V |3) time.

In a network with n nodes and m arcs, the maximum flow can be determined in
O(n2m) or even in O(n3) time [AMO93]. Moreover, it can be determined in O(km)
time if a flow with value k exists: the Edmonds-Karp algorithm produces such a flow
after finding the first at most k augmenting paths (assuming that the capacities are
integer). As discussed in the beginning of the section, the existence of a feasible flow
can be tested by finding an s-t flow with value |S|, hence it can be done in O(|S| · |V |3)
time. By Observation 4.2, this is at most O(|C| · |V |3) = O(|V |4). We believe that the
running time can be significantly improved by streamlining the construction. However,
our aim was only to prove that the problem can be solved in polynomial time, thus we
preferred ease of presentation over efficiently.
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The algorithm described above determines whether a precoloring extension exists,
but does not find a coloring. However, based on the feasible flow of network Nr, one
can construct a precoloring extension of the graph. We have seen that the feasible
flow of network Nx represents a set Sx ∈ S (Gx,Kx). Recursively for each x ∈ U , we
compute a coloring ψx corresponding to Sx. For the leaf nodes this is trivial. Let x
be an add node of vertex v, and let y be the child of x. To obtain ψx, coloring ψy has
to be extended to v: if there is flow on −−→yxv, then v has to receive a color from Cx,
otherwise from C \Cx. The construction ensures that there is always such a color not
already used on the neighbors of v. If x is a forget node with child y, then ψx can be
selected to be the same as ψy. Finally, assume that x is a join node with children y

and z. By the way the network was constructed, Sy and Sz are disjoint, Sx = Sy ∪Sz,
and S ≥ |Kx| − |C \ Cx|. Therefore the method described in the proof of Lemma 3.3
can be used to construct a coloring ψx of Gx that corresponds to Sx ∈ S (Gx,Kx).

5 Matroidal systems

The main idea of the algorithm in Section 4 is to represent the set system S (G,K)
by a network flow. We have shown that for chordal graphs the set systems S (Gx,Kx)
can be represented by network flows for every subgraph Gx and clique Kx given by the
tree decomposition. The reason why these systems can be represented by flows is that
they have nice combinatorial structure (the proof is given at the end of the section):

Theorem 5.1. Let G(V,E) be a chordal graph, and let W ⊆ V be a arbitrary set of
precolored vertices such that every color of C is used at most once in the precoloring. If
H is an induced subgraph of G, and K is a clique of H, then the set system S (H,K)
is the projection of the basis set of a matroid.

A set system B is the basis set of a matroid, if it satisfies the following two condi-
tions:

• Every set in B has the same size.

• For every B1, B2 ∈ B and v ∈ B1 \ B2, there is an element u ∈ B2 \ B1 such
that B1 ∪ {u} \ {v} ∈ B.

If B is a set system over X , then its projection to Y ⊆ X is a set system over
Y that contains Y ′ ⊆ Y if and only if there is a set B ∈ B with B ∩ Y = Y ′. The
projection of a matroid is always a so-called ∆-matroid [Mur00], hence Theorem 5.1
also says that S (G,K) is a ∆-matroid. For further notions of matroid theory, the
reader is referred to e.g., [Rec89].

In general, if G is not chordal, then S (G,K) is not necessarily the projection
of a matroid. Figure 4 shows a non-chordal graph G with two precolored vertices
v1 and v2. The graph is not chordal, since vertices v1, v4, v2, v8 induce a cycle of
length 4. If we have only four colors, then G has four precoloring extensions: vertex
v3 can have only color 3 or 4, vertex v9 can have only color 1 or 2, and setting
the color of these two vertices forces a unique coloring for the rest of the graph.
For example, if coloring ψ assigns color 3 to v3, and color 1 to v9, then ψ(v9) = 1,
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ψ(v2) = 2, ψ(v4) = 4 imply ψ(v6) = 3; furthermore ψ(v1) = 1, ψ(v2) = 2, ψ(v6) = 3
imply ψ(v8) = 4; and finally ψ(v5) = 1 and ψ(v7) = 2 follow in a similar fashion.
Therefore the clique K = {v5, v6, v7} receives one of the four colorings (3, 1, 4), (1, 3, 2),
(4, 1, 3), (1, 4, 2) in every precoloring extension. Since CG = {1, 2}, it follows that
S (G,K) = {{v6}, {v5, v7}}, which cannot be the projection of a matroid (for example,
it is not even a ∆-matroid).

PSfrag replacements

v4

v5

v6

v2 v3

v1

v8

v9

v7

1

2

Figure 4: A non-chordal graph G and a clique K = {v5, v6, v7} such that S (G,K) is
not the projection of a matroid (|C| = 4).

The proof of Theorem 5.1 uses the following result of matroid theory. In a directed
graph D(U,A), we say that Y ⊆ U can be linked onto X ⊆ U , if |X | = |Y | and there
are |X | pairwise node disjoint paths from the nodes in X to the nodes in Y . The sets
X and Y do not have to be disjoint, and the zero-length path consisting of a single
node is also allowed. Hence X can be linked onto X in particular. The following
theorem states that the graph G together with a set X ⊆ U induces a matroid on the
vertices of the graph (see e.g., [Rec89]):

Theorem 5.2. If D(U,A) is a directed graph and X ⊆ U is a fixed subset of nodes,
then those subsets U ′ ⊆ U that can be linked onto X form the bases of a matroid M

over U .

Considering the line graph of the directed graph, one can state an arc disjoint
version of Theorem 5.2:

Theorem 5.3. If D(U,A) is a directed graph, s ∈ U is a fixed vertex and r is a
positive integer, then those r-element subsets A′ ⊆ A whose arcs can be reached from
s by r pairwise arc disjoint paths form the bases of a matroid M over A. �
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To prove Theorem 5.1, we use the fact that S (Gx,Kx) can be represented by the
network Nx (Lemma 4.3). Then Theorem 5.3 is used to show that the set system
represented by a network is the projection of a matroid.

Proof (of Theorem 5.1). Clearly, it is sufficient to consider only the case when H = G,
since every induced subgraph of a chordal graph is also chordal. Moreover, it can be
assumed that K is a maximal (non-extendable) clique: if K1 ⊆ K2 are two cliques,
then S (G,K1) is the projection of S (G,K2). Therefore if S (G,K2) is the projection
of the basis set of a matroid, then this also follows for S (G,K1). We have seen in
Section 2 that given a tree decomposition T (U, F ), {Tv}v∈V (G) of the chordal graph
G, every maximal clique of G is a clique Kx for some x ∈ U . Furthermore, since the
choice of the root node of T is arbitrary, it can be assumed that x is the root, thus we
have G = Gx and S (G,K) = S (Gx,Kx).

By Lemma 4.3, the sets in S (Gx,Kx) are exactly the sets represented by the
feasible flows of the network Nx. Now, as described at the beginning of Section 4,
add two new nodes s, t to the network, add an arc with unit capacity from s to every
source, and for every terminal x, add an arc from x to t that has capacity equal to the
capacity of x. Furthermore, replace every arc e having capacity c(e) with c(e) parallel
arcs of unit capacity, clearly this does not change the problem. Call the resulting
network N ′

x. By Observation 4.2, the number of sources in Nx is r = |Cx|, hence every

feasible flow of Nx corresponds to an
−→
st flow with value r in N ′

x. Since every arc has

unit capacity in N ′
x, an integral

−→
st flow with value r corresponds to r arc disjoint paths

from s to t. Now consider the matroid M given by Lemma 5.3. Denote by At the arcs
incident to t, and let matroid Mt be the restriction of matroid M to At. Let A′

t ⊆ At

be those arcs of At that originate from some node xv ∈ Ux (and not from x). We claim
that S (G,Kx) is isomorphic to the projection of Mt to A′

t (vertex v ∈ Kx maps to arc
−→
xvt). By Lemma 4.3, if S ∈ S (G,Kx), then there is a feasible flow in Nx where flow is
consumed only by those terminals of Ux that correspond to the elements in S. Based
on this flow, one can find r arc disjoint

−→
st paths in N ′

x, and it follows that the matroid
Mt has a base whose intersection with A′

t is exactly S, hence S is in the projection of
Mt to A′

t. It is easy to show the other direction as well: if S is in the projection of
Mt, then there is a feasible flow of Nx where only the terminals corresponding to S
consume flow in Ux. Thus by Lemma 4.3, S ∈ S (G,Kx), as required. �
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[ERT80] Paul Erdős, Arthur L. Rubin, and Herbert Taylor. Choosability in graphs. In
Proceedings of the West Coast Conference on Combinatorics, Graph Theory
and Computing (Humboldt State Univ., Arcata, Calif., 1979), pages 125–157,
Winnipeg, Man., 1980. Utilitas Math. p.

[Gol80] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Aca-
demic Press, New York, 1980. p.

[HT93] M. Hujter and Zs. Tuza. Precoloring extension. II. Graph classes related to
bipartite graphs. Acta Mathematica Universitatis Comenianae, 62(1):1–11,
1993. p.

[HT96] M. Hujter and Zs. Tuza. Precoloring extension. III. Classes of perfect graphs.
Combin. Probab. Comput., 5(1):35–56, 1996. p.

[Klo94] Ton Kloks. Treewidth, volume 842 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1994. Computations and approximations. p.

[Kra93] J. Kratochv́ıl. Precoloring extension with fixed color bound. Acta Mathematica
Universitatis Comenianae, 62(2):139–153, 1993. p.

[Mar04] Dániel Marx. Precoloring extension on unit interval graphs, 2004. Submitted.
p.

[MTW98] B. Mohar, Zs. Tuza, and G. Woeginger, 1998. Manuscript. p.

[Mur00] Kazuo Murota. Matrices and matroids for systems analysis, volume 20 of
Algorithms and Combinatorics. Springer-Verlag, Berlin, 2000. p.

[Rec89] András Recski. Matroid theory and its applications in electric network the-
ory and statics, volume 6 of Algorithms and Combinatorics. Springer-Verlag,
Berlin, New York and Akadémiai Kiadó, Budapest, 1989. p.
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