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Abstract. In the precoloring extension problem (PrExt) a graph is
given with some of the vertices having a preassigned color and it has to be
decided whether this coloring can be extended to a proper coloring of the
graph with the given number of colors. Two parameterized versions of the
problem are studied in the paper: either the number of precolored vertices
or the number of colors used in the precoloring is restricted to be at most
k. We show that these problems are polynomial time solvable but W[1]-
hard in chordal graphs. For a graph class F , let F + ke (resp. F + kv)
denote those graphs that can be made to be a member of F by deleting
at most k edges (resp. vertices). We investigate the connection between
PrExt in F and the coloring of F + ke, F + ve graphs. Answering
an open question of Leizhen Cai [5], we show that coloring chordal+ke

graphs is fixed-parameter tractable.

1 Introduction

In graph vertex coloring we have to assign colors to the vertices such that neigh-
boring vertices receive different colors. In the precoloring extension (PrExt)
problem a subset W of the vertices have a preassigned color and we have to ex-
tend this to a proper k-coloring of the whole graph. Since vertex coloring is the
special case when W = ∅, the precoloring extension problem is NP-complete in
every class of graphs where vertex coloring is NP-complete. See [2,7,8] for more
background and results on PrExt.

In this paper we study the precoloring extension problem on chordal graphs.
PrExt is NP-complete for interval graphs [2] (and for unit interval graphs [12]),
hence it is NP-complete for chordal graphs as well. On the other hand, if every
color is used only once in the precoloring (this special case is called 1-PrExt),
then the problem becomes polynomial time solvable for interval graphs [2], and
more generally, for chordal graphs [11]. Here we introduce two new restricted ver-
sions of PrExt: we investigate the complexity of the problem when either there
are only k precolored vertices, or there are only k colors used in the precoloring.
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Clearly, the former is a special case of the latter. By giving an O(knk+2) time
algorithm, we show that for fixed k both problems are polynomial time solvable
on chordal graphs. However, we cannot expect to find a uniformly polynomial
time algorithm for these problems, since they are W[1]-hard even for interval
graphs. To establish W[1]-hardness, we use the recent result of Slivkins [15] that
the edge-disjoint paths problem is W[1]-hard.

Leizhen Cai [5] introduced a whole new family of parameterized problems.
If F is an arbitrary class of graphs, then denote by F − kv (resp. F − ke) the
class of those graphs that can be obtained from a member of F by deleting at
most k vertices (resp. k edges). Similarly, let F + kv (resp. F + ke) be the class
of those graphs that can be made to be a member of F by deleting at most k
vertices (resp. k edges). For any class of graphs F and for any graph problem,
we can ask what is the complexity of the problem restricted to these ’almost
F ’ graphs. This question is investigated in [5] for the vertex coloring problem.
Coloring F + kv or F + ke graphs can be very different than coloring graphs in
F , and might involve significantly new approaches.

We investigate the relations between PrExt and the coloring of the modified
graph classes. We show that for several reasonable graph classes, reductions
are possible between PrExt for graphs in F and the coloring of F + kv or
F + ke graphs. Based on this correspondence between the problems, we show
that both chordal+ke and chordal+kv graphs can be colored in polynomial time
for fixed k, but chordal+kv graph coloring is W[1]-hard. Moreover, answering
an open question of Cai [5], we develop a uniformly polynomial time algorithm
for coloring chordal+ke graphs.

The paper is organized as follows. Section 2 contains preliminary notions.
Section 3 reviews tree decomposition, which will be our main tool when dealing
with chordal graphs. In Section 4, we investigate the parameterized PrExt

problems for chordal graphs. The connections between PrExt and coloring F +
ke, F + kv graphs are investigated in Section 5. Finally, in Section 6, we show
that coloring chordal+ke graphs is fixed-parameter tractable.

2 Preliminaries

A C-coloring is a proper coloring of the vertices with color set C. We introduce
two different parameterization of the precoloring extension problem. Formally,
the problem is as follows:

Precoloring Extension (PrExt)
Input: A graph G(V,E), a set of colors C, and a precoloring ψ: W → C

for a set of vertices W ⊆ V .
Parameter 1: |W |, the number of precolored vertices.
Parameter 2: |{ψ(w) : w ∈ W}| = |CW |, the number of colors used in
the precoloring.
Question: Is there a proper C-coloring ψ′ of G that extends ψ (i.e.,
ψ′(w) = ψ(w) for every w ∈W )?

2



Note that CW ⊆ C is the set of colors appearing on the precolored vertices,
and can be much smaller than the set of available colors C. When we consider
parameter 1, then the problem will be called PrExt with fixed number of pre-
colored vertices, while considering parameter 2 corresponds to PrExt with fixed
number of colors in the precoloring.

For every class F and every fixed k, one can ask what is the complexity
of vertex coloring on the four classes F + ke, F + kv, F − ke, F − kv. The
first question is whether the problem is NP-complete for some fixed k. If the
problem is solvable in polynomial time for every fixed k, then the next question
is whether the problem is fixed-parameter tractable, that is, whether there is a
uniformly polynomial time algorithm for the given classes.

If F is hereditary with respect to taking induced subgraphs, then F − kv

is the same as F , hence coloring F − kv graphs is the same as coloring in F .
Moreover, it is shown in [5] that if F is closed under edge contraction and has
a polynomial time algorithm for coloring, then coloring F − ke graphs is fixed
parameter tractable. Therefore we can conclude that coloring chordal−kv and
chordal−ke graphs are in FPT. In this paper we show that coloring chordal+ke
graphs is in FPT, but coloring chordal+kv graphs is W[1]-hard.

The modulator of an F + ke graph G is a set of at most k edges whose
removal makes G a member of F . Similar definitions apply for the other classes.
We will call the vertices and edges of the modulator special edges and vertices.
In the case of F + e and F − e graphs, the vertices incident to the special edges
are the special vertices.

When considering the complexity of coloring in a given parameterized class,
then we can assume either that only the graph is given in the input, or that a
modulator is also given. In the case of coloring chordal−ke graphs, this makes no
difference as finding the modulator of such a graph (i.e., the at most k edges that
can make the graph chordal) is in FPT [4,9]. On the other hand, the parameter-
ized complexity of finding the modulator of a chordal+ke graph is open. Thus
in our algorithm for coloring chordal+ke graphs, we assume that the modulator
is given in the input.

3 Tree decomposition

A graph is chordal if it does not contain a cycle of length greater than 3 as
an induced subgraph. This section summarizes some well-known properties of
chordal graphs. First, chordal graphs can be also characterized as the intersection
graphs of subtrees of a tree (see e.g. [6]):

Theorem 1. The following two statements are equivalent:

1. G(V,E) is chordal.

2. There exists a tree T (U,F ) and a subtree Tv ⊆ T for each v ∈ V such that
u, v ∈ V are neighbors in G(V,E) if and only if Tu ∩ Tv 6= ∅.
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Fig. 1. Nice tree decomposition of a chordal graph.

The tree T together with the subtrees Tv is called the tree decomposition of G.
A tree decomposition of G can be found in polynomial time (see [6,14]).

We assume that T is a rooted tree with some root r ∈ U . For clarity, we
will use the word ’vertex’ when we refer to the graph G(V,E), and ’node’ when
referring to T (U,F ). For a node x ∈ U , denote by Vx those vertices whose
subtree contains x or a descendant of x. The subgraph of G induced by Vx will
be denoted by Gx = G[Vx]. For a node x ∈ U of T , denote by Kx the union of v’s
where x ∈ V (Tv). Clearly, the vertices of Kx are in Vx, and they form a clique
in Gx, since the corresponding trees intersect in T at node x. An important
property of the tree decomposition is the following: for every node x ∈ U , the
clique Kx separates Vx \Kx and V \ Vx. That is, among the vertices of Vx, only
the vertices in Kx can be adjacent to V \ Vx.

A tree decomposition will be called nice [10], if it satisfies the following
additional requirements (see Figure 1):

– Every node x ∈ U has at most two children.
– If x ∈ U has two children y, z ∈ U , then Kx = Ky = Kz (x is a join node).
– If x ∈ U has only one child y ∈ U , then either Kx = Ky ∪ {v} (x is an add

node) or Kx = Ky \ {v} (x is a forget node) for some v ∈ V .
– If x ∈ U has no children, then Kx contains exactly one vertex (x is a leaf

node).

By splitting the nodes of the tree in an appropriate way, a tree decomposition
of G can be transformed into a nice tree decomposition in polynomial time.

A vertex v can have multiple add nodes, but at most one forget node (the
vertices in clique Kr of the root r have no forget nodes, but every other vertex
has exactly one). For a vertex v, its subtree Tv is the subtree rooted at the forget
node of v (if it exists, otherwise at the root) and whose leaves are exactly the
add nodes and leaf nodes of v.

4 PrExt on chordal graphs

In this section we show that PrExt can be solved in polynomial time for chordal
graphs if the number of colors used in the precoloring is bounded by a constant
k. The algorithm presented below is a straightforward application of the tree
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decomposition described in Section 3. The running time of the algorithm is
O(knk+2), hence it is not uniformly polynomial. However, in Theorem 3 it is
shown that the problem is W[1]-hard, hence we cannot hope to find a uniformly
polynomial algorithm.

Theorem 2. The PrExt problem can be solved in O(knk+2) time for chordal
graphs, if the number of colors in the precoloring is at most k.

Proof. It can be assumed that the colors used in the precoloring are the colors 1,
2, . . . , k. For each node x of the nice tree decomposition of the graph, we solve
several subproblems using dynamic programming. Each subproblem is described
by a vector [α1, . . . , αk], where each αi is either a vertex of Kx, or the symbol ?.
We say that such a vector is feasible for node x, if there is a precoloring extension
for Gx with the following property: if αi (1 ≤ i ≤ k) is ?, then color i does not
appear on the clique Kx, otherwise it appears on vertex αi ∈ Kx. Notice that
in a feasible vector a vertex can appear at most once (but the star can appear
several times), thus in the following we consider only such vectors.

Clearly, the precoloring can be extended to the whole graph if and only if the
the root node r has at least one feasible vector. The algorithm finds the feasible
vectors for each node of T . We construct the feasible vectors for the nodes in a
bottom-up fashion. First, they are easy to determine for the leaves. Moreover,
they can be constructed for an arbitrary node if the feasible vectors for the
children are already available. The techniques are standard, details omitted. ut

To prove that PrExt with fixed number of precolored vertices is W[1]-hard
for interval graphs, we use reduction from the edge disjoint paths problem, which
is the following:

Edge disjoint paths
Input: A directed graph G(V,E), with k pairs of vertices (si, ti).
Parameter: The number of pairs k.
Question: Is there a set of k pairwise edge disjoint directed paths P1,
. . . , Pk such that path Pi goes from si to ti?

Recently, Slivkins [15] proved that the edge disjoint paths problem is W[1]-
hard for directed acyclic graphs.

Theorem 3. PrExt with fixed number of precolored vertices is W[1]-hard for
interval graphs.

Proof. The proof is by a parameterized reduction from the directed acyclic edge
disjoint path problem. Given a directed acyclic graph G(V,E) and terminal pairs
si, ti (1 ≤ i ≤ k), we construct an interval graph with k′ = 2k precolored vertices
in such a way that the interval graph has a precoloring extension if and only if
the disjoint paths problem can be solved. Let 1, 2, . . . , n be the vertices of G in
a topological ordering. For each edge −→xy of G we add an interval [x, y). For each
terminal pair si, ti we add two intervals [0, si) and [ti, n+1), and precolor these
intervals with color i.
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Denote by `(x) the number of intervals whose right end point is x (i.e., the
intervals that arrive to x from the left), and by r(x) the number of intervals
whose left end point is x. In other words, `(x) is the number of edges entering x
plus the number of demands starting in x. If `(x) < r(x), then add r(x) − `(x)
new intervals [0, x) to the graph, if `(x) > r(x), then add `(x)−r(x) new intervals
[x, n+1). A consequence of this is that each point of [0, n+1) is contained in the
same number (denote it by c) of intervals: at each point the number of intervals
ending equals the number of intervals starting. We claim that the interval graph
has a precoloring extension with c colors if and only if the disjoint paths problem
has a solution.

Assume first that there are k disjoint paths joining the terminal pairs. For
each edge −→xy, if it is used by the ith terminal pair, then color the interval [x, y)
with color i. Notice that the intervals we colored with color i do not intersect
each other, and their union is exactly [si, ti). Therefore, considering also the two
intervals [0, si) and [si, n+ 1) precolored with color i, each point of [0, n+ 1) is
covered by exactly one interval with color i. Therefore each point is contained
in exactly c − k intervals that do not have a color yet. This means that the
uncolored intervals induce an interval graph where every point is in exactly c−k
intervals, and it is well-known that such an interval graph has clique number
c − k and can be colored with c − k colors. Therefore the precoloring can be
extended using c− k colors in addition to the k colors used in the precoloring.

Now assume that the precoloring can be extended using c colors. Since each
point in the interval [0, n + 1) is covered by exactly c intervals, therefore each
point is covered by an interval of color i. Thus if an interval with color i ends at
point x, then an interval with color i has to start at x. Since the interval [0, si)
has color i, there has to be an interval [si, si,1) with color i. Similarly, there has to
be an interval [si,1, si,2) with color i, etc. Continuing this way, we will eventually
arrive to an interval [si,p, ti). By the way the intervals were constructed, the

edges −−−→sisi,1,
−−−−→si,1si,2, . . . ,

−−−→
si,pti form a path from si to ti. It is clear that the

paths for different values of i are disjoint since each interval has only one color.
Thus we constructed a solution to the disjoint paths problem, as required. ut

5 Reductions

In this section we give reductions between PrExt on F and coloring F + kv,
F +ke graphs. It turns out that if F is closed under disjoint union and attaching
pendant vertices, then

coloring F + ke graphs ¹ PrExt on F with fixed |W | ¹

coloring F + kv graphs ¹ PrExt on F with fixed |CW |

When coloring F + ke or F + kv graphs, we assume that the modulator of the
graph is given in the input. The proof of the following four results will appear
in the full version:
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Theorem 4. For every class F of graphs, coloring F +ke graphs can be reduced
to PrExt with fixed number of precolored vertices, if the modulator of the graph
is given in the input.

Theorem 5. Let F be a class of graphs closed under attaching pendant vertices.
Coloring F + kv graphs can be reduced to PrExt with fixed number of colors
in the precoloring, if the modulator of the graph is given in the input.

Theorem 6. If F is a hereditary graph class closed under disjoint union, then
PrExt in F with fixed number of precolored vertices can be reduced to the
coloring of F + kv graphs.

Theorem 7. If F is a hereditary graph class closed under joining graphs at a
vertex, then PrExt on F with a fixed number of colors in the precoloring can
be reduced to the coloring of F + kv graphs.

When reducing the coloring of F + ke or F + kv graphs to PrExt, the
idea is to consider each possible coloring of the special vertices and solve each
possibility as a PrExt problem. In the other direction, we use the special edges
and vertices to build gadgets that force the precolored vertices to the required
colors.

Concerning chordal graphs, putting together Theorems 2–6 gives

Corollary 1. Coloring chordal+ke and chordal+kv graphs can be done in poly-
nomial time for fixed k. However, coloring interval+kv (hence chordal+kv)
graphs is W[1]-hard. ut

In Section 6, we improve on this result by showing that coloring chordal+ke
graphs is fixed-parameter tractable.

6 Coloring chordal+ke graphs

In Section 5 we have seen that coloring a chordal+ke graph can be reduced to the
solution of PrExt problems on a chordal graph, and by Theorem 2, each such
problem can be solved in polynomial time. Therefore chordal+ke graphs can be
colored in polynomial time for fixed k, but with this algorithm the exponent
of n in the running time depends on k. In this section we prove that color-
ing chordal+ke graphs is fixed-parameter tractable by presenting a uniformly
polynomial time algorithm for the problem.

Let H be a chordal+ke graph, and denote by G the chordal graph obtained
by deleting the special edges of G. We proceed similarly as in Theorem 2. First
we construct a nice tree decomposition of H. A subgraph Gx of G corresponds
to each node x of the nice tree decomposition. Let Hx be the graph Gx plus the
special edges induced by the vertex set of Gx. For each subgraph Hx, we try to
find a proper coloring. In fact, for every node x we solve several subproblems:
each subproblem corresponds to finding a coloring of Hx with a given property
(to be defined later). The main idea of the algorithm is that the number of
subproblems considered at a node can be reduced to a function of k.
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Before presenting the algorithm, we introduce a technical tool that will be
useful. For each node x of the nice tree decomposition, the graphH∗

x is defined by
adding a clique of |C|− |Kx| vertices u1, u2, . . . , u|C|−|Kx| to the graph Hx, and
connecting each new vertex to each vertex of Kx. The clique Kx together with
the new vertices form a clique of size |C|, this clique will be called K∗

x. Instead
of the colorings of Hx, we will consider the colorings of H∗

x . Although H∗
x is a

supergraph of Hx, it is not more difficult to color than Hx: the new vertices are
only connected to Kx, hence in every coloring of Hx there remains |C| − |Kx|
colors from C to color these vertices. However, considering the colorings of H∗

x

instead of the colorings of Hx will make the arguments cleaner. The reason for
this is that in every C-coloring of H∗

x every color of C appears on the clique K∗
x

exactly once, which makes the description of the colorings more uniform.
Another technical trick is that we will assume that every special vertex is

contained in exactly one special edge (recall that a vertex is called special if it
is the end point of a special edge.) A graph can be transformed to such a form
without changing the chromatic number, details omitted. The idea is to replace
a special vertex with multiple vertices, and add some simple gadgets that force
these vertices to have the same color. Since each special vertex is contained in
only one special edge, thus each special vertex w has a unique pair, which is the
other vertex of the special edge incident to w.

Now we define the subproblems associated with node x. A set system is
defined where each set corresponds to a type of coloring that is possible on H∗

x .
Let W be the set of special vertices, we have |W | ≤ 2k. Let Wx be the special
vertices contained in the subgraph H∗

x . In the following, we consider sets over
K∗

x ×W . That is, each element of the set is a pair (v, w) with v ∈ K∗
x, w ∈W .

Definition 1. To each C-coloring ψ of H∗
x, we associate a set Sx(ψ) ⊆ K∗

x ×W
such that (v, w) ∈ Sx(ψ) (v ∈ K∗

x, w ∈Wx) if and only if ψ(v) = ψ(w). The set
system Sx over K∗

x ×W contains a set S if and only if there is a coloring ψ of
H∗

x such that S = Sx(ψ).

The set Sx(ψ) describes ψ on H∗
x as it is seen from the “outside”, i.e., from

H \ H∗
x . In H∗

x only K∗
x and Wx are connected to the outside. Since K∗

x is a
clique of size |C|, every color appears on exactly one vertex, this is the same for
every coloring. Seen from the outside, the only difference between the colorings
is how the colors are assigned to Wx. The set Sx(ψ) captures this information.

Subgraph H∗
x (hence Hx) is C-colorable if and only if the set system Sx is

not empty. Therefore to decide the C-colorability of H, we have to check whether
Sr is empty, where r is the root of the nice tree decomposition.

Before proceeding further, we need some new definitions.

Definition 2. A set S ⊆ K∗
x × W is regular, if for every w ∈ W , there is

at most one element of the form (v, w) in S. Moreover, we also require that if
v ∈ K∗

x ∩W then (v, v) ∈ S. The set S contains vertex w, if there is an element
(v, w) in S for some v ∈ K∗

x.

For a coloring ψ of H∗
x , set Sx(ψ) is regular and contains only vertices from Wx.
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Definition 3. For a set S ∈ K∗
x ×W , its blocker B(S) is a subset of K∗

x ×W

such that (v, w) ∈ B(S) if and only if (v, w′) ∈ S for the pair w′ of w. We say that
sets S1 and S2 form a non-blocking pair if B(S1)∩ S2 = ∅ and S1 ∩B(S2) = ∅.

If ψ is a coloring of H∗
x , then the set B(Sx(ψ)) describes the requirements that

have to be satisfied if we want to extend ψ to the whole graph. For example, if
(v, w) ∈ Sx(ψ), then this means that v ∈ K∗

x has the same color as special vertex
w. Now (v, w′) ∈ B(Sx(ψ)) for the pair w′ of w. This tells us that we should not
color w′ with the same color as v, because in this case the pairs w and w′ would
have the same color.

To be a non-blocking pair, it is sufficient that one of B(S1)∩S2 and S1∩B(S2)
is empty:

Lemma 1. For two sets S1, S2 ∈ Kx ×W , we have that B(S1) ∩ S2 = ∅ if and
only if S1 ∩B(S2) = ∅.

Proof. Suppose that B(S1)∩S2 = ∅, but (v, w) ∈ S1∩B(S2) (the other direction
follows by symmetry). Since (v, w) ∈ B(S2), this means that (v, w′) ∈ S2 where
w′ is the pair of w. But in this case (v, w) ∈ S1 implies that (v, w′) ∈ B(S1),
contradicting B(S1) ∩ S2 = ∅. ut

The following lemma motivates the definition of the non-blocking pair, it
turns out to be very relevant to our problem. If x is a join node, then we can
give a new characterization of Sx, based on the set systems of its children.

Lemma 2. If x is a join node with children y and z, then

Sx = {Sy ∪ Sz : Sy ∈ Sy and Sz ∈ Sz form a non-blocking pair}.

Proof. If S ∈ Sx, then there is a corresponding coloring ψ of H∗
x . Coloring ψ

induces a coloring ψy (resp. ψz) of H∗
y (resp. H∗

z ). Let Sy (resp. Sz) be the set
that corresponds to coloring ψy (resp. ψz). We show that Sy and Sz form a
non-blocking pair, and S = Sy ∪ Sz. By Lemma 1, it is enough to show that
Sy∩B(Sz) = ∅. Suppose that Sy∩B(Sz) contains the element (v, w) for some v ∈
K∗

y = K∗
z and w ∈Wy. By the definition of Sy, this means that ψy(v) = ψy(w).

Since (v, w) ∈ B(Sz), thus (v, w′) ∈ Sz for the pair w′ ∈ W of w. Therefore
ψz(v) = ψz(w

′) follows. However, ψy(v) = ψz(v), hence ψy(w) = ψz(w
′), which

is a contradiction, since w and w′ are neighbors, and ψ is a proper coloring of H∗
x .

Now we show that S = Sy ∪ Sz. It is clear that (v, w) ∈ Sy implies (v, w) ∈ S,
hence Sy∪Sz ⊆ S. Moreover, suppose that (v, w) ∈ S. Without loss of generality,
it can be assumed that w is contained in H∗

y . This implies that (v, w) ∈ Sy, as
required.

Now let Sy ∈ Sy and Sz ∈ Sz be a non-blocking pair, it has to be shown
that S = Sy ∪ Sz is in Sx. Let ψy (resp. ψz) be the coloring corresponding
to Sy (resp. Sz). In general, ψy and ψz might assign different colors to the
vertices of K∗

x = K∗
y = K∗

z . However, since K∗
x is a clique and every color

appears exactly once on it, by permuting the colors in ψy, we can ensure that ψy

and ψz agree on K∗
x. We claim that if we merge ψy and ψz, then the resulting
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coloring ψ is a proper coloring of H∗
x . The only thing that has to be verified is

whether ψ assigns different colors to the end vertices of these special edges that
are contained completely neither in H∗

y nor H∗
z . Suppose that special vertices

w ∈ Wy \Wz and w′ ∈ Wz \Wy are pairs, but ψ(w) = ψ(w′). We know that
(v, w) ∈ Sy for some v ∈ K∗

y , and similarly (v′, w′) ∈ Sz. By definition, this
means that ψy(v) = ψy(w) and ψz(v

′) = ψ(w′). Since ψy and ψz assign the
same colors to the vertices of the clique K∗

x, thus this is only possible if v = v′,
implying (v, w′) ∈ Sz. However, B(Sy) also contains (v, w′) contradicting the
assumption that B(Sy)∩Sz = ∅. Now it is straightforward to verify that the set
corresponding to ψ is S = Sy ∪ Sz, proving that S ∈ Sx. ut

Lemma 2 gives us a way to obtain the system Sx if x is a join node and the
systems for the children are known. It can be shown for add nodes and forget
nodes as well that their set systems can be constructed if the set systems are
given for their children. However, we do not prove this here, since this observation
does not lead to a uniformly polynomial algorithm. The problem is that the size
of Sx can be O(nk), therefore it cannot be represented explicitly. On the other
hand, in the following we show that it is not necessary to represent the whole
set system, most of the sets can be thrown away, it is enough to retain only a
constant number of sets.

We will replace Sx by a system S ∗
x representative for Sx that has constant

size. Representative systems and their use in finding disjoint sets were introduced
by Monien [13] (and subsequently used also in [1]). Here we give a definition
adapted to our problem:

Definition 4. A subsystem S ∗
x ⊆ Sx is representative for Sx if the following

holds: for each regular set U ⊆ Kx×W that does not contain vertices in Wx\K
∗
x,

if Sx contains a set S disjoint from B(U), then S ∗
x also contains a set S′ also

disjoint from B(U). We say that the subsystem S ∗
x is minimally representative

for Sx, if it is representative for Sx, but it is not representative after deleting
any of the sets from S ∗

x .

That is, if Sx can present a member avoiding all the forbidden colorings de-
scribed by B(U), then S ∗

x can present such a member as well. For technical
reasons, we are interested only in requirements B(U) with U as described above.

The crucial idea is that the size of a minimally representative system can be
bounded by a function of k independent of n (if the size of each set in Sx is at
most 2k). This is a consequence of the following version of Bollobás’ inequality:

Theorem 8 (Bollobás [3]). Let (A1, B1), (A2, B2), . . . , (Am, Bm) be a se-
quence of pairs of sets over a common ground set X such that Ai ∩ Bj = ∅ if
and only if i = j. Then

m
∑

i=1

(

|Ai| + |Bi|

|Ai|

)−1

≤ 1.
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Lemma 3. If S ∗
x is minimally representative for Sx, then |S ∗

x | ≤
(

4k
2k

)

.

Proof. Let S ∗
x = {A1, A2, . . . , Am}. Since S ∗

x is minimally representative for
Sx, therefore for every 1 ≤ i ≤ m, there is a regular set Bi = B(Ui) ⊆ Kx ×W

satisfying Definition 4 such that Sx has a set disjoint from Bi, but Ai is the
only set in S ∗

x disjoint from Bi (otherwise Ai could be safely removed from
S ∗

x ). This means that Ai ∩ Bi = ∅, and Aj ∩ Bi 6= ∅ for every i 6= j. Therefore
(A1, B1), (A2, B2), . . . , (Am, Bm) satisfy the requirements of Theorem 8, hence

1 ≥
m
∑

i=1

(

|Ai| + |Bi|

|Ai|

)−1

≥
m
∑

i=1

(

|Wx| + |W |

|Wx|

)−1

≥ m

(

4k

2k

)−1

.

Therefore m ≤
(

4k
2k

)

, and the lemma follows. ut

Lemma 3 shows that one can obtain a constant size representative system by
throwing away sets until the system becomes a minimally representative. An-
other way of obtaining a constant size system is to use the data structure of
Monien [13] for finding and storing representative systems. Using that method,
we can obtain a representative system of size at most 2k2k. This can be somewhat
larger than

(

4k
2k

)

given by Lemma 3, but it is also good for our purposes.
We show that instead of determining the set system Sx for each node, it is

sufficient to find a set system S ∗
x representative for Sx. That is, if for each child

y of x we are given a system S ∗
y representative for Sy, then we can construct a

system S ∗
x representative for Sx. For a join node x, one can find a set system

S ∗
x representative for Sx by a characterization analogous to Lemma 2:

Lemma 4. Let x be a join node with children y and z, and let S ∗
y be represen-

tative for Sy, and S ∗
z representative for Sz. Then the system

S
∗
x = {Sy ∪ Sz : Sy ∈ S

∗
y and Sz ∈ S

∗
z form a non-blocking pair}

is representative for Sx.

Proof. Since S ∗
y ⊆ Sy and S ∗

z ⊆ Sz, by Lemma 2 it follows that S ∗
x ⊆ Sx.

Therefore we have to show that for every regular set U not containing vertices
from Wx \ K∗

x, if there is a set S ∈ Sx disjoint from B(U), then there is a
set S′ ∈ S ∗

x also disjoint from B(U). Let ψ be the coloring corresponding to
set S, and let ψy (resp. ψz) be the coloring of H∗

y (resp. H∗
z ) induced by ψ.

Let Sy ∈ Sy and Sz ∈ Sz be the sets corresponding to ψy and ψz. We have
seen in the proof of Lemma 2 that Sy and Sz form a non-blocking pair and
S = Sy ∪ Sz, hence Sy is disjoint from B(U) ∪ B(Sz) = B(U ∪ Sz). Note that
U does not contain vertices from Wx \K∗

x, and Sz contains only vertices from
H∗

z , hence U ∪ Sz is regular, and does not contain vertices from Wy \K∗
y . Since

S ∗
y is representative for Sy, there is a set S′

y ∈ S ∗
y that is also disjoint from

B(U ∪Sz). By Lemma 1, S′
y ∩B(Sz) = ∅ implies that B(S′

y)∩Sz = ∅, hence Sz

is disjoint from U ∪B(S′
y) = B(U ∪S′

y). Since S ∗
z is representative for Sz, there

is a set S′
z ∈ S ∗

z that is also disjoint from B(U ∪S ′
y). Applying again Lemma 1,

we get that S′
y and S′

z form a non-blocking pair, hence S ′ = S′
y ∪ S′

z is in S∗
x.

Since S′ is disjoint from B(U), thus S ∗
x contains a set disjoint from B(U). ut
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If x is an add node or forget node with children y and a system S ∗
y represen-

tative for Sy is given, then we can construct a system S ∗
x that is representative

for Sx. The construction is conceptually not difficult, but requires a tedious
discussion. We omit the details.

Therefore starting from the leaves, the systems S ∗
x can be constructed us-

ing bottom up dynamic programming. After constructing S ∗
x , we use the data

structure of Monien to reduce the size of S ∗
x to a constant. This will ensure

that each step of the algorithm can be done in uniformly polynomial time. By
checking whether S ∗

r is empty for the root r, we can determine whether the
graph has a C-coloring. This proves the main result of the section:

Theorem 9. Coloring chordal+ke graphs is in FPT if the modulator of the
graph is given in the input.
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