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Abstract

We prove that weighted monotone/antimonotone circuit
satisfiability has no fixed-parameter tractable approxima-
tion algorithm with any approximation ratio functionρ ,
unlessFPT 6= W[1]. In particular, not having such an fpt-
approximation algorithm implies that these problems have
no polynomial-time approximation algorithms with ratio
ρ(OPT) for any nontrivial functionρ .

I. Introduction

Recently, there have been increased interest in investi-
gating approximation in the context of parameterized com-
plexity [3]–[5], [8], [14]. Recall that aparameterization
of a problem is a polynomial-time computable function
that assigns an integerk to each problem instancex. An
fpt-algorithmfor a parameterized problem is an algorithm
with running time f (k) · |x|O(1), wherek is the parameter
of the input instancex and f is an arbitrary computable
function. A decision problem isfixed-parameter tractable
(FPT) with parameterk if it can be solved by an fpt-
algorithm. The parameter can be any well-defined function
of the input instancex; for example, the required number
of vertices in the solution, or the maximum degree of the
input graph. The standard way of turning an optimization
problem into a decision problem is to add a valuek to the
input instance and ask if there is a solution with cost at
most/at leastk. Taking this valuek appearing in the input
as the parameter is called thestandard parameterizationof
the optimization problem. For a large number of NP-hard
optimization problems, the standard parameterization is
FPT, for example, this is the case for MINIMUM VERTEX

COVER, LONGESTPATH, DIRECTEDFEEDBACK VERTEX

SET, and MULTIWAY CUT. Intuitively, these results show
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that the problems can be solved efficiently if the optimum
is small. On the other hand, the W[1]-hardness of other
problems, such as MAXIMUM CLIQUE and MINIMUM

DOMINATING SET give evidence that these problems are
not fixed-parameter tractable, and probably there is no
significantly better algorithms than solving the problem in
time nO(k) by brute force.

FPT approximation algorithms were introduced by three
independent papers [3]–[5], see also the survey [14]. We
follow here the notation of [4].An fpt approximation
algorithm with ratioρ for a minimization problemP is an
fpt algorithm that, given an instancex of P and a positive
integerk, computes a solution of cost at mostk ·ρ(k) if
a solution of cost at mostk exists; if there is no solution
of cost at mostk, then the output can be arbitrary. The
definition can be adapted to maximization problems. Note
that the approximation ratioρ is a function ofk, not the
input size: intuitively, ifk is small, thenk·ρ(k) can be still
considered small. We say that problem isfpt-approximable
if it has an fpt approximation algorithm for some function
ρ . As we are proving hardness results in this paper, it
will be convenient to prove hardness result for a decision
problem associated with approximation. Following [4], we
say that an algorithm is anfpt cost approximationwith
ratio ρ if it distinguishes (in fpt-time) between instances
of optimum value at mostk and more thank · ρ(k) (see
Definition 3). It is clear that it is sufficient to prove
hardness results for this decision variant to rule out the
possibility of fpt approximation with ratioρ .

On the positive side, there are a couple of nontrivial
fpt approximation algorithms. Grohe and Grüber [12]
presented an fptρ-approximation algorithm for MAXI -
MUM DISJOINT CYCLES in directed graphs, with some
unspecified functionρ . Marx and Razgon [15] gave an fpt
2-approximation algorithm for EDGE MULTICUT. Fellows
(unpublished result) showed that TOPOLOGICAL BAND-
WIDTH has an fpt approximation algorithm with ratiok
(see also [14]). On the negative side, it is known that



WEIGHTED CIRCUIT SATISFIABILITY [4] and INDEPEN-
DENT DOMINATING SET [7] are not fpt-approximable for
any function ρ (under standard complexity assumptions).
However, these results are not very enlightening as they
use in an essential way that the considered problems are
not (anti)monotone: it is very well possible that every
feasible solution of an instance is of the same size, in
which case any approximation algorithm has to actually
find an optimum solution. We call a minimization problem
monotoneif any superset of a solution is also a solution.
Similarly, a maximization problem isantimonotone,if any
subset of the solution is also a solution. Inapproximability
is usually a more meaningful question for such problems.

The first inapproximability result in the fpt sense for a
monotone problem was obtained earlier and independently
of the study of fpt approximation. As a key step in showing
that resolution is not automatizable, Alekhnovich and
Razborov [1] showed that there is no fpt 2-approximation
algorithm for WEIGHTED MONOTONECIRCUIT SATISFI-
ABILITY , unless every problem in the class W[P] can be
solved by a randomized fpt-algorithm. Eickmeyer et al. [8]
improved this result in two ways: they weakened the com-
plexity assumption by removing the word “randomized,”
and increased the ratio from 2 to any polylogarithmic
function. They conjectured that the problem has no fpt
approximation algorithm for any functionρ . Our first
result confirms this conjecture. The proof is completely
different and much simpler than the inapproximability
proofs of [1], [8]. Instead of using expanders for gap
amplification in a multi-layer circuit, our proof achieves
an arbitrary large gap using a simple construction based
on k-perfect hash functions. Furthermore, it is shown in
[8] that appropriate gap-preseving reductions can transfer
the inapproximability result from WEIGHTED MONOTONE

CIRCUIT SATISFIABILITY to other parameterized mini-
mization problems such as MINIMUM CHAIN REACTION

CLOSURE, M INIMUM GENERATING SET, and MINIMUM

L INEAR INEQUALITY DELETION. The reductions transfer
our result as well, thus it follows that these problems are
not fpt-approximable either.

Eickmeyer et al. [8] raised the question if the max-
imization problem WEIGHTED ANTIMONOTE CIRCUIT

SATISFIABILITY is fpt-approximable; they conjectured that
this problem is also hard to approximate. Note that finding
a maximum weight solution for an antimonotone circuit
is equivalent to finding a minimum weight solution for
a monotone circuit, but the approximability of the two
problems can be different. We prove this conjecture by
showing that the problem is not fpt-approximable, unless
FPT 6= W[1]. The proof is somewhat similar to the inap-
proximability results of [1], [8] for the monotone version:it
uses simple linear algebra (Reed-Solomon codes) for error
correction. However, the construction of the circuit is much

simpler, since we do not have to repeat the same circuit in
multiple layers to increase the gap. In fact, we prove the
result for a special case of circuit satisfiability, which is
a fairly natural combinatorial problem on hypergraphs: in
the THRESHOLD SET problem, we are given a collection
of subsetsS of a universeU with a weightw(S) for each
set S∈ S, the goal is to select the maximum number of
elements fromU such that everyS∈ S contains at most
w(S) elements.

It would be interesting to obtain similar inapprox-
imability results for more restricted versions of circuit
satisfiability and perhaps even for natural problems such
as INDEPENDENT SET and HITTING SET. The current
paper is already a step in this direction: we prove inap-
proximability results for THRESHOLDSET and for mono-
tone/antimonotone circuit satisfiability with certain bounds
on the depth and weft of the circuit. However, beyond a
certain point, much deeper techniques would be required
than the elementary methods of the present paper. In par-
ticular, the known proofs giving evidence that there is no
polynomial-time constant factor approximation algorithm
for HITTING SET and INDEPENDENT SET all use the
PCP theorem. Thus ruling out fpt approximation for these
problems would require the use of (some generalization
of) the PCP theorem.

Finally, let us mention that expressing the approxi-
mation ratio as a function of the optimum (rather than
as a function of the input size) makes sense also in
the context of polynomial-time approximation algorithms.
There are such results in the literature: for example, Feige
et al. [9] gave a polynomial-timeO(

√
logOPT) approxima-

tion for TREEWIDTH and Gupta [13] gave a polynomial-
time O(OPT) approximation for DIRECTED MULTICUT.
However, there are no known inapproximability results in
this direction. For example, it is not known whether there
is a polynomial-time algorithm that, given a graph with
maximum clique sizek, always finds a clique of size at
least, say, logloglogk. Showing that a certain problem
is not fpt-approximable would clearly imply that there
is no polynomial-time approximation algorithm with any
ratio depending only on the optimum. In particular, there
are no such polynomial-time approximation algorithms for
the problems considered in this paper (under standard
assumptions). Interestingly, the reverse implication also
holds [12], [14]: if a problem has an fptρ-approximation
algorithm for some functionρ , then there is a polynomial-
time approximation algorithm with approximation ratio
ρ ′(OPT) for someother function ρ ′ (we sketch the proof
in Section II). This means that if we want to show for
example that there is no polynomial-time algorithm finding
a clique of sizef (OPT) for any function f , then we are
also showing that the problem is not fpt-approximable.
Therefore, it seems that ruling out such polynomial-time



algorithms is essentially a problem belonging to parame-
terized complexity and requires the understanding of fpt-
approximability.

II. Preliminaries

Parameterized approximation.An optimization prob-
lem is described by a tuple(I ,sol,cost,goal), where I is
the set of instances, sol(x) is the set of feasible solutions
for instancex, the positive integer cost(x,y) is the cost of
solution y for instancex, and goal is either min or max.
We follow the notation Chen et al. [4] for the definitions
of fpt-approximation:

Definition 1. Let O= (I ,sol,cost,goal) be an optimization
problem (over some alphabetΣ) and let ρ : N → R such
that ρ(k) ≥ 1 for every k≥ 1 and
{

k ·ρ(k) is nondecreasing ifgoal= min,

k/ρ(k) is unbounded and nondecreasing ifgoal= max.

An fpt-approximation algorithm with approximation ratio
ρ for O is an algorithmA that, given an input(x,k) ∈
Σ∗×N satisfyingsol(x) 6= /0 and

{

opt(x) ≤ k if goal= min,

opt(x) ≥ k if goal= max,
(*)

computes a y∈ sol(x) such that
{

cost(x,y) ≤ k ·ρ(k) if goal= min,

cost(x,y) ≥ k/ρ(k) if goal= max.

For inputs not satisfying condition (*), the output can be
arbitrary; in particular, this is the case if there is no
solution for x. Furthermore, the running time ofA on input
(x,k) is f(k) · |x|O(1) for some computable function f .

As mentioned in the introduction, an fptρ-
approximation algorithm implies that there is polynomial-
time approximation algorithm with ratioρ ′(OPT) for
some functionρ ′ (see [12], [14]). We sketch the proof here
for minimization problems, the proof for maximization
problems is analogous. The proof requires the technical
condition that we can always find a trivial feasible
solution (if exists) in polynomial time. Note that we
defined cost(x,y) (and hence opt(x)) as a positive integer.
Therefore, if some maximization problemO has an fpt
ρ-approximation for some functionρ , then running the
algorithm with k = 1 produces a feasible solution in
polynomial time (if it exists). For minimization problems,
the existence of an fptρ-approximation algorithm does
not imply that it is always possible to find a feasible
solution in polynomial time.

Theorem 2. Let O be a minimization problem such that
a feasible solution can be found in polynomial time (if it

exists). If O has an fptρ-approximation algorithmA for
some functionρ , then there is a polynomial-time algorithm
B and a nondecreasing functionρ ′ such that algorithmB,
given an instance x of O withsol(x) 6= /0, outputs a solution
y of x withcost(x,y) ≤ opt(x)ρ ′(opt(x)).

Proof: Suppose that the running time ofA can be
bounded byf (k)|x|c for some functionf and constantc.
Given an instancex, algorithmB does the following. First,
it finds a feasible solutionyx of x in polynomial time. Then
for every i = 1, . . . ,n, algorithmB simulates algorithmA

with input (x, i) for at most|x|c+1 steps. If the simulation
terminates within|x|c+1 steps, then we check if the output
is a feasible solution. Lety be the best feasible solution
among the at mostn outputs of the simulations and the
feasible solutionyx.

We claim cost(x,y) ≤ opt(x)ρ ′(opt(x)) for some func-
tion ρ ′. Let k := opt(x). If f (k) ≤ n and k ≤ n, then the
simulation of A on (x,k) terminates inf (k)|x|c ≤ |x|c+1

steps with a solution of cost at mostk · ρ(k), which
means that cost(x,y) ≤ opt(x)ρ(opt(x)). Otherwise, let
τ(k) be the maximum of cost(x,yx)/opt(x), taken over
all instances of size at most max{ f (k),k}. Note that
this is well defined, as there are only a finite number
of such instances. Therefore, ifn ≤ max{ f (k),k}, then
cost(x,y) ≤ cost(x,yx) ≤ opt(x)τ(opt(x)). Thus the func-
tion ρ ′(k) = max{ρ(k),τ(k)} satisfies the requirements.

Chen et al. [4] defined a weaker notion of approximabil-
ity, which is a decision algorithm solving the gap version
of the decision problem associated with the optimization
problem. Similarly to [8], we consider this weaker notion
in our inapproximability results (thus making the results
slightly stronger).

Definition 3. Let O andρ be as in Definition 1. A decision
algorithm A is an fpt cost approximation algorithmfor
O with approximation ratioρ if for every input(x,k) ∈
Σ∗ ×N with sol(x) 6= /0, its output satisfies the following
conditions:

1) If

{

k < opt(x) and goal= min,

k > opt(x) and goal= max,
thenA rejects(x,k).

2) If

{

k≥ opt(x) ·ρ(opt(x)) and goal= min,

k≤ opt(x)/ρ(opt(x)) and goal= max,
thenA accepts(x,k).

Furthermore, the running time ofA on input(x,k) is f(k) ·
|x|O(1) for some computable function f .

Clearly, an fpt approximation algorithm with ratioρ
implies that there is an fpt cost approximation algorithm
with the same ratio.

Circuits. A Boolean circuitis a directed acyclic graph,
where each node with indegree> 1 is labeled as either an
AND node or as an OR node, each node of indegree 1 is



labeled as a negation node, and each node of indegree 0 is
an input node. Furthermore, there is a node with outdegree
0 that is the output node. Given an assignmenta from the
input nodes of circuitC to {0,1}, we say that assignment
a satisfies Cif the value of the output node (computed
in the obvious way) is 1. Theweight of an assignment
is the number of input nodes with value 1. CircuitC is
k-satisfiableif there is a weight-k assignment satisfyingC.

We denote by|C| the number of nodes in the circuit.
Thedepthof circuit C is the maximum length of a directed
path from an input node to the output node. Theweft of
a circuit is the maximum number of nodes with indegree
> 2 on any path from an input node to the output. Note
that any circuit can be transformed into a equivalent circuit
of weft 0 by replacing each large node with a sequence
of nodes with indegree 2. Thus bounding the weft is
meaningful only if we simultaneously bound the depth
as well. The notion of weft plays an important role in
parameterized complexity and in defining the classes of
the W-hierarchy. For the definitions of the classesW[1],
W[P], etc., the reader is referred to standard texts such as
[6], [11]. Let us mention here briefly that a parameterized
problem Q is in the classW[t] if there is a constant
d such that there is a parameterized reduction fromQ
to the satisfiability of circuits with depthd and weft t,
while Q is in W[P] if there is a parameterized reduction
from Q to the circuit satisfiability problem without any
restriction on depth and weft. The most important property
of a parameterized reduction is that it the parameter of
the constructed instance is bounded by a function of the
original instance.

In the present paper, we investigate weft only to see
how restricted the classes of circuits are for which we
manage to prove inapproximability and to see what the
exact parameterized complexity assumptions are that we
need for the results. If the reader is not interested in these
issues, then these discussions can be ignored.

A circuit is monotoneif it contains no negation nodes.
A circuit is antimonotoneif the unique inneighbor of each
negation node is an input node, and every outneighbor of
an input node is a negation node. We define the following
two optimization problems:

MONOTONECIRCUIT SATISFIABILITY
Input: A monotone circuitC

Solutions: All satisfying assignmentsa of C
Cost: The weight of satisfying assignmenta.
Goal: min.

ANTIMONOTONE CIRCUIT SATISFIABILITY
Input: An antimonotone circuitC

Solutions: All satisfying assignmentsa of C
Cost: The weight of satisfying assignmenta.
Goal: max.

It is known that standard parameterizations of MONO-
TONE CIRCUIT SATISFIABILITY and ANTIMONOTONE

CIRCUIT SATISFIABILITY are W[P]-complete [6], [11].

III. Monotone problems

We prove our main result on monotone circuits in this
section:

Theorem 4. MONOTONECIRCUIT SATISFIABILITY is not
fpt cost approximable, unlessFPT= W[P].

Proof: Suppose that there is an fpt cost approximation
algorithm A for MONOTONE CIRCUIT SATISFIABILITY

with approximation ratioρ . We show that this algorithm
A can be used to solve the standard parameterization of
MONOTONECIRCUIT SATISFIABILITY in fpt-time, imply-
ing FPT= W[P].

Let C be a monotone circuit withn inputs. There is
a natural correspondence between the assignments to the
n inputs and the subsets of[n] (as usual,[n] denotes
{1, . . . ,n}). Thus we can interpretC as a Boolean function
C(S) defined over the subsetsS⊆ [n].

Let H be a family of functions from[n] to [k′]. We say
thatH is a k′-perfect family of hash functionsif for every
k′-element setS⊆ [n], there is anh ∈ H such thath is
one-to-one onS, i.e.,h(s) 6= h(s′) for everys,s′ ∈ S, s 6= s′.
By Alon et al. [2], it is possible to construct ak′-perfect
family H of size 2O(k′) logn in time that is polynomial in
n and |H|.

Let monotone circuitC and integerk be the input of a
MONOTONECIRCUIT SATISFIABILITY instance. Letk′ :=
⌈ρ(k) ·k⌉ and letH be ak′-perfect family of hash functions
from [n] to [k′]. We define the following function:

C′(S) :=
∧

h∈H

∨

T∈([k′ ]
≤k)

C(S∩h−1(T)),

where
([k′ ]
≤k

)

denotes the subsets of[k′] of size at mostk
and h−1(T) = {i ∈ [n] | h(i) ∈ T}. It is clear that we can
construct a monotone circuitC′ expressing the function
C′(S) in time g(k)|C|O(1). We claim that

(1) if C is k-satisfiable, thenC′ is alsok-satisfiable, and
(2) if C is not k-satisfiable, thenC′ is not k′-satisfiable.

Let us run A with input (C′,k′); as the size ofC′ is
g(k)|C|O(1) andk′ is a function ofk, the running time ofA
is f (k)|C|O(1) for some functionf (k). If C is k-satisfiable,
then opt(C′) ≤ k and k′ ≥ k · ρ(k) ≥ opt(C′) · ρ(opt(C′)),
thusA accepts. On the other hand, iff is notk-satisfiable,
then opt(C′) > k′ and A rejects. This means that we
can solve the standard parameterization of MONOTONE

CIRCUIT SATISFIABILITY using algorithmA, implying
FPT= W[P].



To prove (1), we show that any weight-k satisfying
assignment ofC satisfiesC′ as well. Let S ⊆ [n] be
a weight-k satisfying assignment ofC(S). We have to
show that the disjunction inC′ is true for everyh ∈ H.
Let T := {h(s) : s ∈ S}; clearly, |T| ≤ k. By definition,
S⊆ h−1(T), thus C(S∩ h−1(T)) = C(S) = 1. Thus the
disjunction is satisfied by the term corresponding toT.

To prove (2), letS be a weight-k′ satisfying assignment
of C′. Let h∈ H be a hash function that mapsS one-to-
one; sinceH is k′-perfect, at least one such function exits.
We claim that the disjunction corresponding to thish is not
satisfied. To see this, observe that for everyT ∈

([k′]
≤k

)

, we
have|S∩h−1(T)| ≤ k: for everyt ∈ T, functionh maps at
most one element ofS to t. Thus if f (S∩h−1(T)) = 1 for
someT ∈

([k′]
≤k

)

, thenS∩h−1(T) is a satisfying assignment
of weight at mostk for C, a contradiction.

Inspection of the proof shows that if circuitC has depth
d and weftw, then we can constructC′ such that it has
depth d + 2 and weft w + 2. Since the W[2]-complete
HITTING SET problem can be expressed as a monotone
circuit having depth 2, we get the following version of
Theorem 4:

Corollary 5. If MONOTONECIRCUIT SATISFIABILITY is
fpt cost approximable for circuits with depth4, thenFPT=
W[2].

Note that this corollary shows the inapproximability of
a more restricted problem, but the assumption is somewhat
stronger than in Theorem 4.

The weft of a depth-4 circuit is clearly at most 4. We
can decrease the weft at the cost of increasing the depth
as follows. First, the disjunction inC′ can be implemented
without increasing the weft by using a composition of OR
nodes with indegree two. This increases the depth, but this
increase is bounded by a function ofk. Second, instead of
starting with a weft-2 circuitC, we can start with a weft-1
circuit:

Proposition 6. There is a function d(k) such that the
standard parameterization ofMONOTONE CIRCUIT SAT-
ISFIABILITY is W[1]-hard for instances with weft 1 and
depth bounded by d(k).

Proof: We reduce from the W[1]-hard MULTICOL-
ORED CLIQUE problem [10]: given a graphG and a
properk-coloring of the vertices, find a clique that contains
exactly one vertex from each color class. LetV1, . . . , Vk

be thek color classes. We construct a monotone circuitC
where the inputsx1, . . . ,xn correspond to the vertices ofG
andC expresses the following function:

∧

1≤i< j≤k

∨

xa∈Vi ,xb∈Vj
xa,xb are adjacent

(xa∧xb).

It is easy to see that every weight-k satisfying assignment

of C corresponds to ak-clique ofG. Note that in a weight-
k satisfying assignment, in each color class exactly one
variable is 1. If the first conjunction is implemented with
AND nodes of indegree 2, then the weft ofC is 1 and the
depth is bounded by a functionk.

Putting together, we obtain:

Corollary 7. There is a function d(k) such that ifMONO-
TONE CIRCUIT SATISFIABILITY is fpt cost-approximable
for instances with weft2 and depth at most d(k), then
FPT= W[1].

IV. Antimonotone problems

The main result of this section is that ANTIMONOTONE

CIRCUIT SATISFIABILITY is not fpt approximable. We
prove the result by showing inapproximability for the
following combinatorial problem:

THRESHOLDSET
Input: A collection S of subsets ofU with a

positive integer weightw(S) for each set
S∈ S.

Solutions: A set T ⊆U such that|T∩S| ≤ w(S) for
everyS∈ S.

Cost: |T|
Goal: max.

It is not difficult to express THRESHOLD SET as an
antimonotone circuit. In particular, we discuss at the end of
this section how to express the THRESHOLDSET instances
constructed in the inapproximability proof.

The reduction showing the inapproximability of
THRESHOLD SET uses Reed-Solomon codes to construct
instances and relies on the erasure correction properties
of such codes to argue that finding even an approximate
solution is as hard as finding an optimum solution. Let
us recall some basic facts about Reed-Solomon codes
(no more background is required for understanding the
current paper). LetFq be theq-element finite field. For
somek ≤ D < q, the Reed-Solomon code is a function
RS: Fk

q → FD
q defined as follows. Let us pick arbitrary

distinct nonzero elementsα1, . . . , αD from F . For every
m = (m1, . . . ,mk) ∈ Fk

q and 1≤ i ≤ D, we defineRS(m)

such that itsi-th component isRS(m)[i] := ∑k
j=1 α j

i mj . It
is well known that the Reed-Solomon code can correct
D− k erasures, or in other words, the original vectorm
can be recovered from anyk components ofRS(m). We
can state this formally as follows:

Proposition 8. For every a,b∈ Fk
q and I⊆{1, . . . ,D} with

|I | = k, if RS(a)[i] = RS(b)[i] for every i∈ I, then a= b.

Proof: Let wi ∈ Fk
q be a column vector whosej-th

component isα j
i , which means thatRS(m)[i] = m·wi . Note



that the vectors{wi | i ∈ I} are linearly independent by
the well-known properties of Vandermonde matrices, hence
they form a basis ofFk

q . Therefore, ifa andb have the same
inner product with every vector in this basis, thena = b.

Now we are ready to prove the inapproximability result
for THRESHOLDSET:

Theorem 9. THRESHOLD SET is not fpt cost approx-
imable, unlessFPT= W[1].

Proof: Suppose that there is an fpt cost approximation
algorithm A for THRESHOLD SET with approximation
ratio ρ . We show how to solve MAXIMUM CLIQUE in
fpt-time usingA. Let G(V,E) be a graph where we have
to decide if a clique of sizek exists. LetD be the smallest
integer such thatD/ρ(D) ≥ k. Note that such aD exists
and can be computed in time depending only onk. Let n be
the number of vertices ofG. By adding isolated vertices,
we can assume thatn > Dk and n = 2kℓ for some integer
ℓ ≥ 1; these additional vertices can increase the size of
the graph only by a factor of at mostDk ·2k, which is a
function of k only. Let q = 2ℓ and letFq be theq-element
finite field. We identify the vertices ofG with Fk

q , i.e., we
will consider vertices ask-dimensional row vectors over
Fq. For a vectorg, we denote byg[i] its i-th component.

We construct an instance of THRESHOLD SET as fol-
lows. The setU consists ofn·D elements:U = {sd,g : 1≤
d ≤ D,g∈ Fk}. Let us define the collectionS of subsets
in the input. First, for every 1≤ d ≤ D, S contains the
set Sd := {sd,g : g ∈ Fk}. By settingw(Sd) = 1 for every
1 ≤ d ≤ D, we ensure that the solutionT contains at
most one element with first indexd. Thus a solution can
be interpreted as a collection of at mostD vectors from
Fk. Equivalently, every solution can be interpreted as a
table of sizek×D, where each entry is either empty or
contains an element ofF . More precisely, if the solution
contain elementsd,g of Sd, then thed-th column contains
components of thek-dimensional vectorg ∈ Fk; if the
solution contains no element ofSd, then thed-th column
of the table is empty. This table will be interpreted as an
encoding of thek vertices of the clique: theD-dimensional
vector in thei-th row is interpreted as the encoding of thei-
th vertex of the clique by a Reed-Solomon codeFk

q → FD
q .

(Note that thek-dimensional column vectors of this table
could be also interpreted as vertices, but this isnot what
we are doing here.) By the properties of the Reed-Solomon
code, anyk full columns already describe a clique of size
k. Note thatn= 2kℓ andn> Dk impliesD < q, as required
by the Reed-Solomon code.

In order to enforce this interpretation, we add further
sets toS as follows. Let(X,a,b,u,v) be such that

• X is a k-element subset of{1, . . . ,D},
• 1≤ a < b≤ k,

• u,v∈ Fk
q are nonadjacent vertices ofG (including the

possibility u = v).

For each such 5-tuple, we add the following set toS:

SX,a,b,u,v =

{sj ,g : j ∈ X,g∈ Fk
q ,g[a] = RS(u)[ j],g[b] = RS(v)[ j]}.

The weight of each such set isk− 1. If we interpret a
solution as a table of sizek× D (as described above),
then weightk−1 of the setSX,a,b,u,v ensures that it is not
possible that the entries in rowa and columnsX agree with
RS(u), while the entries in rowb and columnsX agree with
RS(v). As we want thea-th andb-th vertex of the clique to
be adjacent, we require this for every nonadjacentu andv.
This completes the construction of the THRESHOLD SET

instancex. Note that the size of instancex is g(k)nO(1) for
some functiong(k) depending only onk.

We claim that

(1) if G has ak-clique, thenx has a solutionT of size
D and

(2) if G has nok-clique, then every solution ofx has
size less thank.

If these claims are true, then we can decide whetherG has
a k-clique by runningA on (x,k). If G has ak-clique, then
we have opt(x)≥D, which means that opt(x)/ρ(opt(x))≥
D/ρ(D)≥ k, andA accepts. On the other hand, if there is
no k-clique, then opt(x) < k, andA rejects. As the size of
x is g(k)nO(1), the running time ofA can be bounded as
f (k)nO(1) for some computable functionf (k). It follows
that the construction of the THRESHOLDSET instance and
running algorithmA is an fpt-time algorithm for solving
the MAXIMUM CLIQUE problem, implying FPT= W[1].

To prove (1), suppose thatG has ak-clique v1, . . . , vk.
For every 1≤ j ≤ D, we define the vectorg j ∈ Fk

q such
that g j [i] = RS(vi)[ j] for every 1≤ i ≤ k. We claim that
the D-element setT := {sj ,g j : 1 ≤ j ≤ D} is a feasible
solution. It is clear that the edgeSj contains exactly one
element ofT. Let us verify that every setSX,a,b,u,v of S
contains at mostk−1 elements ofT. Sinceu andv are not
adjacent andva andvb are adjacent, at least one ofva 6= u
or vb 6= v holds. Suppose thatva 6= u (the casevb 6= v is
similar). By Prop. 8, there has to be aj ∈ X such that
RS(va)[ j] 6= RS(u)[ j]. This implies thatsj ,g j ∈ T is not in
SX,a,b,u,v: we haveg j [a] = RS(va)[ j] by the definition ofg j ,
while sj ,g ∈ SX,a,b,u,v only if g[a] = RS(u)[ j]. Therefore,
SX,a,b,u,v∩T contains no element fromSj , implying that
the intersection has size at mostk−1.

To prove (2), suppose now that there is a solutionT
of size at leastk. Define J ⊆ {1, . . . ,D} such that j ∈ J
if and only if Sj ∩ T 6= /0. Since |Sj ∩ T| ≤ 1 for every
1≤ j ≤ D, we have|J| ≥ k. Let X be ak-element subset
of J. For every j ∈ X, there is a unique valueg j such
that sj ,g j ∈ T. For 1≤ i ≤ k, let vi be the unique vertex



satisfyingRS(vi)[ j] = g j [i] for every j ∈ X (the existence
and the uniqueness ofvi follows from Prop. 8). We claim
that v1, . . . , vk form a clique inG. Suppose thatva andvb

are not adjacent. Then the setSX,a,b,va,vb is a member of
S. It is easy to see thatv j ,g j is in this set for everyj ∈ X:
by the definition ofva and vb, we haveg j [a] = RS(va)[ j]
andg j [b] = RS(vb)[ j] for everya,b∈ X. However, the set
SX,a,b,va,vb has weightk−1< |X|, a contradiction.

Let us discuss how the THRESHOLD SET instances
constructed in the proof can be expressed as circuits.
Let the inputssj ,g correspond to the elements ofU . The
requirement|T ∩Sj | ≤ 1 can be expressed by requiring
s̄j ,g′ ∨ s̄j ,g′′ for every distinctg′,g′′ ∈ Ft . The setSX,a,b,va,vb

(which has weightk−1) intersectsSj only if j ∈X, that is,
for k values of j. Therefore,|T∩SX,a,b,va,vb| ≤ k−1 is true
if and only if there is aj ∈X such thatT andSX,a,b,u,v∩Sj

are disjoint. This means that the THRESHOLDSET instance
can be expressed as









D
∧

j=1

∧

g′,g′′∈F t

g′ 6=g′′

(s̄j ,g′ ∨ s̄j ,g′′)









∧





∧

SX,a,b,u,v∈S

∨

j∈X

∧

sj,g∈SX,a,b,u,v

s̄j ,g



 .

We obtain that the instance can be implemented by an
antimonotone formula of depth 3. If the first conjunction
and the disjunction overj ∈ X are implemented by nodes
of indegree 2, then we can get weft-2 circuit having depth
bounded by a function ofk.

Corollary 10. There is a function d(k) such that if
ANTIMONOTONE CIRCUIT SATISFIABILITY is fpt cost
approximable for instances of depth3, or for instances
of weft 2 and depth bounded by d(k), thenFPT= W[1].
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