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Abstract that the problems can be solved efficiently if the optimum
is small. On the other hand, the W[1]-hardness of other
We prove that weighted monotone/antimonotone circuit problems, such as MxiMum CLIQUE and MINIMUM

satisfiability has no fixed-parameter tractable approxima- DOMINATING SET give evidence that these problems are

tion algorithm with any approximation ratio functionp, not fixed-parameter tractable, and probably there is no

unlessFPT# WTI1]. In particular, not having such an fpt-  significantly better algorithms than solving the problem in

approximation algorithm implies that these problems have time n°®®) by brute force.

no polynomial-time approximation algorithms with ratio FPT approximation algorithms were introduced by three

p(OPT) for any nontrivial functionp. independent papers [3]-[5], see also the survey [14]. We
follow here the notation of [4].An fpt approximation
algorithm with ratiop for a minimization problen® is an

l. Introduction fpt algorithm that, given an instanceof P and a positive

integerk, computes a solution of cost at mdstp(k) if

a solution of cost at modt exists; if there is no solution

gating approximation in the context of parameterized com- of cost at mosk, then the output can _be arbitrary. The
definition can be adapted to maximization problems. Note

plexity [3]-[5], [8], [14]. Recall that aparameterization o S .
of a problem is a polynomial-time computable function Fhat the approximation ratip is a function ofk, not the

that assigns an integérto each problem instance An mput.size: intuitively, ifk is small, therk-p(k) can pe still
fpt-algorithmfor a parameterized problem is an algorithm considered small. We say that problenipt-approximable

with running time f (K) - |x|°(1> wherek is the parameter if it has an fpt approximation algorithm for some function

of the input instance and f is an arbitrary computable p- As we are proving hardness results in this Paper, It
function. A decision problem ifixed-parameter tractable will be convem.ent to prove hardnes_s result for.a decision
(FPT) with parametek if it can be solved by an fpt- problem associated with approximation. Following [4], we

algorithm. The parameter can be any well-defined function say tha_t an _algonthm IS ‘?‘fpt CO.St apprOX|mat|_onN|th

of the input instance:; for example, the required number ratio P if it distinguishes (in fpt-time) between instances
of vertices in the solution, or the maximum degree of the gf ?pf[tl_mun;va:tjg at Imoskﬂ?rld_tm_ore t?f@(ﬁ(ty (see
input graph. The standard way of turning an optimization efinition 3). IS cléar that 1t i1s sulficient o prove
problem into a decision problem is to add a vaki® the hardness results for this decision variant to rule out the
input instance and ask if there is a solution with cost at possibility of fPt, apprommaﬂon with ratie. .
most/at leask. Taking this valuek appearing in the input On the positive side, there are a couple of nontrivial
as the parameter is called teandard parameterizatioof fpt approximation algorithms. Grohe and Gruber [12]
the optimization problem. For a large number of NP-hard Presented an fpp-approximation algorithm for Mxi-

optimization problems, the standard parameterization isMYM DISIOINT CYCLES in directed graphs, with some
FPT, for example, this is the case formum VERTEX ~ Unspecified functiop. Marx and Razgon [15] gave an fpt

COVER, LONGESTPATH, DIRECTED FEEDBACK VERTEX 2-approximation algorithm for BGE MULTICUT. Fellows

SET, and MULTIWAY CUT. Intuitively, these results show (Unpublished result) showed thabPOLOGICAL BAND-
WIDTH has an fpt approximation algorithm with ratlo

Research supported by ERC Advanced Grant DMMCA. (see also [14]). On the negative side, it is known that

Recently, there have been increased interest in investi-



WEIGHTED CIRCUIT SATISFIABILITY [4] and INDEPEN- simpler, since we do not have to repeat the same circuit in
DENT DOMINATING SET [7] are not fpt-approximable for  multiple layers to increase the gap. In fact, we prove the
any function p (under standard complexity assumptions). result for a special case of circuit satisfiability, which is
However, these results are not very enlightening as theya fairly natural combinatorial problem on hypergraphs: in
use in an essential way that the considered problems aréhe THRESHOLD SET problem, we are given a collection
not (anti)jmonotone: it is very well possible that every of subsetsS of a universeéJ with a weightw(S) for each
feasible solution of an instance is of the same size, insetSc S, the goal is to select the maximum number of
which case any approximation algorithm has to actually elements fromJ such that every5€ S contains at most
find an optimum solution. We call a minimization problem w(S) elements.
monotondf any superset of a solution is also a solution. It would be interesting to obtain similar inapprox-
Similarly, a maximization problem iantimonotoneif any  imapility results for more restricted versions of circuit
subset of the solution is also a solution. Inapproximapilit - satisfiability and perhaps even for natural problems such
is usually a more meaningful question for such problems. 35 NDEPENDENT SET and HTTING SET. The current
The first inapproximability result in the fpt sense for a paper is already a step in this direction: we prove inap-
monotone problem was obtained earlier and independentlyproximability results for HRESHOLD SET and for mono-
of the study of fpt approximation. As a key step in showing tone/antimonotone circuit satisfiability with certain nols
that resolution is not automatizable, Alekhnovich and on the depth and weft of the circuit. However, beyond a
Razborov [1] showed that there is no fpt 2-approximation certain point, much deeper techniques would be required
algorithm for WEIGHTED MONOTONE CIRCUIT SATISFI- than the elementary methods of the present paper. In par-
ABILITY, unless every problem in the class W[P] can be ticular, the known proofs giving evidence that there is no
solved by a randomized fpt-algorithm. Eickmeyer et al. [8] polynomial-time constant factor approximation algorithm
improved this result in two ways: they weakened the com- for HITTING SET and INDEPENDENT SET all use the
plexity assumption by removing the word “randomized,” PCP theorem. Thus ruling out fpt approximation for these
and increased the ratio from 2 to any polylogarithmic problems would require the use of (some generalization
function. They conjectured that the problem has no fpt of) the PCP theorem.

approximation algorithm for any functiop. Our first Finally, let us mention that expressing the approxi-
result confirms this conjecture. The proof is completely mation ratio as a function of the optimum (rather than
different and much simpler than the inapproximability a5 a function of the input size) makes sense also in
proofs of [1], [8]. Instead of using expanders for gap the context of polynomial-time approximation algorithms.
amplification in a multi-layer circuit, our proof achieves There are such results in the literature: for example, Feige
an arbitrary large gap using a simple construction basedgt 5|, [9] gave a polynomial-tim@(,/log OPT) approxima-

on k-perfect hash functions. Furthermore, it is shown in tion for TREEWIDTH and Gupta [13] gave a polynomial-
[8] that appropriate gap-preseving reductions can transfe time O(OPT) approximation for DRECTED MULTICUT.

the inapproximability result from \WIGHTED MONOTONE  However, there are no known inapproximability results in
CIRCUIT SATISFIABILITY to other parameterized mini-  this direction. For example, it is not known whether there
mization problems such as IMiMuM CHAIN REACTION is a polynomial-time algorithm that, given a graph with
CLOSURE, MINIMUM GENERATING SET, and MINIMUM maximum clique sizek, always finds a clique of size at
LINEAR INEQUALITY DELETION. The reductions transfer |east, say, logloglolg Showing that a certain problem
our result as well, thus it follows that these problems are j5 not fpt-approximable would clearly imply that there

not fpt-approximable either. is no polynomial-time approximation algorithm with any
Eickmeyer et al. [8] raised the question if the max- ratio depending only on the optimum. In particular, there
imization problem VEIGHTED ANTIMONOTE CIRCUIT are no such polynomial-time approximation algorithms for

SATISFIABILITY is fpt-approximable; they conjectured that the problems considered in this paper (under standard
this problem is also hard to approximate. Note that finding assumptions). Interestingly, the reverse implicatiorp als
a maximum weight solution for an antimonotone circuit holds [12], [14]: if a problem has an fgi-approximation

is equivalent to finding a minimum weight solution for algorithm for some functiop, then there is a polynomial-
a monotone circuit, but the approximability of the two time approximation algorithm with approximation ratio
problems can be different. We prove this conjecture by p’(OPT) for someother function p’ (we sketch the proof
showing that the problem is not fpt-approximable, unless in Section Il). This means that if we want to show for
FPT#WI1]. The proof is somewhat similar to the inap- example that there is no polynomial-time algorithm finding
proximability results of [1], [8] for the monotone versiah:  a clique of sizef (OPT) for any function f, then we are
uses simple linear algebra (Reed-Solomon codes) for erroralso showing that the problem is not fpt-approximable.
correction. However, the construction of the circuit is tnuc  Therefore, it seems that ruling out such polynomial-time



algorithms is essentially a problem belonging to parame- exists). If O has an fpp-approximation algorithmA for
terized complexity and requires the understanding of fpt- some functiom, then there is a polynomial-time algorithm

approximability.
ll. Preliminaries

Parameterized approximation. An optimization prob-
lem is described by a tupld,sol costgoal), wherel is
the set of instances, ga) is the set of feasible solutions
for instancex, the positive integer costy) is the cost of
solutiony for instancex, and goal is either min or max.
We follow the notation Chen et al. [4] for the definitions
of fpt-approximation:

Definition 1. Let O= (l,sol,cost goal) be an optimization
problem (over some alphabg&) and letp : N — R such
that p(k) > 1 for every k> 1 and

k- p(K) is nondecreasing igoal= min,
k/p(k) is unbounded and nondecreasing gifal=max

An fpt-approximation algorithm with approximation ratio
p for O is an algorithmA that, given an input(x,k) €
>* x N satisfyingsol(x) # 0 and

{opt(x) <k

if goal= min,
if goal= max

opt(x) > k ®

computes a ¥ sol(x) such that

costx,y) < k- p(K)
costx,y) > k/p(K)

For inputs not satisfying condition (*), the output can be
arbitrary; in particular, this is the case if there is no
solution for x. Furthermore, the running time &fon input
(x,k) is f(k)-|x|° for some computable function f.

As mentioned in the introduction, an fpfp-
approximation algorithm implies that there is polynomial-
time approximation algorithm with ratigp’(OPT) for
some functiorp’ (see [12], [14]). We sketch the proof here
for minimization problems, the proof for maximization

if goal= min,
if goal=max

problems is analogous. The proof requires the technical

condition that we can always find a trivial feasible
solution (if exists) in polynomial time. Note that we
defined cosk,y) (and hence offx)) as a positive integer.
Therefore, if some maximization proble@ has an fpt
p-approximation for some functiop, then running the
algorithm with k = 1 produces a feasible solution in
polynomial time (if it exists). For minimization problems,
the existence of an fpp-approximation algorithm does
not imply that it is always possible to find a feasible
solution in polynomial time.

Theorem 2. Let O be a minimization problem such that
a feasible solution can be found in polynomial time (if it

B and a nondecreasing functiguei such that algorithn,
given an instance x of O witpl(x) # 0, outputs a solution
y of x with cos{x,y) < opt(x)p’(opt(X)).

Proof: Suppose that the running time @f can be
bounded byf (k)|x|® for some functionf and constant.
Given an instancg, algorithmB does the following. First,
it finds a feasible solutiogy of x in polynomial time. Then
for everyi =1,...,n, algorithmB simulates algorithm\
with input (x,i) for at most|x|**! steps. If the simulation
terminates withinx|“** steps, then we check if the output
is a feasible solution. Ley be the best feasible solution
among the at most outputs of the simulations and the
feasible solutiony.

We claim costx,y) < opt(x)p’(opt(x)) for some func-
tion p’. Let k:=opt(x). If f(k) <n andk <n, then the
simulation of A on (x,k) terminates inf (k)|x|¢ < |x/¢+1
steps with a solution of cost at most- p(k), which
means that coft,y) < opt(x)p(opt(x)). Otherwise, let
7(k) be the maximum of cogt yy)/optx), taken over
all instances of size at most mii(k),k}. Note that
this is well defined, as there are only a finite number
of such instances. Therefore, if < max{ f(k),k}, then
cosix,y) < costx,yx) < opt(x)T(opt(x)). Thus the func-
tion p’(k) = max{p(k), (k) } satisfies the requirementm

Chen et al. [4] defined a weaker notion of approximabil-
ity, which is a decision algorithm solving the gap version
of the decision problem associated with the optimization
problem. Similarly to [8], we consider this weaker notion
in our inapproximability results (thus making the results
slightly stronger).

Definition 3. Let O andp be as in Definition 1. A decision
algorithm A is an fpt cost approximation algorithnfor
O with approximation ratigp if for every input(x,k) €
Z* x N with sol(x) # 0, its output satisfies the following
conditions:
k < opt(x) and goal= min,
k > opt(x) and goal= max
then A rejects(x,k).
k > opt(x) - p(opt(x)) and goal= min,
k < opt(x)/p(0pt(x)) and goal=max
then A accepts(x,k).
Furthermore, the running time df on input(x,Kk) is f(k)-
Ix|%) for some computable function f.

2) If

Clearly, an fpt approximation algorithm with ratio
implies that there is an fpt cost approximation algorithm
with the same ratio.

Circuits. A Boolean circuitis a directed acyclic graph,
where each node with indegreel is labeled as either an
AND node or as an OR node, each node of indegree 1 is



labeled as a negation node, and each node of indegree 0 is It is known that standard parameterizations obNb-
an input node. Furthermore, there is a node with outdegreeTONE CIRCUIT SATISFIABILITY and ANTIMONOTONE
0 that is the output node. Given an assignmeefrom the CIRCUIT SATISFIABILITY are W[P]-complete [6], [11].
input nodes of circuiC to {0,1}, we say that assignment
a satisfies Cif the value of the output node (computed 1
in the obvious way) is 1. Thaeveight of an assignment
is the number of input nodes with value 1. CircGitis ) S
k-satisfiablef there is a weight assignment satisfying. We prove our main result on monotone circuits in this
We denote by|C| the number of nodes in the circuit. Section:
Thedepthof circuitC is the maximum length of a directed  Theorem 4. MONOTONE CIRCUIT SATISEIABILITY is not
path from an input node to the output node. Teft of fpt cost approximable, unlesgPT= W[P].
a circuit is the maximum number of nodes with indegree
> 2 on any path from an input node to the output. Note Proof: Suppose that there is an fpt cost approximation
that any circuit can be transformed into a equivalent circui @lgorithm A for MONOTONE CIRCUIT SATISFIABILITY
of weft 0 by replacing each large node with a sequenceWith approximation ratigp. We show that this algorithm
of nodes with indegree 2. Thus bounding the weft is A can be used to solve the standard parameterization of
meaningful only if we simultaneously bound the depth MONOTONECIRCUIT SATISFIABILITY in fpt-time, imply-
as well. The notion of weft plays an important role in ing FPT=WIP].
parameterized complexity and in defining the classes of Let C be a monotone circuit witm inputs. There is
the W-hierarchy. For the definitions of the classt§l], a natural correspondence between the assignments to the
WI[P], etc., the reader is referred to standard texts such ad! inputs and the subsets df] (as usual,[n] denotes
[6], [11]. Let us mention here briefly that a parameterized {1,-..,n}). Thus we can interprél as a Boolean function
problem Q is in the classW[t] if there is a constant C(S) defined over the subse&C [n].
d such that there is a parameterized reduction frm Let H be a family of functions fronin] to [K']. We say
to the satisfiability of circuits with deptil and weftt, that is ak'-perfect family of hash functioritfor every
while Q is in W[P] if there is a parameterized reduction K'-element setSC [n], there is anh € H such thath is
from Q to the circuit satisfiability problem without any —one-to-one or§, i.e.,h(s) # h(s) for everys,s € S s#5s.
restriction on depth and weft. The most important property By Alon et al. [2], lt 'S possible to construct ki-perfect
of a parameterized reduction is that it the parameter of family H of size 2)logn in time that is polynomial in
the constructed instance is bounded by a function of then and |H]|.
original instance. Let monotone circuiC and integek be the input of a
In the present paper, we investigate weft only to see MONOTONECIRCUIT SATISFIABILITY instance. Lek' :=
how restricted the classes of circuits are for which we [p(Kk)-k] and letH be ak'-perfect family of hash functions
manage to prove inapproximability and to see what the from [n] to [K']. We define the following function:
exact parameterized complexity assumptions are that we B
need fgr the results. If thepreader is not I;)nterested in these C'(8):= /\ \/ C(Snh4(T)),
issues, then these discussions can be ignored. heHTe(“;'k])
A circuit is monotonsf it contains no negation nodes.
A circuit is antimonotonéf the unique inneighbor of each where(L&) denotes the subsets @] of size at mosk

. Monotone problems

negation node is an input node, and every outneighbor ofandh=%(T) = {i € [n] | h(i) € T}. It is clear that we can
an input node is a negation node. We define the following construct a monotone circu@’ expressing the function
two optimization problems: C/(S) in time g(k)|C|°Y). We claim that
MONOTONECIRCUIT SATISEIABILITY D !f C is k—satisfia.blg, thel’ is aI;ok—satisfiapIg, and
Input: A monotone circuitC (2) if Cis notk-satisfiable, thei€’ is not k’-satisfiable.
Solutions:  All satisfying assignmenta of C Let us run A with input (C',K); as the size ofC’ is
Cost:  The weight of satisfying assignmeat g(k)|C|°Y andK is a function ofk, the running time of\
Goal:  min. is f(k)|C|°W) for some functionf (k). If C is k-satisfiable,
then optC’) < k andK > k- p(k) > opt(C') - p(opt(C)),
ANT'M%HPTOANﬁ grﬁrcnlgg o?g;'esg:fc‘ﬂl'éw thusA acc/epts. /On the other hand,fifis notk-satisfiable,
Solutions: All satisfying assignmenta of C then op(C’) > K and A rejects. Th|s_means that we
Cost: The weight of satisfying assignmeat can solve the standard par_ameterlz:_;mon otb_rM)To_NE
Goal: max. CIRCUIT SATISFIABILITY using algorithmA, implying
FPT= WIP].




To prove (1), we show that any weightsatisfying
assignment ofC satisfiesC’' as well. Let SC [n] be
a weightk satisfying assignment o€(S). We have to
show that the disjunction i€’ is true for everyh € H.
Let T := {h(s) : s€ S}; clearly, |T| < k. By definition,
SC h™{(T), thus C(SNh~(T)) = C(S) = 1. Thus the
disjunction is satisfied by the term corresponding'to

To prove (2), letS be a weightk' satisfying assignment
of C'. Let he H be a hash function that maf&one-to-
one; sinceH is K-perfect, at least one such function exits.
We claim that the disjunction corresponding to this not
satisfied. To see this, observe that for everg (), we
have|SNh~%(T)| < k: for everyt € T, functionh maps at
most one element d8to t. Thus if f(SNh=%(T)) = 1 for
someT € (“:ll) thenSNh=%(T) is a satisfying assignment
of weight at mosk for C, a contradiction. ]

Inspection of the proof shows that if circiithas depth
d and weftw, then we can constru@’ such that it has
depthd +2 and weftw+ 2. Since the W[2]-complete
HITTING SET problem can be expressed as a monotone
circuit having depth 2, we get the following version of
Theorem 4:

Corollary 5. If MONOTONECIRCUIT SATISFIABILITY is
fpt cost approximable for circuits with depththenFPT=
W(2].

Note that this corollary shows the inapproximability of

a more restricted problem, but the assumption is somewhat

stronger than in Theorem 4.
The weft of a depth-4 circuit is clearly at most 4. We

of C corresponds to k-clique ofG. Note that in a weight-

k satisfying assignment, in each color class exactly one

variable is 1. If the first conjunction is implemented with

AND nodes of indegree 2, then the weft©@fis 1 and the

depth is bounded by a functida ]
Putting together, we obtain:

Corollary 7. There is a function (k) such that ifMoNoO-
TONE CIRCUIT SATISFIABILITY is fpt cost-approximable
for instances with wef2 and depth at most (&), then
FPT=WI1].

IV. Antimonotone problems

The main result of this section is thatnAIMONOTONE
CIRCUIT SATISFIABILITY is not fpt approximable. We
prove the result by showing inapproximability for the
following combinatorial problem:

THRESHOLD SET ) )
Input: A collection § of subsets oU with a

positive integer weightv(S) for each set

Ses.
Solutions: A setT CU such thaiTNg <w(S) for
everySeS.
Cost: |T|
Goal: max.

It is not difficult to express HRESHOLD SET as an
antimonotone circuit. In particular, we discuss at the eind o
this section how to express theiRESHOLD SET instances

can decrease the weft at the cost of increasing the deptlconstructed in the inapproximability proof.

as follows. First, the disjunction i@’ can be implemented
without increasing the weft by using a composition of OR

The reduction showing the inapproximability of
THRESHOLD SET uses Reed-Solomon codes to construct

nodes with indegree two. This increases the depth, but thisinstances and relies on the erasure correction properties

increase is bounded by a functionlofSecond, instead of
starting with a weft-2 circuiC, we can start with a weft-1
circuit:

Proposition 6. There is a function (k) such that the
standard parameterization oM ONOTONE CIRCUIT SAT-
ISFIABILITY is W[1]-hard for instances with weft 1 and
depth bounded by (#).

Proof: We reduce from the W[1]-hard M.TICOL-
ORED CLIQUE problem [10]: given a graphG and a
properk-coloring of the vertices, find a clique that contains
exactly one vertex from each color class. Mgt ..., Vk
be thek color classes. We construct a monotone cir€lit
where the inputsqy, ..., X, correspond to the vertices &f
andC expresses the following function:

A Vo aAx).

1<i<j<k  Xa€Vi %€V
Xa, Xp are adjacent

It is easy to see that every weigksatisfying assignment

of such codes to argue that finding even an approximate
solution is as hard as finding an optimum solution. Let
us recall some basic facts about Reed-Solomon codes
(no more background is required for understanding the
current paper). Lety be theg-element finite field. For
somek < D < g, the Reed-Solomon code is a function
RS: Fy — FP defined as follows. Let us pick arbitrary
distinct nonzero elements;, ..., ap from F. For every
m= (my,...,m) € F¥ and 1< i <D, we defineRgm)
such that itsi-th component iRSm)[i] := z'j‘zlai‘mj. It

is well known that the Reed-Solomon code can correct
D —k erasures, or in other words, the original vector
can be recovered from arky components oRSm). We

can state this formally as follows:

Proposition 8. For every abe F¥ and I C {1,...,D} with
[l =k, if RSa)[i] = Rb)]i] for every ic |, then a=Db.

Proof: Let w; € FA‘ be a column vector whosgth
component isr!, which means tha®Sm)[i] = m-w;. Note



that the vectors{w; | i € 1} are linearly independent by

the well-known properties of Vandermonde matrices, hence

they form a basis quk. Therefore, ifa andb have the same
inner product with every vector in this basis, then-= b.
[ |

Now we are ready to prove the inapproximability result

for THRESHOLD SET:

Theorem 9. THRESHOLD SET is not fpt cost approx-
imable, unles§PT=W/[1].

e UVE Fo‘f are nonadjacent vertices & (including the
possibility u = v).
For each such 5-tuple, we add the following setSto

S(,a,b,u,v:
{sig: ] € X.g € Fy.gla] = RYU)[j},glb] = RAV)[i]}.
The weight of each such set is— 1. If we interpret a

solution as a table of siz& x D (as described above),
then weightk — 1 of the setS¢ 4y €nsures that it is not

Proof: Suppose that there is an fpt cost approximation possible that the entries in roaand columns agree with

algorithm A for THRESHOLD SET with approximation
ratio p. We show how to solve MxIMUM CLIQUE in
fpt-time usingA. Let G(V,E) be a graph where we have
to decide if a clique of siz& exists. LetD be the smallest
integer such thab/p(D) > k. Note that such & exists
and can be computed in time depending onljkobet n be
the number of vertices 0B. By adding isolated vertices,
we can assume that> DK andn = 2 for some integer

¢ > 1; these additional vertices can increase the size of

the graph only by a factor of at moBt¢- 2X, which is a
function ofk only. Letq =2’ and letFq be theg-element
finite field. We identify the vertices d& with Fo'f, i.e., we
will consider vertices ak-dimensional row vectors over
Fq. For a vectorg, we denote byg(i] its i-th component.
We construct an instance ofHRESHOLD SET as fol-
lows. The set consists ofn-D elementsU = {s34:1<
d < D,g € FX}. Let us define the collectios of subsets
in the input. First, for every KX d < D, S contains the
setSy = {sug: g€ FX}. By settingw(S;) = 1 for every
1 <d <D, we ensure that the solutioh contains at
most one element with first indek Thus a solution can
be interpreted as a collection of at md3tvectors from

RSu), while the entries in rovo and columns( agree with
RYVv). As we want thea-th andb-th vertex of the clique to
be adjacent, we require this for every nonadjaceandyv.
This completes the construction of theiRESHOLD SET
instancex. Note that the size of instanods g(k)n® for
some functiorg(k) depending only ork.

We claim that

(1) if G has ak-clique, thenx has a solutionT of size
D and

(2) if G has nok-clique, then every solution of has
size less thatk.

If these claims are true, then we can decide whe@haas
ak-clique by runningA on (x,k). If G has ak-clique, then
we have opix) > D, which means that ofst)/p(opt(x)) >
D/p(D) >k, andA accepts. On the other hand, if there is
no k-clique, then opx) < k, andA rejects. As the size of
x is g(k)n°WD), the running time ofA can be bounded as
f(k)n®d) for some computable functiof(k). It follows
that the construction of theHRESHOLD SET instance and
running algorithmA is an fpt-time algorithm for solving
the MAXIMUM CLIQUE problem, implying FPTE= W[1].
To prove (1), suppose th& has ak-cliquevy, ..., .

FX. Equivalently, every solution can be interpreted as a gq; every 1< j < D, we define the vectog; € Fo'f such

table of sizek x D, where each entry is either empty or
contains an element df. More precisely, if the solution
contain elemengy g of §, then thed-th column contains
components of th&-dimensional vectorg € FX; if the
solution contains no element &, then thed-th column

of the table is empty. This table will be interpreted as an

encoding of thek vertices of the clique: thB-dimensional
vector in thei-th row is interpreted as the encoding of the
th vertex of the clique by a Reed-Solomon ¢ FqD.
(Note that thek-dimensional column vectors of this table
could be also interpreted as vertices, but thisas what

that gj[i] = RSvi)[j] for every 1<i < k. We claim that
the D-element sefl = {sjg; : 1 < j <D} is a feasible
solution. It is clear that the edd§ contains exactly one
element ofT. Let us verify that every seBx apyy Of S
contains at most— 1 elements off . Sinceu andv are not
adjacent and/; andv, are adjacent, at least onewf# u
or v # v holds. Suppose that, # u (the casew, £V is
similar). By Prop. 8, there has to be jac X such that
RVa)[j] # Ru)[j]. This implies thatsj g, € T is not in
Sx,ab,uyv: We havegj[a] = RSva)[j] by the definition ofg;,
while sj g € St apuv Only if gla] = RSu)[j]. Therefore,

we are doing here.) By the properties of the Reed-Solomong, AT contains no element fror;, implying that
code, anyk full columns already describe a clique of size e intersection has size at mdst 1.

k. Note thatn =2 andn > DK impliesD < q, as required
by the Reed-Solomon code.

To prove (2), suppose now that there is a solufion
of size at leask. DefineJ C {1,...,D} such thatj € J

In order to enforce this interpretation, we add further i gng only if S;NT # 0. Since|S;NT| <1 for every

sets toS as follows. Let(X,a,b,u,v) be such that

« X is ak-element subset ofl,... D},
« 1<a<b<lk,

1< j <D, we have|J| > k. Let X be ak-element subset
of J. For everyj € X, there is a unique valugj such
thatsjg; € T. For 1<i <k, letv; be the unique vertex



satisfyingRSv;)[j] = gj[i] for every j € X (the existence
and the uniqueness of follows from Prop. 8). We claim
thatvy, ..., v form a clique inG. Suppose that; andw,
are not adjacent. Then the s8tapy,y, IS @ member of
S. Itis easy to see that g; is in this set for every € X:
by the definition ofva and vy, we havegja) = RSva)(j]
andgj[b] = RSv)[]j] for everya,b € X. However, the set
Sxabvay, Nas weightk —1 < |X|, a contradiction. n
Let us discuss how the HRESHOLD SET instances

constructed in the proof can be expressed as circuits.

Let the inputss;j g correspond to the elements Of. The

reqU|rement|T NSj| <1 can be expressed by requiring

S g VSj g for every distincty,g” € F'. The setSx apya, Y
(which has weighk— 1) intersectsS; only if j € X, that is,
for k values ofj. Therefore|T NS aby.y,| < k—1is true
if and only if there is g € X such thafl andSx apuvNS
are disjoint. This means that theiRESHOLD SET instance
can be expressed as

A A

j=1 ¢ g"eF!
g#q’

(Si.g VSig)

A ANV A Sig

Sx.abuvES JEX Sjg€SKabuv

We obtain that the instance can be implemented by an
antimonotone formula of depth 3. If the first conjunction
and the disjunction ovej € X are implemented by nodes
of indegree 2, then we can get weft-2 circuit having depth

bounded by a function dk.

Corollary 10. There is a function (k) such that if
ANTIMONOTONE CIRCUIT SATISFIABILITY is fpt cost
approximable for instances of dep8) or for instances
of weft 2 and depth bounded bykj, thenFPT=W[1].
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