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Constraint satisfaction problems

Let R be a set Boolean of relations. An R-formula is a conjunction of relations in R:

R1(x1, x4, x5) ∧ R2(x2, x1) ∧ R1(x3, x3, x3) ∧ R3(x5, x1, x4, x1)

R-SAT

Given: an R-formula ϕ

Find: a variable assignment satisfying ϕ
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Constraint satisfaction problems

Let R be a set Boolean of relations. An R-formula is a conjunction of relations in R:

R1(x1, x4, x5) ∧ R2(x2, x1) ∧ R1(x3, x3, x3) ∧ R3(x5, x1, x4, x1)

R-SAT

Given: an R-formula ϕ

Find: a variable assignment satisfying ϕ

R = {a 6= b} ⇒ R-SAT = 2-coloring of a graph

R = {a ∨ b, a ∨ b̄, ā ∨ b̄} ⇒ R-SAT = 2SAT

R = {a ∨ b ∨ c, a ∨ b ∨ c̄, a ∨ b̄ ∨ c̄, ā ∨ b̄ ∨ c̄} ⇒ R-SAT = 3SAT

Question: R-SAT is polynomial time solvable for which R?

It is NP-complete for which R?
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Schaefer’s Dichotomy Theorem
(1978)

For every R, the R-SAT problem is polynomial time solvable if one of the following

holds, and NP-complete otherwise:

Every relation is satisfied by the all 0 assignment

Every relation is satisfied by the all 1 assignment

Every relation can be expressed by a 2SAT formula

Every relation can be expressed by a Horn formula

Every relation can be expressed by an anti-Horn formula

Every relation is an affine subspace over GF (2)
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Other dichotomy results

Approximability of MAX-SAT, MIN-UNSAT [Khanna et al., 2001]

Approximability of MAX-ONES, MIN-ONES [Khanna et al., 2001]

Generalization to 3 valued variables [Bulatov, 2002]

Inverse satisfiability [Kavvadias and Sideri, 1999]

etc.
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Other dichotomy results

Approximability of MAX-SAT, MIN-UNSAT [Khanna et al., 2001]

Approximability of MAX-ONES, MIN-ONES [Khanna et al., 2001]

Generalization to 3 valued variables [Bulatov, 2002]

Inverse satisfiability [Kavvadias and Sideri, 1999]

etc.

Our contribution: parameterized analogue of Schaefer’s dichotomy theorem.
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Parameterized Complexity: Summary

Two key concepts:

A parameterized problem is fixed-parameter tractable (FPT) if it has an

f(k) · nc time algorithm, where c is independent of k.

Example: MINIMUM VERTEX COVER is solvable in O(2k · n) time.

A W[1]-hard problem is unlikely to be FPT. To show that a problem L is

W[1]-hard, we have to give a parameterized reduction from a known W[1]-hard

problem to L.

Example: MAXIMUM INDEPENDENT SET is W[1]-hard, no no(k) algorithm is

known.
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Parameterized Problems

For a large number of NP-hard problems, the parameterized version is fixed-parameter

tractable. For some other problems, the parameterized version is W[1]-hard.

Fixed-parameter tractable problems:

MINIMUM VERTEX COVER

LONGEST PATH

DISJOINT TRIANGLES

GRAPH GENUS

. . .

W[1]-hard problems:

MAXIMUM INDEPENDENT SET

MINIMUM DOMINATING SET

LONGEST COMMON SUBSEQUENCE

SET PACKING

. . .
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Parameterized Complexity –
Motivation

Practical importance: efficient algorithms for small values of k.

Powerful toolbox for designing FPT algorithms:

PSfrag replacements

Bounded Search Tree

Kernelization

Color Coding

Treewidth Graph Minors Theorem

Well-Quasi-Ordering

Parameterized complexity of constraint satisfaction problems – p.7/20



Parameterized dichotomy theorem

Parameterized R-SAT

Input: an R-formula ϕ, an integer k

Parameter: k

Question: Does ϕ have a satisfying assignment of weight exactly k?

For which R is there an f(k) · nc algorithm for R-SAT?

Main theorem: For every constraint family R, the parameterized R-SAT problem

is either fixed-parameter tractable or W[1]-complete.

(+ simple characterization of FPT cases)
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Technical notes

Are constants allowed in the formula?

E.g., R(x1, 0, 1) ∧ R(1, x2, x3)

Can a variable appear multiple times in a constraint?

E.g., R(x1, x1, x2) ∧ R(x3, x3, x3)

Constraints that are not satisfied by the all 0 assignment can be handled easily

(bounded search tree).
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Weak separability

Definition: R is weakly separable if

1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.

Example of 1:

R(1, 1, 1, 1, 0, 0, 0, 0, 0) = 1

R(0, 0, 0, 0, 1, 1, 0, 0, 0) = 1

⇓

R(1, 1, 1, 1, 1, 1, 0, 0, 0) = 1

Example of 2:

R(1, 1, 1, 1, 1, 1, 0, 0) = 1

R(0, 0, 1, 1, 1, 1, 0, 0) = 1

⇓

R(1, 1, 0, 0, 0, 0, 0, 0) = 1

Main theorem: R-SAT is FPT if and only if every constraint is weakly separable,

and W[1]-complete otherwise.
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Weak separability: examples

The constraint EVEN is weakly separable:

Property 1:

R(

even
︷ ︸︸ ︷

1, 1, 1, 1, 0, 0, 0, 0, 0) = 1

R(0, 0, 0, 0, 1, 1
︸︷︷︸

even

, 0, 0, 0) = 1

⇓

R(1, 1, 1, 1, 1, 1
︸ ︷︷ ︸

even

, 0, 0, 0) = 1

Property 2:

R(

even
︷ ︸︸ ︷

1, 1, 1, 1, 1, 1, 0, 0) = 1

R(0, 0, 1, 1, 1, 1
︸ ︷︷ ︸

even

, 0, 0) = 1

⇓

R(1, 1
︸︷︷︸

even

, 0, 0, 0, 0, 0, 0) = 1

More generally: every affine constraint is weakly separable.
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Parameterized vs. classical

The easy and hard cases are different in the classical and the parameterized version:

Constraint Classical Parameterized

x ∨ y in P FPT (VERTEX COVER)

x̄ ∨ ȳ in P W[1]-complete (MAXIMUM INDEPENDENT SET)

affine in P FPT

2-in-3 NP-complete FPT
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Parameterized vs. classical

The easy and hard cases are different in the classical and the parameterized version:

Constraint Classical Parameterized

x ∨ y in P FPT (VERTEX COVER)

x̄ ∨ ȳ in P W[1]-complete (MAXIMUM INDEPENDENT SET)

affine in P FPT

2-in-3 NP-complete FPT

Sketch of proof begins...

Parameterized complexity of constraint satisfaction problems – p.12/20



Bounded number of occurrences

Primal graph: Vertices are the variables, two variables are connected if they appear

in some clause together.
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Bounded number of occurrences

Primal graph: Vertices are the variables, two variables are connected if they appear

in some clause together.

Every satisfying assignment is composed of connected satisfying assignments.

Lemma: There are at most (rd)k
2

· n connected satisfying assignments of size at

most k. (r is the maximum arity, d is the maximum no. of occurrences)

Algorithm: Use color coding to put together the connected assignments to obtain a

size k assignment.
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The sunflower lemma

Definition: Sets S1, S2, . . . , Sk form a sunflower if the sets

Si \ (S1 ∩ S2 ∩ · · · ∩ Sk) are disjoint.

PSfrag replacements petals
center

Lemma (Erdős and Rado, 1960): If the size of a set system is greater than

(p − 1)` · `! and it contains only sets of size at most `, then the system contains a

sunflower with p petals.
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Sunflower of clauses

Definition: A sunflower is a set of k clauses such that for every i

either the same variable appears at position i in every clause,

or every clause “owns” its ith variable.

R(x1, x2, x3, x4, x5, x6)

R(x1, x2, x3, x7, x8, x9)

R(x1, x2, x3, x10, x11, x12)

R(x1, x2, x3, x13, x14, x15)

Lemma: If a variable occurs more than cR(k) times in an R-formula, then the

formula contains a sunflower of clauses with more than k petals.
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Plucking the sunflower

For weakly separable constraints, the formula can be reduced if there is a sunflower

with k + 1 petals. Example:

k + 1







EVEN(x1, x2, x3, x4, x5, x6)

EVEN(x1, x2, x3, x7, x8, x9)

EVEN(x1, x2, x3, x10, x11, x12)

EVEN(x1, x2, x3, x13, x14, x15)
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Plucking the sunflower

For weakly separable constraints, the formula can be reduced if there is a sunflower

with k + 1 petals. Example:

k + 1







EVEN(x1, x2, x3, x4, x5, x6)

EVEN(x1, x2, x3, x7, x8, x9)

EVEN(x1, x2, x3, 0, 0, 0)

EVEN(x1, x2, x3, x13, x14, x15)
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Plucking the sunflower

For weakly separable constraints, the formula can be reduced if there is a sunflower

with k + 1 petals. Example:

k + 1







EVEN(x1, x2, x3, x4, x5, x6)

EVEN(x1, x2, x3, x7, x8, x9)

EVEN(x1, x2, x3, 0, 0, 0)

EVEN(x1, x2, x3, x13, x14, x15)

⇓

EVEN(x1, x2, x3)
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Plucking the sunflower

For weakly separable constraints, the formula can be reduced if there is a sunflower

with k + 1 petals. Example:

k + 1







EVEN(x1, x2, x3, x4, x5, x6)

EVEN(x1, x2, x3, x7, x8, x9)

EVEN(x1, x2, x3, 0, 0, 0)

EVEN(x1, x2, x3, x13, x14, x15)

⇓

EVEN(x1, x2, x3)

EVEN(x4, x5, x6)

EVEN(x7, x8, x9)

EVEN(x10, x11, x12)

EVEN(x13, x14, x15)
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The algorithm

If there is a variable that occurs more than cR(k) times:

Find a sunflower with k + 1 petals

Pluck the sunflower ⇒ shorter formula

If every variable occurs at most cR(k) times:

Apply the bounded occurrence algorithm

Running time: 2k
r+2

·22O(r)

· n logn, where r is the maximum arity in the

constraint family R.
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Hardness results: case 1

Definition: R is weakly separable if

1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.
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Hardness results: case 1

Definition: R is weakly separable if

1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.

If property 1 is violated:

R(0, 0, 0, 0, 0, 0, 0, 0) = 1

R(1, 1, 1, 0, 0, 0, 0, 0) = 1

R(0, 0, 0, 1, 1, 0, 0, 0) = 1

R(1, 1, 1, 1, 1, 0, 0, 0) = 0
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Hardness results: case 1

Definition: R is weakly separable if

1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.

If property 1 is violated:

R(0, 0, 0, 0, 0, 0, 0, 0) = 1

R(1, 1, 1, 0, 0, 0, 0, 0) = 1

R(0, 0, 0, 1, 1, 0, 0, 0) = 1

R(1, 1, 1, 1, 1, 0, 0, 0) = 0

⇓

R(x, x, x, y, y, 0, 0, 0) = 1 ⇐⇒ x̄ ∨ ȳ
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Hardness results: case 1

Definition: R is weakly separable if

1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.

If property 1 is violated:

R(0, 0, 0, 0, 0, 0, 0, 0) = 1

R(1, 1, 1, 0, 0, 0, 0, 0) = 1

R(0, 0, 0, 1, 1, 0, 0, 0) = 1

R(1, 1, 1, 1, 1, 0, 0, 0) = 0

⇓ MAXIMUM INDEPENDENT SET

R(x, x, x, y, y, 0, 0, 0) = 1 ⇐⇒ x̄ ∨ ȳ ⇒ can be expressed!
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Hardness results: case 2

Definition: R is weakly separable if

1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.

If property 2 is violated:

R(0, 0, 0, 0, 0, 0, 0, 0) = 1

R(1, 1, 1, 1, 1, 0, 0, 0) = 1

R(0, 0, 0, 1, 1, 0, 0, 0) = 1

R(1, 1, 1, 0, 0, 0, 0, 0) = 0
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Hardness results: case 2

Definition: R is weakly separable if

1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.

If property 2 is violated:

R(0, 0, 0, 0, 0, 0, 0, 0) = 1

R(1, 1, 1, 1, 1, 0, 0, 0) = 1

R(0, 0, 0, 1, 1, 0, 0, 0) = 1

R(1, 1, 1, 0, 0, 0, 0, 0) = 0

⇓

R(x, x, x, y, y, 0, 0, 0) = 1 ⇐⇒ x → y
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Hardness results: case 2

Definition: R is weakly separable if

1. the union of two disjoint satisfying assignments is also satisfying, and

2. if a satisfying assignment contains a smaller satisfying assignment, then their

difference is also satisfying.

If property 2 is violated:

R(0, 0, 0, 0, 0, 0, 0, 0) = 1 Lemma: The problem is

R(1, 1, 1, 1, 1, 0, 0, 0) = 1 W[1]-complete for the

R(0, 0, 0, 1, 1, 0, 0, 0) = 1 constraint →.

R(1, 1, 1, 0, 0, 0, 0, 0) = 0

⇓

R(x, x, x, y, y, 0, 0, 0) = 1 ⇐⇒ x → y
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Summary

Parameterized version of R-SAT

FPT or W[1]-complete depending on weak separability

Bounded occurences: color coding using connected solutions

Reduction using the sunflower lemma

Linear time solvable on planar formulae
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Summary

Parameterized version of R-SAT

FPT or W[1]-complete depending on weak separability

Bounded occurences: color coding using connected solutions

Reduction using the sunflower lemma

Linear time solvable on planar formulae

Thank you for your attention!
Questions?
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