

Parameterized complexity of constraint satisfaction problems

Dániel Marx

Budapest University of Technology and Economics

dmarx@cs.bme.hu

Presented at IEEE Computational Complexity Conference 2004,

Amherst, Massachusetts

June 22, 2004

Constraint satisfaction problems

Let \mathcal{R} be a set Boolean of relations. An \mathcal{R} -formula is a conjunction of relations in \mathcal{R} :

 $R_1(x_1,x_4,x_5) \wedge R_2(x_2,x_1) \wedge R_1(x_3,x_3,x_3) \wedge R_3(x_5,x_1,x_4,x_1)$

\mathcal{R} -SAT

- 6 Given: an ${\cal R}$ -formula arphi
- 6 Find: a variable assignment satisfying arphi

Constraint satisfaction problems

Let \mathcal{R} be a set Boolean of relations. An \mathcal{R} -formula is a conjunction of relations in \mathcal{R} :

 $R_1(x_1, x_4, x_5) \wedge R_2(x_2, x_1) \wedge R_1(x_3, x_3, x_3) \wedge R_3(x_5, x_1, x_4, x_1)$

\mathcal{R} -SAT

 6 $\,$ Given: an ${\cal R}$ -formula arphi

 $^{\circ}$ Find: a variable assignment satisfying arphi

 $\mathcal{R} = \{a \neq b\} \Rightarrow \mathcal{R}\text{-SAT} = 2\text{-coloring of a graph}$ $\mathcal{R} = \{a \lor b, \ a \lor \overline{b}, \ \overline{a} \lor \overline{b}\} \Rightarrow \mathcal{R}\text{-SAT} = 2\text{SAT}$ $\mathcal{R} = \{a \lor b \lor c, a \lor b \lor \overline{c}, a \lor \overline{b} \lor \overline{c}, \overline{a} \lor \overline{b} \lor \overline{c}\} \Rightarrow \mathcal{R}\text{-SAT} = 3\text{SAT}$

Question: \mathcal{R} -SAT is polynomial time solvable for which \mathcal{R} ?

It is **NP**-complete for which \mathcal{R} ?

Schaefer's Dichotomy Theorem (1978)

For every \mathcal{R} , the \mathcal{R} -SAT problem is polynomial time solvable if one of the following holds, and **NP**-complete otherwise:

- 6 Every relation is satisfied by the all 0 assignment
- 6 Every relation is satisfied by the all 1 assignment
- Every relation can be expressed by a 2SAT formula
- 6 Every relation can be expressed by a Horn formula
- 6 Every relation can be expressed by an anti-Horn formula
- 6 Every relation is an affine subspace over GF(2)

Other dichotomy results

- Approximability of MAX-SAT, MIN-UNSAT [Khanna et al., 2001]
- Approximability of MAX-ONES, MIN-ONES [Khanna et al., 2001]
- Generalization to 3 valued variables [Bulatov, 2002]
- Inverse satisfiability [Kavvadias and Sideri, 1999]
- 🧕 etc.

Other dichotomy results

- 6 Approximability of MAX-SAT, MIN-UNSAT [Khanna et al., 2001]
- 6 Approximability of MAX-ONES, MIN-ONES [Khanna et al., 2001]
- Generalization to 3 valued variables [Bulatov, 2002]
- Inverse satisfiability [Kavvadias and Sideri, 1999]
- 6 etc.

Our contribution: parameterized analogue of Schaefer's dichotomy theorem.

Two key concepts:

6 A parameterized problem is **fixed-parameter tractable (FPT)** if it has an $f(k) \cdot n^c$ time algorithm, where c is independent of k.

Example: MINIMUM VERTEX COVER is solvable in $O(2^k \cdot n)$ time.

6 A W[1]-hard problem is unlikely to be FPT. To show that a problem L is W[1]-hard, we have to give a parameterized reduction from a known W[1]-hard problem to L.

Example: MAXIMUM INDEPENDENT SET is W[1]-hard, no $n^{o(k)}$ algorithm is known.

Parameterized Problems

For a large number of **NP**-hard problems, the parameterized version is fixed-parameter tractable. For some other problems, the parameterized version is W[1]-hard.

Fixed-parameter tractable problems:

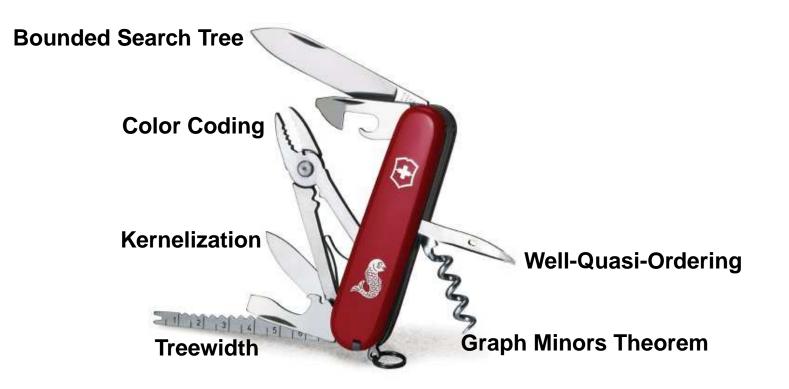
- 6 MINIMUM VERTEX COVER
- 6 LONGEST PATH
- OISJOINT TRIANGLES
- 6 GRAPH GENUS
- 6 ...

W[1]-hard problems:

- MAXIMUM INDEPENDENT SET
- MINIMUM DOMINATING SET
- **5** LONGEST COMMON SUBSEQUENCE
- SET PACKING
- 6 ...

Parameterized Complexity – Motivation

- ⁶ Practical importance: efficient algorithms for small values of k.
- Overful toolbox for designing FPT algorithms:



Parameterized dichotomy theorem

Parameterized \mathcal{R} -SAT

- \circ Input: an ${\mathcal R}$ -formula arphi, an integer k
- 6 Parameter: k
- **G** Question: Does φ have a satisfying assignment of weight exactly k?

For which $\mathcal R$ is there an $f(k) \cdot n^c$ algorithm for $\mathcal R$ -SAT?

Main theorem: For every constraint family \mathcal{R} , the parameterized \mathcal{R} -SAT problem is either fixed-parameter tractable or W[1]-complete.

(+ simple characterization of FPT cases)

Technical notes

- General Are constants allowed in the formula? E.g., $R(x_1,0,1) \wedge R(1,x_2,x_3)$
- Gen a variable appear multiple times in a constraint? E.g., $R(x_1, x_1, x_2) \wedge R(x_3, x_3, x_3)$
- Constraints that are not satisfied by the all 0 assignment can be handled easily (bounded search tree).

Weak separability

Definition: $oldsymbol{R}$ is weakly separable if

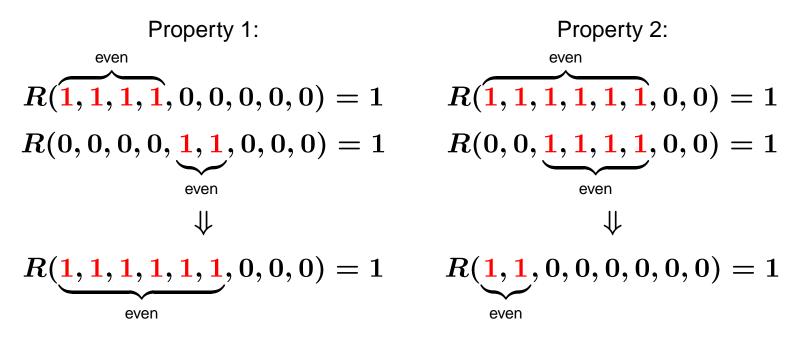
- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

Example of 1:Example of 2:
$$R(1, 1, 1, 1, 0, 0, 0, 0, 0) = 1$$
 $R(1, 1, 1, 1, 1, 1, 0, 0) = 1$ $R(0, 0, 0, 0, 1, 1, 0, 0, 0) = 1$ $R(0, 0, 1, 1, 1, 1, 0, 0) = 1$ ψ ψ $R(1, 1, 1, 1, 1, 1, 1, 0, 0, 0) = 1$ $R(1, 1, 0, 0, 0, 0, 0, 0, 0) = 1$

Main theorem: \mathcal{R} -SAT is FPT if and only if every constraint is weakly separable, and W[1]-complete otherwise.

Weak separability: examples

The constraint EVEN is weakly separable:



More generally: every affine constraint is weakly separable.

Parameterized vs. classical

The easy and hard cases are different in the classical and the parameterized version:

Constraint	Classical	Parameterized
$x \lor y$	in P	FPT (VERTEX COVER)
$ar{x} ee ar{y}$	in P	W[1]-complete (MAXIMUM INDEPENDENT SET)
affine	in P	FPT
2-in-3	NP-complete	FPT

Parameterized vs. classical

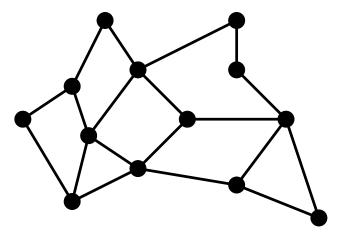
The easy and hard cases are different in the classical and the parameterized version:

Constraint	Classical	Parameterized
$x \lor y$	in P	FPT (VERTEX COVER)
$ar{x} ee ar{y}$	in P	W[1]-complete (MAXIMUM INDEPENDENT SET)
affine	in P	FPT
2-in-3	NP-complete	FPT

Sketch of proof begins...

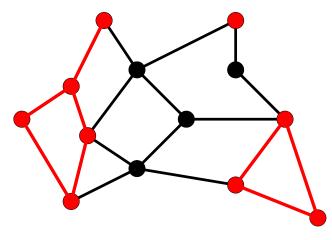
Bounded number of occurrences

Primal graph: Vertices are the variables, two variables are connected if they appear in some clause together.



Bounded number of occurrences

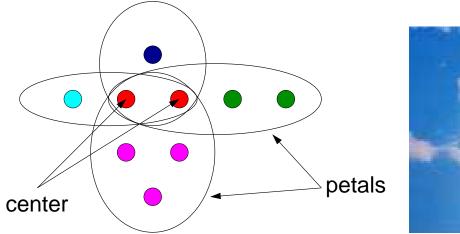
Primal graph: Vertices are the variables, two variables are connected if they appear in some clause together.



Every satisfying assignment is composed of **connected satisfying assignments**. **Lemma:** There are at most $(rd)^{k^2} \cdot n$ connected satisfying assignments of size at most k. (r is the maximum arity, d is the maximum no. of occurrences) **Algorithm:** Use color coding to put together the connected assignments to obtain a size k assignment.

The sunflower lemma

Definition: Sets S_1, S_2, \ldots, S_k form a **sunflower** if the sets $S_i \setminus (S_1 \cap S_2 \cap \cdots \cap S_k)$ are disjoint.



Lemma (Erdős and Rado, 1960): If the size of a set system is greater than $(p-1)^{\ell} \cdot \ell!$ and it contains only sets of size at most ℓ , then the system contains a sunflower with p petals.

Sunflower of clauses

Definition: A **sunflower** is a set of k clauses such that for every i

- \circ either the same variable appears at position i in every clause,
- 6 or every clause "owns" its ith variable.

 $R(x_1, x_2, x_3, x_4, x_5, x_6)$ $R(x_1, x_2, x_3, x_7, x_8, x_9)$ $R(x_1, x_2, x_3, x_{10}, x_{11}, x_{12})$ $R(x_1, x_2, x_3, x_{13}, x_{14}, x_{15})$

Lemma: If a variable occurs more than $c_{\mathcal{R}}(k)$ times in an \mathcal{R} -formula, then the formula contains a sunflower of clauses with more than k petals.

For weakly separable constraints, the formula can be reduced if there is a sunflower with k+1 petals. Example:

 $k + 1 \begin{cases} EVEN(x_1, x_2, x_3, x_4, x_5, x_6) \\ EVEN(x_1, x_2, x_3, x_7, x_8, x_9) \\ EVEN(x_1, x_2, x_3, x_{10}, x_{11}, x_{12}) \\ EVEN(x_1, x_2, x_3, x_{13}, x_{14}, x_{15}) \end{cases}$

For weakly separable constraints, the formula can be reduced if there is a sunflower with k+1 petals. Example:

 $k + 1 \begin{cases} EVEN(x_1, x_2, x_3, x_4, x_5, x_6) \\ EVEN(x_1, x_2, x_3, x_7, x_8, x_9) \\ EVEN(x_1, x_2, x_3, 0, 0, 0) \\ EVEN(x_1, x_2, x_3, x_{13}, x_{14}, x_{15}) \end{cases}$

For weakly separable constraints, the formula can be reduced if there is a sunflower with k+1 petals. Example:

$$k + 1 \begin{cases} EVEN(x_1, x_2, x_3, x_4, x_5, x_6) \\ EVEN(x_1, x_2, x_3, x_7, x_8, x_9) \\ EVEN(x_1, x_2, x_3, 0, 0, 0) \\ EVEN(x_1, x_2, x_3, x_{13}, x_{14}, x_{15}) \\ \psi \\ EVEN(x_1, x_2, x_3) \end{cases}$$

For weakly separable constraints, the formula can be reduced if there is a sunflower with k+1 petals. Example:

 $\mathsf{EVEN}(x_1,x_2,x_3,x_4,x_5,x_6)$ $k+1 \begin{cases} = \mathsf{EVEN}(x_1, x_2, x_3, x_4, x_3, x_9) \\ = \mathsf{EVEN}(x_1, x_2, x_3, x_7, x_8, x_9) \\ = \mathsf{EVEN}(x_1, x_2, x_3, 0, 0, 0) \end{cases}$ $\mathsf{EVEN}(x_1, x_2, x_3, x_{13}, x_{14}, x_{15})$ $\mathsf{EVEN}(x_1, x_2, x_3)$ $\mathsf{EVEN}(x_4, x_5, x_6)$ $\mathsf{EVEN}(x_7, x_8, x_9)$ $EVEN(x_{10}, x_{11}, x_{12})$ $EVEN(x_{13}, x_{14}, x_{15})$

The algorithm

- 6 If there is a variable that occurs more than $c_{\mathcal{R}}(k)$ times:
 - Find a sunflower with k+1 petals
 - Pluck the sunflower \Rightarrow shorter formula
- 6 If every variable occurs at most $c_{\mathcal{R}}(k)$ times:
 - Apply the bounded occurrence algorithm

Running time: $2^{k^{r+2} \cdot 2^{2^{O(r)}}} \cdot n \log n$, where r is the maximum arity in the constraint family \mathcal{R} .

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 1 is violated:

 $egin{aligned} R(0,0,0,0,0,0,0,0) &= 1 \ R(1,1,1,0,0,0,0,0) &= 1 \ R(0,0,0,1,1,0,0,0) &= 1 \ R(1,1,1,1,1,0,0,0) &= 0 \end{aligned}$

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 1 is violated:

 $egin{aligned} R(0,0,0,0,0,0,0,0) &= 1\ R(1,1,1,0,0,0,0,0) &= 1\ R(0,0,0,1,1,0,0,0) &= 1\ R(1,1,1,1,1,0,0,0) &= 0\ &\downarrow \ R(x,x,x,y,y,0,0,0) &= 1 \iff ar{x} \lor ar{y} \end{aligned}$

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 1 is violated:

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 2 is violated:

 $egin{aligned} R(0,0,0,0,0,0,0,0) &= 1 \ R(1,1,1,1,1,0,0,0) &= 1 \ R(0,0,0,1,1,0,0,0) &= 1 \ R(1,1,1,0,0,0,0,0) &= 0 \end{aligned}$

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 2 is violated:

 $egin{aligned} R(0,0,0,0,0,0,0,0) &= 1\ R(1,1,1,1,1,0,0,0) &= 1\ R(0,0,0,1,1,0,0,0) &= 1\ R(1,1,1,0,0,0,0,0) &= 0\ &\downarrow \ R(x,x,x,y,y,0,0,0) &= 1 \iff x o y \end{aligned}$

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 2 is violated:

- ⁶ Parameterized version of \mathcal{R} -SAT
- **6** FPT or W[1]-complete depending on weak separability
- 6 Bounded occurences: color coding using connected solutions
- 6 Reduction using the sunflower lemma
- 6 Linear time solvable on planar formulae

- ⁶ Parameterized version of \mathcal{R} -SAT
- FPT or W[1]-complete depending on weak separability
- 6 Bounded occurences: color coding using connected solutions
- 6 Reduction using the sunflower lemma
- 6 Linear time solvable on planar formulae

Thank you for your attention! Questions?