
Parameterized complexity of constraint

satisfaction problems

Dániel Marx∗

Department of Computer Science and Information Theory,

Budapest University of Technology and Economics

H-1521 Budapest, Hungary

dmarx@cs.bme.hu

30th September 2004

Abstract

We prove a parameterized analog of Schaefer’s Dichotomy Theorem:
we show that for every finite boolean constraint family F , deciding whether
a formula containing constraints from F has a satisfying assignment
of weight exactly k is either fixed-parameter tractable (FPT) or W[1]-
complete. We give a simple characterization of those constraints that
make the problem fixed-parameter tractable. The special cases when the
formula is restricted to be bounded occurrence, bounded treewidth or pla-
nar are also considered, it turns out that in these cases the problem is in
FPT for every constraint family F .

1 Introduction

A dichotomy theorem in computational complexity shows that every problem in
a certain family of problems is either polynomial-time solvable or NP-complete.
The first such result is Schaefer’s Dichotomy Theorem [15], which considers
boolean constraint satisfaction. Let F be a finite set of boolean constraints,
each constraint is a boolean relation of some finite arity. In the F -SAT problem
we are given a formula that consists of a conjunction of clauses, where each
clause is a constraint from F on the variables. Our task is to decide whether
the given formula has a satisfying assignment. For example, if F = {(x ∨ y ∨
z), (x̄ ∨ y ∨ z), (x̄ ∨ ȳ ∨ z), (x̄ ∨ ȳ ∨ z̄)}, then F -SAT is equivalent to 3SAT,
as every 3CNF formula is a conjunction of such clauses. For every constraint
family F , the F -SAT problem is a separate problem. Schaefer [15] determines
the complexity of each of these infinitely many problems: it turns out that for

∗Research is supported in part by grants OTKA 44733, 42559 and 42706 of the Hungarian

National Science Fund.

1

every finite constraint family F , the F -SAT problem is either polynomial-time
solvable or NP-complete.

There are several extensions of Schaefer’s theorem in the literature. Bula-
tov [6] proved a dichotomy theorem similar to Schaefer’s theorem, but his result
classifies the complexity of the satisfiability problem with three-valued variables.
However, extending Schaefer’s theorem to variables with arbitrary domain is an
important open problem (see [6, 10] for partial results).

Optimization variants of the boolean constraint satisfaction problem were
also considered in the literature. First, Creignou [7] classified the approxima-
bility of the F -MAX-SAT problem, where the goal is to maximize the num-
ber of clauses satisfied. Khanna et al. [12] classified three other families of
problems: F -MIN-SAT (minimize the number of unsatisfied clauses), F -MAX-
ONES (find a satisfying assignment with maximum number of true variables),
F -MIN-ONES (minimize the number of true variables). Notice that F -MAX-
SAT and F -MIN-SAT are the same problem, but due to their different formu-
lations, their approximability might be different.

In parameterized complexity we are dealing with problems where each prob-
lem instance has a distinguished part called the parameter. For example, in
the parameterized maximum clique problem the parameter k is the size of the
clique to be found. A parameterized problem is fixed-parameter tractable (FPT)
if it can be solved in polynomial time for every fixed value of the problem pa-
rameter k, and moreover, the degree of the polynomial in the time bound does
not depend on k. That is, a problem is in FPT, if it has an f(k)nc time algo-
rithm, where c is independent of k and n. Such an algorithm is called uniformly
polynomial. It turns out that the parameterized versions of several NP-hard
problems are fixed-parameter tractable: for example, there are uniformly poly-
nomial algorithms for the parameterized minimum vertex cover, longest path,
and minimum feedback vertex set problems. In some cases, these algorithms
are highly nontrivial.

By showing that a problem is NP-complete, we give strong evidence that
it does not have a polynomial-time algorithm. There is a similar completeness
program in parameterized complexity that allows us to show that certain prob-
lems are unlikely to be in FPT. A parameterized reduction from problem A to
problem B transforms an instance x of A with parameter k to an instance x′

of B with parameter k′ such that x is a yes instance of A if and only if y is a
yes instance of B. The reduction has to be computed in time f(k)|x|c (for some
function f and constant c) and the new parameter k′ has to be a function of k
only. It is easy to see that if A is reducible to B, and B is in FPT, then it follows
that A is in FPT as well. The class W[1] contains the parameterized problems
that can be reduced to the problem “Does the given nondeterministic Turing
machine accepts input x in at most k steps?” It is believed that W[1]-complete
problems are not fixed-parameter tractable. For more background on parame-
terized complexity theory, the reader is referred to the monograph of Downey
and Fellows [8].

In this paper we investigate the parameterized complexity of boolean con-
straint satisfaction problems. The parameterized satisfiability problem corre-

2

sponding to 3SAT is WEIGHTED 3SAT. Here we are given a 3CNF formula φ
together with an integer parameter k, and it has to be determined whether φ
has a satisfying assignment with exactly k true variables. Clearly, the problem
is polynomial-time solvable for fixed k, since we have to consider at most O(nk)
possible solutions. However, WEIGHTED 3SAT is one of the first problems that
were proved W[1]-complete, which means that it unlikely that there is a uni-
formly polynomial-time algorithm for this problem. In fact, even WEIGHTED
2SAT is W[1]-complete, showing that parameterized satisfiability problems and
their classical counterparts can have different hardness.

The main result of the paper is a parameterized complexity analog of Schae-
fer’s Dichotomy Theorem. For every constraint family F , we determine the pa-
rameterized complexity of the WEIGHTED F -SAT problem. In WEIGHTED
F -SAT we are given a formula with constraints from F , and it has to be decided
whether the formula has a satisfying assignment with exactly k true variables.
We prove that WEIGHTED F -SAT is either in FPT or W[1]-complete for ev-
ery constraint family F . The precise statement can be found in Theorem 3.2.
Moreover, as in Schaefer’s theorem, the class of FPT constraints has a simple
characterization. We note here that in this theorem the class of “easy” con-
straint families does not even remotely resembles the class of polynomial-time
solvable families in Schaefer’s theorem. It seems that very different properties
are required to make WEIGHTED F -SAT easy.

The paper is organized as follows. In Section 2 we introduce a new property
called weak separability. Section 3 states our main theorem (Theorem 3.2). Sec-
tion 4 handles 0-invalid constraints. Section 5 gives an algorithm for bounded oc-
currence formulae. The positive results (uniformly polynomial-time algorithms)
are presented in Section 6. In Section 7 we introduce a W[1]-complete problem,
which is used in Section 8 to obtain further hardness results. Section 9 deals
with the special case where the formula has bounded treewidth, while Section 10
considers the case of planar formulae.

2 Weakly separable constraints

A boolean constraint is a function f : {0, 1}r → {0, 1}, where r is called the
arity of f . The r-tuple s ∈ {0, 1}r satisfies f if f(s) = 1. There are exactly
22r

different constraints of arity r, hence if a constraint family F contains only
constraints with arity at most r, then |F | ≤ r22r

. We will call the ith variable
of a constraint f the ith position in f (the word “variable” will be reserved for
the variables appearing in a formula).

An r-tuple s ∈ {0, 1}r can be thought of as a subset of {1, 2, . . . , r}: let i be
in the subset if and only if the ith component of s is 1. Therefore we can apply
standard set theoretic notations (such as union, disjointness, and symmetric
difference) to the assignments of a constraint. Moreover, a constraint f can be
expressed as a set system over {1, 2, . . . , r} that contains exactly those sets that
correspond to satisfying assignments of the constraint.

3

We introduce a new property that (to the best of our knowledge) has not
been investigated in the literature. It turns out that this property plays a crucial
role in the parameterized complexity of WEIGHTED F -SAT.

Definition 2.1 (Weak separability) A constraint R is weakly separable if

1. whenever x1 and x2 are two satisfying assignments of R such that their
intersection is satisfying, then their union is also satisfying, and

2. whenever x1 ⊂ x2 ⊂ x3 are satisfying assignments of R, then (x2\x1)∪x3

(= x1 ⊕ x2 ⊕ x3) is also satisfying.

Here ⊕ means symmetric difference. In the rest of the section, we show some
properties of weak separability, and present examples of weakly separable con-
straints.

A constraint is 0-valid (0-invalid) if it is satisfied (not satisfied) by the all-
zero assignment. 1-valid and 1-invalid are defined similarly. In most of the paper
we consider only 0-valid constraints. If R is 0-valid, then the requirements of
Definition 2.1 can be made somewhat simpler:

Lemma 2.2 A 0-valid constraint R is weakly separable if and only

1. whenever x1 and x2 are two disjoint satisfying assignments of R, then
their union is also satisfying, and

2. whenever x1 and x2 are satisfying assignments of R such that x1 is a
proper subset of x2, then their difference is also satisfying.

Proof The necessity of these two requirements follow directly from Defini-
tion 2.1, since the all-zero assignment satisfies R.

Now assume that these two requirements hold. To see that the first re-
quirement of Definition 2.1 holds for R, assume that x1, x2, and x1 ∩ x2 sat-
isfy R. If x1 ⊆ x2 or x2 ⊆ x1, then there is nothing to prove. Otherwise
x1 \ (x1 ∩ x2) = x1 \ x2 is a satisfying assignment by the second requirement of
the lemma being proved. Assignments x1 \ x2 and x2 are disjoint, hence their
union x1 ∪ x2 is also satisfying by the first requirement.

To see that the second requirement of Definition 2.1 holds, let x1 ⊂ x2 ⊂ x3

be satisfying assignments. Now x3 \ x2 is also satisfying, and since it is disjoint
from x1, it follows that (x1 \ x2) ∪ x3 is satisfying, as required. �

Another way of stating Lemma 2.2 is the following. If we consider two
satisfying assignments as 0-1 vectors in Z

r, and their sum (in Z
r) is also a 0-1

vector, then the first property says that the sum is also satisfying. The second
property says that the difference of two satisfying vectors is also satisfying if it
is a 0-1 vector. Therefore Lemma 2.2 says that whenever the sum (difference)
of the satisfying assignments is also a 0-1 vector, then the sum (difference) is
also satisfying.

Definition 2.1 might seem to be a bit artificial, but as the following examples
show, this class contains several interesting constraints.

4

Example 2.3 (Intersecting clutters) Consider the set system correspond-
ing to the satisfying assignments of some constraint R. We say that the con-
straint is intersecting if every two non-empty sets in the system intersect each
other. The constraint is a clutter if neither of the non-empty satisfying as-
signments is the proper subset of some other satisfying assignment.1 If a 0-
valid constraint R is an intersecting clutter, then it is weakly separable. Both
requirements of Lemma 2.2 vacuously hold: there are no disjoint satisfying as-
signments and a satisfying assignment cannot be the subset of another satisfying
assignment. For example, R = {00000, 11100, 00111, 01110} is weakly separa-
ble. Moreover, for every r and t > r/2, the r-ary constraint that contains the
all-zero assignment and all the assignments of weight exactly t is also weakly
separable.

Example 2.4 (Affine constraints) A constraint of arity r is called affine if
the subset of {0, 1}r that corresponds to the satisfying assignments is an affine
subspace of the r-dimensional space over GF[2]. It can be shown that a con-
straint is affine if and only if for every three satisfying assignments x1, x2, x3,
the assignment x1 ⊕ x2 ⊕ x3 also satisfies the constraint.

An affine constraint of arity r can be characterized by the equation Ax = b
over GF[2], where A is a matrix with r columns. If there are two satisfying
assignments x1 and x2 such that their intersection z is also satisfying, then this
means that x1, x2 can be written as x1 = x′

1 + z, x2 = x′
2 + z, where x′

1 and
x′

2 are disjoint, and

Ax1 = A(x′
1 + z) = b,

Ax2 = A(x′
2 + z) = b,

Az = b.

Now the union of x1 and x2 is x′
1 + x′

2 + z, which is also satisfying since

A(x′
1 + x′

2 + z) = A(x′
1 + z) + A(x′

1 + z) −Az

= b + b− b = b.

Moreover, if x1 ⊂ x2 ⊂ x3 are three satisfying assignments, then by a similar
argument it can be shown that x3−x2+x1 is also a satisfying assignment. Thus
we have shown that every affine constraint is weakly separable. In particular,
the r-ary constraint EVENr that requires that an even number of its variables
are set to 1 is also weakly separable.

Example 2.5 (Integer lattices) An integer lattice L is a subset of Z
r that

is generated by the integer linear combination of a finite number of vectors
a1, . . . , ak ∈ Z

r , that is, L = {α1a1 + · · · + αkak : α1, . . . , αk ∈ Z}. An
alternative definition is that L is an integer lattice if and only if for every two
vectors in L their sum and their difference are also in L. This immediately

1Note that we use the notions intersecting and clutter in a slightly non-standard way. Here

the empty set is allowed to be a member of a clutter or an intersecting set system.

5

implies that if we consider only the 0-1 vectors in L (the intersection of L with
the hypercube {0, 1}r), then this yields a weakly separable constraint. Indeed,
the sum and difference of every two satisfying assignments are in L, and if they
happen to be 0-1 vectors, then they are also satisfying assignments.

The converse is not true: not every weakly separable constraint arises from
an integer lattice this way. For example, consider the constraint R given in
Example 2.3. If R is part of an integer lattice, then 11100 + 00111 − 01110 =
10101 has to be in the lattice as well.

If R(x1, . . . , xr) is a constraint of arity r, then for every 1 ≤ i ≤ r we define
R|(i,0)(x1, . . . , xr−1) = R(x1, . . . , xi−1, 0, xi, . . . , xr−1) to be a constraint of arity
r−1. That is, R|(i,0) is obtained from R by restricting the ith position to 0. The
constraint R|(i,1) is defined similarly. Applying these two operations repeatedly
on R we can obtain 3r (not necessarily distinct) constraints: each position can
be forced to 0, forced to 1, or left unchanged. These constraints will be called
the restrictions of R. Given a constraint family F , we denote by F ∗ the set
of those constraints that can be obtained from a member of F by repeated
applications of these two operations. Clearly, if every constraint in F has arity
at most r, then |F ∗| ≤ 3r|F |.

Weak separability is a hereditary property with respect to taking restrictions:

Lemma 2.6 If R is weakly separable, then every restriction of R is also weakly
separable.

Proof Assume that R has a non-weakly separable restriction R′. Without loss

of generality, it can be assumed that R′(x1, . . . , xr′) = R(x1, . . . , xr′ ,

r1
︷ ︸︸ ︷

0, . . . , 0,

r2
︷ ︸︸ ︷

1, . . . , 1).
Abusing notations, if x is an r′-ary assignment of R′, then we also consider x to
be an r-ary assignment of R that assigns 0 to the last r1 + r2 positions. Let z
be the r-ary assignment that assigns 1 to the last r2 positions. An assignment
x satisfies R′ if and only if x ∪ z satisfies R.

If R′ violates the first requirement of Definition 2.1, then there are assign-
ments x1, x2, x1 ∩ x2 that satisfy R′, but x1 ∪ x2 is not satisfying. Therefore
x1 ∪ z, x2 ∪ z, and their intersection (x1 ∩ x2) ∪ z satisfy R. Since R is weakly
separable, thus (x1 ∪ z) ∪ (x2 ∪ z) = (x1 ∪ x2) ∪ z also satisfies R, showing
that x1 ∪ x2 satisfies R′, a contradiction. The case when R′ violates the second
requirement can be handled similarly. �

Later we will need the following observation:

Lemma 2.7 If R is a 0-invalid non-weakly separable constraint, then R has a
0-valid non-weakly separable restriction.

Proof If R violates the first requirement of Definition 2.1, then there are as-
signments x1, x2, x1 ∩x2 that satisfy R, but x1 ∪x2 is not satisfying. Consider
the restriction R′ of R where the positions that receive 1 in x1 ∩ x2 are forced
to 1. Clearly, R′ is 0-valid, and based on x1 and x2 we can get two disjoint

6

satisfying assignment whose union is not satisfying. If R violates the second
requirement, then we force those positions to 1 that receive 1 in x1. Based on
x2 and x3, we obtain two satisfying assignments such that one is the subset of
the other, but their difference is not satisfying. �

3 Weighted SAT

A clause representing the constraint f is a pair 〈f, (x1, . . . , xr)〉, where r is the
arity of f and x1, . . . , xr are variables. A 0-1 assignment of the variables satisfies
this clause if f(x1, . . . , xr) = 1. If F is a finite family of constraints, then an
F -formula φ is a conjunction of clauses C1 ∧ C2 ∧ · · · ∧ Cm where each clause
Ci represents some constraint f from F . A variable assignment satisfies φ if it
satisfies every clause of φ. A formula is satisfiable if it has at least one satisfying
assignment. The weight of an assignment is the number of variables that are set
to 1. Usually we denote by n the number of variables in the formula, and by m
the number of clauses.

When defining constraint satisfaction problems some authors allow that
a variable appears multiple times in a clause, while some others forbid this.
In particular, Schaefer’s original paper [15] allowed multiple variables, while
Khanna et al. [12] does not. Disallowing multiple variables makes the constraint
satisfaction problem less general, hence it makes obtaining hardness results more
difficult. We present our results in the strongest possible form: we allow mul-
tiple variables when giving positive results, while on the negative side hardness
is proved for the case when multiple variables are not allowed.

Formally, we will investigate the parameterized complexity of the following
problem:

WEIGHTED F -SAT

Input: An F -formula φ (each variable can appear at most once in a
clause) and an integer k.

Parameter: k

Question: Is there an assignment of weight exactly k that satisfies
φ?

It can be shown that the problem WEIGHTED F -SAT is in W[1] for every
family F .

In the rest of be paper we consider only parameterized problems, hence we
will say F -SAT instead of WEIGHTED F -SAT for brevity. F -SAT∗ denotes
the more general problem where a variable can appear multiple times in a clause.
If F contains only a single constraint R, then we abuse notation by writing R-
SAT instead of {R}-SAT.

In some cases we allow that not only variables, but also the constants 0
and 1 can appear in the formula. This extension of the problem will be called

7

F -SAT01. In the problem F -SAT0 only the constant 0 is allowed. Problems
F -SAT∗

01 and F -SAT∗
0 are defined similarly.

It is easy to see that the problem F -SAT01 is essentially the same as F ∗-
SAT (recall that F ∗ contains all the restrictions of F). If a clause of the formula
contains constants, then the clause can be replaced by an appropriate constraint
from F ∗, and vice versa. Therefore we obtain

Proposition 3.1 For every constraint family F , the problems F -SAT01 and
F ∗-SAT have the same complexity. �

Although the definition is somewhat technical, weak separability is precisely
the property that separates the easy and the hard cases in the F -SAT problem:

Theorem 3.2 (Main) Let F be a finite set of constraints. If every constraint
in F is weakly separable, then F -SAT is in FPT otherwise F -SAT is W[1]-
complete.

We prove Theorem 3.2 the following way. The special case when the formula is
not satisfied by the all-zero assignment can be taken care of easily (Lemma 4.1).
The next step is to prove that the problem is in FPT for every F if the formula is
bounded occurrence, that is, if every variable occurs at most d (constant) times.
Theorem 5.3 gives a uniformly polynomial-time algorithm for the bounded oc-
currence case. The algorithm first collects a set of solutions that are “local” in
some sense, then uses color coding to put together these assignments to obtain
a solution of exactly the required weight.

If a variable occurs many times in the formula and every member of F is
weakly separable, then we can use the sunflower lemma of Erdős and Rado
to find a certain special structure in the formula. This structure allows us to
reduce the problem to a shorter but equivalent form (Theorem 6.5). Repeating
these reductions, eventually we arrive to a formula where each variable occurs
a bounded number of times, proving the positive side of Theorem 3.2.

On the negative side, we use two hardness results as basis to our reductions.
First, the parameterized maximum independent set problem is well-known to
be W[1]-complete. Notice that the maximum independent set problem is in
fact the same as F -SAT with F = {(x̄ ∨ ȳ)}: the constraint (x̄ ∨ ȳ) (that is,
NAND) expresses the requirement that either x or y should not be selected
into the independent set. Moreover, we prove in Lemma 7.1 that the constraint
(x → y) also makes weighted satisfiability W[1]-complete. It turns out that if
a constraint is not weakly separable, then it can simulate one of (x̄ ∨ ȳ) and
(x → y), making the satisfiability problem W[1]-hard (Lemma 8.1). This proves
the negative side of Theorem 3.2.

Besides bounding the number of occurrences, we investigate the effect of
other structural restrictions on the formula. The incidence graph of a formula is
a bipartite graph having the variables and clauses as vertices, where the edges
represent the incidence relation. We prove that F -SAT is in FPT for every
F if the incidence graph of the formula has bounded treewidth (Theorem 9.4)

8

or it is planar (Theorem 10.2). These results follow from standard algorithmic
techniques of bounded treewidth graphs.

4 0-invalid constraints

The case when the formula contains 0-invalid constraints can be taken care of
easily: the problem can be reduced to a constant number of 0-valid formulae.

Lemma 4.1 Let F be a family of constraints with arity at most r. The F -SAT
problem can be reduced to at most rk instances of the F ∗-SAT (or F -SAT01)
problem such that the constructed instances contain only 0-valid constraints.
Moreover, the reduction does not increase the number of occurrences for any of
the variables and the parameter k′ for the generated F ∗-SAT instances is not
greater than the parameter k.

Proof We use the method of bounded search trees. If the formula φ contains
a 0-invalid clause Ci, then one of the variables in Ci has to be 1. Therefore
the algorithm selects a variable in Ci and sets it to 1. Since there are at most
r variables in Ci, thus we branch into at most r directions. Now there are
constants in the formula, but we can get rid of these constants by replacing the
clauses containing constants with appropriate constraints from F ∗ (Prop. 3.1).
We repeat this procedure until there are no 0-invalid clauses. If we set k variables
to 1 and there are still 0-invalid clauses, then this branch of the algorithm is
unsuccessful and we stop. If the formula becomes 0-valid after setting c variables
to 1, then we check whether it has a satisfying assignment of weight k′ := k− c.
If there is such an assignment, then it gives a satisfying assignment of weight
k for the original formula. The search tree of the algorithm has height at most
k, hence it has at most rk leaves, implying that we generate at most rk 0-valid
formulae to check. �

5 Bounded occurrences

In this section we give a uniformly polynomial-time algorithm for F -SAT in
the special case when every variable appears in a bounded number of clauses.
The main idea is that we can generate a linear number of satisfying assignments
such that every satisfying assignment of weight at most k can be obtained as
the disjoint union of some these assignments. Now an algorithm based on color
coding can be used to decide whether a satisfying assignment of weight exactly
k can be put together from these selected assignments.

The vertex set of the primal graph G(φ) of formula φ is the set of variables
in φ, and two variables are connected by an edge if they appear in a common
clause. We say that a set of variables is connected in φ if they induce a connected
subgraph of G(φ). A set of variables is satisfying in φ if setting these variables
to 1 and all the other variables to 0 gives a satisfying assignment. The following
lemma bounds the number of connected satisfying sets:

9

Lemma 5.1 Let r be the maximum arity of the clauses in the 0-valid formula φ,
and assume that every variable occurs at most d times in φ. There are at most
(rd)k2

·n connected satisfying sets of variables having size at most k. Moreover,

we can enumerate all such sets in 2O(k2 log rd) · n time.

Proof In G(φ) every vertex has degree at most (r − 1)d. We give an upper
bound on the number of connected subsets that contain variable xi and have
size at most k. If variable xi and at most k − 1 other vertices form a connected
subgraph, then all these vertices are at distance at most k−1 from xi. There are
less than ((r−1)d)k < (rd)k vertices at distance less than k from xi, therefore we

have to consider only these vertices. One can form less than (rd)k2

different sets
of size at most k from these vertices, this bounds the number of sets containing
xi. Considering all the n variables, we obtain the upper bound (rd)k2

· n.
It is not difficult to show that we can generate all these sets in time poly-

nomial in d, r, and k per set (with appropriate data structures). Therefore the

total time can be bounded by 2O(k2 log rd). Moreover, selecting the satisfying
sets can be also done within this time bound: for each set, we have to check at
most kd clauses (those clauses that do not contain selected variables are auto-
matically satisfied since the formula is 0-valid). �

Two sets of variables V ′ and V ′′ are nonadjacent if there is no clause that
contains variables from both V ′ and V ′′. The union of pairwise nonadjacent
satisfying sets is also satisfying:

Lemma 5.2 If V1, V2, . . . , V` are pairwise nonadjacent satisfying sets of vari-
ables for the 0-valid formula φ, then V1 ∪ · · · ∪ V` also satisfies φ.

Proof Assume that clause Cj is not satisfied by V1∪· · ·∪V`. Since φ is 0-valid,
hence Cj must contain one or more variables set to 1, denote these variables by
V ′. Since the sets V1, V2, . . . , V` are pairwise nonadjacent, thus V ′ is contained
in one of these sets, say Vi. Therefore Cj receives the same assignment as in Vi,
contradicting the assumption that Vi is satisfying. �

Now we are ready to present the algorithm for bounded occurrence formulae:

Theorem 5.3 Let r be the maximum arity of the clauses in a formula φ, and
assume that every variable occurs at most d times in φ. It can be decided in
2O(k2d log r) · n log n time whether φ has a satisfying assignment of weight k.

Proof If the formula is not 0-valid, then Lemma 4.1 can be used to reduce the
problem to at most rk 0-valid instances. Therefore in the following we assume
that the formula is 0-valid. For 0-invalid formulae, the running time obtained
below has to be multiplied by rk , which is dominated by the exponent.

Every satisfying assignment can be partitioned into pairwise nonadjacent
connected satisfying assignments by taking its connected components in the un-
derlying graph. Conversely, if we have pairwise nonadjacent connected satisfy-
ing assignments, then by Lemma 5.2, their union is also a satisfying assignment.

10

Therefore φ has a satisfying assignment of weight k if and only if there are pair-
wise nonadjacent connected satisfying assignments whose total size is k. Our
algorithm tries to find such sets.

By Lemma 5.1, we can enumerate all the connected satisfying sets of size
at most k, call these sets V1, . . . , Vt. For each such set Vi there corresponds a
set of clauses C[Vi] where the variables of Vi appear. Consider these sets C[V1],
C[V2], . . . , C[Vt], and associate a weight to each set. Let the weight of C[Vi] be
|Vi|, clearly the size of C[Vi] is at most d times its weight. Notice that Vi and
Vj are non-adjacent if and only if the corresponding sets C[Vi] and C[Vj] are
disjoint. Therefore the observation of the previous paragraph can be restated
as follows: φ has a satisfying assignment of weight k if and only if there are
pairwise disjoint sets C[Vi1], . . . , C[Vi`

] whose total weight is k. We use the
method of color coding to decide whether such sets exist.

First we present the randomized version of the algorithm. Select a random
coloring of the clauses using a set C of c := kd colors. The algorithm uses
dynamic programming to find a solution where the clauses covered by the sets
C[Vi1], . . . , C[Vi`

] have distinct colors. For every subset C ′ ⊆ C of colors, every
0 ≤ i ≤ t and 0 ≤ k′ ≤ k we set subproblem S[C ′, i, k′] to true if one can select
pairwise disjoint sets from C[V1], . . . , C[Vi] such that their total weight is k′,
the clauses covered by them have distinct colors, and they cover only clauses
with color from C ′. We are interested in S[C, t, k], if it is true, then there is a
weight k satisfying assignment.

It is trivial to solve the subproblems for i = 0. We can move from i to
i + 1 as follows. If S[C ′, i, k′] is true, then S[C ′, i + 1, k′] is also true, since
any solution for i can be used for i + 1 as well. Moreover, let Ci be the set
of colors appearing on the clauses of C[Vi] (we assume that these colors are
distinct, otherwise C[Vi] cannot appear in a solution with this coloring). If
S[C ′ \ Ci, i, k

′ − |Vi|] is true, then we can set S[C ′, i + 1, k′] to true as well: a
solution to S[C ′ \Ci, i, k

′ − |Vi|] can be extended by the weight |Vi| set C[Vi] to
obtain a solution that covers clauses only with color C ′. Using these two rules,
we can solve all the subproblems.

If there are pairwise disjoint sets C[Vi1], . . . , C[Vi`
] whose total weight is

k, then they cover at most c = kd clauses (recall that the size of C[Vi] is at
most d times its weight). Therefore with probability at least c!/cc, the clauses
covered by C[Vi1], . . . , C[Vi`

] have distinct colors, and the algorithm finds a
solution. This means that if there is a weight k satisfying assignment, then
on average we have to choose at most cc/c! random colorings to find a solu-
tion. We can derandomize the algorithm by using the standard technique of
k-perfect hash functions [2, 8]. If there are m elements, then one can construct
a family of 2O(c) log m c-colorings such that for each c-element subset X of the
elements there is a coloring in the family where each element in X receives a
different color. It is clear that the algorithm will work correctly if we modify it
such that instead of repeatedly choosing random colorings we enumerate all the
colorings in the family: eventually we select a coloring where all the at most
c clauses covered by the solution are colored differently. Thus the algorithm
considers 2O(c) log m ≤ 2O(c)d log n colorings. For each coloring, the dynamic

11

programming algorithm solves at most 2ckt ≤ 2ck(rd)k2

· n subproblems. Each
subproblem requires time polynomial in r, d, and k. Therefore the total running
time is 2O(k2d log r) · n log n. �

6 Fixed-parameter tractable cases

In this section we prove the positive part of Theorem 3.2: we show that if
every constraint is weakly separable, then F -SAT is in FPT. In fact, we show
that even the more general problem F -SAT∗

01 is fixed-parameter tractable. By
Lemma 4.1, the 0-invalid clauses can be easily taken care of, therefore we assume
that the formula is 0-valid. If every variable occurs at most d times (where d is
a constant to be defined later), then the algorithm of Theorem 5.3 can be used.
On the other hand, if a variable occurs more than d times, then we can find
a large sunflower of weakly separable clauses, which allows us to simplify the
formula.

The sunflower was defined in the context of set systems:

Definition 6.1 (Sunflower) A sunflower with p petals is a collection of p sets
S1, . . . , Sp such that the intersection Si ∩ Sj is the same for every i 6= j.

In particular, p pairwise disjoint sets form a sunflower with p petals. The
intersection of the sets will be called the center of the sunflower. The following
lemma states that a sufficiently large set system necessarily contains a sunflower
of given size:

Lemma 6.2 (Erdős and Rado, 1960, [9]) If a set system has more than
(p − 1)``! members and the size of each member is at most `, then the set
system contains a sunflower with p petals.

We will use the notion of sunflower for clauses instead of sets. For clauses,
we define the sunflower the following way:

Definition 6.3 (Sunflower) A sunflower with p petals is a collection of p
clauses C1, . . . , Cp such that every clause represents the same constraint R of
arity r, and for every i = 1, . . . , p and j = 1, . . . , r

• either the same variable appears at the jth position of every clause, or

• the variable at the jth position of clause Ci appears only in Ci.

For example, the clauses R(x1, x2, x3, x4), R(x1, x2, x5, x5), R(x1, x2, x6, x7)
form a sunflower with 3 petals. Here variables x1 and x2 form the center.
It turns out that if a variable appears in many clauses, then there is a large
sunflower in the formula:

Lemma 6.4 Let F be a family of constraints with maximum arity r containing
c constraints. If a variable xi appears in more than (rrk)r · r! · rr · c clauses

12

of an F -formula φ, then φ contains a sunflower with non-empty center and at
least k + 1 petals.

Proof Among the clauses that contain variable xi, at least (rrk)r ·r!·rr of them
have to represent the same constraint R ∈ F . For each such clause, consider
the set of variables contained in the clause. This way we obtain a family of
(rrk)r · r! · rr sets, but a set can appear multiple times in the family. As a very
rough estimate, we can say that there can be at most rr different clauses on the
same set of at most r variables (taking into account that a variable can appear
multiple times in a clause), therefore if we retain only one copy of each set, then
there remains at least (rrk)r · r! sets. Therefore by Lemma 6.2, this collection
of sets contains a sunflower with rrk + 1 petals. The center C of the sunflower
is not empty, since it contains variable xi. The clauses corresponding to the
sets in the sunflower all use the variables in C, but these variables may appear
in these clauses at different positions. We say that two clauses use the center
C the same way if whenever the variable at the jth position of one clause is
a variable in C, then the same variable appears in the other clause at the jth
position. It is clear that there are at most rr (rough upper bound) different
ways of using C, thus there have to be more than k sets in the sunflower such
that the corresponding clauses use the center C the same way. These clauses
form a sunflower of size at least k + 1: if the variable at the jth position of a
clause is in C, then it appears in all the clauses at the jth position; if it is not
in C, then it appears only in that clause. �

The key idea of the algorithm for weakly separable constraints is to find a
sunflower and reduce the formula by “plucking” the petals of the sunflower.

Theorem 6.5 If every constraint in F is weakly separable, then F -SAT∗
01 is

fixed-parameter tractable.

Proof By Prop. 3.1, F -SAT∗
01 and F ∗-SAT∗ are equivalent, we give an al-

gorithm for the latter problem. Note that by Lemma 2.6, every constraint in
F ∗ is weakly separable. If the given F ∗-formula φ is not 0-valid, then we use
Lemma 4.1 to reduce the problem to at most rk 0-valid instances of F ∗-SAT∗.
Therefore in the following we can assume that the formula is 0-valid and every
constraint is weakly separable.

Let r be the maximum arity of the constraints in F , and set c := |F ∗| ≤
3r|F | ≤ 3r · 22r

r and d := r · (rrk)r · r! · rr · c. If every variable occurs at
most d times in the 0-valid formula φ, then Lemma 5.3 can be used to solve the

problem in 2O(k2d log r) · n log n = 2kr+2·22O(r)

· n logn time. Otherwise there is a
variable that occurs more than d times. This means that this variable appears
in at least d/r clauses, hence the formula contains a sunflower with k + 1 petals
(Lemma 6.4). Let C1, . . . , Ck+1 be the clauses of the sunflower and let C be
its center. The clauses of the sunflower represent the same constraint R of arity
r′ ≤ r, it can be assumed without loss of generality that in each of these clauses,
the first ` ≥ 1 variables are taken from C, and the remaining r′ − ` variables
are outside C.

13

We reduce the problem to a shorter formula by “plucking” the sunflower.
In each clause C1, . . . , Ck+1 the variables of the center C are replaced by the
constant 0, call C ′

i these modified clauses. Furthermore, a new clause C ′
0 is

added to the formula: C ′
0 can be obtained from any of the clauses Ci (i = 1,

. . . , k +1) by replacing the variables not in C by the constant 0. (Observe that
by the definition of the sunflower, this gives the same clause C ′

0 starting from
any Ci). For example, plucking the sunflower

C1 = R(x1, x2, x3, x4),

C2 = R(x1, x2, x5, x5),

C3 = R(x1, x2, x6, x7)

gives

C ′
0 = R(x1, x2, 0, 0),

C ′
1 = R(0, 0, x3, x4),

C ′
2 = R(0, 0, x5, x5),

C ′
3 = R(0, 0, x6, x7).

We claim that this operation does not change the solvability of the instance
with respect to weight k solutions.

Assume that the new formula φ′ has a satisfying assignment x of weight k,
but this assignment does not satisfy φ. This is only possible if one of the clauses
Ci (i = 1, . . . , k + 1) is not satisfied, since all the other clauses of φ are present
in φ′ as well. Assume that clause Ci is not satisfied, thus x and Ci gives an
r′-tuple (α1, . . . , αr′) that does not satisfy the constraint R. However, x satisfies
C ′

i, hence (0, . . . , 0, α`+1, . . . , αr′) does satisfy R. Moreover, x satisfies C ′
0, hence

(α1, . . . , α`, 0, . . . , 0) also satisfies R. Therefore we have two disjoint assignments
satisfying R and since constraint R is 0-valid and weakly separable, the union
of the assignments (α1, . . . , α`, α`+1, . . . , αr′) also satisfies R (Lemma 2.2), a
contradiction.

Now assume that φ has a satisfying assignment x of weight k that does not
satisfy φ′. There are at most k true variables outside C and by the defini-
tion of the sunflower, each such variable appears in at most one of the clauses
C1, . . . , Ck+1. Thus there has to be a clause Ci that does not contain true
variables outside C. Therefore the r′-tuple (α1, . . . , α`, 0, . . . , 0) assigned by
x to Ci satisfies the constraint R. This means that the clause C ′

0 is satis-
fied in φ′. Assume therefore that for some clause C ′

j (1 ≤ j ≤ k + 1) the
r′-tuple (0, . . . , 0, α`+1, . . . , αr′) assigned to C ′

j does not satisfy R. However, x
assigns the r′-tuple (α1, . . . , α`, α`+1, . . . , αr′) to Cj (observe that Ci and Cj use
the variables of the center the same way), thus this r′-tuple satisfies R. Now
from the weak separability of R (see also Lemma 2.2) and from the facts that
(α1, . . . , α`, 0, . . . , 0) and (α1, . . . , α`, α`+1, . . . , αr′) satisfy R it follows that the
difference (0, . . . , 0, α`+1, . . . , αr′) also satisfies R, a contradiction.

Thus the formula φ′ is equivalent to the original formula φ if we are only
interested in weight k solutions. Formula φ′ contains some constant zeros, but

14

we can get rid of the constants by replacing the affected constraints with ap-
propriate constraints from F ∗ (Prop. 3.1). Notice that plucking the sunflower
strictly decreases the total number of occurrences of the variables. Therefore by
repeating this operation at most as many times as the number of literals in the
original formula (≤ mr), eventually we obtain a formula where every variable
occurs at most d times. As noted above, in this case Lemma 5.3 can be used to
solve the problem in uniformly polynomial time. �

7 Hardness of implication

The negative part of Theorem 3.2 requires us to prove the W[1]-completeness of
certain problems. All our completeness proofs are done by reduction from two
problems, maximum independent set and IMPLICATIONS, where IMPLICA-
TIONS is F -SAT for F = {(x → y)}. Maximum independent set (which can
be also thought of as F -SAT for F = {(x̄∨ ȳ)}) is a well-known W[1]-complete
problem [8]. In this section we show that it is W[1]-complete to find a satisfying
assignment of weight exactly k for a formula containing only implications of the
form (x → y).

Notice that if F = {(x̄∨ȳ)}, then F -SAT remains W[1]-hard even if we look
for satisfying assignments of weight at least k instead of exactly k. On the other
hand, the constraint (x → y) is 1-valid, thus it is trivial to find a satisfying
assignment of weight at least k. Therefore the following hardness result has
to rely on the fact that the weight of the satisfying assignment to be found is
exactly k.

Lemma 7.1 IMPLICATIONS is W[1]-complete.

Proof We prove that the weighted version of the problem is W[1]-complete. In
the weighted version each variable xi is given a positive integer weight w(xi),
and one has to find a satisfying assignment where the sum of the weights of the
true variables is exactly k. If the weights are of constant size, then the weighted
problem can be reduced to the unweighted problem in uniformly polynomial
time. For each variable xi, we add w(xi) − 1 new variables xi,1, . . . , xi,w(xi)−1,
and the clauses xi → xi,1, xi,1 → xi,2, . . . , xi,w(xi)−1 → xi. These clauses form
a cycle of implications, hence either all or none of these variables are true in a
satisfying assignment. Thus these variables effectively act as one variable with
weight w(xi), completing the reduction.

In the following, we show that weighted IMPLICATIONS is W[1]-hard. The
proof is by a parameterized reduction from the maximum independent set prob-
lem. Let G(V, E) be a graph, and let k be the number of independent vertices
to be found. Set k′ = k +

(
k
2

)
. We construct a formula where the variables

are partitioned into k′ sets X1, . . . , Xk′ . Each variable in Xi has weight wi =

2i−1 + 22k′−i. The required weight of the solution is k′′ =
∑k′

i=1 wi = 22k′

− 1.
We claim that any assignment with weight k′′ sets to 1 exactly one variable

from each set Xi. Suppose that i is the smallest index such that the claim does

15

not hold. There are two cases. If Xi does not contain a variable with value 1,
then consider the weight of the assignment modulo 2i. The weight wi′ is 2i′−1

modulo 2i for i′ < i, and it is 0 modulo 2i for i′ > i. By assumption, there is
exactly one true variable in each Xi for i′ < i, hence the weight is

∑i−1
i′=1 2i′−1 =

2i−1 − 1 modulo 2i. However, k′′ is 2i − 1 modulo 2i, a contradiction. Now
assume that Xi contains at least two true variables. In this case the weight of the
assignment is at least

∑i−1
i′=1 wi′ +2wi ≥

∑i−1
i′=1 22k′−i′ +2·22k′−i > 22k′

−1 = k′′,
again a contradiction.

In the following, we will rename the k′ = k +
(
k

2

)
sets Xi as Yi for 1 ≤ i ≤ k

and Yi,j for 1 ≤ i < j ≤ k. Each set Yi contains |V | variables: there is a variable

yi,v for each v ∈ V . Each Yi,j contains
(
|V |
2

)
− |E| variables, that is, there is a

variable yi,j,u,v for each non-edge uv 6∈ E of the graph. Clauses are defined as
follows: for every 1 ≤ i < j ≤ k and every non-edge uv 6∈ E, we add the two
clauses (yi,j,u,v → yi,u) and (yi,j,u,v → yj,v).

Assume that there is a solution of weight exactly k′′. We have seen that
in such a solution, each set Yi and Yi,j contains exactly one true variable. We
construct an independent set of size k based on this solution: if variable yi,v

is true, then let v be the ith vertex of the independent set. We claim that
this results in k distinct independent vertices. To see that the ith and the jth
vertex are not the same and not connected by an edge, assume that yi,j,u,v is
the unique true variable in Yi,j . The clauses imply that variables yi,u and yj,v

are true, hence the ith vertex is u, and the jth vertex is v. By construction,
uv is a non-edge in G, hence u and v are distinct vertices not connected by an
edge.

To see the other direction, assume that v1, . . . , vk is an independent set of
size k. It is easy to see that setting to 1 the variables yi,vi

(1 ≤ i ≤ k) and
yi,j,vi,vj

(1 ≤ i < j ≤ k) yields a satisfying assignment of weight exactly k′′. �

8 Hardness results

In this section we prove the negative side of Theorem 3.2: if F contains a
non-weakly separable constraint, then F -SAT is W[1]-complete. The following
lemma shows a weaker claim: it needs a slightly stronger assumption (F con-
tains a 0-valid non-weakly separable constraint) and it proves hardness for the
more general problem F -SAT∗

0. The proof contains all the important ideas, it
shows what role (the lack of) weak separability plays in the complexity of the
problem. A couple of technical tricks are required to prove hardness for the
more restricted problem F -SAT (Lemma 8.2, 8.3, and 8.4).

Lemma 8.1 Let F be a finite constraint family. If F contains a 0-valid con-
straint that is not weakly separable, then F -SAT∗

0 is W[1]-complete.

Proof Assume that R ∈ F is a 0-valid constraint of arity r that is not
weakly separable. Since R is 0-valid, it violates one of the requirements of
Lemma 2.2. We consider two cases depending on which requirement is violated.

16

If there are two disjoint satisfying assignments of R whose union does not satisfy
R, then we reduce the maximum independent set problem to R-SAT∗

0 as fol-

lows. Without loss of generality, it can be assumed that (

`1
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) and

(

`1
︷ ︸︸ ︷

0, . . . , 0,

`2
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) satisfy R but (

`1
︷ ︸︸ ︷

1, . . . , 1,

`2
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) does not.
Now a clause (x̄i ∨ x̄j) of the maximum independent set problem can be simu-

lated as R(

`1
︷ ︸︸ ︷
xi, . . . , xi,

`2
︷ ︸︸ ︷
xj , . . . , xj , 0, . . . , 0). It is clear that this clause forbids that

both of xi and xj is true at the same time, but the clause is satisfied if at most
one of them is true.

If R violates the second requirement of weak separability, then we reduce
IMPLICATIONS to R-SAT∗

0. In Lemma 7.1 we have shown that IMPLICA-
TIONS is W[1]-complete. Without loss of generality, it can be assumed that

(

`1
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) and (

`1
︷ ︸︸ ︷

1, . . . , 1,

`2
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) satisfy R but the difference

(

`1
︷ ︸︸ ︷

0, . . . , 0,

`2
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) does not. In this case a clause (xi → xj) of the IM-

PLICATIONS problem can be replaced by the clause R(

`1
︷ ︸︸ ︷
xj , . . . , xj ,

`2
︷ ︸︸ ︷
xi, . . . , xi, 0, . . . , 0).

Clearly, xi cannot be true without xj being true as well, but every other com-
bination of values is allowed. �

A constraint R is monotone if whenever an assignment x satisfies R, then
replacing any 0 in x by a 1 also gives a satisfying assignment. The following
lemma states that a 0-invalid non-monotone constraint allows us to simulate
constants.

Lemma 8.2 If constraint family F contains a 0-invalid non-monotone con-
straint R of arity r, then F -SAT01 can be reduced to F -SAT.

Proof Let rmax be the maximum arity in F . Given an F -formula φ and an
integer k, we construct a constant-free F -formula φ′ such that φ has a satisfying
assignment of weight k if and only if φ′ has a satisfying assignment of weight
k′ := k + rmax. We introduce rmax new variables X = {x1, . . . , xrmax}, and
rmax + k new variables Y = {y1, . . . , yrmax+k}. With some new clauses we
ensure that if a satisfying assignment of φ′ has weight k′, then it assigns 1 to all
the variables x1, . . . , xrmax , and 0 to y1, . . . , yrmax+k. Therefore the constants in
the formula can be replaced by these variables. This gives a correct reduction,
since a weight k′ satisfying assignment of φ′ sets to 1 exactly k original variables.

First we add clauses to ensure that every variable in X is set to 1. The new
clauses are added as follows. Consider a minimum weight satisfying assignment
having weight 0 < ` ≤ r. Without loss of generality, it can be assumed that

(

`
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) satisfies R. We add the clauses R(xi1 , xi2 , . . . , xi`
, yj1 , yj2 , . . . , yjr−`

)
where i1, . . . , i` are distinct integers between 1 and rmax, and j1, . . . , jr−` are

17

distinct integers between 1 and rmax + k. Considering all possibilities, there are
(rmax!/(rmax − `)!) · ((rmax +k)!/(rmax +k−r + `)!) such clauses. We claim that
these clauses ensure that the variables xi are true in every weight k′ satisfying
assignment. Notice first that among the rmax + k variables yj , at least rmax of
them (say yj1 , . . . , yjrmax

) are 0 in a weight k′ assignment. Assume that some
variable xi1 is 0, then the clause R(xi1 , xi2 , . . . , xi`

, yj1 , . . . , yjr−`
) (where xi2 ,

. . . , xi`
are arbitrary distinct variables different from xi1) has an assignment of

weight less than `. But R has no satisfying assignment with weight less than `,
thus this clause is not satisfied, a contradiction.

Constraint R is not monotone, hence there is a satisfying assignment α of
weight 0 < `′ < r such that setting the pth position to 1 (for some p) makes
this assignment unsatisfying. We add new clauses to φ′ based on assignment α:
replace every 1 in α with a distinct variable from X , and replace every 0 with
a distinct variable from Y . Selecting the variables in every possible way gives
(rmax!/(rmax−`′)!) ·((rmax+k)!/(rmax+k−r+`′)!) clauses. We have seen in the
previous paragraph that in a satisfying assignment of weight k′, each variable of
X is 1, and at least r variables of Y are 0. Assume that a variable yj has value
1. There has to be a clause where yj appears at the pth position, but every
other variable from Y in the clause has value 0. Thus this clause receives the
assignment α, but with the pth position set to 1, which does not satisfy R. �

We say that the pth position of a constraint is useful if there is a satisfying
assignment that sets this position to 1. The pth position is satisfying if the
weight 1 assignment that sets to 1 only the pth position is satisfying. We
consider two cases depending on whether every useful position is satisfying or
not. If every useful position is satisfying, then we give a direct proof of W[1]-
completeness (Lemma 8.3). Otherwise we show that F -SAT∗

0 can be reduced
to F -SAT (Lemma 8.4), that is, allowing variables occurring multiple times in
a clause does not make the problem harder.

Lemma 8.3 Let R be a 0-valid constraint of arity r such that every useful
position is satisfying. If R is not weakly separable, then the R-SAT problem is
W[1]-complete.

Proof The first observation is that R violates the first requirement of weak
separability in Lemma 2.2. Otherwise R would be satisfied by every assignment
that has value 1 only at useful positions, since these assignments can be ob-
tained as the disjoint union of weight 1 satisfying assignments. Therefore the
second requirement of weak separability would be also satisfied, contradicting
the assumption that R is not weakly separable. Consider the counterexample
to the first requirement where the weight ` of the union of the two disjoint sets
is minimal. Without loss of generality, it can be assumed that the first ` ≥ 2

positions are useful, (

`
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) does not satisfy R, but every subset of
this assignment is satisfying.

We reduce the maximum independent set problem to R-SAT as follows.
There is a variable xv for each vertex v, and additionally there is a set Y of

18

r + k variables y1, . . . , yr+k. Set k′ := k, we assume that k ≥ r. First we add
clauses to ensure that the variables in Y are 0 in every satisfying assignment of
weight k′. We add the clause R(z1, . . . , zr) where the variables are distinct, at
least one of z1, . . . , z` is in Y , and all of z`+1, . . . , zr are from Y . Considering
all possibilities gives O((n + k + r)r) clauses. Assume that variable yi is true in
a weight k′ satisfying assignment. Let q1, . . . , q`−1 be `− 1 other true variables
(we can assume that k ≥ `), they can be in Y or not in Y . Since at most k′

variables are set to 1 in Y , thus there are variables yi1 , . . . , yir−`
in Y with value

0. Now the clause R(yi, q1, . . . , q`−1, yi1 , . . . , yir−`
) is not satisfied, since there is

1 on the first ` positions and 0 after that, a contradiction. On the other hand,
note that if every variable in Y is set to 0, then all the clauses are satisfied:
each of them receives an assignment of weight at most ` − 1 that is the proper

subset of (

`
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0).
If there is an edge between vertices u and v, then we add the clauses

R(xu, xv, xi1 , . . . , xi`−2
, y1, . . . , yr−`) where xi1 , . . . , xi`−2

are distinct variables
not in Y . If one of xu and xv is 0 in a weight k′ assignment, then all of these
clauses are satisfied since they receive an assignment with weight less than `,
and 1 appears only on the first ` positions. On the other hand, if both xu and
xv are 1, then one of these clauses is not satisfied: if we take xi1 , . . . , xi`−2

to
be variables with value 1, then the clause R(xu, xv , xi1 , . . . , xi`−2

, y1, . . . , yr−`) is
not satisfied. Therefore the constructed R-formula has a satisfying assignment
of weight k′ if and only if the graph has an independent set of size k, proving the
correctness of the reduction. We note that r and ` are constants independent
of k and n, hence the reduction is a uniformly polynomial-time parameterized
reduction. �

Lemma 8.4 Assume that F contains a 0-valid constraint R of arity r such
that the pth position is useful but not satisfying. In this case F -SAT∗

0 can be
reduced to F -SAT.

Proof Let rmax be the maximum arity in F . Given an F -formula φ and an
integer k, we construct an F -formula φ′ such that every clause of φ′ contains
every variable at most once and φ has a satisfying assignment of weight k if and
only if φ′ has a satisfying assignment of weight k′ := krmax. Each variable xi of
φ is replaced by rmax new variables xi,1, . . . , xi,rmax . We also create a set Y of
k+rmax new variables y1, . . . , yk+rmax . We add clauses to the formula to ensure
that in every weight k′ satisfying assignment of φ′ the rmax variables xi,1, . . . ,
xi,rmax have the same value, and the variables y1, . . . , yk+rmax are set to 0. Now
each clause of φ can be modified such that if the clause contains a variable xi

more than once, then we can use the variables xi,1, . . . , xi,rmax to assign distinct
variables for each occurrence of xi in the clause. A constant 0 can be replaced
by an arbitrary variable from Y . Clearly, there is a one-to-one correspondence
between the weight k satisfying assignments of φ and the weight k′ satisfying
assignments of φ′, proving the correctness of the reduction.

19

The new clauses are added as follows. Without loss of generality, it can

be assumed that (1, 0, . . . , 0) does not satisfy R, but (

`
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0) satisfies
R, and it has minimal weight among the satisfying assignments that have 1 at
the first position. Add to the formula in every possible way a clause whose
variables are taken from Y , there are (rmax + k)!/(rmax + k − r)! such clauses.
We claim that in every satisfying weight k′ assignment the variables in Y have
value 0. Assume that yj is 1. Since only k′ variables are set to 1, there have
to be rmax variables yj1 , . . . , yjrmax

in Y with value 0, implying that the clause
R(yj , yj1 , . . . , yjr−1) is not satisfied, a contradiction.

For each variable xi of φ, we add clauses R(xi,h1 , . . . , xi,h`
, y1, . . . , yr−`)

where xi,h1 , . . . , xi,h`
are distinct variables. Considering all possibilities, this re-

sults in rmax!/(rmax−`)! clauses for a variable xi. We show that these clauses en-
sure that the variables xi,1, . . . , xi,k+rmax have the same value. Assume without
loss of generality that xi,1 is 1 and xi,2 is 0 in a weight k′ satisfying assignment
of φ′. We have seen that every variable in Y is 0 in such an assignment, thus at
most `− 1 variables are set to 1 in the clause R(xi,1, xi,2, . . . , xi,`, y1, . . . , yr−`).
However, there is 1 at the first position, but we assumed that every satisfying
assignment with 1 at the first position has weight at least `, a contradiction.
Therefore the variables xi,1, . . . , xi,r have the same value, as required. �

Now we are ready to put together the previous results and prove the negative
side of Theorem 3.2.

Theorem 8.5 Let F be a finite constraint family. If F contains a constraint
that is not weakly separable, then F -SAT is W[1]-complete.

Proof Assume first that F contains a 0-valid constraint R1 that is not weakly
separable. We consider two cases depending on whether every useful position of
R1 is satisfying or not. If every useful position in R1 is satisfying, then R1-SAT
is W[1]-complete by Lemma 8.3. On the other hand, if R1 has a useful but not
satisfying position, then by Lemma 8.4, R1-SAT∗

0 can be reduced to R1-SAT.
By Lemma 8.1, R1-SAT∗

0 is W[1]-complete, hence R-SAT is W[1]-complete in
this case as well.

Assume now that F contains a 0-invalid non-weakly separable constraint
R2. By Lemma 2.7, R2 has a 0-valid non-weakly separable restriction R′

2.
We have seen in the previous paragraph that in this case R′

2-SAT is W[1]-
complete. Furthermore, the constraint R2 cannot be monotone: the restriction
of a monotone constraint is also monotone, and a 0-valid monotone constraint
is trivially weakly separable. Therefore Lemma 8.2 can be used to reduce F -
SAT01 to F -SAT. By Prop. 3.1, F -SAT01 is equivalent to F ∗-SAT, and F ∗

contains R′
2, thus the following series of reductions show that F -SAT is W[1]-

complete as well:

R′
2-SAT � F

∗-SAT
Prop. 3.1

� F -SAT01

Lemma 8.2
� F -SAT

�

20

9 Bounded treewidth

The incidence graph I(φ) of formula φ is a bipartite graph whose vertices are
the variables and clauses of φ, and a clause is connected to those variables
that appear in the clause. We show that certain structural assumptions on the
incidence graph allows us to solve the F -SAT problem in uniformly polynomial
time for every constraint family F .

Treewidth is a well-studied parameter of graphs. It is important from the
algorithmic point of view, since a large number of hard problems becomes easy
on bounded treewidth graphs (cf. [13]).

Definition 9.1 (Tree decomposition) A tree decomposition of graph G(V, E)
is a rooted tree T (U, F) together with a set Bx ⊆ V for each node x ∈ U such
that

1. For every v ∈ V , the set of nodes in T that contain v induce a connected
subgraph of T (a subtree of T).

2. For every edge e = uv of G, there is a node x of T such that u, v ∈ Bx.

Definition 9.2 (Treewidth) The treewidth of a tree decomposition is maxx∈U |Bx|−
1. The treewidth w(G) of graph G is the smallest treewidth that its tree decom-
position can have.

The only reason for the −1 in the definition of treewidth is to ensure that
graphs with treewidth 1 are exactly the forests.

A useful algorithmic trick is to consider only tree decompositions that have
some nice properties [13]. Working with such tree decompositions makes the
presentation of the algorithm considerably simpler (see [13]).

Definition 9.3 (Nice tree decomposition) A tree decomposition T (U, F),
{Bx : x ∈ T} is a nice tree decomposition of G(V, E) if every node x of T
has at most two children and it satisfies the following requirements:

1. If x has no children (x is a leaf node), then Bx = ∅.

2. If x has one child y, then either Bx = By ∪ {v} (x is an add node) or
Bx = By \ {v} (x is a forget node) for some v ∈ V .

3. If x has two children y and z, then Bx = By = Bz (x is a join node).

It turns out that bounded treewidth makes the problem easy in our case as
well. Using the standard dynamic programming technique of tree decomposi-
tions, we can solve F -SAT in uniformly polynomial time for every constraint
family F if the incidence graph of the formula has bounded treewidth.

Theorem 9.4 For every finite constraint family F , the F -SAT problem can
be solved in f(F , w)k2(n + m) time if the incidence graph of the formula has n
variables, m clauses and treewidth at most w.

21

Proof Consider a width w nice tree decomposition of G. For a node x ∈ U of
the tree decomposition, denote by Cx the set of clauses that appear in Bx (the
set of x) or in the set of a descendant of x. Similarly, Vx denotes the variables
that appear in the set of x or a descendant of x. We say that a variable is active
at x if either it is contained in Bx, or it appears in a clause contained in Bx.
For each node x, there can be at most r(w + 1) active variables, where r is the
maximum arity of the constraints in F . Denote by Ax the active variables at
x and set V ′

x := Vx ∪Ax. Clearly, a variable is in V ′
x if and only if it appears in

a clause of Cx.
We solve several subproblems for each node x of the tree. Each subproblem

is characterized by an integer 0 ≤ k′ ≤ k and an assignment to the active
variables of x. Thus there are at most k2r(w+1) subproblems per node. For
each subproblem we determine whether this assignment can be extended to an
assignment of V ′

x that has weight exactly k′ and satisfies all the clauses in Cx.
The problems are solved by bottom up dynamic programming: we start with
the leaf nodes, and when we consider a non-leaf node, it is assumed that the
subproblems are already solved for all its children. Below we describe what has
to be done for the different types of nodes.

Leaf node x. Since Bx is empty, the problem is trivial.
Add node x. Given an assignment α of Ax and an integer k′, we solve the

problem as follows. Notice that if y is the child of x, then Ay ⊆ Ax, V ′
y ⊆ V ′

x

and Ax \Ay = V ′
x \V ′

y . Assignment α induces an assignment β of Ay. Denote by
c the number of variables in Ax \Ay that receive 1 in α. Now α can be extended
to a weight k′ assignment of V ′

x satisfying Cy if and only if β can be extended
to a weight k′ − c assignment of V ′

y also satisfying Cy. The answer to the latter
problem was already determined when we considered node y. However, what we
have to determine is whether α can be extended to an assignment that satisfies
every clause in Cx, not only those in Cy. The set Cx can be larger than Cy only
if the vertex added by the add node x is a clause. In this case all the variables of
this new clause is in Ax, hence α itself determines whether this clause is satisfied
or not.

Forget node x. If the child of x is y, then V ′
x = V ′

y , Cx = Cy and Ax ⊆ Ay.
Therefore if α is an assignment of Ax, then it can be extended to a weight k′

assignment of V ′
x that satisfies the clauses in Cx if and only if α can be extended

to an assignment β of Ay such that β can be extended to a weight k′ assignment
of V ′

y that satisfies the clauses in Cy. The existence of such a β can be easily
determined if all the subproblems for node y are already solved. We enumerate
all the assignments β for Ay, and check whether there is a β that induces α on
Ax, and has the required extension.

Join node x. Let y and z be the children of x. It is easy to see that
Ax = Ay = Az , Cx = Cy ∪Cz, V ′

x = V ′
y ∪V ′

z , and V ′
y ∩ V ′

z = Ax. An assignment
α of Ax can be extended to an assignment of V ′

x satisfying Cx if and only if α
can be extended to an assignment of V ′

y satisfying Cy , and to an assignment of
V ′

z satisfying Cz . Having solved the subproblems for y and z, we can determine
whether α has such extensions, hence we can answer whether it can be extended
to V ′

x. However, we have to find an extension of weight exactly k′. Assume that

22

α has weight c on Ax. If α has a weight k1 extension to V ′
y and a weight k2

extension to V ′
z , then this gives a weight k1 + k2 − c extension of α to V ′

x.
Therefore it is not enough to check whether α can be extended to V ′

y and V ′
z , we

have to find two extensions such that the sum of their weight is exactly k′ + c.
For each α and k′, at most k different values of k1 have to be tried: for each k1

it has to be checked whether α has a weight k1 extension to V ′
y and a weight

k2 = k′ + c − k1 extension to V ′
z . Given the solutions to the subproblems of y

and z, this can be done without any difficulty.
Time complexity. The incidence graph has n + m vertices, hence a tree

decomposition of width w can be found in f1(w)(n + m) time [4]. Furthermore,
the tree decomposition can be transformed into a nice tree decomposition in
linear time.

For each node we solve at most k2r(w+1) subproblems. We can store the
solutions to the subproblems in a lookup table, thus they can be accessed in
constant time. As noted above, if x is an add node, then a subproblem for x can
be solved in constant time if the subproblems for the child of x are already solved.
If x is a forget node, the solutions for x can be easily obtained by enumerating
the solutions for the child of x. If x is a join node, then a subproblem can be
solved by checking at most k cases. Therefore the time spent at a node is k2

times a constant (assuming that w and r are constants). Thus the total number
of steps required by the algorithm is f(w)k2(n+m), for an appropriate function
f(w) independent of n and m. �

10 Planar formulae

A formula is planar if its incidence graph is a planar graph. The complexity of
the satisfiability problem restricted to planar formulae was investigated in [14]:
it was show that the problem remains NP-complete even with this restriction.
The NP-completeness of planar SAT was used to determine the complexity of
several planar and geometric problems. It turns out that for problems like
maximum independent set, minimum dominating set, minimum vertex cover,
etc., the planar version is as hard as the general problem.

However, in the world of parameterized complexity the situation is very
different. The planar versions of maximum independent set and minimum dom-
inating set are fixed-parameter tractable while the unrestricted problems are
W[1]-hard [1]. In general, we show that F -SAT is in FPT for every constraint
family F . The proof uses standard techniques: using the layering method
of Baker [3], we can reduce the problem to bounded outerplanarity instances.
Graphs with bounded outerplanarity have bounded treewidth, hence the algo-
rithm of Theorem 9.4 can be used.

Definition 10.1 (t-outerplanar) An embedding of graph G(V, E) is 1-outerplanar
(or simply outerplanar), if it is planar, and all vertices lie on the exterior face.
For t ≥ 2, an embedding of a graph G(V, E) is t-outerplanar, if it is planar,
and when all vertices on the outer face are deleted, then a (t − 1)-outerplanar

23

embedding of the resulting graph is obtained. A graph is t-outerplanar, if it has
a t-outerplanar embedding. A t-outerplanar embedding divides the vertices into
t layers: layer L1 contains the vertices on the outer face, while for i ≥ 2, layer
Li contains those vertices that are on the outer face after deleting layers L1,
. . . , Li−1.

Theorem 10.2 For every finite constraint family F , the F -SAT problem can
be solved in time f(F , k)(n + m) if the formula has n variables, m clauses, and
a planar incidence graph.

Proof A planar embedding of I(φ) can be found in linear time [11]. The
embedding is t-outerplanar for some integer t, we can determine the layers L1,
. . . , Lt. The variables are partitioned into k +1 sets: let Xi (0 ≤ i ≤ k) contain
the variables in layer L3(k+1)j+3i+` for j = 0, 1, . . . and ` = 1, 2, 3. Clearly,
every variable belongs to exactly one of these sets. Given a weight k satisfying
assignment, in at least one of the k + 1 sets all the variables are set to 0. For
i = 0, 1, . . . , k, we check whether there is a weight k assignment where every
variable in Xi is set to 0. If there is a weight k satisfying assignment, then we
eventually find one for some i.

For a given i we proceed as follows. Replace every variable in Xi with the
constant 0, and delete the corresponding vertices from the graph. Now all the
vertices in layer L3(k+1)j+3i+2 represent clauses. Moreover, since the variables
appearing in such a clause have to be in layer L3(k+1)j+3i+1, L3(k+1)j+3i+2, or
L3(k+1)j+3i+3, all these variables were replaced by 0. If this assignment does not
satisfy the clause (it is not 0-valid), then there is no satisfying assignment where
the variables in Xi are zero. On the other hand, if the clause is 0-valid, then it
is automatically satisfied in every such assignment, hence we can delete it from
the formula and the graph. Thus for every j = 0, 1, . . . , all the vertices in layer
L3(k+1)j+3i+2 are deleted, which means that the remaining graph is the disjoint
union of (3(k+1)−1)-outerplanar graphs, which is also (3(k+1)−1)-outerplanar.
A theorem of Bodlaender [5, Theorem 83] assures that a t-outerplanar graph has
treewidth at most 3t−1, therefore we have to solve the problem on a graph with
treewidth at most 9(k+1)−4, which can be done in linear time by Theorem 9.4.

�

Acknowledgments

I’m grateful to Katalin Friedl for her suggestions that greatly improved the
presentation of the paper.

References

[1] J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity: Expo-
nential speed-up for planar graph problems. In ICALP 2001, volume 2076
of Lecture Notes in Comput. Sci, pages 261–272. Springer, Berlin, 2001.

24

[2] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length
cycles. Algorithmica, 17(3):209–223, 1997.

[3] B. S. Baker. Approximation algorithms for NP-complete problems on pla-
nar graphs. J. Assoc. Comput. Mach., 41(1):153–180, 1994.

[4] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

[5] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoret. Comput. Sci., 209(1-2):1–45, 1998.

[6] A. A. Bulatov. A dichotomy theorem for constraints on a three-element
set. In Proc. 43th Symp. Foundations of Computer Science, pages 649–658.
IEEE, November 2002.

[7] N. Creignou. A dichotomy theorem for maximum generalized satisfiability
problems. J. Comput. System Sci., 51(3):511–522, 1995. 24th Annual ACM
Symposium on the Theory of Computing (Victoria, BC, 1992).

[8] R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs
in Computer Science. Springer-Verlag, New York, 1999.

[9] P. Erdős and R. Rado. Intersection theorems for systems of sets. J. London
Math. Soc., 35:85–90, 1960.

[10] T. Feder and M. Y. Vardi. The computational structure of monotone
monadic SNP and constraint satisfaction: a study through Datalog and
group theory. SIAM J. Comput., 28(1):57–104, 1999.

[11] J. Hopcroft and R. Tarjan. Efficient planarity testing. J. Assoc. Comput.
Mach., 21:549–568, 1974.

[12] S. Khanna, M. Sudan, L. Trevisan, and D. P. Williamson. The approxima-
bility of constraint satisfaction problems. SIAM J. Comput., 30(6):1863–
1920, 2001.

[13] T. Kloks. Treewidth, volume 842 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1994. Computations and approximations.

[14] D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput.,
11(2):329–343, 1982.

[15] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of
the tenth annual ACM symposium on Theory of computing, pages 216–226.
1978.

25

