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Abstract

This article briefly describes four algorithmic problems where the notion of treewidth is very
useful. Even though the problems themselves have nothing to do with treewidth, it turns out
that combining known results on treewidth allows us to easily describe very clean and high-level
algorithms.

1 Introduction

While the definition of treewidth may seem very technical at first sight, the naturality of treewidth
is witnessed by the fact that it was introduced independently at least three times with equivalent
definitions by different authors [7, 50, 69]. One may arrive to the study of treewidth from various
directions and justify its importance with different arguments. One can, for example, argue that
graphs of low treewidth (or some generalization of it) appear naturally in certain applications
[14,38,60,73], hence algorithms for such graphs could be of practical interest. Or one could say that
algorithms on bounded-treewidth graphs are based on the fundamental idea of recursively splitting
the problem along small separators, and the study of treewidth is a good formalization of the study
of this basic principle. But perhaps the nicest and most surprising reason for arriving at this notion
is when the original goal has nothing to do with treewidth, but suddenly treewidth appears as the
right theoretical tool for handling the problem. This article contains four such “war stories,” where
the notion of treewidth and algorithms for bounded-treewidth graphs give very elegant solutions,
which are sometimes in fact more efficient than those that were obtained earlier by involved and
problem-specific techniques.

The four stories below are intentionally kept very brief in order to highlight the conceptual
simplicity of the arguments. The aim is to show how certain high-level results can be combined in a
clean way to achieve our goals. The detailed discussions or proofs of the results we are building on
are beyond the scope of this article. Later in this volume, the article of Marcin Pilipczuk contains
more advanced examples of algorithmic use of treewidth bounds [63].

2 Bidimensionality

Restricting an algorithmic problem to a certain family of graphs can make it easier than trying to
solve it in general on every possible graph. A large part of the literature on algorithmic graph theory
concerns algorithms for restricted classes of graphs that are of practical or theoretical significance.
Restriction to planar graphs are studied both because of their interesting mathematical properties
and as a starting point for modelling, e.g., road networks or 2D geometric problems.

From the viewpoint of polynomial-time solvability vs. NP-hardness, the restriction to planarity
does not seem to make the problem significantly easier. Most of the classic NP-hard problems
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(e.g., 3-Coloring, Maximum Indepenent Set, Hamiltonian Cycle, etc.) remain NP-hard
on planar graphs. The situation is very different from the viewpoint of parameterized complexity.
Many of the basic problems that are W[1]-hard on general graphs turn out to be FPT on planar
graphs. In fact, it took some time to arrive to the first relatively simple and natural problems that
are W[1]-hard on planar graphs [13,19].

The restriction to planarity can help even for problems that are already FPT for general graphs.
One of the main goals of the area of parameterized algorithms is to design algorithms with running
time f(k)nO(1) such that the dependence f(k) on the parameter is a function that grows as slowly
as possible. For many of the fundamental problems studied in parameterized algorithms (e.g.,
Vertex Cover, Feedback Vertex Set, k-Path, Odd Cycle Transversal), algorithms
with running time 2O(k)nO(1) are known. Furthermore, it is very likely that this form of running
time is optimal: it is known that, under the Exponential Time Hypothesis (ETH) [51, 52], no
algorithm with running time 2o(k)nO(1) exists for these problems. When restricted to planar graphs,
significantly better algorithms are known for many of these problems, typically with running times
of the form 2O(

√
k)nO(1) or 2O(

√
k log k)nO(1). Below we show how a very clean argument based on

treewidth delivers such agorithms for certain basic problems; for others, more involved problem-
specific ideas are needed [1,35,44,54,58,64,65]. The main argument we present here was described
first by Fomin and Thilikos [46] (for the Dominating Set problem) and was further developed
under the name “bidimensionality” (see, e.g., [28–31]).

Let us consider the k-Path problem as our running example: given a (planar) graph G and an
integer k, we have to decide if G contains a simple path on k vertices. Let us first note that k-Path
is FPT parameterized by the treewidth w of the input graph G. More precisely, standard dynamic
programming techniques give 2O(w logw)nO(1) running time, while more sophisticated arguments are
needed to obtain 2O(w)nO(1) time [11, 25, 33, 34, 36, 37, 45] (note that some of these algorithms are
randomized and some of these algorithms work only on planar graphs).

Theorem 2.1. k-Path can be solved in time 2O(w)nO(1) if a tree decomposition of width w is given
in the input.

The second ingredient that we need is the Planar Excluded Grid Theorem [48, 68]. A minor of
a graph G is a graph H that is obtained by a sequence of vertex deletions, edge deletions, and edge
contractions. A k × k grid is a graph with vertex set [k]× [k], where vertices (x, y) and (x′, y′) are
adjacent if and only if |x − x′| + |y − y′| = 1. The following theorem states that, in a very tight
sense, the existence of a grid minor is the canonical reason why a planar graph has large treewidth:

Theorem 2.2 (Planar Excluded Grid Theorem). Every planar graph width treewidth at least 4.5k
has a k × k grid minor.

In particular, Theorem 2.2 implies that an n-vertex planar graph has treewidth O(
√
n): it

certainly cannot contain a grid minor larger than
√
n×
√
n.

Finally, we have to make two simple observations about the k-Path problem:

(1) The k× k grid contains a path on k2 vertices: imagine a “snake” that visits the rows one after
the other.

(2) If H is a minor of G, then the length of the longest path in H is not larger than in G. This
can be proved by verifying that none of vertex deletion, edge deletion, or edge contraction can
increase the length of the longest path.

Now the claimed algorithm can be obtained by putting together these ingredients using a win/win
approach. For simplicity, we describe an algorithm for the decision version of the problem where
only a YES/NO answer has to be returned.
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Theorem 2.3. k-Path on planar graphs can be solved in time 2O(
√
k)nO(1).

Proof. Let w := 4.5d
√
ke. If G is a graph with treewidth at least w, then Theorem 2.2 implies

that G contains a d
√
ke × d

√
ke grid minor H. Then the first observation above shows that H

contains a path on k vertices and the second observation shows that G also contains a path on k
vertices. Therefore, we can conclude that if the input graph G has treewidth at least w, then it is
a YES-instance: it surely contains a path on k vertices.

The algorithm proceeds as follows. First, we compute an (approximate) tree decomposition of
G. For this purpose, it is convenient to use the algorithm of Bodlaender et al. [12], which, given
an integer w and a graph G, in time 2O(w) · n = 2O(

√
k) · n either correctly states that treewidth of

G is larger than w, or gives a tree decomposition of width at most 5w + 4. We can complete the
computation in both cases:

• If the algorithm states that G has treewidth larger than w, then, as we have seen above, the
answer is YES.

• If the algorithm returns a tree decomposition of width at most 5w+ 4 = O(
√
k), then we can

invoke Theorem 2.1 to decide the existence of a path on k vertices and return YES or NO
accordingly. The running time is 2O(w)nO(1) = 2O(

√
k)nO(1), as required.

Thus we have an algorithm that returns a correct YES/NO-answer in time 2O(
√
k) · nO(1).

The same argument works for Feedback Vertex Set and Vertex Cover. Only the analogs
of the two observations (1) and (2) need to be verified: the optimum value is Ω(k2) on the k×k grid
and that the minor operation cannot increase the optimum value. A variant of the argument, based
on contractions instead of minors, can give algorithms for Independent Set and Dominating
Set. There are also less straighforward uses of Theorem 2.2, where it is invoked not on the input
graph itself, but on some auxilliary graph defined in a nonobvious way; see the article of Marcin
Pilipczuk later in this volume for some examples [63].

3 Exponential-time algorithms for graphs of maximum degree 3

If the task is to find a subset of vertices satisfying certain properties, then we can typically solve
the problem in time 2n · nO(1) on graphs with n vertices by enumerating every subset. For many
problems, it is easy to improve on this brute force algorithm. For example, in the case of the
Maximum Independent Set problem (for graphs with arbitrarily large degree), there is a simple
textbook example of an improved branching algorithm that beats the 2n · nO(1) running time. As
long as there is a vertex v of degree at least 3, branch into two directions: either the solution avoids
v (in which case we can remove v, decreasing the size of the graph by 1) or it contains v (in which
case we can remove v and its neighbors from the problem, decreasing the size of the graph by at
least 4 vertices). The problem can be solved in polynomial time if every vertex has degree at most
2. Analyzing the algorithm shows that its running time is 1.3803n · nO(1). Further improvements
are possible with more and more involved techniques [18, 41, 53, 55, 70, 72] with the current best
algorithm having running time 1.1996n · nO(1) [77]. Similar “races” for the best exponential-time
algorithm are known for many other problems [43]. Let us remark that for some problems just
beating the trivial 2n · nO(1) running time is already highly nontrivial [10,26,66].

For the Maximum Independent Set problem on graphs of maximum degree 3, the current
best algorithm has running time 1.0836n · nO(1) [76]. Here we would like to highlight an earlier,
less efficient algorithm that can be explained using the notion of treewidth very easily. Fomin and
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Høie [42] proved, using an earlier result of Monien and Preis [62], that the pathwidth (and hence the
treewidth) of an n-vertex graph with maximum degree 3 is essentially at most n/6. More precisely:

Theorem 3.1 (Fomin and Høie [42]). For any ε > 0, there is an integer nε such that the pathwidth
of any graph on n > nε vertices and maximum degree at most 3 is at most (1/6 + ε)n.

Together with the fact that a Maximum Independent Set on an n-vertex graph can be solved
in time 2w · nO(1) if a tree decomposition of width w is given, it follows that the problem can be
solved in time 2n/6 · nO(1) = 1.1225n · nO(1). The running time obtained as a simple consequence
of this pathwidth bound was better than some earlier work at that time [5, 20], but since then
improved algorithms with more complicated and problem-specific arguments were found for this
problem [17, 18, 67, 76]. In a similar way, algorithms for Minimum Dominating Set and Max
Cut follow immediately from Theorem 3.1, which were better than some of the algorithms found
by earlier problem specific techniques [42].

4 Finding and counting permutation patterns

Interesting combinatorial and algorithmic problems can be defined on permutations and on the
patterns they contain or avoid. A permutation of length n is a bijection π : [n] → [n]; typically
we describe permutations by the sequence (π(1), π(2), . . . , π(n)). We say that a permutation σ
of length n contains a permutation π of length k if there is a mapping f : [k] → [n] such that
f(1) < f(2) < · · · < f(k) and π(i) < π(j) if and only if σ(f(i)) < σ(f(j)). That is, σ contains
π if the sequence (π(1), . . . , π(k)) can be mapped to a subsequence of (σ(1), . . . , σ(n)) in a way
that preserves the relative order of the values. As an example, the permutation (3, 4, 5, 2, 1, 7, 8, 6)
contains the permutation (2, 1, 3, 4) (e.g., by the mapping (f(1), f(2), f(3), f(4)) = (1, 4, 6, 7)), but
it does not contain the permutation (4, 3, 2, 1). Observe that the permutations not containing (1, 2)
are exactly the decreasing sequences, while the permutations not containing (2, 1) are exactly the
increasing sequences. As shown by Knuth [56, § 2.2.1], the permutations avoiding (2, 3, 1) are exactly
the permutations sortable by a single stack. From the extremal combinatorics point of view, a very
natural question is to bound the number of permutations of length n avoiding a fixed permutation
π. Marcus and Tardos [61] proved a long-standing conjecture of Stanley and Wilf1 by showing that
for every fixed permutation π, there is a constant c(π) such that the number of permutations of
length n avoiding π is at most 2c(π)·n. This has to be contrasted with the fact that the total number
of permutations of length n is n! = 2O(n logn).

From the algorithmic point of view, perhaps the most fundamental question is testing for con-
tainment: given a permutation σ of length n and a permutation π of length k, does σ contain π? The
problem is often called Permutation Pattern Matching and is known to be NP-hard [16], but
of course can be solved in time O(nk) by brute force. Albert et al. [3] improved this to O(n2/3k+1)
time, Ahal and Rabinovich [2] further improved it to n0.47k+o(k) time, and Berendsohn et al. [6]
gave an n0.25k+o(k) time algorithm. Guillemot and Marx [49] showed that Permutation Pat-
tern Matching can be solved in time 2O(k2 log k) ·n, that is, it is fixed-parameter tractable (FPT)
parameterized by the length of π.

Even though the problem is FPT, algorithms with running time nck can be still interesting
for two reasons. First, if k is fairly large, say, Ω(log n), then 2O(k2 log k) · n is actually worse than
nO(k). Thus unless we have 2O(k) · nO(1) FPT algorithms for the problem, we need different type
of algorithms to understand the complexity of the problem in the regime where k is large. Second,

1Marcus and Tardos [61] mentions that the conjecture was formulated around 1992 (but it is hard to find a citable
source) and the PhD thesis of Julian West is an even earlier source [75].
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Figure 1: Permutation π = (6, 5, 3, 1, 4, 7, 2) and its incidence graph Gπ. Solid lines indicate neigh-
bors by index (L-R), dashed lines indicate neighbors by value (U-D). Indices plotted on x-coordinate,
values plotted on y-coordinate.

the nck time algorithms [2, 3, 6] can be easily modified to count the total number of solutions,
while the FPT algorithm of Guillemot and Marx [49] returns only a single solution. This is not
just a shortcoming of the presentation [49]: the FPT algorithm contains a step where a certain
structure is discovered that guarantees that every permutation of length k appears in σ. Then the
algorithm stops and does not look for any further occurences of π. Furthermore, it is unlikely that
the algorithm can be extended to a counting version: Berendsohn et al. [6] proved that the counting
problem is #W[1]-hard.

The nck algorithms for Permutation Pattern Matching [2, 3, 6] are implicitly or explicitly
based on dynamic programming on a certain tree decomposition. Here we follow the presentation of
Berendsohn et al. [6], where it is shown how high-level arguments and previous results on treewidth
can be combined to obtain an nk/3+o(k) time in a very clean way (a further improvement, based on
a technical idea of Cygan et al. [24], reduces the running time to n0.25k+o(k) [6]).

A permutation π : [k] → [k] can be seen as a k-element point set Sπ = {(i, π(i)) | i ∈ [k]}
(see Figure 1). With this interpretation, σ contains π if Sπ can be mapped to a subset of Sσ in a
way that the mapping preserves the relative ordering of any two points along both the horizontal
axis and the vertical axis. For a point p ∈ Sπ, we will denote by p.x and p.y the first and second
coordinates of p, respectively. For each point (x, y) ∈ Sπ, we define the four neighbors of (x, y) as
follows:

NR((x, y)) = (x+ 1, π(x+ 1)),

NL((x, y)) = (x− 1, π(x− 1)),

NU ((x, y)) = (π−1(y + 1), y + 1),

ND((x, y)) = (π−1(y − 1), y − 1).

The superscripts R, L, U , D are meant to evoke the directions right, left, up, down, when plotting
Sσ in the plane. That is, if we start sweeping the vertical line going through (x, y) to the R ight,
then NR((x, y)) is the next point that we meet, and similarly with the other directions. Note that
some neighbors of a point may coincide.

The incidence graph Gπ of π is a graph on Sπ where each point is connected to its four neighbors
(when defined). It is easy to see that Gπ is the union of two Hamiltonian paths on the same set Sπ
of vertices, with one path going in the left-right direction in the plane, while the other path going
in the top-bottom direction.
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The key lemma that allows a clean abstraction of the problem is the following characterization
of solutions.

Lemma 4.1. Let σ : [n] → [n] and π : [k] → [k] be two permutations. Then σ contains π if and
only if there is a function f : Sπ → Sσ such that for every p ∈ Sπ

f(NL(p)).x < f(p).x < f(NR(p)).x, and (1)
f(ND(p)).y < f(p).y < f(NU (p)).y, (2)

whenever the corresponding neighbor of p is defined.

It is not very difficult to prove Lemma 4.1 using the definitions and we can also see that the
functions f satisfying the requirements of Lemma 4.1 are in one to one correspondence with the
occurrences of π in σ. The inequalities in the first line ensure that the mapping of points represent
the left-to-right ordering, while the inequalities in the second line handle the top-to-bottom ordering.
The key observation is that even though we require these inequalities only between neighbors in Gπ,
it follows as consequence that every pairwise inequality in the definition of containment holds. For
example, if π(i) < π(j), then (j, π(j)) can be reached from (i, π(i)) by going through a sequence of
U-neighbors, hence a sequence of inequalities ensure that the second coordinate of f((i, π(i)) is less
than the second coordiante of f((j, π(j))).

Readers familar with the notion of Constraint Satisfaction Problems (CSPs) may recognize that
Lemma 4.1 cleanly transforms the problem into a binary constraint satisfaction problem. A binary
CSP instance is a triplet (V,D,C), where V is a set of variables, D is a set of admissible values
(the domain), and C is a set of constraints C = {c1, . . . , cm}, where each constraint ci is of the form
((x, y), R), where x, y ∈ V , and R ⊆ D2 is a binary relation. A solution of the CSP instance is a
function f : V → D (i.e., an assignment of admissible values to the variables), such that for each
constraint ci = ((xi, yi), Ri), the pair of assigned values (f(xi), f(yi)) is contained in Ri.

The constraint graph of the binary CSP instance (also known as primal graph or Gaifman graph)
is a graph whose vertices are the variables V and whose edges connect all pairs of variables that
occur together in a constraint. Low treewidth of the constraint graph can be exploited for an
efficient solution of the problem:

Theorem 4.2 ([27,47]). A binary CSP instance (V,D,C) can be solved in time O(|D|t+1) where t
is the treewidth of the constraint graph.

To view the Permutation Pattern Matching problem as a binary CSP instance, let V = Sπ
be the set of variables and let D = Sσ be the domain. Then we want to find a function f that
satisfies the inequalities in Lemma 4.1. Each inequality is a binary constraint between p and Nα(p)
for some α ∈ {L,R,D,U}, restricting the possible combination of values that f(p) and f(Nα(p))
can take. Thus we end up with a CSP instance on k variables, domain size n, and whose constraint
graph is exactly Gπ.

In order to invoke Theorem 4.2 on this instance, we need to bound the treewidth of Gπ. Recall
that Gπ has k vertices and maximum degree 4. By splitting each degree-4 vertex into two degree-3
vertices connected by an edge, we can create a graph G′π that has at most 2k vertices, maximum
degree 3, and Gπ is a minor of G′π. Then Theorem 3.1 shows that G′π has treewidth 2k/6 + o(k) =
k/3 +o(k) and Gπ being a minor of G′π shows that the same bound holds for Gπ as well. Therefore,
we can conclude that Theorem 4.2 solves the instance in time nk/3+o(k). It is not difficult to modify
the algorithm to count the number of solutions. Therefore, the combination of an easy observation
(Lemma 4.1), a combinatorial treewidth bound (Theorem 3.1), and a known general algorithm
(Theorem 4.2) solves the problem in a very clean way.
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In Lemma 4.1, the functions f satisfying the requirements are in one to one correspondence with
the occurences of π in σ and Theorem 4.2 can be extended to a counting version. Theorem 3.1 is
purely combinatorial, thus it is of course irrelevant if we are using it for the decision or the counting
problem. Thus the same algorithmic idea goes through.

Theorem 4.3 (Berendsohn et al. [6]). Given a length-k permutation π and length-n permutation
σ, the number of occurrences of π in σ can be counted in time nk/3+o(k).

5 Counting subgraphs

It is a well-known phenomenon in theoretical computer science that in many cases finding a solution
is easier than counting the number of all solutions. For example, it can be checked in polynomial
time if a bipartite graph contains a perfect matching, but the seminal result of Valiant shows that
counting the number of perfect matchings is #P-hard and hence unlikely to be polynomial-time
solvable [74]. By now, many other examples of hard counting problems are known.

Flum and Grohe [39] started the investigation of the complexity of counting in the setting of
parameterized complexity. They introduced the notion of #W[1]-hardness to give evidence that
certain parameterized counting problems are unlikely to be FPT. As a highly nontrivial example,
they considered the k-Path problem: the decision version is known to be FPT by various techniques
[4,45], but they showed that the counting version of the problem is #W[1]-hard. In the same paper,
they asked as an open question whether the counting version of the polynomial-time solvable k-
Matching problem is FPT. This question was resolved in the negative by the #W[1]-hardness
proof of Curticapean [21], which used heavy algebraic machinery, and by the later simpler proof
given by Curticapean and Marx [23]. More recently, Dell et al. [22] described and exploited a
connection beween subgraph counting and homomorphism counting problems. This connection
can be useful in two different ways: it gives new subgraph-counting algorithms by reducing it to
homomorphism-counting problems, and gives hardness results for subgraph counting (including new
and clean #W[1]-hardness proofs of k-Matching and k-Path) based on our understanding of the
complexity of counting homomorphisms. Below we give an example of the algorithmic use of this
connection.

Given the #W[1]-hardness of k-Path, we cannot hope for an FPT algorithm solving the problem.
But it is still an interesting question whether we can improve on the trivial nk+O(1) time brute force
algorithm. The “meet in the middle” approach can be used to improve this to nk/2+O(1) time [8,57],
which was further improved by Björklund et al. [9] to n0.455k+O(1). Here we describe an algorithm
with running time kO(k) · n0.174k+o(k), which has a much smaller exponent for a fixed k and at the
same time conceptually much simpler.

Let us first review some basic background on homomorphisms. A homomorphism from graph
H to graph G is a mapping f : V (H) → V (G) such that for every edge uv ∈ E(H), we have
f(u)f(v) ∈ E(G). We will denote by #Hom(H → G) the number of homomorphisms from H to
G. Given a tree decomposition of H, standard dynamic programming techniques can be used to
compute the number of homomorphisms from H to a given graph G.

Theorem 5.1 (Díaz et al. [32]). Given graphs H and G, #Hom(H → G) can be computed in time
(|V (H)|+ |V (G)|)w+O(1), where w is the treewidth of H.

Note that the algorithm of Theorem 5.1 does not need a decomposition of H, as it can be found
in time |V (H)|c+O(1).

A homomorphism f : V (H)→ V (G) is injective if f(u) 6= f(v) for any two distinct u, v ∈ V (H);
let #Emb(H → G) denote the number of such homomorphisms. Let us denote by #Sub(H → G)
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the number of subgraphs of G that are isomorphic to H. It is well known and easy to see that
#Emb(H → G) = #Sub(H → G) ·#Aut(H), where #Aut(H) = #Emb(H → H) is the number of
automorphisms of the graph H. Therefore, for a fixed H, computing #Sub(H → G) is essentially
equivalent to computing #Emb(H → G), the number of injective homomorphisms. In order to
explain the connection between counting homomorphisms and subgraphs, it will be more convenient
to work with #Emb(H → G) than with #Sub(H → G), as the former is already defined in terms
of homomorphisms.

Of course, not every homomorpism from H to G is injective, the images of some vertices may
coincide. For example, if H is the 4-cycle on vertices 1, 2, 3, 4, then a homomorphism from H to a
loopless graph G either (1) is injective, (2) identifies 1 with 3, (3) identifies 2 with 4, (4) identifies
1 with 3, and 2 with 4. In case (1), the image of H is a 4-cycle; in cases (2) and (3), the image of
H is the path P3 on three vertices; and in case (4), the image of H is the path P2 on two vertices.
This shows that the following formula holds for the number of homomorphisms:

#Hom(C4 → G) = #Emb(C4 → G) + 2 ·#Emb(P3 → G) + #Emb(P2 → G).

More generally, we can classify the homomorphisms according to which sets of vertices they
identify. To each homomorphism h : V (G)→ V (H), we can associate a partition ρh of V (H) with
the meaning that, for every u, v ∈ V (H), we have h(u) = h(v) if and only u and v are in the same
block of ρ. For a partition ρ of V (H), let H/ρ be the quotient graph obtained by consolidating
each block of ρ into a single vertex. The key observation is that the homomorphisms from H to G
having type ρ are in one-to-one correspondence with the injective homomorphisms from H/ρ to G.
Therefore, we can express the number of homomorphisms from H to G as

#Hom(H → G) =
∑
ρ

#Emb(H/ρ→ G), (3)

where the sum ranges over every partition ρ of V (H).
Why is this useful for us? Observe that H = H/ρ holds only for the partition ρ0 where every

block has size exactly one and H/ρ has strictly fewer vertices for every other ρ. Therefore, Eq. (3)
can be written as

#Hom(H → G) = #Emb(H → G) +
∑
ρ 6=ρ0

#Emb(H/ρ→ G),

and hence
#Emb(H → G) = #Hom(H → G)−

∑
ρ 6=ρ0

#Emb(H/ρ→ G). (4)

That is, Eq. (4) reduces the problem of computing #Emb(H → G) to the problem of computing
#Hom(H → G) and to computing some number of #Emb(H/ρ → G) values, where H/ρ has
strictly fewer vertices than |V (H)|. Therefore, we can repeat the same argument and recursively
replace each term #Emb(H/ρ→ G) with a #Hom term and some number of #Emb terms. As the
replacement strictly decreases the number of vertices in the #Emb terms, eventually all these terms
disappear, and we can express #Emb(H → G) as the linear combination of #Hom(H ′ → G) values
for various graphs H ′. This means that we can reduce the problem of computing #Emb(H → G)
to computing certain homomorphism values.

Which graphs H ′ can appear in the #Hom(H ′ → G) terms when we express #Emb(H → G)
this way? It is easy to see that the quotient graph of a quotient of H is also a quotient graph of
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H. This means that every graph H ′ appearing in this linear combination is a quotient graph of H.
Thus we can express #Emb(H → G) as

#Emb(H → G) =
∑
ρ

βρ,H ·#Hom(H/ρ→ G) , (5)

where βρ,H is a constant depending only on ρ and H. The argument described above gives an
algorithm for writing #Emb(H → G) in this form and for computing the constants βρ,H (and the
work of Lovász et al. [15,59] gives more explicit formulas for these constants). Given this expression,
we can reduce the problem of computing #Emb(H → G) to computing the values #Hom(H/ρ→ G).
IfH has k vertices, then the sum ranges over kO(k) different partitions ρ. Therefore, if everyH/ρ has
treewidth bounded by c, then invoking Theorem 5.1 for the computation of each #Hom(H/ρ→ G)
results in an algorithm with running time kO(k) · nc+O(1) for the computation of #Emb(H → G)
(and hence of #Sub(H → G)).

These considerations show that bounding the running time of our algorithm essentially boils
down to a bound on the maximum treewidth of H/ρ. The treewidth of H/ρ can be much larger
than the treewidth of H. For example, it is not difficult to see that if H is a matching with k
independent edges, then we can obtain any connected graph with k edges as H/ρ for an appropriate
partition ρ. However, this operation cannot increase the number of edges: if H has k edges, then
H/ρ has at most k edges. We can use the following bound on the treewidth of graphs with at most
k edges:

Theorem 5.2 ([40,71]). Every graph with at most k edges has treewidth 0.174k + o(k).

This immediately gives an upper bound on the running time needed if H has at most k edges.

Theorem 5.3 (Dell et al. [22]). If H has at most k edges, then #Emb(H → G) and #Sub(H → G)
can be computed in time kO(k) · n0.174k+o(k).

In particular, we obtain algorithms with running time kO(k) · n0.174k+o(k) if H is a path with
k edges (the k-Path problem) or a matching with k edges (the k-Matching problem). We want
to emphasize that for a fixed H, the algorithm is very simple: it consists of invoking Theorem 5.1
for various graphs H ′ = H/ρ and then taking a linear combination of these values. All the real
work is done by the computation of the fixed constants βρ,H and by the algorithm of Theorem 5.1
exploiting low treewidth and tree decompositions.
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