

Parameterized complexity of constraint satisfaction problems

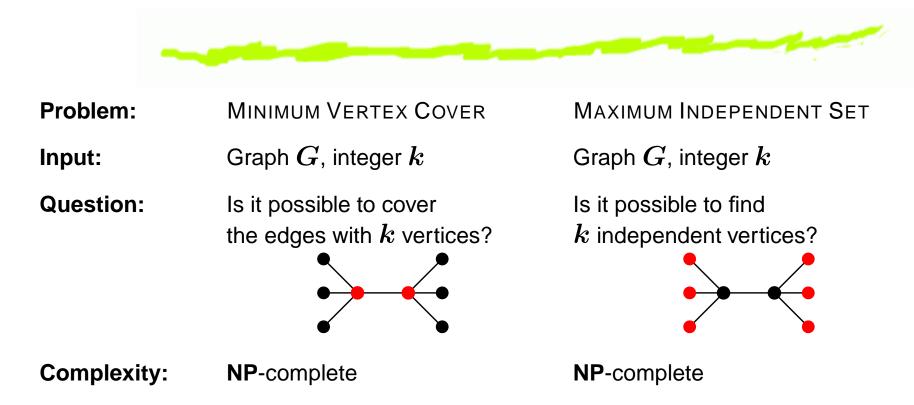
Dániel Marx

Budapest University of Technology and Economics

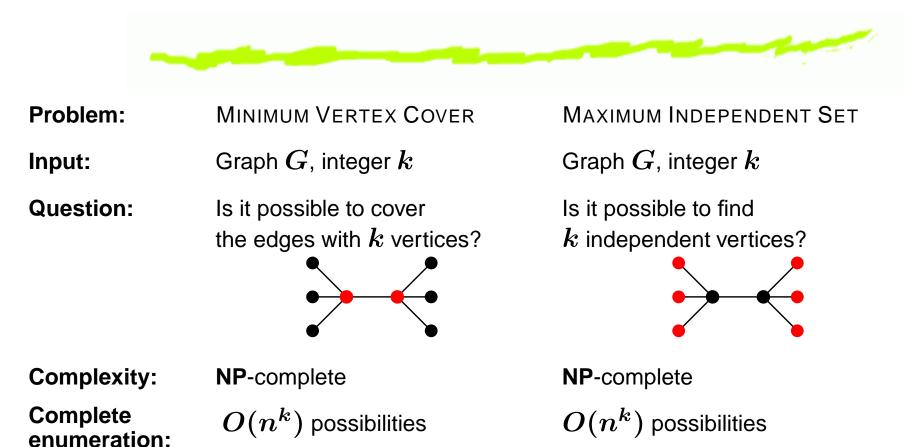
dmarx@cs.bme.hu

Presented at Humboldt-Universität zu Berlin

"Logik in der Informatik" Seminar

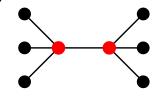

December 10, 2004

Outline of the talk

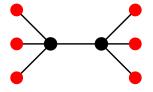


- 6 Parameterized complexity
- Schaefer's Dichotomy Theorem
- 6 A parameterized dichotomy theorem
- Sketch of proof
- 9 Planar formulae

Parameterized complexity


Parameterized complexity

Parameterized complexity

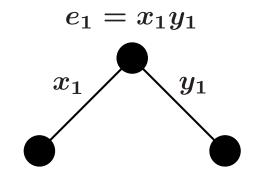

- Problem: MINIMUM VERTEX COVER
- Input: Graph G, integer k
- Question:
- Is it possible to cover the edges with m k vertices?

Complexity: Complete enumeration: NP-complete $O(n^k)$ possibilities $O(2^k n^2)$ algorithm exists MAXIMUM INDEPENDENT SET

Graph G, integer k

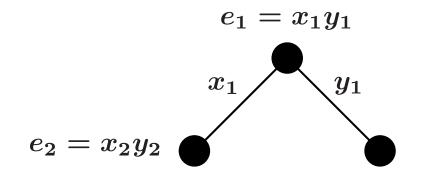
Is it possible to find k independent vertices?

NP-complete $O(n^k)$ possibilities No $n^{o(k)}$ algorithm known

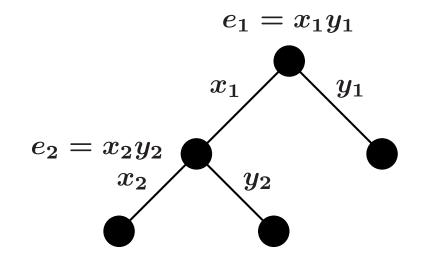


Algorithm for MINIMUM VERTEX COVER:

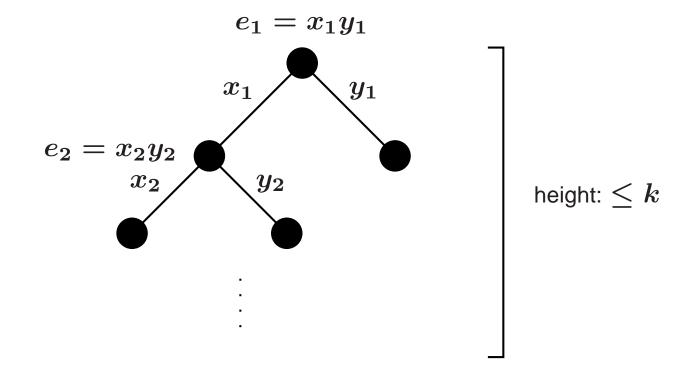
 $e_1 = x_1 y_1$



Algorithm for MINIMUM VERTEX COVER:



Algorithm for MINIMUM VERTEX COVER:



Algorithm for MINIMUM VERTEX COVER:

Algorithm for MINIMUM VERTEX COVER:

Height of the search tree is $\leq k \Rightarrow$ number of nodes is $O(2^k) \Rightarrow$ complete search requires $2^k \cdot$ poly steps.

Fixed-parameter tractability

Definition: a parameterized problem is fixed-parameter tractable (FPT) if there is an $f(k)n^c$ time algorithm for some constant c.

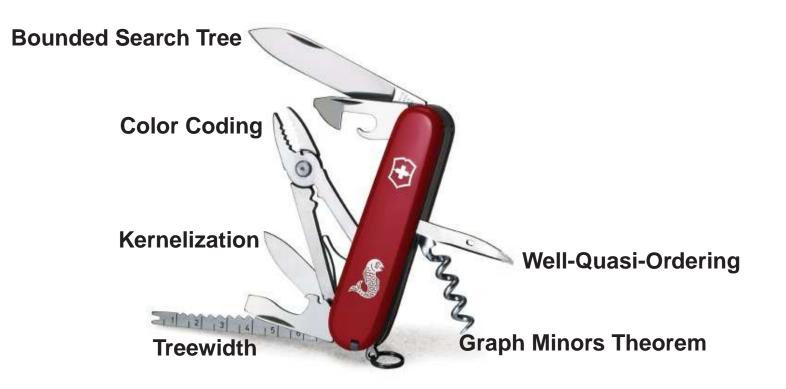
We have seen that MINIMUM VERTEX COVER is in FPT. Best known algorithm: $O(1.2832^kk + k|V|)$ [Niedermeier, Rossmanith, 2003]

Main goal of parameterized complexity: to find fixed-parameter tractable problems.

Fixed-parameter tractability

Definition: a parameterized problem is fixed-parameter tractable (FPT) if there is an $f(k)n^c$ time algorithm for some constant c.

We have seen that MINIMUM VERTEX COVER is in FPT. Best known algorithm: $O(1.2832^kk + k|V|)$ [Niedermeier, Rossmanith, 2003]

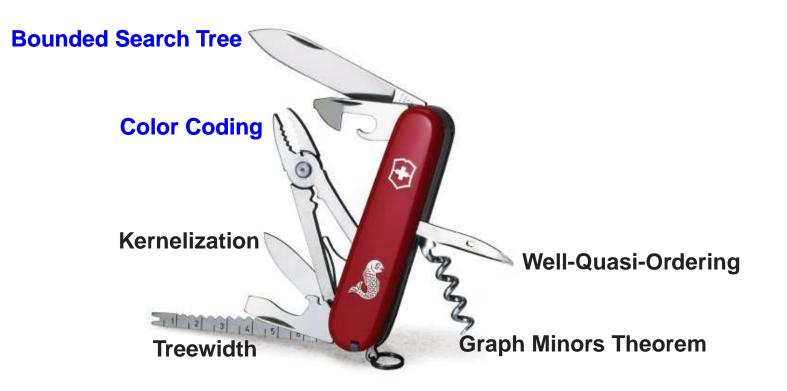

Main goal of parameterized complexity: to find fixed-parameter tractable problems. Examples of **NP**-hard problems that are in FPT:

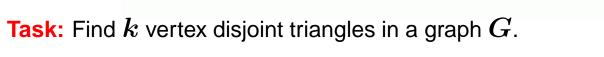
- 6 LONGEST PATH
- 6 DISJOINT TRIANGLES
- 6 Feedback Vertex Set
- 6 GRAPH GENUS
- 6 etc.

Fixed-parameter tractability (cont.)

- ⁶ Practical importance: efficient algorithms for small values of k.
- Overful toolbox for designing FPT algorithms:

Fixed-parameter tractability (cont.)


- ⁶ Practical importance: efficient algorithms for small values of k.
- Powerful toolbox for designing FPT algorithms:


Fixed-parameter tractability (cont.)

- ⁶ Practical importance: efficient algorithms for small values of k.
- Powerful toolbox for designing FPT algorithms:

Color Coding: Disjoint Triangles

Method:

- 6 Assign random labels $1, 2, \ldots, 3k$ to the vertices.

The existence of such triangles is easy to check.

Color Coding: Disjoint Triangles

Task: Find k vertex disjoint triangles in a graph G. Method:

- 6 Assign random labels $1, 2, \ldots, 3k$ to the vertices.
- 6 Are there k triangles such that $\begin{pmatrix} 1 & 4 & 3k-2 \\ 1 & 3 & 5 & 6 \\ 2 & 3 & 5 & 6 \\ 3k-1 & 3k \\ 3k-$

The existence of such triangles is easy to check.

If there are $m{k}$ disjoint triangles

- \Rightarrow with probability $1/(3k)^{3k}$ they are labeled as on the figure
- \Rightarrow we need on average $(3k)^{3k}$ random assignments to find the k triangles!

Color coding: useful if we want to select a **small** number of disjoint **small** objects from a **large** list.

Method can be derandomized using families of k-perfect hash functions.

Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable, no $n^{o(k)}$ algorithm is known.

W[1]-complete ≈ "as hard as MAXIMUM INDEPENDENT SET"

Parameterized intractability

We expect that MAXIMUM INDEPENDENT SET is not fixed-parameter tractable, no $n^{o(k)}$ algorithm is known.

W[1]-complete ≈ "as hard as MAXIMUM INDEPENDENT SET"

Parameterized reductions: L_1 is reducible to L_2 , if there is a function f that transforms (x,k) to (x',k') such that

- ${\color{black} {\scriptstyle 6} \quad (x,k) \in L_1}$ if and only if $(x',k') \in L_2$,
- ${}^{\scriptstyle 6}$ f can be computed in $f(k)|x|^c$ time,

${}^{\scriptstyle 6}$ $\,\,k'$ depends only on k

If L_1 is reducible to L_2 , and L_2 is in FPT, then L_1 is in FPT as well. Most **NP**-completeness proofs are not good for parameterized reductions.

Parameterized Complexity: Summary

Two key concepts:

- 6 A parameterized problem is **fixed-parameter tractable** if it has an $f(k)n^c$ time algorithm.
- ⁶ To show that a problem L is hard, we have to give a **parameterized reduction** from a known W[1]-complete problem to L.

Constraint satisfaction problems

Let \mathcal{R} be a set Boolean of relations. An \mathcal{R} -formula is a conjunction of relations in \mathcal{R} :

 $R_1(x_1,x_4,x_5) \wedge R_2(x_2,x_1) \wedge R_1(x_3,x_3,x_3) \wedge R_3(x_5,x_1,x_4,x_1)$

\mathcal{R} -SAT

- 6 Given: an ${\cal R}$ -formula arphi
- 6 Find: a variable assignment satisfying arphi

Constraint satisfaction problems

Let \mathcal{R} be a set Boolean of relations. An \mathcal{R} -formula is a conjunction of relations in \mathcal{R} :

 $R_1(x_1, x_4, x_5) \wedge R_2(x_2, x_1) \wedge R_1(x_3, x_3, x_3) \wedge R_3(x_5, x_1, x_4, x_1)$

\mathcal{R} -SAT

 6 Given: an ${\cal R}$ -formula arphi

 6 Find: a variable assignment satisfying arphi

 $\mathcal{R} = \{a \neq b\} \Rightarrow \mathcal{R}\text{-SAT} = 2\text{-coloring of a graph}$ $\mathcal{R} = \{a \lor b, \ a \lor \overline{b}, \ \overline{a} \lor \overline{b}\} \Rightarrow \mathcal{R}\text{-SAT} = 2\text{SAT}$ $\mathcal{R} = \{a \lor b \lor c, a \lor b \lor \overline{c}, a \lor \overline{b} \lor \overline{c}, \overline{a} \lor \overline{b} \lor \overline{c}\} \Rightarrow \mathcal{R}\text{-SAT} = 3\text{SAT}$

Question: \mathcal{R} -SAT is polynomial time solvable for which \mathcal{R} ?

It is **NP**-complete for which \mathcal{R} ?

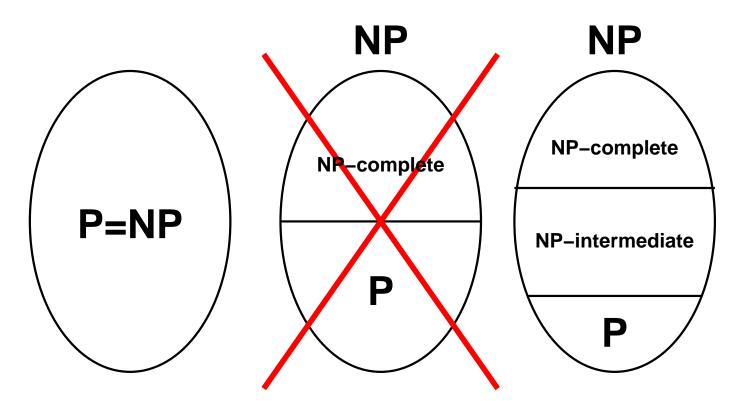
Schaefer's Dichotomy Theorem (1978)

For every \mathcal{R} , the \mathcal{R} -SAT problem is polynomial time solvable if one of the following holds, and **NP**-complete otherwise:

- 6 Every relation is satisfied by the all 0 assignment
- 6 Every relation is satisfied by the all 1 assignment
- Every relation can be expressed by a 2SAT formula
- 6 Every relation can be expressed by a Horn formula
- 6 Every relation can be expressed by an anti-Horn formula
- 6 Every relation is an affine subspace over GF(2)

Schaefer's Dichotomy Theorem (1978)

For every \mathcal{R} , the \mathcal{R} -SAT problem is polynomial time solvable if one of the following holds, and **NP**-complete otherwise:


- 6 Every relation is satisfied by the all 0 assignment
- Every relation is satisfied by the all 1 assignment
- Every relation can be expressed by a 2SAT formula
- 6 Every relation can be expressed by a Horn formula
- 6 Every relation can be expressed by an anti-Horn formula
- 6 Every relation is an affine subspace over GF(2)

Why is it surprising?

Ladner's Theorem (1975)

If $P \neq NP$, then there is a language $L \in NP \setminus P$ that is not NP-complete.

Other dichotomy results

- Approximability of MAX-SAT, MIN-UNSAT [Khanna et al., 2001]
- 6 Approximability of MAX-ONES, MIN-ONES [Khanna et al., 2001]
- Generalization to 3 valued variables [Bulatov, 2002]
- Inverse satisfiability [Kavvadias and Sideri, 1999]
- 🧕 etc.

Other dichotomy results

- 6 Approximability of MAX-SAT, MIN-UNSAT [Khanna et al., 2001]
- 6 Approximability of MAX-ONES, MIN-ONES [Khanna et al., 2001]
- Generalization to 3 valued variables [Bulatov, 2002]
- Inverse satisfiability [Kavvadias and Sideri, 1999]
- 6 etc.

Our contribution: parameterized analogue of Schaefer's dichotomy theorem.

Parameterized version

Parameterized \mathcal{R} -SAT

- 6 Input: an ${\cal R}$ -formula arphi, an integer k
- 6 Parameter: k
- 6 **Question:** Does φ have a satisfying assignment of weight exactly k?

For which $\mathcal R$ is there an $f(k) \cdot n^c$ algorithm for $\mathcal R$ -SAT?

Main theorem: For every constraint family \mathcal{R} , the parameterized \mathcal{R} -SAT problem is either fixed-parameter tractable or W[1]-complete.

(+ simple characterization of FPT cases)

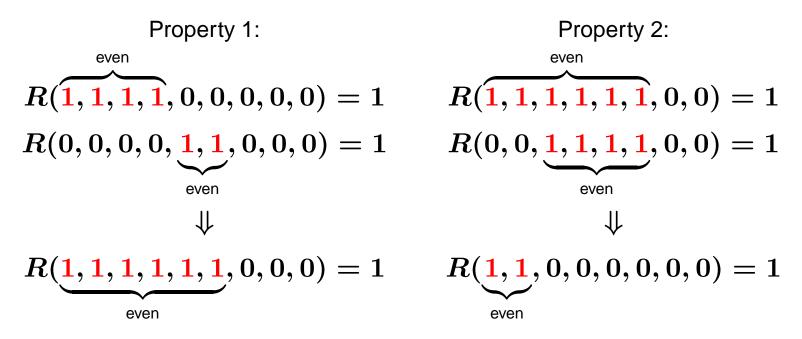
Technical notes

- General Are constants allowed in the formula? E.g., $R(x_1,0,1) \wedge R(1,x_2,x_3)$
- 6 Can a variable appear multiple times in a constraint? E.g., $R(x_1, x_1, x_2) \wedge R(x_3, x_3, x_3)$
- Constraints that are not satisfied by the all 0 assignment can be handled easily (bounded search tree).

Weak separability

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.


Example of 1:Example of 2:
$$R(1, 1, 1, 1, 0, 0, 0, 0, 0) = 1$$
 $R(1, 1, 1, 1, 1, 1, 0, 0) = 1$ $R(0, 0, 0, 0, 1, 1, 0, 0, 0) = 1$ $R(0, 0, 1, 1, 1, 1, 0, 0) = 1$ \Downarrow \Downarrow \downarrow \Downarrow $R(1, 1, 1, 1, 1, 1, 1, 0, 0, 0) = 1$ $R(1, 1, 0, 0, 0, 0, 0, 0, 0) = 1$

Main theorem: \mathcal{R} -SAT is FPT if and only if every constraint is weakly separable, and W[1]-complete otherwise.

Weak separability: examples

The constraint EVEN is weakly separable:

More generally: every affine constraint is weakly separable.

Weak separability: examples (cont.)

The following constraint is trivially weakly separable:

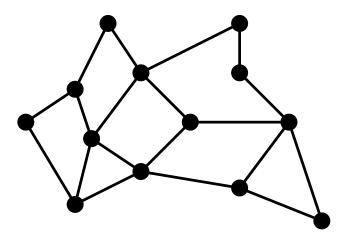
 $egin{aligned} R(0,0,0,0,0) &= 1\ R(1,1,1,0,0) &= 1\ R(0,1,1,1,0) &= 1\ R(0,0,1,1,1,0) &= 1\ R(x_1,x_2,x_3,x_4,x_5) &= 0 \ ext{otherwise.} \end{aligned}$

Reason: Property 1 and 2 vacuously hold, no disjoint sets, no subsets.

More generally: if the non-zero satisfying assignments are **intersecting** and form a **clutter**, then it is weakly separable.

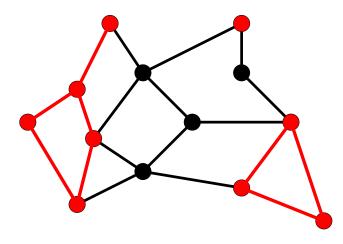
Example: $R(x_1,\ldots,x_n)=1$ if and only if 0 or exactly t out of n variables are 1 (t>n/2)

Parameterized vs. classical


The easy and hard cases are different in the classical and the parameterized version:

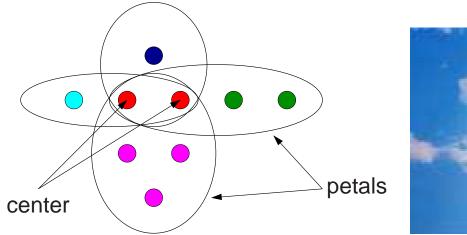
Constraint	Classical	Parameterized
$x \lor y$	in P	FPT (VERTEX COVER)
$ar{x} ee ar{y}$	in P	W[1]-complete (MAXIMUM INDEPENDENT SET)
affine	in P	FPT
2-in-3	NP-complete	FPT

Bounded number of occurrences


Primal graph: Vertices are the variables, two variables are connected if they appear in some clause together.

Bounded number of occurrences

Primal graph: Vertices are the variables, two variables are connected if they appear in some clause together.



Every satisfying assignment is composed of **connected satisfying assignments**. **Lemma:** There are at most $(rd)^{k^2} \cdot n$ connected satisfying assignments of size at most k. (r is the maximum arity, d is the maximum no. of occurrences) **Algorithm:** Use color coding to put together the connected assignments to obtain a size k assignment.

The sunflower lemma

Definition: Sets S_1, S_2, \ldots, S_k form a **sunflower** if the sets $S_i \setminus (S_1 \cap S_2 \cap \cdots \cap S_k)$ are disjoint.

Lemma (Erdős and Rado, 1960): If the size of a set system is greater than $(p-1)^{\ell} \cdot \ell!$ and it contains only sets of size at most ℓ , then the system contains a sunflower with p petals.

Sunflower of clauses

Definition: A **sunflower** is a set of k clauses such that for every i

- 6 either the same variable appears at position i in every clause,
- 6 or every clause "owns" its ith variable.

 $egin{aligned} R(x_1,x_2,x_3,x_4,x_5,x_6)\ R(x_1,x_2,x_3,x_7,x_8,x_9)\ R(x_1,x_2,x_3,x_{10},x_{11},x_{12})\ R(x_1,x_2,x_3,x_{13},x_{14},x_{15}) \end{aligned}$

Lemma: If a variable occurs more than $c_{\mathcal{R}}(k)$ times in an \mathcal{R} -formula, then the formula contains a sunflower of clauses with more than k petals.

For weakly separable constraints, the formula can be reduced if there is a sunflower with k+1 petals. Example:

 $k + 1 \begin{cases} EVEN(x_1, x_2, x_3, x_4, x_5, x_6) \\ EVEN(x_1, x_2, x_3, x_7, x_8, x_9) \\ EVEN(x_1, x_2, x_3, x_{10}, x_{11}, x_{12}) \\ EVEN(x_1, x_2, x_3, x_{13}, x_{14}, x_{15}) \end{cases}$

For weakly separable constraints, the formula can be reduced if there is a sunflower with k+1 petals. Example:

$$k+1 \left\{egin{array}{c} {\sf EVEN}(x_1,x_2,x_3,x_4,x_5,x_6)\ {\sf EVEN}(x_1,x_2,x_3,x_7,x_8,x_9)\ {\sf EVEN}(x_1,x_2,x_3,0,0,0)\ {\sf EVEN}(x_1,x_2,x_3,x_{13},x_{14},x_{15}) \end{array}
ight.$$

For weakly separable constraints, the formula can be reduced if there is a sunflower with k+1 petals. Example:

$$k + 1 \begin{cases} EVEN(x_1, x_2, x_3, x_4, x_5, x_6) \\ EVEN(x_1, x_2, x_3, x_7, x_8, x_9) \\ EVEN(x_1, x_2, x_3, 0, 0, 0) \\ EVEN(x_1, x_2, x_3, x_{13}, x_{14}, x_{15}) \\ \psi \\ EVEN(x_1, x_2, x_3) \end{cases}$$

For weakly separable constraints, the formula can be reduced if there is a sunflower with k+1 petals. Example:

 $\mathsf{EVEN}(x_1,x_2,x_3,x_4,x_5,x_6)$ $k + 1 \begin{cases} EVEN(x_1, x_2, x_3, x_4, ..., x_9) \\ EVEN(x_1, x_2, x_3, x_7, x_8, x_9) \\ EVEN(x_1, x_2, x_3, 0, 0, 0) \\ EVEN(x_1, x_2, x_3, x_{13}, x_{14}, x_{15}) \end{cases}$ $\mathsf{EVEN}(x_1, x_2, x_3)$ $\mathsf{EVEN}(x_4, x_5, x_6)$ $\mathsf{EVEN}(x_7, x_8, x_9)$ $EVEN(x_{10}, x_{11}, x_{12})$ $\mathsf{EVEN}(x_{13}, x_{14}, x_{15})$

The algorithm

Algorithm for \mathcal{R} -SAT if every constraint in \mathcal{R} is weakly separable:

- 6 If there is a variable that occurs more than $c_{\mathcal{R}}(k)$ times:
 - ${\scriptstyle au}$ Find a sunflower with k+1 petals
 - Pluck the sunflower \Rightarrow shorter formula
- 6 If every variable occurs at most $c_{\mathcal{R}}(k)$ times:
 - Apply the bounded occurrence algorithm

Running time: $2^{k^{r+2} \cdot 2^{2^{O(r)}}} \cdot n \log n$, where r is the maximum arity in the constraint family \mathcal{R} .

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 1 is violated:

 $egin{aligned} R(0,0,0,0,0,0,0,0) &= 1 \ R(1,1,1,0,0,0,0,0) &= 1 \ R(0,0,0,1,1,0,0,0) &= 1 \ R(1,1,1,1,1,0,0,0) &= 0 \end{aligned}$

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 1 is violated:

 $egin{aligned} R(0,0,0,0,0,0,0,0) &= 1\ R(1,1,1,0,0,0,0,0) &= 1\ R(0,0,0,1,1,0,0,0) &= 1\ R(1,1,1,1,1,0,0,0) &= 0\ &\downarrow \ R(x,x,x,y,y,0,0,0) &= 1 \iff ar{x} \lor ar{y} \end{aligned}$

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 1 is violated:

Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 2 is violated:

 $egin{aligned} R(0,0,0,0,0,0,0,0) &= 1 \ R(1,1,1,1,1,0,0,0) &= 1 \ R(0,0,0,1,1,0,0,0) &= 1 \ R(1,1,1,0,0,0,0,0) &= 0 \end{aligned}$

Definition: $oldsymbol{R}$ is weakly separable if

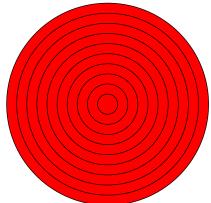
- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

If property 2 is violated:

 $egin{aligned} R(0,0,0,0,0,0,0,0) &= 1\ R(1,1,1,1,1,0,0,0) &= 1\ R(0,0,0,1,1,0,0,0) &= 1\ R(1,1,1,0,0,0,0,0) &= 0\ &\downarrow \ R(x,x,x,y,y,0,0,0) &= 1 \iff x o y \end{aligned}$

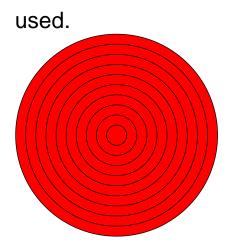
Definition: $oldsymbol{R}$ is weakly separable if

- 1. the union of two disjoint satisfying assignments is also satisfying, and
- 2. if a satisfying assignment contains a smaller satisfying assignment, then their difference is also satisfying.

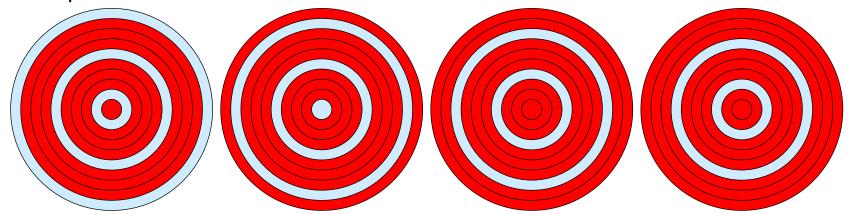

If property 2 is violated:

Planar formulae

If the primal graph of the formula is **planar**, then the layering method of Baker can be

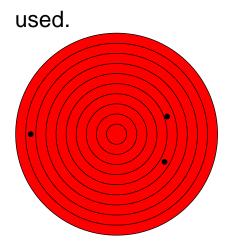

used.

Planar formulae

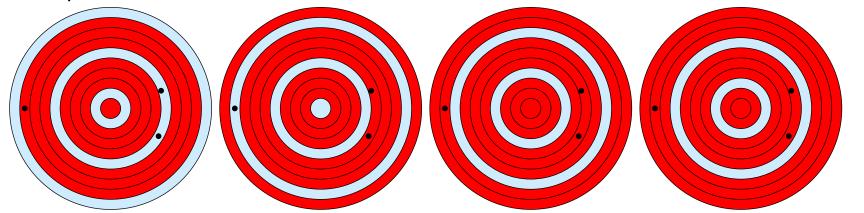


If the primal graph of the formula is **planar**, then the layering method of Baker can be

Set to 0 the variables in every (k + 1)th layer. There are k + 1 ways of doing this. One of them will not hurt the solution.

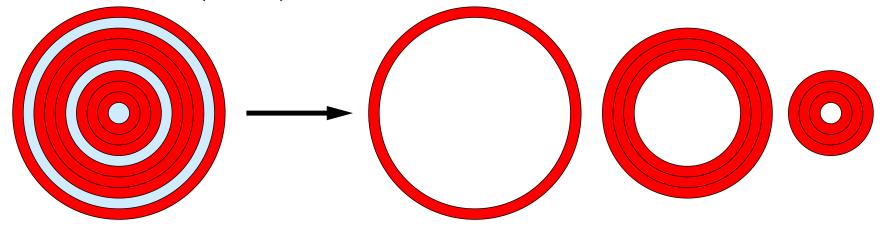

Example with k = 3:

Planar formulae



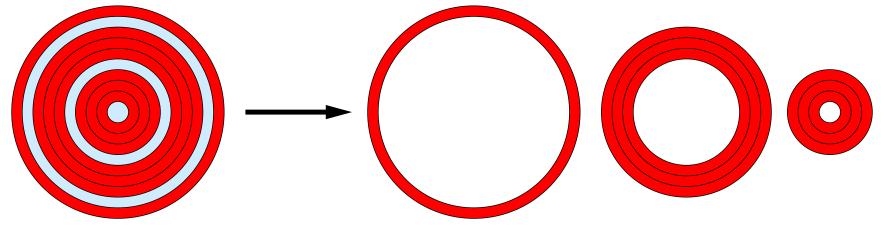
If the primal graph of the formula is **planar**, then the layering method of Baker can be

Set to 0 the variables in every (k + 1)th layer. There are k + 1 ways of doing this. One of them will not hurt the solution.


Example with k = 3:

Planar formulae (cont.)

If we delete every (k+1)th layer, then the remaining formula has only k layers:



Lemma (Bodlaender): The treewidth of a k-layered graph is at most 3k - 1. If the primal graph has bounded treewidth, then the problem can be solved in linear time using standard techniques.

Planar formulae (cont.)

If we delete every (k+1)th layer, then the remaining formula has only k layers:

Lemma (Bodlaender): The treewidth of a k-layered graph is at most 3k - 1. If the primal graph has bounded treewidth, then the problem can be solved in linear time using standard techniques.

Incidence graph: bipartite graph, vertices are the clauses and the variables, edge means "appears in."

Theorem: Linear time alg. if the incidence graph of the formula is planar.

- ⁶ Parameterized version of \mathcal{R} -SAT
- **6** FPT or W[1]-complete depending on weak separability
- 6 Bounded occurences: color coding using connected solutions
- 6 Reduction using the sunflower lemma
- Linear time solvable for planar and bounded treewidth formulae

- ⁶ Parameterized version of \mathcal{R} -SAT
- **6** FPT or W[1]-complete depending on weak separability
- 6 Bounded occurences: color coding using connected solutions
- 6 Reduction using the sunflower lemma
- Linear time solvable for planar and bounded treewidth formulae

Thank you for your attention! Questions?