

The Closest Substring problem with small distances

Dániel Marx

dmarx@informatik.hu-berlin.de

June 10, 2005

The Closest String problem

CLOSEST STRING

Input: Strings s_1, \ldots, s_k of length L

Solution: A string s of length L (center string)

Minimize: $\max_{i=1}^k d(s, s_i)$

 $d(w_1, w_2)$: the number of positions where w_1 and w_2 differ (Hamming distance).

Applications: computational biology (e.g., finding common ancestors)

Problem is NP-hard even with binary alphabet [Frances and Litman, 1997].

The Closest Substring problem

CLOSEST SUBSTRING

Input: Strings s_1, \ldots, s_k , an integer L

Solution: — string s of length L (center string),

— a length L substring s_i' of s_i for every i

Minimize: $\max_{i=1}^k d(s, s_i')$

Remark: For a given s, it is easy to find the best s'_i for every i.

Applications: finding common patterns, drug design.

- O Problem is NP-hard even with binary alphabet (CLOSEST STRING is the special case $|s_i|=L$.)
- 6 CLOSEST SUBSTRING admits a PTAS [Li, Ma, & Wang, 2002]: for every $\epsilon>0$ there is an $n^{O(1/\epsilon^4)}$ algorithm that produces a $(1+\epsilon)$ -approximation.

Parameterized Complexity

Goal: restrict the exponential growth of the running time to one parameter of the input.

Definition: Problem is **fixed-parameter tractable (FPT)** with parameter k if there is an algorithm with running time $f(k) \cdot n^c$ where c is a fixed constant not depending on k.

Definition: Problem is **fixed-parameter tractable (FPT)** with parameters k_1 and k_2 if there is an algorithm with running time $f(k_1, k_2) \cdot n^c$ where c is a fixed constant not depending on k_1 and k_2 .

Parameterized intractability

We expect that Maximum Independent Set is not fixed-parameter tractable, no $n^{o(k)}$ algorithm is known.

W[1]-complete ≈ "as hard as MAXIMUM INDEPENDENT SET"

Parameterized intractability

We expect that Maximum Independent Set is not fixed-parameter tractable, no $n^{o(k)}$ algorithm is known.

W[1]-complete ≈ "as hard as MAXIMUM INDEPENDENT SET"

Parameterized reductions: L_1 is reducible to L_2 , if there is a function f that transforms (x,k) to (x',k') such that

- $(x,k)\in L_1$ if and only if $(x',k')\in L_2$,
- f can be computed in $f(k)|x|^c$ time,
- 6 k' depends only on k

If L_1 is reducible to L_2 , and L_2 is in FPT, then L_1 is in FPT as well. Most NP-completeness proofs are not good for parameterized reductions.

Parameterized Closest Substring

Input: Strings s_1, \ldots, s_k over Σ , integers L and d

Possible parameters: $k, L, d, |\Sigma|$

Find: — string s of length L (center string),

— a length L substring s'_i of s_i for every i

such that $d(s, s_i') \leq d$ for every i

Possible parameters:

6 k: might be small

6 d: might be small

 $oldsymbol{6}$ $oldsymbol{L}$: usually large

 $|\Sigma|$: usually a small constant

Closest Substring—Results

parameter	$ \Sigma $ is constant	$ \Sigma $ is parameter	$ \Sigma $ is unbounded
d	?	?	W[1]-hard
k	W[1]-hard	W[1]-hard	W[1]-hard
d,k	?	?	W[1]-hard
L	FPT	FPT	W[1]-hard
d,k,L	FPT	FPT	W[1]-hard

(Hardness results by [Fellows, Gramm, Niedermeier 2002].)

Closest Substring—Results

parameter	$ \Sigma $ is constant	$ \Sigma $ is parameter	$ \Sigma $ is unbounded
d	W[1]-hard	W[1]-hard	W[1]-hard
k	W[1]-hard	W[1]-hard	W[1]-hard
d,k	W[1]-hard	W[1]-hard	W[1]-hard
L	FPT	FPT	W[1]-hard
d,k,L	FPT	FPT	W[1]-hard

(Hardness results by [Fellows, Gramm, Niedermeier 2002].)

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d, even if $|\Sigma| = 2$. (In the rest of the talk, Σ is always $\{0, 1\}$.)

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

MAXIMUM INDEPENDENT SET
$$(G,t)$$
 \Rightarrow CLOSEST SUBSTRING $k=2^{2^{O(t)}}$ $d=2^{O(t)}$

Corollary: No $f(k,d) \cdot n^c$ algorithm for CLOSEST SUBSTRING unless FPT=W[1].

Theorem: [D.M.] CLOSEST SUBTRING is W[1]-hard with parameters k and d.

Proof by parameterized reduction from MAXIMUM INDEPENDENT SET.

MAXIMUM INDEPENDENT SET
$$(G,t)$$
 \Rightarrow CLOSEST SUBSTRING $k=2^{2^{O(t)}}$ $d=2^{O(t)}$

Corollary: No $f(k,d) \cdot n^c$ algorithm for CLOSEST SUBSTRING unless FPT=W[1].

Corollary: No $f(k,d) \cdot n^{o(\log d)}$ or $f(k,d) \cdot n^{o(\log \log k)}$ algorithm for Closest Substring unless Maximum Independent Set has an $f(t) \cdot n^{o(t)}$ algorithm.

Corollary: No $f(k,d) \cdot n^{o(\log d)}$ or $f(k,d) \cdot n^{o(\log \log k)}$ algorithm for CLOSEST SUBSTRING unless MAXIMUM INDEPENDENT SET has an $f(t) \cdot n^{o(t)}$ algorithm.

MAXIMUM INDEPENDENT SET has an $f(t) \cdot n^{o(t)}$ algorithm

n variable 3-SAT can be solved in $2^{o(n)}$ time

FPT=M[1]

Corollary: No $f(k,d) \cdot n^{o(\log d)}$ or $f(k,d) \cdot n^{o(\log \log k)}$ algorithm for CLOSEST SUBSTRING unless MAXIMUM INDEPENDENT SET has an $f(t) \cdot n^{o(t)}$ algorithm.

The lower bound on the exponent of n is best possible:

Theorem: [D.M.] CLOSEST SUBSTRING can be solved in $f_1(d,k) \cdot n^{O(\log d)}$ time.

Theorem: [D.M.] CLOSEST SUBSTRING can be solved in $f_2(d,k) \cdot n^{O(\log \log k)}$ time.

Relation to approximability

PTAS: algorithm that produces a $(1 + \epsilon)$ -approximation in time $n^{f(\epsilon)}$.

EPTAS: (efficient PTAS) a PTAS with running time $f(\epsilon) \cdot n^{O(1)}$.

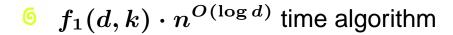
Observation: if $\epsilon=\frac{1}{d+1}$, then a $(1+\epsilon)$ -approximation algorithm can correctly decide whether the optimum is d or d+1

⇒ if an optimization problem has an EPTAS, then it is FPT.

Corollary: CLOSEST SUBSTRING has no EPTAS, unless FPT=W[1].

Corollary: CLOSEST SUBSTRING has no $f(\epsilon) \cdot n^{o(\log \epsilon)}$ time PTAS, unless FPT=M[1].

What's next?



- Some results on hypergraphs
- $f_2(d,k) \cdot n^{O(\log \log k)}$ time algorithm
- Sketch of the completeness proof
- 6 Conclusions
- 6 Lunch

The first algorithm

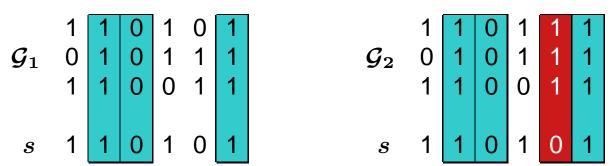
Definition: A solution is a **minimal solution** if $\sum_{i=1}^k d(s, s_i')$ is as small as possible (and $d(s, s_i') \leq d$ for every i).

The first algorithm

Definition: A solution is a **minimal solution** if $\sum_{i=1}^k d(s, s_i')$ is as small as possible (and $d(s, s'_i) \leq d$ for every i).

Definition: A set of length L strings \mathcal{G} generates a length L string s if whenever the strings in \mathcal{G} agree at the *i*-th position, then s has the same character at this position.

Example: \mathcal{G}_1 generates s but \mathcal{G}_2 does not.



First algorithm

Let $\mathcal S$ be the set of all length L substrings of s_1,\ldots,s_k . Clearly, $|\mathcal S|\leq n$.

Lemma: If s is the center string of a minimal solution, then S has a subset G of size $O(\log d)$ that generates s, and the strings in G agree in all but at most $O(d \log d)$ positions.

First algorithm

Let $\mathcal S$ be the set of all length L substrings of s_1,\ldots,s_k . Clearly, $|\mathcal S|\leq n$.

Lemma: If s is the center string of a minimal solution, then S has a subset G of size $O(\log d)$ that generates s, and the strings in G agree in all but at most $O(d \log d)$ positions.

Algorithm:

- Construct the set S.
- 6 Consider every subset $\mathcal{G} \subseteq \mathcal{S}$ of size $O(\log d)$.
- If there are at most $O(d \log d)$ positions in \mathcal{G} where they disagree, then try every center string generated by \mathcal{G} .

Running time: $|\Sigma|^{O(d \log d)} \cdot n^{O(\log d)}$.

Proof of the lemma

Lemma: If s is the center string of a minimal solution, then S has a subset G of size $O(\log d)$ that generates s, and the strings in G agree in all but at most $O(d \log d)$ positions.

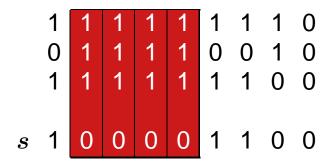
Proof: Let (s, s'_1, \ldots, s'_k) be a minimal solution. We show that $\{s'_1, \ldots, s'_k\}$ has a $O(\log d)$ subset that generates s.

The **bad positions** of a set of strings are the positions where they agree, but s is different. Clearly, $\{s'_1\}$ has at most d bad positions.

We show that if a set of strings has p bad positions, then we can decrease the number of bad positions to p/2 by adding a string $s_i' \Rightarrow$ no bad position remains after adding $\log d$ strings.

Proof of the lemma (cont.)

Example: there are 4 bad positions:

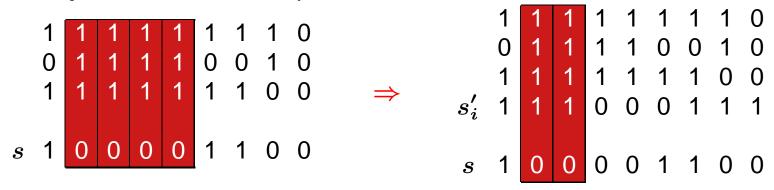


To make a bad position non-bad, we have to add a string that disagree with the previous strings at this position.

There is a string s_i' that disagree on at least half of the bad positions, otherwise we could change s to make $\sum_{i=1}^k d(s, s_i')$ smaller.

Proof of the lemma (cont.)

Example: there are 4 bad positions:

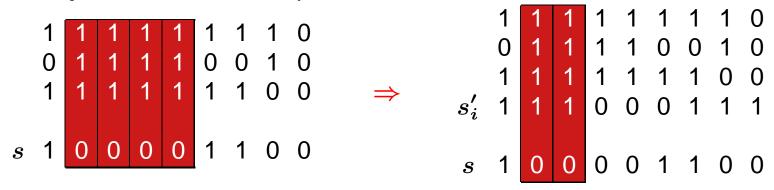


To make a bad position non-bad, we have to add a string that disagree with the previous strings at this position.

There is a string s_i' that disagree on at least half of the bad positions, otherwise we could change s to make $\sum_{i=1}^k d(s, s_i')$ smaller.

Proof of the lemma (cont.)

Example: there are 4 bad positions:



To make a bad position non-bad, we have to add a string that disagree with the previous strings at this position.

There is a string s_i' that disagree on at least half of the bad positions, otherwise we could change s to make $\sum_{i=1}^k d(s, s_i')$ smaller.

(Since every s_i' differs from s on at most d positions, the $O(\log d)$ strings will agree on all but at most $O(d \log d)$ positions.)

(Fractional) edge covering

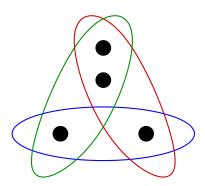
Hypergraph: each edge is an arbitrary set of vertices.

An **edge cover** is a subset of the edges such that every vertex is covered by at least one edge.

 $\varrho(H)$: size of the smallest edge cover.

A **fractional edge cover** is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

 $\varrho^*(H)$: smallest total weight of a fractional edge cover.



(Fractional) edge covering

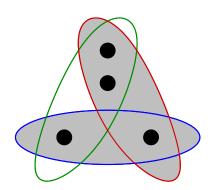
Hypergraph: each edge is an arbitrary set of vertices.

An **edge cover** is a subset of the edges such that every vertex is covered by at least one edge.

 $\varrho(H)$: size of the smallest edge cover.

A **fractional edge cover** is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

 $\varrho^*(H)$: smallest total weight of a fractional edge cover.



$$\varrho(H)=2$$

(Fractional) edge covering

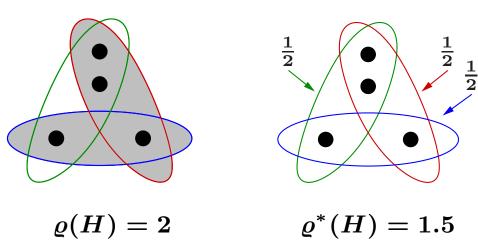
Hypergraph: each edge is an arbitrary set of vertices.

An **edge cover** is a subset of the edges such that every vertex is covered by at least one edge.

 $\varrho(H)$: size of the smallest edge cover.

A **fractional edge cover** is a weight assignment to the edges such that every vertex is covered by total weight at least 1.

 $\varrho^*(H)$: smallest total weight of a fractional edge cover.

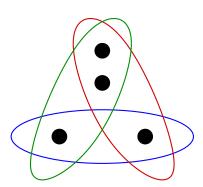


A **stable set** is a subset of the vertices such that every edge contains at most one selected vertex.

 $\alpha(H)$: size of the largest stable set.

A **fractional stable set** is a weight assignment to the vertices such that the weight covered by each edge is at most 1.

 $\alpha^*(H)$: largest total weight of a fractional stable set.

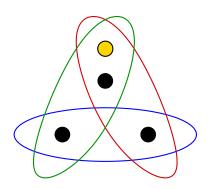


A **stable set** is a subset of the vertices such that every edge contains at most one selected vertex.

 $\alpha(H)$: size of the largest stable set.

A **fractional stable set** is a weight assignment to the vertices such that the weight covered by each edge is at most 1.

 $\alpha^*(H)$: largest total weight of a fractional stable set.



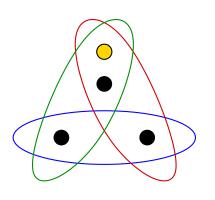
$$\alpha(H)=1$$

A **stable set** is a subset of the vertices such that every edge contains at most one selected vertex.

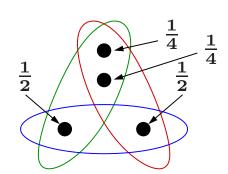
 $\alpha(H)$: size of the largest stable set.

A **fractional stable set** is a weight assignment to the vertices such that the weight covered by each edge is at most 1.

 $\alpha^*(H)$: largest total weight of a fractional stable set.



$$\alpha(H) = 1$$



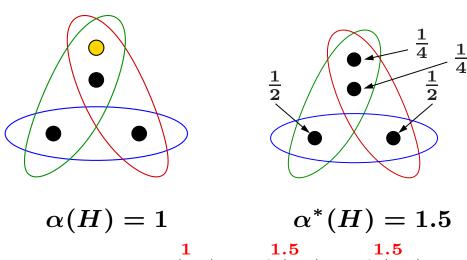
$$\alpha^*(H) = 1.5$$

A **stable set** is a subset of the vertices such that every edge contains at most one selected vertex.

 $\alpha(H)$: size of the largest stable set.

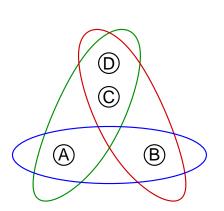
A **fractional stable set** is a weight assignment to the vertices such that the weight covered by each edge is at most 1.

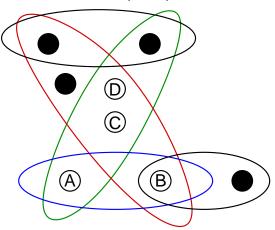
 $\alpha^*(H)$: largest total weight of a fractional stable set.



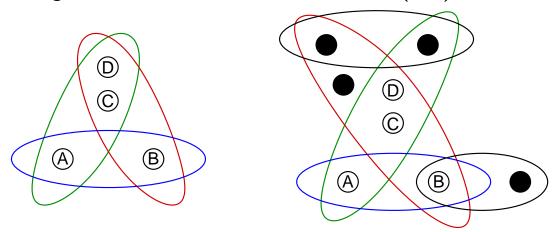
By linear programming duality: $\alpha(H) \leq \alpha^*(H) = \varrho^*(H) \leq \varrho(H)$

Hypergraph H_1 appears in H_2 as subhypergraph at vertex set X, if there is a mapping π between X and the vertices of H_1 such that for each edge E_1 of H_1 , there is an edge E_2 of H_2 with $E_2 \cap X = \pi(E_1)$.





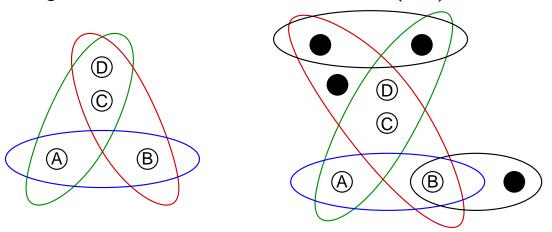
Hypergraph H_1 appears in H_2 as subhypergraph at vertex set X, if there is a mapping π between X and the vertices of H_1 such that for each edge E_1 of H_1 , there is an edge E_2 of H_2 with $E_2 \cap X = \pi(E_1)$.



We would like to enumerate all the places where H_1 appears in H_2 . Assume that H_2 has m edges and each has size at most ℓ .

Lemma: (easy) H_1 can appear in H_2 at max. $f(\ell, \varrho(H_1)) \cdot m^{\varrho(H_1)}$ places.

Hypergraph H_1 appears in H_2 as subhypergraph at vertex set X, if there is a mapping π between X and the vertices of H_1 such that for each edge E_1 of H_1 , there is an edge E_2 of H_2 with $E_2 \cap X = \pi(E_1)$.



We would like to enumerate all the places where H_1 appears in H_2 . Assume that H_2 has m edges and each has size at most ℓ .

Lemma: (easy) H_1 can appear in H_2 at max. $f(\ell, \varrho(H_1)) \cdot m^{\varrho(H_1)}$ places. **Lemma:** [follows from Friedgut and Kahn, 1998] H_1 can appear in H_2 at max. $f(\ell, \varrho^*(H_1)) \cdot m^{\varrho^*(H_1)}$ places.

Lemma: H_1 can appear in H_2 at max. $f(\ell, \varrho^*(H_1)) \cdot m^{\varrho^*(H_1)}$ places.

We want to turn this result into an algorithm (proof is based on Shearer's Lemma, not algorithmic).

Lemma: H_1 can appear in H_2 at max. $f(\ell, \varrho^*(H_1)) \cdot m^{\varrho^*(H_1)}$ places.

We want to turn this result into an algorithm (proof is based on Shearer's Lemma, not algorithmic).

Algorithm: Let $\{1, 2, \ldots, r\}$ be the vertices of H_1 , and let $H_1^{(i)}$ be the induced subhypergraph of H_1 on $\{1, 2, \ldots, i\}$. For $i = 1, 2, \ldots, r$, the algorithm enumerates the list L_i of all the places where $H_1^{(i)}$ appears in H_2 .

- 6 L_{1} is trivial.
- 6 L_{i+1} is easy to construct based on L_{i} .
- Since $\varrho^*(H_1^{(i)}) \leq \varrho^*(H_1)$, the list L_i cannot be too large.

Lemma: We can enumerate in $f(\ell, \varrho^*(H_1)) \cdot m^{O(\varrho^*(H_1))}$ time all the places where H_1 appears in H_2 .

Half-covering

Defintion: A hypergraph has the half-covering property if for every set X of vertices there is an edge Y with $|X \cap Y| > |X|/2$.

Lemma: If a hypergraph H with m edges has the half-covering property, then $\varrho^*(H) = O(\log \log m)$.

(The $O(\log \log m)$ is best possible.)

Proof: by probabilistic arguments.

Reminder

Input: Strings s_1, \ldots, s_k over Σ , integers L and d

Possible parameters: $k, L, d, |\Sigma|$

Find: — string s of length L (center string),

— a length L substring s'_i of s_i for every i

such that $d(s, s_i') \leq d$ for every i

The second algorithm

First step: guess the correct $s'_1 (\leq n \text{ possibilities})$.

Consider the set $\mathcal S$ of all length L substrings of s_1,\ldots,s_k . We turn $\mathcal S$ into a hypergraph H on vertices $\{1,2,\ldots,L\}$: if a string in $\mathcal S$ differs from s_1' on positions $P\subseteq\{1,2,\ldots,L\}$, then let P be an edge of H.

Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

Algorithm: Consider every hypergraph H_0 as above and enumerate all the places where H_0 appears in H.

The second algorithm (cont.)

Algorithm:

- Construct the hypergraph H.
- 6 Enumerate every hypergraph H_0 with at most d vertices and k edges (constant number).
- 6 Check if H_0 has the half-covering property.
- If so, then enumerate every place P where H_0 appears in H. (max. $pprox n^{O(arrho^*(H_0))} = n^{O(\log\log k)}$ places).
- 6 For each place P, check if there is a good center string that differs from s_1' only at P.

Running time: $f(k,d,\Sigma) \cdot n^{O(\log \log k)}$.

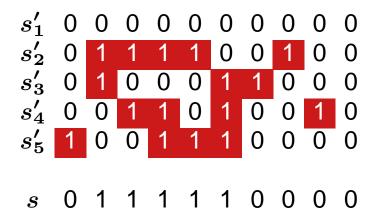
Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

Proof:

Consider a minimal solution.

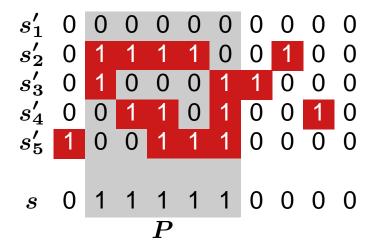
Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

- 6 Consider a minimal solution.
- 6 The solution gives k-1 edges of H.



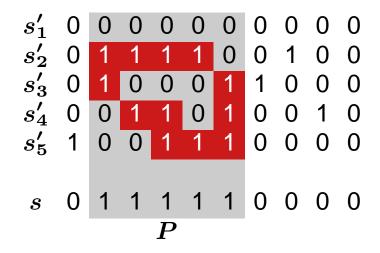
Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

- 6 Consider a minimal solution.
- 6 The solution gives k-1 edges of H.
- 6 P: the positions where s_1' and s differ.



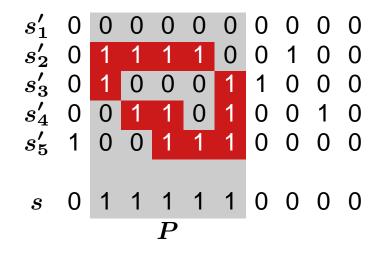
Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

- 6 Consider a minimal solution.
- 6 The solution gives k-1 edges of H.
- 6 P: the positions where s_1' and s differ.
- 6 Restrict the k-1 edges to $P\Rightarrow H_0$.



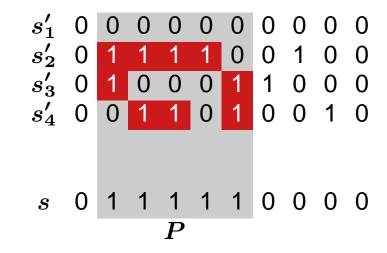
Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

- Consider a minimal solution.
- 6 The solution gives k-1 edges of H.
- 6 P: the positions where s_1' and s differ.
- 6 Restrict the k-1 edges to $P\Rightarrow H_0$.
- 6 Claim: H_0 has the half-covering property.



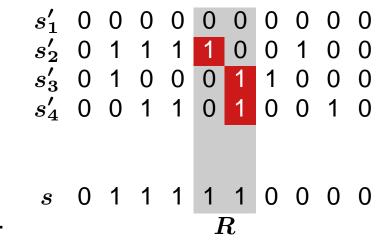
Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

- Consider a minimal solution.
- 6 The solution gives k-1 edges of H.
- 6 P: the positions where s'_1 and s differ.
- 6 Restrict the k-1 edges to $P\Rightarrow H_0$.
- \circ Claim: H_0 has the half-covering property.



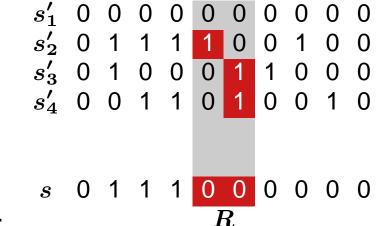
Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

- 6 Consider a minimal solution.
- 6 The solution gives k-1 edges of H.
- 6 P: the positions where s_1' and s differ.
- 6 Restrict the k-1 edges to $P\Rightarrow H_0$.
- 6 Claim: H_0 has the half-covering property.
- 6 If half-covering is violated for $R \subseteq P \dots$



Lemma: Assume that in a minimal solution s differs from s'_1 on positions P. Then there is a hypergraph H_0 with at most d vertices and k edges having the half-covering property such that H_0 appears at P in H.

- 6 Consider a minimal solution.
- 6 The solution gives k-1 edges of H.
- 6 P: the positions where s_1' and s differ.
- 6 Restrict the k-1 edges to $P\Rightarrow H_0$.
- 6 Claim: H_0 has the half-covering property.
- 6 If half-covering is violated for $R\subseteq P\dots$
- $6 \dots$ then we can change s on R.



Theorem: CLOSEST SUBTRING is W[1]-hard with parameters k and d.

The reduction is based on the proof of previous weaker result:

Theorem: [Fellows, Gramm, Niedermeier, 2002] CLOSEST SUBTRING is W[1]-hard with parameter k.

Theorem: CLOSEST SUBTRING is W[1]-hard with parameters k and d.

The reduction is based on the proof of previous weaker result:

Theorem: [Fellows, Gramm, Niedermeier, 2002] CLOSEST SUBTRING is W[1]-hard with parameter k.

Idea 1: Every string s_i is divided into blocks of length L. We ensure that s_i' is one complete block of s_i .

How: Each block starts with the front tag $(1^x0)^y$, and there is a special string having only one block.

Reduction from MAXIMUM INDEPENDENT SET.

Idea 2: The center string (and each block) is divided into t segments of length n. We ensure that each segment contains exactly one symbol "1" and these t symbols describe an independent set of size t.

How: string $s_{i,j}$ ensures that vertex v_i and v_j are not connected. The blocks of $s_{i,j}$ contain 1's only in segments i and j, and there is a block for each valid combination.

Dirty trick to ensure that there is at least one "1" in each segment, but this requires large d.

New idea: Instead of k segments of size n,

- $^{f 6}$ vertex $m{v_1}$ is described by a segment of size $m{n}$
- 6 vertex v_{2} is described by 2 segments of size $n^{1/2}$
- 6 vertex v_{3} is described by 4 segments of size $n^{1/4}$
- <u>6</u> ...

 \Rightarrow we have $2^t - 1$ segments.

For each subset S of the blocks, there is a string that makes it impossible that there is no "1" in S, but there is at least one in every other segment.

$$\Rightarrow k = 2^{2^{O(k)}}$$

Conclusions

- Complete parameterized analysis of CLOSEST SUBSTRING.
- Tight bounds for subexponential algorithms.
- "Weak" parameterized reduction ⇒ subexponential algorithms?
- Subexponential algorithms ⇒ proving optimality using parameterized complexity?
- Other applications of fractional edge cover number and finding hypergraphs?