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Parameterized problems

Main idea
Instead of expressing the running time as a function T (n) of n, we
express it as a function T (n, k) of the input size n and some
parameter k of the input.

In other words: we do not want to be efficient on all inputs of size
n, only for those where k is small.

What can be the parameter k?
The size k of the solution we are looking for.
The maximum degree of the input graph.
The dimension of the point set in the input.
The length of the strings in the input.
The length of clauses in the input Boolean formula.
. . .

2



Parameterized problems

Main idea
Instead of expressing the running time as a function T (n) of n, we
express it as a function T (n, k) of the input size n and some
parameter k of the input.

In other words: we do not want to be efficient on all inputs of size
n, only for those where k is small.
What can be the parameter k?

The size k of the solution we are looking for.
The maximum degree of the input graph.
The dimension of the point set in the input.
The length of the strings in the input.
The length of clauses in the input Boolean formula.
. . .

2



Parameterized complexity
Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
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Parameterized complexity
Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm exists No no(k) algorithm
exists known
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Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1
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Bounded search tree method
Algorithm for Vertex Cover:

e1 = u1v1

u1 v1

e2 = u2v2

u2 v2
≤ k

Height of the search tree ≤ k ⇒ at most 2k leaves ⇒ 2k · nO(1)

time algorithm.
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Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if
there is an f (k)nc time algorithm for some constant c .

Main goal of parameterized complexity: to find FPT problems.

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .
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W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is
W[1]-hard, then the problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:
Finding a clique/independent set of size k .
Finding a dominating set of size k .
Finding k pairwise disjoint sets.
. . .

6



Reactions to FPT

Typical graph algorithms researcher:

Hmm... Is my favorite graph problem FPT parameterized by the
size of the solution/number of objects/etc. ?

Typical CSP researcher:

Sat is trivially FPT parameterized by the number of variables.
So why should I care?
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Parameterizing Sat

Trivial: 3Sat is FPT parameterized by the number of variables
(2k · nO(1) time algorithm).

Trivial: 3Sat is FPT parameterized by the number of clauses
(23k · nO(1) time algorithm).

What about Sat parameterized by the number k of clauses?
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Parameterizing Sat

Trivial: 3Sat is FPT parameterized by the number of variables
(2k · nO(1) time algorithm).

Trivial: 3Sat is FPT parameterized by the number of clauses
(23k · nO(1) time algorithm).

What about Sat parameterized by the number k of clauses?

Algorithm 1: Problem kernel

If a clause has more than k literals: can be ignored, removing
it does not make the problem any easier.
If every clause has at most k literals: there are at most k2

variables, use brute force.
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Parameterizing Sat

Trivial: 3Sat is FPT parameterized by the number of variables
(2k · nO(1) time algorithm).

Trivial: 3Sat is FPT parameterized by the number of clauses
(23k · nO(1) time algorithm).

What about Sat parameterized by the number k of clauses?

Algorithm 2: Bounded search tree

Pick a variable occuring both positively and negatively, branch
on setting it to 0 or 1.
In both branches, the number of clauses strictly decreases ⇒
search tree of size 2k .
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Max Sat

Max Sat: Given a formula, satisfy at least k clauses.
Polynomial for fixed k : guess the k clauses, use the previous
algorithm to check if they are satisfiable.
Is the problem FPT?

YES: If there are at least 2k clauses, a random assignment
satisfies k clauses on average. Otherwise, use the previous
algorithm.

This is not very insightful, can we say anything more interesting?
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Above average Max Sat

m/2 satisfiable clauses are guaranteed. But can we satisfy m/2 + k
clauses?

Above average Max Sat (satisfy m/2 + k clauses) is FPT
[Mahajan and Raman 1999]

Above average Max r-Sat (satisfy (1− 1/2r )m + k clauses)
is FPT [Alon et al. 2010]

Satisfying
∑m

i=1(1− 1/2ri ) + k clauses is NP-hard for k = 2
[Crowston et al. 2012]

Above average Max r-Lin-2 (satisfy m/2 + k linear
equations) is FPT [Gutin et al. 2010]

Permutation CSPs such as Maximum Acyclic Subgraph
and Betweenness [Gutin et al. 2010].
. . .
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Boolean constraint satisfaction problems
Let Γ be a set of Boolean relations. An Γ-formula is a conjunction
of relations in Γ:

R1(x1, x4, x5) ∧ R2(x2, x1) ∧ R1(x3, x3, x3) ∧ R3(x5, x1, x4, x1)

SAT(Γ)

Given: an Γ-formula ϕ

Find: a variable assignment
satisfying ϕ

Γ = {a 6= b} ⇒ SAT(Γ) = 2-coloring of a graph
Γ = {a ∨ b, a ∨ b̄, ā ∨ b̄} ⇒ SAT(Γ) = 2SAT
Γ = {a ∨ b ∨ c , a ∨ b ∨ c̄ , a ∨ b̄ ∨ c̄ , ā ∨ b̄ ∨ c̄} ⇒ SAT(Γ) = 3SAT

Question: SAT(Γ) is polynomial time solvable for which Γ?
It is NP-complete for which Γ?
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Schaefer’s Dichotomy Theorem (1978)

Theorem [Schaefer 1978]
For every Γ, the SAT(Γ) problem is polynomial-time solvable if one
of the following holds, and NP-complete otherwise:

Every relation is satisfied by the all 0 assignment
Every relation is satisfied by the all 1 assignment
Every relation can be expressed by a 2SAT formula
Every relation can be expressed by a Horn formula
Every relation can be expressed by an anti-Horn formula
Every relation is an affine subspace over GF(2)

This is surprising for two reasons:
this family does not contain NP-intermediate problems and
the boundary of polynomial-time and NP-hard problems can
be cleanly characterized.
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Other dichotomy results

Approximability of Max-Sat, Min-Unsat
[Khanna et al. 2001]

Approximability of MaxOnes-Sat, MinOnes-Sat
[Khanna et al. 2001]

Generalization to 3-valued variables [Bulatov 2002]

Inverse satisfiability [Kavvadias and Sideri, 1999]

etc.

Celebrated open question: generalize Schaefer’s result to relations
over variables with non-Boolean, but fixed domain.
CSP(Γ): similar to SAT(Γ), but with non-Boolean domain.

Conjecture [Feder and Vardi 1998]

Let Γ be a finite set of relations over an arbitrary fixed domain.
Then CSP(Γ) is either polynomial-time solvable or NP-complete.

13



Other dichotomy results

Approximability of Max-Sat, Min-Unsat
[Khanna et al. 2001]

Approximability of MaxOnes-Sat, MinOnes-Sat
[Khanna et al. 2001]

Generalization to 3-valued variables [Bulatov 2002]

Inverse satisfiability [Kavvadias and Sideri, 1999]

etc.

Celebrated open question: generalize Schaefer’s result to relations
over variables with non-Boolean, but fixed domain.
CSP(Γ): similar to SAT(Γ), but with non-Boolean domain.

Conjecture [Feder and Vardi 1998]

Let Γ be a finite set of relations over an arbitrary fixed domain.
Then CSP(Γ) is either polynomial-time solvable or NP-complete.

13



Weighted problems

Parameterizing by the weight (= number of 1s) of the solution.
MinOnes-Sat(Γ) :
Find a satisfying assignment with weight at most k
ExactOnes-Sat(Γ) :
Find a satisfying assignment with weight exactly k
MaxOnes-Sat(Γ) :
Find a satisfying assignment with weight at least k

The first two problems can be always solved in nO(k) time, and the
third one as well if Sat(Γ) is in P.

Goal: Characterize which languages Γ make these problems FPT.
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ExactOnes-Sat(Γ)

Theorem [Marx 2004]

ExactOnes-Sat(Γ) is FPT if Γ is weakly separable and
W[1]-hard otherwise.

Examples of weakly separable constraints:
affine constraints
“0 or 5 out of 8”

Examples of not weakly separable constraints:
(¬x ∨ ¬y)

x → y
“0 or 4 out of 8”
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Larger domains

What is the generalization of ExactOnes-Sat(Γ) to larger
domains?

1 Find a solution with exactly k nonzero values
(zeros constraint).

2 Find a solution where nonzero value i appears exactly ki times
(cardinality constraint).

Theorem [Bulatov and M. 2011]

For every Γ closed under substituting constants, CSP(Γ) with zeros
constraint is FPT or W[1]-hard.

(E.g., if R(x1, x2, x3, x4) ∈ Γ, then R(x1, 3, x3, 0) ∈ Γ.)
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Larger domains

The following two problems are equivalent:
CSP(Γ) with cardinality constraint, where Γ contains only the
relation R = {00, 10, 02}.
Biclique: Find a complete bipartite graph with k vertices on
each side. The fixed-parameter tractability of Biclique is a
notorious open problem (conjectured to be hard).

So the best we can get at this point:

Theorem [Bulatov and M. 2011]

For every Γ closed under substituting constants, CSP(Γ) with
cardinality constraint is FPT or Biclique-hard.
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MinOnes-Sat(Γ)

The bounded-search tree algorithm for Vertex Cover can be
generalized to MinOnes-Sat.

Observation
MinOnes-Sat(Γ) is FPT for every finite Γ.

But can we solve the problem simply by preprocessing?

Definition
A polynomial kernel is a polynomial-time reduction creating an
equivalent instance whose size is polynomial in k .

Goal: Characterize the languages Γ for which MinOnes-Sat(Γ)
has a polynomial kernel.
Example: the special case d-Hitting Set (where Γ contains only
R = x1 ∨ · · · ∨ xd ) has a polynomial kernel.
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Sunflower lemma
Definition
Sets S1, S2, . . . , Sk form a sunflower if the sets
Si \ (S1 ∩ S2 ∩ · · · ∩ Sk) are disjoint.

petal center

Lemma [Erdős and Rado, 1960]

If the size of a set system is greater than (p − 1)d · d ! and it
contains only sets of size at most d , then the system contains a
sunflower with p petals.
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Sunflowers and d-Hitting Set

d-Hitting Set
Given a collection S of sets of size at most d and an integer k , find
a set S of k elements that intersects every set of S.

petal center

Reduction Rule
Suppose more than k + 1 sets form a sunflower.

If the sets are disjoint ⇒ No solution.
Otherwise, keep only k + 1 of the sets.
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Dichotomy for kernelization

Kernelization for general MinOnes-Sat(Γ) generalizes the
sunflower reduction, and requires that Γ is “mergeable.”

Theorem [Kratsch and Wahlström 2010]

(1) If MinOnes-Sat(Γ) is polynomial-time solvable or Γ is
mergeable, then MinOnes-Sat(Γ) has a polynomial
kernelization.

(2) If MinOnes-Sat(Γ) is NP-hard and Γ is not mergebable,
then MinOnes-Sat(Γ) does not have a polynomial kernel,
unless the polynomial hierarchy collapses.
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Dichotomy for kernelization

Similar results for other problems:

Theorem [Kratsch, M., Wahlström 2010]

If Γ has property X , then MaxOnes-Sat(Γ) has a polynomial
kernel, and otherwise no (unless the polynomial hierarchy
collapses).
If Γ has property Y , then ExactOnes-Sat(Γ) has a
polynomial kernel, and otherwise no (unless the polynomial
hierarchy collapses).
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Local search

Local search
Walk in the solution space by iteratively replacing the current
solution with a better solution in the local neighborhood.

Problem: local search can stop at a local optimum (no better
solution in the local neighborhood).

More sophisticated variants: simulated annealing, tabu search, etc.
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Local neighborhood

The local neighborhood is defined in a problem-specific way:
For TSP, the neighbors are obtained by swapping 2 cities or
replacing 2 edges.
For a problem with 0-1 variables, the neighbors are obtained
by flipping a single variable.
For subgraph problems, the neighbors are obtained by
adding/removing one edge.

More generally: reordering k cities, flipping k variables, etc.

Larger neighborhood (larger k):
algorithm is less likely to get stuck in a local optimum,
it is more difficult to check if there is a better solution in the
neighborhood.
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Searching the neighborhood

Question: Is there an efficient way of finding a better solution in
the k-neighborhood?

We study the complexity of the following problem:

k-step Local Search

Input: instance I , solution x , integer k
Find: A solution x ′ with dist(x , x ′) ≤ k that is

“better” than x .

Remark 1: If the optimization problem is hard, then it is unlikely
that this local search problem is polynomial-time solvable:
otherwise we would be able to find an optimum solution.

Remark 2: Size of the k-neighborhood is usually nO(k) ⇒ local
search is polynomial-time solvable for every fixed k , but this is not
practical for larger k .
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k-step Local Search

The question that we want to investigate:

Question
Is k-step Local Search FPT for a particular problem?

If yes, then local search algorithms can consider larger
neighborhoods, improving their efficiency.

Important: k is the number of allowed changes and not the size of
the solution. Relevant even if solution size is large.

Examples:
Local search is easy: it is FPT to find a larger independent set
in a planar graph with at most k exchanges [Fellows et al. 2008].
Local search is hard: it is W[1]-hard to check if it is possible to
obtain a shorter TSP tour by replacing at most k arcs
[M. 2008].
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Local search for Sat

Simple satisfiability:

Theorem [Dantsin et al. 2002]

Finding a satisfying assignment in the k-neighborhood for q-Sat is
FPT.

An optimization problem:

Theorem [Szeider 2011]

Finding a better assignment in the k-neighborhood for Max 2-Sat
is W[1]-hard.

A family of problems:

Theorem [Krokhin and M. 2008]

Dichotomy results for MinOnes-Sat(Γ).

27



Local search for Sat

Simple satisfiability:

Theorem [Dantsin et al. 2002]

Finding a satisfying assignment in the k-neighborhood for q-Sat is
FPT.

An optimization problem:

Theorem [Szeider 2011]

Finding a better assignment in the k-neighborhood for Max 2-Sat
is W[1]-hard.

A family of problems:

Theorem [Krokhin and M. 2008]

Dichotomy results for MinOnes-Sat(Γ).

27



Local search for Sat

Simple satisfiability:

Theorem [Dantsin et al. 2002]

Finding a satisfying assignment in the k-neighborhood for q-Sat is
FPT.

An optimization problem:

Theorem [Szeider 2011]

Finding a better assignment in the k-neighborhood for Max 2-Sat
is W[1]-hard.

A family of problems:

Theorem [Krokhin and M. 2008]

Dichotomy results for MinOnes-Sat(Γ).

27



Strict vs. permissive

Something strange: for some problems (e.g., Vertex Cover on
bipartite graphs), local search is hard, even though the problem is
polynomial-time solvable.

Strict k-step Local Search

Input: instance I , solution x , integer k
Find: A solution x ′ with dist(x , x ′) ≤ k that is

“better” than x .

Permissive k-step Local Search

Input: instance I , solution x , integer k
Find: Any solution x ′ “better” than x , if there is

such a solution at distance at most k .
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Constraint Satisfaction Problems (CSP)

A CSP instance is given by describing the
variables,
domain of the variables,
constraints on the variables.

Task: Find an assignment that satisfies every constraint.

I = C1(x1, x2, x3) ∧ C2(x2, x4) ∧ C3(x1, x3, x4)

Examples:
3Sat: 2-element domain, every constraint is ternary
Vertex Coloring: domain is the set of colors, binary
constraints
k-Clique (in graph G ): k variables, domain is the vertices of
G ,
(k
2

)
binary constraints

29
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Task: Find an assignment that satisfies every constraint.

I = C1(x1, x2, x3) ∧ C2(x2, x4) ∧ C3(x1, x3, x4)

Examples:
3Sat: 2-element domain, every constraint is ternary
Vertex Coloring: domain is the set of colors, binary
constraints
k-Clique (in graph G ): k variables, domain is the vertices of
G ,
(k
2

)
binary constraints
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Graphs and hypergraphs related to CSP
Gaifman/primal graph: vertices are the variables, two variables
are adjacent if they appear in a common constraint.

Incidence graph: bipartite graph, vertices are the variables and
constraints.

Hypergraph: vertices are the variables, constraints are the
hyperedges.

I = C1(x2, x1, x3) ∧ C2(x4, x3) ∧ C3(x1, x4, x2)

C1 C3

C2
HypergraphIncidence graphPrimal graph

x3

x2

x1

x4 x4

x4

C3
x3

x2

x1

C2C1

x3x2x1
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Treewidth and CSP

Theorem [Freuder 1990]

For every fixed k , CSP can be solved in polynomial time if the
primal graph of the instance has treewidth at most k .

Note: The running time is |D|O(k), which is not FPT
parameterized by treewidth.

We know that binary CSP(G) is polynomial-time solvable for every
class G of graphs with bounded treewidth. Are there other
polynomial cases?
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Tractable structures

Question: Which graph properties lead to polynomial-time
solvable CSP instances?

Systematic study:
Binary CSP: Every constraint is of arity 2.
CSP(G): problem restricted to binary CSP instances with
primal graph in G.
Which classes G make CSP(G) polynomial-time solvable?
E.g., if G is the set of trees, then it is easy, if G is the set of
3-regular graphs, then it is W[1]-hard parameterized by the
number of variables (hence unlikely to be polynomial-time
solvable).
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Dichotomy for binary CSP
Complete answer for every class G:

Theorem [Grohe-Schwentick-Segoufin 2001]
Let G be a computable class of graphs.
(1) If G has bounded treewidth, then CSP(G) is

polynomial-time solvable.
(2) If G has unbounded treewidth, then CSP(G) is

W[1]-hard parameterized by number of variables.

Note: In (2), CSP(G) is not necessarily NP-hard.
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Dichotomy for binary CSP
Complete answer for every class G:

Theorem [Grohe-Schwentick-Segoufin 2001]
Let G be a recursively enumerable class of graphs. Assuming
FPT 6= W[1], the following are equivalent:

Binary CSP(G) is polynomial-time solvable.
Binary CSP(G) is FPT parameterized by the number of
variables.
G has bounded treewidth.

Note: Fixed-parameter tractability does not give us more power
here than polynomial-time solvability!
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Combination of parameters

CSP can be parameterized by many (combination of) parameters.
Examples:

CSP is W[1]-hard parameterized by the treewidth of the primal
graph.
CSP is FPT parameterized by the treewidth of the primal
graph and the domain size.

[Samer and Szeider 2010] considered 11 parameters and determined
the complexity of CSP by any subset of these parameters.

tw: treewidth of primal graph
twd : tw of dual graph
tw∗: tw of incidence graph
vars: number of variables
dom: domain size
cons: number of constraints

arity: maximum arity
dep: largest relation size
deg: largest variable occurrence
ovl: largest overlap between scopes
diff: largest difference between scopes
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Summary

Fixed-parameter tractability results for Sat and CSPs do exist.
Choice of parameter is not obvious.
Above average parameterization.
Local search.
Parameters related to the graph of the constraints.
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