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Classes of graphs

Classes of graphs can be described by
1 what they do not have,

(excluded structures)
2 how they look like

(constructions and decompositions).

In general, the second description is more useful for algorithmic
purposes.
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Classes of graphs

Example: Trees
1 Do not contain cycles (and connected)
2 Have a tree structure.

Example: Bipartite graphs
1 Do not contain odd cycles,
2 Edges going only between two classes.

Example: Chordal graphs
1 Do not contain induced cycles,
2 Clique-tree decomposition and simplicial

ordering.
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Graph Structure Theory

“Graph structure theory” usually refers to the theory developed by
Robertson and Seymour on graphs excluding minors.

Definition
Graph H is a minor of G (H ≤ G ) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv
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Excluding minors

Theorem [Wagner 1937]

A graph is a planar if and only if it excludes K5 and K3,3 as a minor.

K5 K3,3

How do graphs excluding H (or H1, . . . , Hk) look like?
What other classes can be defined this way?

The work of Robertson and Seymour gives some kind of
combinatorial answer to that and provides tools for the related
algorithmic questions.
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Minor closed properties

Definition
A set G of graphs is minor closed if G ∈ G and H ≤ G implies
H ∈ G.

Examples of minor closed properties:
planar graphs
graphs that can be drawn on the torus
acyclic graphs (forests)
graphs having no cycle longer than k
empty graphs

Examples of not minor closed properties:
complete graphs
regular graphs
bipartite graphs

6



Wagner’s conjecture

Let G be a minor closed class of graphs. Then G can be
characterized by the minimal obstructions:

Let H ∈ F if H 6∈ G, but every proper minor of H is in G.

G ∈ G ⇐⇒ ∀H ∈ F ,H 6≤ G

Theorem [Robertson and Seymour]

Every class G closed under taking minors has a finite set F of
minimal obstructions.
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Graph Minors Theorem

Well-quasi-ordering:

Theorem [Robertson and Seymour]

Every class G closed under taking minors has a finite set F of
minimal obstructions.

Minor testing:

Theorem [Robertson and Seymour]

For every fixed graph H, there is an O(n3) time algorithm for
testing whether H is a minor of the given graph G .

Corollary: For every minor closed property G, there is an
O(n3) time algorithm for testing whether a given graph G is
in G.
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Graph Minors results

The proof spans around 400 pages in the paper series “Graph
Minors I–XXIII”.
The size of the obstruction sets and the constants in the
algorithms can be astronomical even for simple properties.

Why should you know about this theory?
The theory introduces simpler concepts and techniques that
are useful on their own in many contexts.
Some of the more complicated results can be formulated as
self-contained powerful statements that can be used as a black
box.
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Graph Minors Theorem

Treewidth
Grid theorems
Planar graphs

Structure theorem

Minor testing Well-quasi-ordering
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Fixed-parameter tractability

Main definition
A parameterized problem is fixed-parameter tractable (FPT) if
there is an f (k)nc time algorithm for some constant c .

Main goal of parameterized complexity: to find FPT problems.

Examples of NP-hard problems that are FPT:
Finding a vertex cover of size k .
Finding a path of length k .
Finding k disjoint triangles.
Drawing the graph in the plane with k edge crossings.
Finding disjoint paths that connect k pairs of points.
. . .
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Fixed-parameter tractability

Downey and Fellows started the systematic investigation of
fixed-parameter tractability and its hardness theory in the 80s.
nf (k) vs. f (k) · nc .
Many of the algorithmic results from graph structure theory
can be formulated and appreciated using the language of
fixed-parameter tractability.
The original motivation of Downey and Fellows comes from
graph structure theory!
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Outline

Treewidth
Definition, algorithms, properties.
Applications

Graphs on surfaces
The Graph Structure Theorem
Minor Testing
Well-quasi-ordering
Other containment relations
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The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

6

644

5

2

Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.
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The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.
Constraint: Everyone should be having fun.

Do not invite a colleague and
his direct boss at the same time!

2

5

4 4 6

6
Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.
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Solving the Party Problem

Dynamic programming paradigm:
We solve a large number of subproblems that depend on each
other. The answer is a single subproblem.

Subproblems:
Tv : the subtree rooted at v .

A[v ]: max. weight of an independent set in Tv
B[v ]: max. weight of an independent set in Tv

that does not contain v

Goal: determine A[r ] for the root r .

15



Solving the Party Problem

Subproblems:
Tv : the subtree rooted at v .

A[v ]: max. weight of an independent set in Tv
B[v ]: max. weight of an independent set in Tv

that does not contain v

Recurrence:
Assume v1, . . . , vk are the children of v . Use the recurrence
relations

B[v ] =
∑k

i=1 A[vi ]

A[v ] = max{B[v ] , w(v) +
∑k

i=1 B[vi ]}

The values A[v ] and B[v ] can be calculated in a bottom-up order
(the leaves are trivial).
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Treewidth
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Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

hgfe

a

b c d

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.
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Treewidth

Fact: treewidth = 1 ⇐⇒ graph is a forest

aa

b

d

c

f ge

h

aa

b

d

c

f ge

h

a,b a,c

b,d b,e c,g

e,h

⇒
c,f

Exercise: A cycle cannot have a tree decomposition of width 1.
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Treewidth — outline

1 Basic algorithms
2 Combinatorial properties
3 Applications
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Finding tree decompositions

Hardness:

Theorem [Arnborg, Corneil, Proskurowski 1987]

It is NP-hard to determine the treewidth of a graph (given a graph
G and an integer w , decide if the treewidth of G is at most w).

Fixed-parameter tractability:

Theorem [Bodlaender 1996]

There is a 2O(w3) · n time algorithm that finds a tree decomposition
of width w (if exists).

Consequence:
If we want an FPT algorithm parameterized by treewidth w of the
input graph, then we can assume that a tree decomposition of
width w is available.
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Finding tree decompositions — approximately

Sometimes we can get better dependence on treewidth using
approximation.

FPT approximation:

Theorem [Robertson and Seymour]

There is a O(33w · w · n2) time algorithm that finds a tree
decomposition of width 4w + 1, if the treewidth of the graph is at
most w .

Polynomial-time approximation:

Theorem [Feige, Hajiaghayi, Lee 2008]

There is a polynomial-time algorithm that finds a tree
decomposition of width O(w

√
logw), if the treewidth of the graph

is at most w .
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Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max
Independent Set can be solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v ], B[v ]
for each vertex of the graph, we compute
2|Bx | ≤ 2w+1 values for each bag Bx .

M[x , S ]:
the max. weight of an independent set
I ⊆ Vx with I ∩ Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S ] if all the values are known for
the children of x?
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Nice tree decompositions

Definition
A rooted tree decomposition is nice if every node x is one of the
following 4 types:

Leaf: no children, |Bx | = 1
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v
Forget: 1 child y with Bx = By \ {v} for some vertex v
Join: 2 children y1, y2 with Bx = By1 = By2

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w
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Nice tree decompositions

Definition
A rooted tree decomposition is nice if every node x is one of the
following 4 types:

Leaf: no children, |Bx | = 1
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v
Forget: 1 child y with Bx = By \ {v} for some vertex v
Join: 2 children y1, y2 with Bx = By1 = By2

Theorem
A tree decomposition of width w and n nodes can be turned into a
nice tree decomposition of width w and O(wn) nodes in time
O(w2n).
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Weighted Max Independent Set
and nice tree decompositions

Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

m[x , S ] =


m[y , S ] if v 6∈ S ,

m[y , S \ {v}] + w(v) if v ∈ S but v has no
neighbor in S ,

−∞ if S contains v and its neighbor.

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w
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Weighted Max Independent Set
and nice tree decompositions

Forget: 1 child y with Bx = By \ {v} for some vertex v

m[x , S ] = max{m[y , S ],m[y , S ∪ {v}]}

Join: 2 children y1, y2 with Bx = By1 = By2

m[x , S ] = m[y1, S ] + m[y2, S ]− w(S)

Forget JoinIntroduceLeaf
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Weighted Max Independent Set
and nice tree decompositions

Forget: 1 child y with Bx = By \ {v} for some vertex v

m[x , S ] = max{m[y , S ],m[y , S ∪ {v}]}

Join: 2 children y1, y2 with Bx = By1 = By2

m[x , S ] = m[y1, S ] + m[y2, S ]− w(S)

There are at most 2w+1 · n subproblems m[x , S ] and each
subproblem can be solved in wO(1) time

(assuming the children are already solved).
⇓

Running time is O(2w · wO(1) · n).
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3-Coloring and tree decompositions
Theorem
Given a tree decomposition of width w , 3-Coloring can be
solved in O(3w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and coloring c : Bx →
{1, 2, 3}, we compute the Boolean value
E [x , c], which is true if and only if c can
be extended to a proper 3-coloring of Vx .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

bcf=T bcf=F
bcf=T bcf=F
. . . . . .

How to determine E [x , c] if all the values are known for
the children of x?
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3-Coloring and nice tree decompositions
Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v
If c(v) 6= c(u) for every neighbor u of v , then
E [x , c] = E [y , c ′], where c ′ is c restricted to By .
Forget: 1 child y with Bx = By \ {v} for some vertex v
E [x , c] is true if E [y , c ′] is true for one of the 3 extensions of c
to By .
Join: 2 children y1, y2 with Bx = By1 = By2

E [x , c] = E [y1, c] ∧ E [y2, c]

Forget JoinIntroduceLeaf
u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w
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3-Coloring and nice tree decompositions
Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v
If c(v) 6= c(u) for every neighbor u of v , then
E [x , c] = E [y , c ′], where c ′ is c restricted to By .
Forget: 1 child y with Bx = By \ {v} for some vertex v
E [x , c] is true if E [y , c ′] is true for one of the 3 extensions of c
to By .
Join: 2 children y1, y2 with Bx = By1 = By2

E [x , c] = E [y1, c] ∧ E [y2, c]

There are at most 3w+1 · n subproblems E [x , c] and each subprob-
lem can be solved in wO(1) time (assuming the children are already
solved).

⇒ Running time is O(3w · wO(1) · n).

⇒ 3-Coloring is FPT parameterized by treewidth.

27



Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
Logical connectives ∧, ∨, →, ¬, =, 6=
quantifiers ∀, ∃ over vertex/edge variables
predicate adj(u, v): vertices u and v are adjacent
predicate inc(e, v): edge e is incident to vertex v
quantifiers ∀, ∃ over vertex/edge set variables
∈, ⊆ for vertex/edge sets

Example:
The formula

∃C ⊆ V∃v0 ∈ C∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true on graph G if and only if . . .

28



Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
Logical connectives ∧, ∨, →, ¬, =, 6=
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Example:
The formula

∃C ⊆ V∃v0 ∈ C∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true on graph G if and only if G has a cycle.
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Courcelle’s Theorem

Courcelle’s Theorem
If a graph property can be expressed in EMSO, then for every fixed
w ≥ 1, there is a linear-time algorithm for testing this property on
graphs having treewidth at most w .

Note: The constant depending on w can be very large (double,
triple exponential etc.), therefore a direct dynamic programming
algorithm can be more efficient.

If we can express a property in EMSO, then we immediately get
that testing this property is FPT parameterized by the treewidth w
of the input graph.

Can we express 3-Coloring and Hamiltonian Cycle in
EMSO?

29
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Using Courcelle’s Theorem

3-Coloring
∃C1,C2,C3 ⊆ V

(
∀v ∈ V (v ∈ C1 ∨ v ∈ C2 ∨ v ∈ C3)

)
∧
(
∀u, v ∈

V adj(u, v)→ (¬(u ∈ C1 ∧ v ∈ C1) ∧ ¬(u ∈ C2 ∧ v ∈ C2) ∧ ¬(u ∈
C3 ∧ v ∈ C3))

)

Hamiltonian Cycle
∃H ⊆ E

(
spanning(H) ∧ (∀v ∈ V degree2(H, v))

)
degree0(H, v) := ¬∃e ∈ H inc(e, v)

degree1(H, v) := ¬degree0(H, v) ∧
(
¬∃e1, e2 ∈ H (e1 6=

e2 ∧ inc(e1, v) ∧ inc(e2, v))
)

degree2(H, v) := ¬degree0(H, v) ∧ ¬degree1(H, v) ∧
(
¬∃e1, e2, e3 ∈

H (e1 6= e2 ∧ e2 6= e3 ∧ e1 6= e3 ∧ inc(e1, v) ∧ inc(e2, v) ∧ inc(e3, v)))
)

spanning(H) := ∀u, v ∈ V ∃P ⊆ H ∀x ∈ V
(
((x = u ∨ x =

v) ∧ degree1(P, x)) ∨ (x 6= u ∧ x 6= v ∧ (degree0(P, x) ∨ degree2(P, x)))
)
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Using Courcelle’s Theorem
Two ways of using Courcelle’s Theorem:

1 The problem can be described by a single formula (e.g,
3-Coloring, Hamiltonian Cycle).

⇒ Problem can be solved in time f (w) · n for graphs of
treewidth at most w , i.e., FPT parameterized by treewidth.

2 The problem can be described by a formula for each value of
the parameter k .

Example: For each k , having a cycle of length exactly k can
be expressed as

∃v1, . . . , vk ∈ V ((v1 6= v2) ∧ (v1 6= v3) ∧ . . . (vk−1 6= vk))

∧(adj(v1, v2) ∧ adj(v2, v3) ∧ · · · ∧ adj(vk−1, vk) ∧ adj(vk , v1)).

⇒ Problem can be solved in time f (k ,w) · n for graphs of
treewidth w , i.e., FPT parameterized with combined
parameter k and treewidth w .
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Using Courcelle’s Theorem
Two ways of using Courcelle’s Theorem:

1 The problem can be described by a single formula (e.g,
3-Coloring, Hamiltonian Cycle).

⇒ Problem can be solved in time f (w) · n for graphs of
treewidth at most w , i.e., FPT parameterized by treewidth.

2 The problem can be described by a formula for each value of
the parameter k .

Example: For each k , having a cycle of length exactly k can
be expressed as

∃v1, . . . , vk ∈ V ((v1 6= v2) ∧ (v1 6= v3) ∧ . . . (vk−1 6= vk))

∧(adj(v1, v2) ∧ adj(v2, v3) ∧ · · · ∧ adj(vk−1, vk) ∧ adj(vk , v1)).

⇒ Problem can be solved in time f (k ,w) · n for graphs of
treewidth w , i.e., FPT parameterized with combined
parameter k and treewidth w .
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Subgraph Isomorphism

Subgraph Isomorphism
Input: graphs H and G
Find: a copy of H in G as subgraph.
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Subgraph Isomorphism

Subgraph Isomorphism
Input: graphs H and G
Find: a copy of H in G as subgraph.

For each H, we can construct a formula φH that expresses “G has a
subgraph isomorphic to H” (similarly to the k-cycle on the previous
slide).

⇒ By Courcelle’s Theorem, Subgraph Isomorphism can be
solved in time f (H,w) · n if G has treewidth at most w .
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Subgraph Isomorphism

Subgraph Isomorphism
Input: graphs H and G
Find: a copy of H in G as subgraph.

Since there is only a finite number of simple graphs on k vertices,
Subgraph Isomorphism can be solved in time f (k ,w) · n if H
has k vertices and G has treewidth at most w .

Theorem
Subgraph Isomorphism is FPT parameterized by combined
parameter k := |V (H)| and the treewidth w of G .
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MSO on words

Theorem [Büchi, Elgot, Trakhtenbrot 1960]

If a language L ⊆ Σ∗ can be defined by an MSO formula φ using
the relation <, then L is regular.

Example: a∗bc∗ is defined by

∃x : Pb(x) ∧ (∀y : (y < x)→ Pa(y)) ∧ (∀y : (x < y)→ Pc(y)).
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MSO on words

Theorem [Büchi, Elgot, Trakhtenbrot 1960]

If a language L ⊆ Σ∗ can be defined by an MSO formula φ using
the relation <, then L is regular.

Example: a∗bc∗ is defined by

∃x : Pb(x) ∧ (∀y : (y < x)→ Pa(y)) ∧ (∀y : (x < y)→ Pc(y)).

We prove a more general statement for formulas φ(w ,X1, . . . ,Xk)
and words over Σ ∪ {0, 1}k , where Xi is a subset of symbols of w .

Induction over the structure of φ:
FSM for ¬φ(w), given FSM for φ(w).
FSM for φ1(w) ∧ φ2(w), given FSMs for φ1(w) and φ2(w).
FSM for ∃Xφ(w ,X ), given FSM for φ(w ,X ).
etc.
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MSO on words

Theorem [Büchi, Elgot, Trakhtenbrot 1960]

If a language L ⊆ Σ∗ can be defined by an MSO formula φ using
the relation <, then L is regular.

Proving Courcelle’s Theorem:
Generalize from words to trees.
A width-k tree decomposition can be interpreted as a tree over
an alphabet of size f (k).
Formula ⇒ tree automata.
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Algorithms — overview

Algorithms exploit the fact that a subtree communicates with
the rest of the graph via a single bag.
Key point: defining the subproblems.
Courcelle’s Theorem makes this process automatic for many
problems.
There are notable problems that are easy for trees, but hard
for bounded-treewidth graphs.
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Treewidth — outline

1 Basic algorithms
2 Combinatorial properties
3 Applications
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Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete
vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the
treewidth of G .

Fact: For every clique K , there is a bag B with K ⊆ B .

Fact: The treewidth of the k-clique is k − 1.

Fact: For every k ≥ 2, the treewidth of
the k × k grid is exactly k .
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Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete
vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the
treewidth of G .

Fact: For every clique K , there is a bag B with K ⊆ B .
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the k × k grid is exactly k .
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The Cops and Robber game
Game: k cops try to capture a robber in the graph.

In each step, the cops can move from vertex to vertex
arbitrarily with helicopters.
The robber moves infinitely fast on the edges, and sees where
the cops will land.

Theorem [Seymour and Thomas 1993]

k+1 cops can win the game ⇐⇒ the treewidth of the graph
is at most k .
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Game: k cops try to capture a robber in the graph.

In each step, the cops can move from vertex to vertex
arbitrarily with helicopters.
The robber moves infinitely fast on the edges, and sees where
the cops will land.

Theorem [Seymour and Thomas 1993]

k+1 cops can win the game ⇐⇒ the treewidth of the graph
is at most k .

Consequence 1: Algorithms

The winner of the game can be determined in time nO(k) using stan-
dard techniques (there are at most nk positions for the cops)

⇓

For every fixed k , it can be checked in polynomial-time if treewidth
is at most k .
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The Cops and Robber game
Game: k cops try to capture a robber in the graph.

In each step, the cops can move from vertex to vertex
arbitrarily with helicopters.
The robber moves infinitely fast on the edges, and sees where
the cops will land.

Theorem [Seymour and Thomas 1993]

k+1 cops can win the game ⇐⇒ the treewidth of the graph
is at most k .

Consequence 2: Lower bounds

Exercise 1:
Show that the treewidth of the k × k grid is at least k − 1.
(E.g., robber can win against k − 1 cops.)

Exercise 2:
Show that the treewidth of the k × k grid is at least k .
(E.g., robber can win against k cops.) 37



The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.
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The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.
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A perfect structure theorem
Theorem
The following are equivalent:

G does not have a K4 minor.
G has treewidth ≤ 2.
G is subgraph of a series-parallel graph.
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A perfect structure theorem
Theorem
The following are equivalent:

G does not have a K4 minor.
G has treewidth ≤ 2.
G is subgraph of a series-parallel graph.

A perfect structure theorem:

K4 6∈ G =⇒ G has a width-2
tree decomposition

G has a width-2
tree decomposition

=⇒ K4 6∈ G
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Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

(A kO(1) bound was just announced [Chekuri and Chuznoy 2013]!)
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Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

Observation: Every planar graph is the minor of a sufficiently large
grid.

Consequence
If H is planar, then every H-minor free graph has treewidth at most
f (H).
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Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

A large grid minor is a “witness” that treewidth is large, but the
relation is approximate:

No k × k grid minor =⇒ tree decomposition
of width < f (k)

tree decomposition
of width < f (k)

=⇒ no f (k)× f (k) grid
minor

40



Excluding trees

As every forest is planar, the following holds for every forest F :

no F -minor =⇒ tree decomposition
of width < f (F )

tree decomposition
of width < f (F )

=⇒ Does not exclude any
tree as minor!

This is not a good (approximate) structure theorem.
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Excluding trees
Path decomposition: the tree of bags is a path.
Pathwidth: defined analogously to treewidth.
Example: A complete binary tree on k levels has pathwidth k − 1.

Theorem [Diestel 1995]

If F is a forest, then every F -minor free graph has pathwidth at
most |V (F )| − 2.

a, b, c b, c, d d , e e, f , g e, h, i e, j

a

b

c

d e j

f g

ih

42



Excluding trees
Path decomposition: the tree of bags is a path.
Pathwidth: defined analogously to treewidth.
Example: A complete binary tree on k levels has pathwidth k − 1.

Theorem [Diestel 1995]

If F is a forest, then every F -minor free graph has pathwidth at
most |V (F )| − 2.

no F -minor =⇒ path decomposition
of width < f (F )

path decomposition
of width < f (F )

=⇒ No (f (F ) + 1)-level
complete binary tree
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Planar Excluded Grid Theorem

For planar graphs, we get linear instead of exponential dependence:

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.
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Outerplanar graphs

Definition
A planar graph is outerplanar if it has a planar embedding where
every vertex is on the infinite face.

Fact
Every outerplanar graph has treewidth at most 2.

⇒ Every outerplanar graph is subgraph of a series-parallel graph.
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k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively
removing the vertices on the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding
having at most k layers.

1 1 1
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3

2

3

3

3

3

2

2

2

32

2

2

1

Fact
Every k-outerplanar graph has treewidth at most 3k + 1.
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k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively
removing the vertices on the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding
having at most k layers.

3
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Fact
Every k-outerplanar graph has treewidth at most 3k + 1.
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Treewidth — outline

1 Basic algorithms
2 Combinatorial properties
3 Applications

The shifting technique
Bidimensionality
Complexity of CSP

46



Approximation schemes

Definition
A polynomial-time approximation scheme (PTAS) for a
problem P is an algorithm that takes an instance of P and a
rational number ε > 0,

always finds a (1 + ε)-approximate solution,
the running time is polynomial in n for every fixed ε > 0.

Typical running times: 21/ε · n, n1/ε, (n/ε)2, n1/ε2 .

Some classical problems that have a PTAS:
Independent Set for planar graphs
TSP in the Euclidean plane
Steiner Tree in planar graphs
Knapsack
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Baker’s shifting strategy for PTAS
Theorem
There is a 2O(1/ε) · n time PTAS for Independent Set for planar
graphs.

Let D := 1/ε. For a fixed 0 ≤ s < D, delete every layer Li
with i = s (mod D)

The resulting graph is D-outerplanar, hence it has treewidth at
most 3D + 1 = O(1/ε).
Using the 2O(tw) · n time algorithm for Independent Set,
the problem on the D-outerplanar graph can be solved in time
2O(1/ε) · n.
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Baker’s shifting strategy for PTAS
Theorem
There is a 2O(1/ε) · n time PTAS for Independent Set for planar
graphs.

We do this for every 0 ≤ s < D:
for at least one value of s, we delete

at most 1/D = ε fraction of the solution

⇓

We get a (1 + ε)-approximate solution.
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Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a copy of H in G as subgraph.
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Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a copy of H in G as subgraph.

We do this for every 0 ≤ s < k + 1:
for at least one value of s, we do not delete

any of the k vertices of the solution

⇓

We find a copy of H in G if there is one.
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Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a copy of H in G as subgraph.

Theorem
Subgraph Isomorphism for planar graphs is FPT parameterized
by k := |V (H)|.
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Baker’s shifting strategy for FPT

The technique is very general, works for many problems on
planar graphs:

Independent Set
Vertex Cover
Dominating Set
. . .

More generally: First-Order Logic problems.
But for some of these problems, much better techniques are
known (see the following slides).
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Bidimensionality
A powerful framework for efficient algorithms on planar graphs.

Setup:

Let x(G ) be some graph invariant (i.e., an integer associated
with each graph).
Given G and k , we want to decide if x(G ) ≤ k (or x(G ) ≥ k).
Typical examples:

Maximum independent set size.
Minimum vertex cover size.
Length of the longest path.
Minimum dominating set size.
Minimum feedback vertex set size.

Bidimensionality [Demaine, Fomin, Hajiaghayi, Thilikos 2005]

For many natural invariants, we can do this in time 2O(
√

k) · nO(1)

on planar graphs.
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Bidimensionality for Vertex Cover
Observation: If the treewidth of a planar graph G is at least 5

√
2k

⇒ It has a
√
2k ×

√
2k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a matching of size k
⇒ Vertex cover size is at least k in the grid.
⇒ Vertex cover size is at least k in G .

We use this observation to solve Vertex Cover on planar graphs:
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Bidimensionality for Vertex Cover
Observation: If the treewidth of a planar graph G is at least 5

√
2k

⇒ It has a
√
2k ×

√
2k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a matching of size k
⇒ Vertex cover size is at least k in the grid.
⇒ Vertex cover size is at least k in G .

We use this observation to solve Vertex Cover on planar graphs:

Set w := 5
√
2k .

Find a 4-approximate tree
decomposition.

If treewidth is at least w : we
answer “vertex cover is ≥ k .”
If we get a tree decomposition of
width 4w , then we can solve the
problem in time
2O(w) · nO(1) = 2O(

√
k) · nO(1).
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Bidimensionality
Definition
A graph invariant x(G ) is minor-bidimensional if

x(G ′) ≤ x(G ) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.
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Bidimensionality (cont.)

We can answer “x(G ) ≥ k?” for a minor-bidimensional invariant
the following way:

Set w := c
√
k for an appropriate constant c .

Use the 4-approximation tree decomposition algorithm.
If treewidth is at least w : x(G ) is at least k.
If we get a tree decomposition of width 4w , then we can solve
the problem using dynamic programming on the tree
decomposition.

Running time:
If we can solve the problem on tree decomposition of width w
in time 2O(w) · nO(1), then the running time is 2O(

√
k) · nO(1).

If we can solve the problem on tree decomposition of width w
in time wO(w) · nO(1), then the running time is
2O(
√

k log k) · nO(1).
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Contraction bidimensionality

Definition
A graph invariant x(G ) is minor-bidimensional if

x(G ′) ≤ x(G ) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Exercise: Dominating Set is not minor-bidimensional.

We fix the problem by allowing only contractions but not
edge/vertex deletions.
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Contraction bidimensionality

Definition
A graph invariant x(G ) is minor-bidimensional if
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(for some constant c > 0).

Exercise: Dominating Set is not minor-bidimensional.

We fix the problem by allowing only contractions but not
edge/vertex deletions.
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Contraction bidimensionality

Theorem
Every planar graph with treewidth at least 5k can be contracted
to a partially triangulated k × k grid.

Example:
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Definition
A graph invariant x(G ) is contraction-bidimensional if
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If Gk is a k × k partially triangulated grid, then x(Gk) ≥ ck2

(for some constant c > 0).
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Bidimensionality for Dominating Set

The size of a minimum dominating set is a contraction
bidimensional invariant: we need at least (k − 2)2/9 vertices to
dominate all the internal vertices of a partially triangulated k × k
grid (since a vertex can dominate at most 9 internal vertices).

Theorem
Given a tree decomposition of width w , Dominating Set can be
solved in time 3w · wO(1) · nO(1).

Solving Dominating Set on planar graphs:

Set w := 5(3
√
k + 2).

Use the 4-approximation tree decomposition algorithm.
If treewidth is at least w : we answer ’dominating set is ≥ k’.
If we get a tree decomposition of width 4w , then we can solve
the problem in time 3w · nO(1) = 2O(

√
k) · nO(1).
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Constraint Satisfaction Problems (CSP)

A CSP instance is given by describing the
variables,
domain of the variables,
constraints on the variables.

Task: Find an assignment that satisfies every constraint.

I = C1(x1, x2, x3) ∧ C2(x2, x4) ∧ C3(x1, x3, x4)

Examples:
3SAT: 2-element domain, every constraint is ternary
Vertex Coloring: domain is the set of colors, binary
constraints
k-Clique (in graph G ): k variables, domain is the vertices of
G ,
(k
2

)
binary constraints
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Graphs and hypergraphs related to CSP
Gaifman/primal graph: vertices are the variables, two variables
are adjacent if they appear in a common constraint.

Incidence graph: bipartite graph, vertices are the variables and
constraints.

Hypergraph: vertices are the variables, constraints are the
hyperedges.

I = C1(x2, x1, x3) ∧ C2(x4, x3) ∧ C3(x1, x4, x2)

C1 C3

C2
HypergraphIncidence graphPrimal graph

x3

x2

x1

x4 x4

x4

C3
x3

x2

x1

C2C1

x3x2x1
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Treewidth and CSP

Theorem [Freuder 1990]

For every fixed k , CSP can be solved in polynomial time if the
primal graph of the instance has treewidth at most k .

Proof sketch:
Find a tree decomposition of width k (linear-time for fixed k).
For each bag, enumerate every assignment of the bag that
satisfies every constraint fully contained in the bag. Each bag
has at most k + 1 variables, thus there are at most |D|k+1

such assignments for each bag.
Use bottom-up DP to find a satisfying assignment.
Each constraint induces a clique in the primal graph, thus each
constraint is fully contained in one of the bags.
Running time of DP is polynomial in |D|k+1 and the number
of variables.
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Dichotomy for binary CSP
Binary CSP: Every constraint is of arity 2.
We know that binary CSP(G) is polynomial-time solvable for every
class G of graphs with bounded treewidth. Are there other
polynomial cases?

Theorem [Grohe-Schwentick-Segoufin 2001]

Let G be a recursively enumerable class of graphs. Assuming
FPT 6= W[1], the following are equivalent:

Binary CSP(G) is polynomial-time solvable.
Binary CSP(G) is FPT.
G has bounded treewidth.

Note: FPT 6= W[1] is a standard complexity assumption.

Note: Fixed-parameter tractability does not give us more power
here than polynomial-time solvability.
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Proof outline
Suppose that G has unbounded treewidth, but CSP(G) is FPT.

Assuming FPT 6= W[1], there is no f (k)nc time algorithm for
k-CLIQUE. But we can solve k-CLIQUE the following way:
Formulate k-CLIQUE as a binary CSP instance on the k × k
grid.
Find a Gk ∈ G containing a k × k minor (there is such a Gk by
the Excluded Grid Theorem).
Reduce CSP on the k × k grid to CSP with graph Gk , which is
an instance of CSP(G).
Use the assumed algorithm for CSP(G).
The running time is f (k)nc : the nonpolynomial factors in the
running time depend only on k (finding Gk , size of Gk , solving
CSP(G))
⇒ k-CLIQUE is FPT, contradicting the hypothesis
FPT 6= W[1].
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Treewidth — overview

Algorithms
Dynamic programming
Courcelle’s Theorem

Properties
Characterization by the Cops and Robber game.
Excluding a grid, excluding a tree.
k-outerplanar graphs.

Applications
Shifting technique for PTAS and FPT.
Minor/contraction bidimensionalty.
Excluded Grid Theorem in the classification of CSP(G).
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Treewidth
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.

treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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Surfaces
65



Surfaces

A topological surface is a nonempty second countable
Hausdorff topological space in which every point has an
open neighborhood homeomorphic to some open subset
of the Euclidean plane E 2.

Intuitively: something thin floating in space.

Our viewpoint: which graphs can be drawn on the different
surfaces, thus we do not distinguish surfaces that are
homeomorphic.
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Planar graphs

The following are equivalent:
Graph G can be drawn on the plane.
Graph G can be drawn inside a disc.
Graph G can be drawn on the sphere.
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Euler’s Formula
Theorem
If G is a connected simple graph drawn in the plane with v vertices,
e edges, and f faces, then

v + f = e + 2.

Example:

v = 8
f = 6
e = 12

Consequence: e ≤ 3v − 6
Proof: 2e ≥ 3f (every face has at least 3 edges)
e = v + f − 2 ≤ v + 2

3e − 2
1
3e ≤ v − 2
e ≤ 3v − 6
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Examples of surfaces: disk

Rectangle with boundary: same as disk.
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Examples of surfaces: cylinder

Gluing together the vertical sides creates a cylinder.
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Examples of surfaces: torus

Gluing together both the two horizontal and the two vertical sides
creates a torus.

K5 can be drawn on the torus.

Exercise: draw K7 on the torus.
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Examples of surfaces: sphere

Gluing together top with left and bottom with right creates a
sphere.
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Examples of surfaces: Möbius strip

Gluing together the vertical sides in twisted way creates a Möbius
strip.
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Examples of surfaces: real projective plane

Gluing together both the horizontal and vertical sides in a twisted
way creates a real projective plane, which is a sphere with a cross
cap.
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Examples of surfaces: Klein bottle

Gluing together both the horizontal sides in a normal and the
vertical sides in a twisted way creates a Klein bottle, which is a
sphere with two cross caps.
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Orientable vs. nonorientable
Definition
A surface Σ is orientable if whenever a graph is drawn on Σ such
that every face is a disk, then each face can be assigned an
orientation such that two faces sharing an edge give the opposite
orientation to that edge.
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The sphere and the torus are orientable.
The Möbius strip and the Klein bottle are nonorientable.
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Surfaces with boundaries
Some surfaces have boundaries:

The cylinder and the Möbius strip have boundaries.
The sphere, torus, Klein bottle are closed surfaces.

Every surface with boundaries can be obtained from a closed
surface by removing some number of disks.

As removing disks does not change which graphs can be embedded,
we consider only closed surfaces from now.
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Classification of closed surfaces

Theorem [Brahana 1921]

Every closed surface is equivalent either to
a sphere with k ≥ 0 handles (orientable surfaces), or
or to a sphere with k ≥ 1 crosscaps (nonorientable surfaces).

Alternative version:

Theorem [Brahana 1921]

Every closed surface is equivalent to a sphere with k ≥ 0 handles
and 0, 1, or 2 crosscaps attached to it.
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5 handles, 2 crosscaps
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Euler’s formula

Theorem
Let G be a connected simple graph drawn on a closed surface Σ
such that every face is a disk. If G has v vertices, e edges, and f
faces, then

v + f = e + 2− eg(Σ),

where the Euler genus eg(Σ) is
2k if Σ is a sphere with k handles, and
k if Σ is a sphere with k crosscaps.

Consequence: e ≤ 3v − 6 + 3eg(Σ)

Bounded-genus graphs have bounded average degree.
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Algorithms for bounded-genus graphs

Can we generalize the powerful techniques from planar graphs to
surfaces?

Shifting strategy for approximation schemes/parameterized
algorithms

Crucial tool: bounding the treewidth of k-outerplanar graphs.

Subexponential algorithms for minor/contraction-bidimensional
problems.

Crucial tool: grid theorems.
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Grid theorems

Theorem
Every planar graph with treewidth at least 5k has a k × k grid
minor.

Theorem [Demaine, Fomin, Hajiaghayi, Thilikos 2005]

If G is a graph drawn on Σ and has treewidth at least
c(eg(Σ) + 1) · k , then G has a k × k grid minor.

Subexponential parameterized algorithms for e.g., k-Vertex
Cover go through:

either the graph has a Ω(
√
k)× Ω(

√
k) grid minor and then

the vertex cover size is at least k , or
treewidth is O(

√
k(eg(Σ) + 1)) and we can solve the problem

in time 2O(
√

k(eg(Σ)+1)) · nO(1).
Similar (more complicated) generalizations for
contraction-bidimensional problems.
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Local treewidth

The shifting technique relied on the fact that the treewidth of
k-outerplanar graphs have bounded treewidth.

Definition
A class G of graphs has bounded local treewidth if there is a
function f such that tw(G ) ≤ f (diam(G )) for every G ∈ G.

Bounded genus implies bounded local treewidth:

Theorem
The class GΣ of graphs embeddable into Σ has bounded local
treewidth with tw(G ) ≤ 3eg(Σ)diam(G ).
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Local treewidth
Bv [d ] : the ball containing vertices at distance ≤ d from v .
Rv [x , y ] the ring containing vertices at distance x ≤ d ≤ y from v .

Lemma
Let G be a minor-closed class of graphs having bounded local
treewidth. Then the treewidth of Rv [x , y ] can be bounded by a
function of y − x + 1.

Proof:

Contract Bv [x − 1].
Ring Rv [x , y ] appears now at distance
y − x + 1 from v .
The ring appears in a graph of
treewidth f (y − x + 1).
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PTAS using bounded local treewidth

Theorem
If G is minor-closed and has bounded local treewidth, then
Independent Set has a PTAS on G.

Repeat the following for i = 0, . . . ,D, where D = d1/εe.
Pick a vertex v and remove every vertex at distance jD + i for
j = 0, 1, . . . .
The graph falls apart into disjoint rings Rv [0, i − 1],
Rv [i + 1,D + i − 1], Rv [D + i + 1, 2D + i − 1], . . . .
Thus treewidth is f (D), i.e., can be bounded as function of ε.
Problem can be solved in time f (1/ε) · n.
At least one choice of i removes at most an ε fraction of the
optimum solution.
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Bounded degree

A potential source of confusion
3-regular graphs have bounded local treewidth: if diameter is
d , then there are at most

∑d
i=0 3

i = (3d+1 − 1)/2 vertices,
hence treewidth is bounded by a function of d .
Independent Set is APX-hard on 3-regular graphs, thus it
has no PTAS unless P = NP.

Have we just proved P = NP?

Theorem
If G is a minor-closed and has bounded local treewidth, then
Independent Set has a PTAS on G.

Local treewidth is useful only for minor-closed classes!
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Local treewidth

Theorem [Frick and Grohe 2001]

If a graph property can be expressed in first-order logic and G is a
class of graphs with bounded local treewidth, then there is a
linear-time algorithm for testing this property on members of G.

Note: we do not need here that G is closed under taking minors.

Shows, e.g., that Subgraph Isomorphism is FPT on planar
graphs or on bounded-degree graphs.

Exercise: Can this result be generalized to EMSO instead of
first-order logic?
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Excluding minors
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Minors

Definition
Graph H is a minor G (H ≤ G ) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv
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Minors

Equivalent definition
Graph H is a minor of G if there is a mapping φ (the minor model)
that maps each vertex of H to a connected subset of G such that

φ(u) and φ(v) are disjoint if u 6= v , and
if uv ∈ E (G ), then there is an edge between φ(u) and φ(v).

76

54321

1
2 3 4 5
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7
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Excluding minors

Connection to surfaces:
Graphs excluding K5- and K3,3-minors are planar.
Graphs that can be drawn on a fixed surface (e.g., torus) can
be characterized by a finite list of excluded minors.

Is it true for every H that H-minor free graphs can be drawn on a
fixed surface?

NO (clique sums), NO (apices), NO (vortices)

YES (in a sense — Robertson-Seymour Structure Theorem)
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Excluding minors

The following graph does not have a K6-minor, but its genus can
be large:

Connecting bounded-genus graphs can increase genus without
creating a clique minor.
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Clique sums

Definition
Let G1 and G2 be two graphs with two cliques K1 ⊆ V (G1) and
K2 ⊆ V (G2) of the same size. Graph G is a clique sum of G1 and
G2 if it can be obtained by identifying K1 and K2, and then
removing some of the edges of the clique.

G1 G2
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Clique sums

Observation
If Kk 6≤ G1,G2 and G is a clique sum of G1 and G2, then Kk 6≤ G .

Thus we can build Kk -minor-free graphs by repeated clique sums.

Proof:
For either i = 1 or i = 2, every set in the model of Kk in G
intersects V (Gi ). Restricting to V (Gi ) gives a model of Kk in Gi
(using that the separator is a clique).
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Excluding K5

Theorem [Wagner 1937]

A graph is K5-minor-free if and only if it can be built from planar
graphs and V8 by repeated clique sums.

V8 V8
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Tree decomposition

Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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Torso

Torso of a bag: we make the intersections with the adjacent bags
cliques.
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Excluding K5 — restated

Theorem [Wagner 1937]

A graph is K5-minor-free if and only if it can be built from planar
graphs and V8 by repeated clique sums.

Equivalently:

Theorem [Wagner 1937]

A graph is K5-minor-free if and only if it has a tree decomposition
where every torso is either a planar graph or the graph V8.

V8 V8
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Apex vertices

The graph formed from a grid by attaching a universal vertex is
K6-minor-free, but has large genus.

A planar graph + k extra vertices has no Kk+5-minor.
Instead of bounded genus graphs, our building blocks should
be “bounded genus graphs + a bounded number of apex
vertices connected arbitrarily.”
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Vortices
One can show that the following graph has large genus, but cannot
have a K8-minor.

Removing a few apex vertices or decomposing by clique sums do
not help.
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Vortices
A vortex of width k and perimeter v1, . . . , vn is a graph F
that has a width-k path decomposition B1, . . . , Bn such that
vi ∈ Bi .
Let G be embedded in Σ and let D be a disk intersecting G
only in vertices v1, . . . , vn. Attaching a vortex on D means
taking the union of G and a vortex on v1, . . . , vn (the vortex
intersects G only in these vertices).

v1

v2

v3

v4

v5

v6

v7
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k-almost embeddable

Definition
Graph G is k-almost embeddable in surface Σ if

there is a set X of at most k apex vertices and
a graph G0 embedded in Σ, such that
G \ X can be obtained from G0 by attaching vortices of width
k on disjoint disks D1, . . . , Dk .

102



Graph Structure Theorem

Theorem [Robertson-Seymour]

For every graph H, there is an integer k and a surface Σ such that
every H-minor-free graph has a tree decomposition where every
torso is k-almost embeddable in Σ.

Originally stated only combinatorially, algorithmic versions are
known.

Running time was improved from nf (H) to f (H) · nO(1).
Algorithm finds also an apex set of size at most k for each
torso.
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Planar

Bounded Genus

H-Minor-Free

[figure by Felix Reidl]
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Excluding cliques

What do we get by excluding small cliques?
K3-minor free: every torso is size ≤ 2 (trees).
K4-minor free: every torso is size ≤ 3 (series-parallel graphs).
K5-minor free: every torso is planar or V8.
Kk -minor free for k ≥ 6: every torso is k-almost embeddable
in some surface Σk .
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Algorithmic applications

Theorem [Demaine, Hajiaghayi, Kawarabayashi 2005]

For every graph H, there is a constant cH such that for any k ≥ 1,
every H-minor-free graph G can be partitioned into k + 1 vertex
sets V1, . . . , Vk+1 such that G \ Vi has treewidth at most cH · k
for any i . Furthermore, such a partition can be found in polynomial
time.

PTAS is immediate for e.g., Independent Set:
Set k := d1/εe and find the partition.
For every i = 1, . . . , k + 1, compute the solution optimally for
G \ Vi .
There is one i for which the solution is k/(k + 1) ≥ 1− ε
times the optimum.
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Finding minors
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Finding minors

H-minor testing

Input: graph G
Find: a model of H in G .

Theorem
H-minor testing for planar H can be solved in time f (H) · nO(1).

Proof:

If G has treewidth ≥ g(H), then it contains a large grid minor,
hence contains H.
If G has treewidth < g(H), then e.g., Courcelle’s Theorem can
be invoked to check if G contains an H-minor.
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Finding rooted minors

Theorem [Robertson and Seymour]

H-minor testing can be solved in time f (H) · n3.

Robertson and Seymour actually solved a more general problem:

Rooted H-minor testing

Input: graph G , a vertex ρ(v) ∈ V (G ) for every v ∈ V (H).
Find: a model of H in G where the image of v contains ρ(v).

A very useful special case (let H be a matching with k edges):

k-Disjoint Paths

Input: graph G with vertices (s1, t1), . . . , (sk , tk).
Find: vertex-disjoint paths P1, . . . , Pk

where Pi connects si and ti .
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Algorithm for minor testing

A vertex v ∈ V (G ) is irrelevant if its removal does not change the
answer to H ≤ G .

Ingredients of minor testing by [Robertson and Seymour]

1 Solve the problem on bounded-treewidth graphs.
2 If treewidth is large, either find an irrelevant vertex or the

model of a large clique minor.
3 If we have a large clique minor, then either we are done (if the

clique minor is “close” to the roots), or a vertex of the clique
minor is irrelevant.

By iteratively removing irrelevant vertices, eventually we arrive to a
graph of bounded treewidth.

110



Planar k-Disjoint Paths

k-Disjoint Paths

Input: graph G with vertices (s1, t1), . . . , (sk , tk).
Find: vertex-disjoint paths P1, . . . , Pk

where Pi connects si and ti .

Theorem [Adler et al. 2011]

The k-Disjoint Paths problem on planar graphs can be solved in
time 22O(k) · nO(1).

Main argument:
either treewidth is 2O(k) and we can use standard algorithmic
techniques of bounded treewidth graphs, or
treewidth is 2Ω(k) and we can find an irrelevant vertex whose
deletion does not change the problem.
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Planar k-Disjoint Paths

Theorem
Every planar graph with treewidth at least 5k has a k × k grid
minor.
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Planar k-Disjoint Paths

Theorem
If treewidth of a planar graph is Ω(k), then it contains the
subdivision of a k × k wall.

Lemma [Adler et al. 2011]

If a 2O(k) × 2O(k) wall of a planar graph does not enclose any
terminals, then the middle vertex of the wall is irrelevant to the
k-disjoint paths problem.
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Irrelevant vertices

Lemma [Adler et al. 2011]

If there are 2O(k) concentric cycles in a planar graph not enclosing
any terminals, then the innermost cycle is irrelevant to the
k-disjoint paths problem.

Any solution can be rerouted to avoid the innermost cycle.
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Well-quasi-ordering
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Well-quasi-ordering
Definition
A partial order is a well-quasi-ordering if

1 There is no infinite antichain.
2 There is no infinite descending chain.

115



Well-quasi-ordering
Definition
A partial order is a well-quasi-ordering if

1 There is no infinite antichain.
2 There is no infinite descending chain.

115



Well-quasi-ordering
Definition
A partial order is a well-quasi-ordering if

1 There is no infinite antichain.
2 There is no infinite descending chain.

115



Well-quasi-ordering

Definition
A partial order is a well-quasi-ordering if

1 There is no infinite antichain.
2 There is no infinite descending chain.

Example: the subgraph relation ⊆ is not a well-quasi-ordering:
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Well-quasi-ordering
Graph Minors Theorem
The minor relation ≤ is a well-quasi-ordering on finite graphs.

Some equivalent reformulations:

Corollary

If G is minor closed, then G has a finite number of minimal
elements.

Corollary
If G is minor closed, then G has a finite obstruction set
F = {H1, . . . ,Hk}, i.e.,

G ∈ G ⇐⇒ ∀H ∈ F ,H 6≤ G
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Well-quasi-ordering

Corollary

If G is minor closed, then G has a finite number of minimal
elements.

G

G
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Well-quasi-ordering

Corollary

If G is minor closed, then G has a finite number of minimal
elements.

G

G
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Nonconstructive algorithms
Corollary
If G is minor closed, then G has a finite obstruction set
F = {H1, . . . ,Hk}, i.e.,

G ∈ G ⇐⇒ ∀H ∈ F ,H 6≤ G

As we have a O(n3) minor test algorithm for every Hi ∈ H:

Theorem
If G is minor closed, then there is a O(n3) time algorithm for
recognizing graphs in G.

Examples:
graphs that can be drawn on a torus (double torus etc.) form
a minor-closed class: there is a O(n3) algorithm.
graphs that have a linkless embedding in 3-space form a minor
closed class: there is a O(n3) algorithm. 118



Applications

Planar Face Cover: Given a graph G and an integer k , find
an embedding of planar graph G such that there are k faces that
cover all the vertices.

For every fixed k , the class Gk of graphs of yes-instances is minor
closed.

⇓
For every fixed k , there is a O(n3) time algorithm for Planar Face
Cover.
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Applications
k-Leaf Spanning Tree: Given a graph G and an integer k , find
a spanning tree with at least k leaves.

Technical modification: Is there such a spanning tree for at least
one component of G?

For every fixed k , the class Gk of no-instances is minor closed.
⇓

For every fixed k , k-Leaf Spanning Tree can be solved in time
O(n3).
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G + k vertices

Definition
If G is a graph property, then G + kv contains graph G if there is a
set S ⊆ V (G ) of k vertices such that G \ S ∈ G.

S
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G + k vertices

Definition
If G is a graph property, then G + kv contains graph G if there is a
set S ⊆ V (G ) of k vertices such that G \ S ∈ G.

S

Observation
If G is minor closed, then G + kv is minor closed for every fixed k .

⇒ It is (nonuniform) FPT to decide if G can be transformed into a
member of G by deleting k vertices.

121



G + k vertices

Observation
If G is minor closed, then G + kv is minor closed for every fixed k .

⇒ It is (nonuniform) FPT to decide if G can be transformed into a
member of G by deleting k vertices.

If G = forests ⇒ G + kv = graphs that can be made acyclic by
the deletion of k vertices
⇒ Feedback Vertex Set is FPT.
If G = planar graphs ⇒ G + kv = graphs that can be made
planar by the deletion of k vertices (k-apex graphs)
⇒ k-Apex Graph is FPT.
If G = empty graphs ⇒ G + kv = graphs with vertex cover
number at most k
⇒ Vertex Cover is FPT.
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Nonconstructive algorithms

The running time is beyond horrible.
Quick tool for obtaining very general results.
For many concrete problems, simpler and more efficient
algorithms were found.
Nonuniform FPT: a separate algorithm for every fixed k ,
rather than a single f (k) · nO(1) algorithm.
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Other containment relations
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Topological subgraphs
Definition
Subdivision of a graph: replacing each edge by a path of length 1
or more.
Graph H is a topological subgraph of G (or topological minor
of G , or H ≤T G ) if a subdivision of H is a subgraph of G .

≤T
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Topological subgraphs
Definition
Subdivision of a graph: replacing each edge by a path of length 1
or more.
Graph H is a topological subgraph of G (or topological minor
of G , or H ≤T G ) if a subdivision of H is a subgraph of G .

Equivalently, H ≤T G means that H can be obtained from G by re-
moving vertices, removing edges, and dissolving degree two vertices.

a c

dissolving b

b

a c
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A classical result

Theorem [Kuratowski 1930]

A graph G is planar if and only if K5 6≤T G and K3,3 6≤T G .

Theorem [Wagner 1937]

A graph G is planar if and only if K5 6≤ G and K3,3 6≤ G .

K5 K3,3
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Minors vs. subdivisions

Simple fact
If H has max. degree ≤ 3, then H ≤ G ⇐⇒ H ≤T G .
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Minors vs. subdivisions
Simple fact
For every H, there is a finite set H such that

H ≤ G ⇐⇒ ∃H ′ ∈ H : H ′ ≤T G .

H H

Every class that can be defined by excluding minors can be
defined by excluding topological subgraphs.
But the converse is not true: excluding a K1,4 topological
subgraph means that max. degree is < 4.
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Finding topological subgraphs

Deciding H ≤T G :
Guess the image of each v ∈ V (H) in G .
Solve the k-Disjoint Paths where k = |E (H)| and the
paths correspond to the edges of H in G .

Corollary

We can decide in nf (H) time if H ≤T G .

Theorem [Grohe, Kawarabayashi, M., Wollan 2011]

We can decide in f (H) · n3 time if H ≤T G .

128



Well-quasi-ordering (lack of)

The relation ≤T is not a well-quasi-ordering.
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Torso

Torso of a bag: we make the intersections with the adjacent bags
cliques.
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Torso

Torso of a bag: we make the intersections with the adjacent bags
cliques.
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Structure theorems

Theorem [Grohe and M. 2012]

For every H, there is an integer k ≥ 1 such that every
H-subdivision free graph has a tree decomposition where the torso
of every bag is either

Kk -minor free or
has degree at most k with the exception of at most k vertices
(“almost bounded degree”).

Note: there is an f (H) · nO(1) time algorithm for computing such a
decomposition.
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Structure theorems

Theorem [Grohe and M. 2012]
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H-Topological- Minor-Free

[figure by Felix Reidl]
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Algorithmic applications

Theorem [Grohe and M. 2012]

For every H, there is an integer k ≥ 1 such that every
H-subdivision free graph has a tree decomposition where the torso
of every bag is either

k-almost embeddable in a surface of genus at most k or
has degree at most k with the exception of at most k vertices
(“almost bounded degree”).

General message:
If a problem can be solved both

on (almost-) embeddable graphs and
on (almost-) bounded degree graphs,

then these results can be raised to
H-subdivision free graphs

without too much extra effort.
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Partial Dominating Set

Partial Dominating Set
Input: graph G , integer k
Find: a set S of at most k vertices whose closed neighborhood has
maximum size

Theorem
Partial Dominating Set can be solved in time f (H, k) · nO(1)

on H-subdivision free graphs.
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Partial Dominating Set

Sketch:
Partial Dominating Set can be solved in linear-time on
bounded-degree graphs (the closed neighborhood has bounded
size).
Partial Dominating Set can be solved in linear-time on
planar graphs (standard layering/treewidth arguments).
With some extra work, we can generalize this to
almost-bounded degree and almost-embeddable graphs.
The structure theorem together with bottom-up dynamic
programming gives an algorithm for H-subdivision free graphs.
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Graph Isomorphism
Theorem [Luks 1982] [Babai, Luks 1983]

For every fixed d , Graph Isomorphism can be solved in
polynomial time on graphs with maximum degree d .

Theorem [Ponomarenko 1988]

For every fixed H, Graph Isomorphism can be solved in
polynomial time on H-minor free graphs.

Theorem [Grohe and M. 2012]

For every fixed H, Graph Isomorphism can be solved in
polynomial-time on H-subdivision free graphs.

Note:
Running time is nf (H), not FPT parameterized by H.
Requires a more general “invariant acyclic tree-like
decomposition.”

136



Immersions

Definition
Graph H has an immersion in G (H ≤im G ) if there is a mapping
φ such that

For every v ∈ V (H), φ(v) is a distinct vertex in G .
For every xy ∈ E (H), φ(xy) is a path between φ(x) and φ(y),
and all these paths are edge disjoint.

≤im

Note: H ≤T G implies H ≤im G .
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Immersion

Finding immersions:

Theorem [Grohe, Kawarabayashi, M., Wollan 2011]

We can decide in f (H) · n3 time if H ≤im G .

Well-quasi-ordering:

Robertson and Seymour
The immersion relation ≤im is a well-quasi-ordering on finite graphs.

What about a structure theorem?
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Excluding immersions
As excluding Kk -immersions implies excluding Kk topological
subgraphs, we get:

Theorem [Grohe and M. 2012]

For every H, there is an integer k ≥ 1 such that every H-immersion
free graph has a tree decomposition where the torso of every bag is
either

k-almost embeddable in a surface of genus at most k or
has degree at most k with the exception of at most k vertices
(“almost bounded degree”).

However, embeddability does not seem to be relevant for
immersions: the following graph has large clique immersions.

Can we omit the first case?
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Excluding immersions

Theorem [Wollan]

If Kk has no immersion in G , then G has a “tree-cut
decomposition” of adhesion at most k2 such that each “torso” has
at most k vertices of degree at least k2.

Tree cut decomposition: a partition of the vertex set in tree-like
way.

≤ k2

140



Excluding immersions

Theorem [Wollan]

If Kk has no immersion in G , then G has a “tree-cut
decomposition” of adhesion at most k2 such that each “torso” has
at most k vertices of degree at least k2.

Tree cut decomposition: a partition of the vertex set in tree-like
way.

torso
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Odd minors
Definition
Graph H is an odd minor of G (H ≤odd G ) if G has a 2-coloring
and there is a mapping φ that maps each vertex of H to a tree of
G such that

φ(u) and φ(v) are disjoint if u 6= v ,
every edge of φ(u) is bichromatic,
if uv ∈ E (H), then there is a monochromatic edge between
φ(u) and φ(v).

Example: K3 is an odd minor of G if and only if G is not bipartite.
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Odd minors
Finding odd minors:

Theorem [Kawarabayashi, Reed, Wollan 2011]

There is an f (H) · nO(1) time algorithm for finding an odd H-minor.

Structure theorem:

Theorem [Demaine, Hajiaghayi, Kawarabayashi 2010]

For every H, there is an integer k ≥ 1 such that every odd H-minor
free graph has a tree decomposition where the torso of every bag is

k-almost embeddable in a surface of genus at most k or
bipartite after deleting at most k vertices (“almost bipartite”)

Consequence:

Theorem [Demaine, Hajiaghayi, Kawarabayashi 2010]

For every fixed H, there is a polynomial-time 2-approximation
algorithm for chromatic number on odd H-minor free graphs.
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Odd subdivisions

Definition
Odd subdivision of a graph: replacing each edge by a path of odd
length (1 or more).

If G contains an odd H-subdivision, then H ≤T G and H ≤odd G .
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Odd subdivisions
A structure theorem for excluding odd H-subdivision should be
stronger than

the structure theorem for excluded subdivisions
(k-almost embeddable, almost bounded degree) and
the structure theorem for excluded odd minors
(k-almost embeddable, almost bipartite).

Theorem [Kawarabayashi 2013]

For every H, there is an integer k ≥ 1 such that every odd
H-subdivision free graph has a tree decomposition where the torso
of every bag is either

k-almost embeddable in a surface of genus at most k ,
has degree at most k with the exception of at most k vertices
(“almost bounded degree”), or
bipartite after deleting at most k vertices (“almost bipartite”).
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What did we learn, Palmer?

Algorithms for bounded treewidth graphs: tedious, but
elementary.
(dynamic programming, Courcelle’s Theorem)
Applications of bounded treewidth algorithms.
(the shifting technique, bidimensionality, grid theorems)
Generalization to bounded genus graphs.
The structure theorem.
Minor testing and well-quasi-ordering.
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Treewidth
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.

treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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Dynamic programming

Weighted Max 3-Coloring
Independent Set

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

bcf=T bcf=F
bcf=T bcf=F
. . . . . .
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Courcelle’s Theorem

Courcelle’s Theorem
If a graph property can be expressed in EMSO, then for every fixed
w ≥ 1, there is a linear-time algorithm for testing this property on
graphs having treewidth at most w .

3-Coloring
∃C1,C2,C3 ⊆ V

(
∀v ∈ V (v ∈ C1 ∨ v ∈ C2 ∨ v ∈ C3)

)
∧
(
∀u, v ∈

V adj(u, v)→ (¬(u ∈ C1 ∧ v ∈ C1) ∧ ¬(u ∈ C2 ∧ v ∈ C2) ∧ ¬(u ∈
C3 ∧ v ∈ C3))

)
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Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.
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Shifting strategy

Theorem
There is a 2O(1/ε) · n time PTAS for Independent Set for planar
graphs.
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Bidimensionality

Bidimensionality [Demaine, Fomin, Hajiaghayi, Thilikos 2005]

For many natural invariants, we can do this in time 2O(
√

k) · nO(1)

on planar graphs.

Win/win situation:
If treewidth is Ω(

√
k) ⇒ There is a

Ω(
√
k)× Ω(

√
k) grid minor ⇒

value of the invariant is at least k .
If treewidth is O(

√
k), then we can

solve the problem in time
2O(
√

k) · nO(1).
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Surfaces

genus 1 genus 3 unbounded genus
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Graph Structure Theorem

Theorem [Robertson-Seymour]

For every graph H, there is an integer k and a surface Σ such that
every H-minor-free graph has a tree decomposition where every
torso is k-almost embeddable in Σ.

k-almost embeddable
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Planar
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H-Minor-Free

H-Topological- Minor-Free

[figure by Felix Reidl]
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Graph Minors Theorem

Well-quasi-ordering:

Theorem [Robertson and Seymour]

Every class G closed under taking minors has a finite set F of
minimal obstructions.

Minor testing:

Theorem [Robertson and Seymour]

For every fixed graph H, there is an O(n3) time algorithm for
testing whether H is a minor of the given graph G .

Corollary: For every minor closed property G, there is an
O(n3) time algorithm for testing whether a given graph G is
in G.
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