
Known Algorithms on Graphs of Bounded Treewidth are

Probably Optimal∗

Daniel Lokshtanov† Dániel Marx‡ Saket Saurabh§

January 14, 2018

Abstract

We obtain a number of lower bounds on the running time of algorithms solving problems
on graphs of bounded treewidth. We prove the results under the Strong Exponential Time
Hypothesis of Impagliazzo and Paturi. In particular, assuming that n-variable m-clause
SAT cannot be solved in time (2− ε)nmO(1), we show that for any ε > 0;

• Independent Set cannot be solved in time (2− ε)tw(G)|V (G)|O(1),

• Dominating Set cannot be solved in time (3− ε)tw(G)|V (G)|O(1),

• Max Cut cannot be solved in time (2− ε)tw(G)|V (G)|O(1),

• Odd Cycle Transversal cannot be solved in time (3− ε)tw(G)|V (G)|O(1),

• For any fixed q ≥ 3, q-Coloring cannot be solved in time (q − ε)tw(G)|V (G)|O(1),

• Partition Into Triangles cannot be solved in time (2− ε)tw(G)|V (G)|O(1).

Our lower bounds match the running times for the best known algorithms for the problems,
up to the ε in the base.

1 Introduction

It is well-known that many NP-hard graph problems can be solved efficiently if the treewidth
(tw(G)) of the input graph G is bounded. For an example, an expository algorithm to solve
Vertex Cover and Independent Set running in time O∗(4tw(G)) is described in the algo-
rithms textbook by Kleinberg and Tardos [35] (the O∗ notation suppresses factors polynomial
in the input size), while the book of Niedermeier [43] on fixed-parameter algorithms presents
an algorithm with running time O∗(2tw(G)). Similar algorithms, with running times on the
form O∗(ctw(G)) for a constant c, are known for many other graph problems such as Domi-
nating Set, q-Coloring and Odd Cycle Transversal [5, 19, 26, 27, 50]. Algorithms for
graph problems on bounded treewidth graphs have found many uses as subroutines in approx-
imation algorithms [7, 24, 25, 36], parameterized algorithms [4, 21, 23, 34, 41, 49], and exact
algorithms [28, 46, 42].

In this paper, we show that any improvement over the currently best known algorithms for a
number of well-studied problems on graphs of bounded treewidth would yield a faster algorithm
for SAT. In particular, we show if there exists an ε > 0 such that

• Independent Set can be solved in time O∗((2− ε)tw(G)), or

∗A preliminary version of this paper appeared in the proceedings of SODA 2011 [37].
†Department of Informatics, University of Bergen, Norway. daniello@ii.uib.no
‡Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI), Budapest,

Hungary. dmarx@cs.bme.hu
§The Institute of Mathematical Sciences, India. saket@imsc.res.in

• Dominating Set can be solved in time O∗((3− ε)tw(G)), or

• Max Cut can be solved in time O∗((2− ε)tw(G)), or

• Odd Cycle Transversal can be solved in time O∗((3− ε)tw(G)), or

• there is a fixed q ≥ 3 such that q-Coloring can be solved in time O∗((q − ε)tw(G)), or

• Partition Into Triangles can be solved in time O∗((2− ε)tw(G)),

then n-variable SAT can be solved in O∗((2 − δ)n) time for some δ > 0. Such an algorithm
would violate the Strong Exponential Time Hypothesis (SETH) of Impagliazzo and Paturi [31].
Thus, assuming SETH, the known algorithms for the mentioned problems on graphs of bounded
treewidth are essentially the best possible.

To show our results we give polynomial time many-one reductions that transform n-variable
boolean formulas φ to instances of the problems in question. Such reductions are well-known,
but for our results we need to carefully control the treewidth of the graphs that our reductions
output. A typical reduction creates n gadgets corresponding to the n variables; each gadget
has a small constant number of vertices. In most cases, this implies that the treewidth can be
bounded by O(n). However, to prove the a lower bound of the form O∗((2− ε)tw(G)), we need
that the treewidth of the constructed graph is (1 + o(1))n. Thus we can afford to increase the
treewidth by at most one per variable. For lower bounds above O∗((2− ε)tw(G)), we need even
more economical constructions. To understand the difficulty, consider the Dominating Set
problem, here we want to say that if Dominating Set admits an algorithm with running time
O∗((3− ε)tw(G)) = O∗(2log(3−ε)tw(G)) for some ε > 0, then we can solve SAT on input formulas
with n-variables in time O∗((2−δ)n) for some δ > 0. Therefore by näıvely equating the exponent
in the previous sentence we get that we need to construct an instance for Dominating Set
whose treewidth is essentially n

log 3 . In other words, each variable should increase treewidth by
less than one. The main challenge in our reductions is to squeeze out as many combinatorial
possibilities per increase of treewidth as possible. In order to control the treewidth of the graphs
we construct, we upper bound the pathwidth (pw(G)) of the constructed instances and use the
fact that for any graph G, tw(G) ≤ pw(G). Thus all of our lower bounds also hold for problems
on graphs of bounded pathwidth.

Complexity Assumption: The Exponential Time Hypothesis (ETH) and its strong variant
(SETH) are conjectures about the exponential time complexity of k-SAT. The k-SAT problem
is a restriction of SAT, where every clause in input boolean formula φ has at most k literals. Let
sk = inf{δ : k-SAT can be solved in 2δn time}. The Exponential Time Hypothesis conjectured
by Impagliazzo, Paturi and Zane [32] is that s3 > 0. In [32] it is shown that ETH is robust,
that is s3 > 0 if and only if there is a k ≥ 3 such that sk > 0. In the same year it was shown
that assuming ETH the sequence {sk} increases infinitely often [31]. Since SAT has a O∗(2n)
time algorithm, {sk} is bounded by above by one, and Impagliazzo and Paturi [31] conjecture
that 1 is indeed the limit of this sequence. In a subsequent paper [12], this conjecture is coined
as SETH.

ETH is now a widely believed assumption, and has been used as a starting point to prove
running time lower bounds for numerous problems [9, 15, 14, 22, 18, 29, 38, 39, 40]. At the time
of the conference version of this paper, SETH was largely untouched [44, 11, 16, 20, 21, 17]. The
reason for this was two-fold. First, the assumption that limk→∞ sk = 1 is a very strong one.
Second, when proving lower bounds under ETH we can utilize the Sparsification Lemma [32]
which allows us to reduce from instances of 3-SAT where the number of clauses is linear in
the number of variables. Such a tool does not exist for SETH, and this seems to be a major
obstruction for showing running time lower bounds for interesting problems under SETH. We
overcome this obstruction by circumventing it – in order to show running time lower bounds for
algorithms on bounded treewidth graphs sparsification is simply not required.

2

Related Work. In several cases designing the “right algorithm” on graphs of bounded treewidth
or pathwidth is not at all obvious. For example: Alber et al. [5] gave a O∗(4tw(G)) time al-
gorithm for Dominating Set, improving over the natural O∗(9tw(G)) algorithm of Telle and
Proskurowski [48]. Later, van Rooij et al. [50] observed that one could use fast subset convo-
lution [8] to improve the running time of algorithms on graphs of bounded treewidth. Their
results include a O∗(3tw(G)) algorithm for Dominating Set and a O∗(2tw(G)) time algorithm
for Partition Into Triangles. Interestingly, the effect of applying subset convolution was
that the running time for several graph problems on bounded treewidth graphs became the same
as the running time for the problems on graphs of bounded pathwidth. However, the idea of
using subset convolution in designing dynamic programming algorithm over graphs of bounded
treewidth was not enough to design “optimal algorithms” for several connectivity problems such
as Hamiltonian Path and Connected Vertex Cover. In a seminal paper, Cygan et al. [21]
introduced the method of Cut & Count and designed the first O∗(ctw(G)), where c is a fixed con-
stant, for plethora of connectivity problems including Hamiltonian Path and Connected
Vertex Cover. However, the algorithm for Hamiltonian Path runs in time O∗(4tw(G)),
which still is the best known algorithm. Later, in a surprising result, Cygan, Kratsch, and
Nederlof [20] showed that Hamiltonian Path can be solved in time O∗((2 +

√
2)pw(G)) on

graphs of bounded pathwidth. The algorithms obtained using t Cut & Count are randomized.
Later, deterministic algorithms with running time O∗(ctw(G)), where c is a fixed constant, were
designed for connectivity problems [10, 30].

Follow-up Work. The problems considered in this article, and the ideas used to resolve
them, led to several follow-up works that showed lower bounds for concrete problems in the
parameterized settings [11, 16, 17, 21]. On the other hand, Roditty and Williams [45] used
SETH to show concrete lower bounds on the running time for problems solvable in polynomial
time. This was followed by a long line of work in this direction [1, 2, 3, 6, 13, 51]. The work
of Cygan et al. [21] that introduced the method of Cut & Count to design O∗(ctw(G)), where
c is a fixed constant, for connectivity problems, also showed that the base of exponent in their
algorithm are optimal unless SETH fails. Cygan, Kratsch, and Nederlof [20] showed that the
running time ofO∗((2+

√
2)pw(G)) for Hamiltonian Path on graphs of bounded pathwidth is in

fact optimal under SETH. Several other lower bounds for concrete problems were also obtained
in [17]. Ideas from the current paper were recently used to design tight lower bounds for r-
Dominating Set and Connected Dominating Set on graphs of bounded treewidth [11].
Curticapean and Marx obtained tight lower bounds for counting perfect matchings on graphs
of bounded treewidth, cliquewidth, and genus under SETH [16].

2 Preliminaries

In this section we give various definitions which we make use of in the paper. Let G be a graph
with vertex set V (G) and edge set E(G). A graph G′ is a subgraph of G if V (G′) ⊆ V (G)
and E(G′) ⊆ E(G). For a subset V ′ ⊆ V (G), the subgraph G′ = G[V ′] of G is called a subgraph
induced by V ′ if E(G′) = {uv ∈ E(G) | u, v ∈ V ′} and V (G′) = V ′. By N(u) we denote
the (open) neighborhood of u in graph G, that is, the set of all vertices adjacent to u and by
N [u] = N(u) ∪ {u}. Similarly, for a subset D ⊆ V (G), we define N [D] = ∪v∈DN [v].

A tree decomposition of a graph G is a pair (X , T) where T is a tree and X = {Xi | i ∈ V (T)}
is a collection of subsets of V (G) such that: 1.

⋃
i∈V (T)Xi = V (G), 2. for each edge xy ∈ E(G),

{x, y} ⊆ Xi for some i ∈ V (T); 3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected
subtree of T . The width of the tree decomposition is maxi∈V (T){|Xi| − 1}. The treewidth of
a graph G is the minimum width over all tree decompositions of G. We denote by tw(G) the
treewidth of graph G. If in the definition of treewidth we restrict the tree T to be a path then

3

we get the notion of pathwidth and denote it by pw(G). For our purpose we need an equivalent
definition of pathwidth via mixed search games.

In a mixed search game, a graph G is considered as a system of tunnels. Initially, all edges
are contaminated by a gas. An edge is cleared by placing searchers at both its end-points
simultaneously or by sliding a searcher along the edge. A cleared edge is re-contaminated if
there is a path from an uncleared edge to the cleared edge without any searchers on its vertices
or edges. A search is a sequence of operations that can be of the following types: (a) placement
of a new searcher on a vertex; (b) removal of a searcher from a vertex; (c) sliding a searcher on
a vertex along an incident edge and placing the searcher on the other end. A search strategy
is winning if after its termination all edges are cleared. The mixed search number of a graph
G, denoted by ms(G), is the minimum number of searchers required for a winning strategy of
mixed searching on G. Takahashi, Ueno and Kajitani [47] obtained the following relationship
between pw(G) and ms(G), which we use for bounding the pathwidth of the graphs obtained
in reduction.

Proposition 1 ([47]). For a graph G, pw(G) ≤ms(G) ≤ pw(G) + 1.

An instance to SAT consists of a boolean formula φ = C1 ∧ · · · ∧ Cm over n variables
{v1, . . . , vn} where each clause Ci is OR of one or more literals of variables. We also denote a
clause Ci by the set {`1, `2, . . . , `c} of its literals and denote by |Ci| the number of literals in
Ci. An assignment τ to the variables is an element of {0, 1}n, and it satisfies the formula φ if
for every clause Ci there is literal that is assigned 1 by τ . We say that a variable vi satisfies a
clause Cj if there exists a literal corresponding to vi in {`1, `2, . . . , `c} and it is set to 1 by τ . A
group of variables satisfy a clause Cj if there is a variable that satisfies the clause Cj . All the
sections in this paper follows the following pattern: definition of the problem; statement of the
lower bound; construction used in the reduction; correctness of the reduction; and the upper
bound on the pathwidth of the resultant graph.

3 Independent Set

An independent set of a graph G is a set S ⊆ V (G) such that G[S] contains no edges. In the In-
dependent Set problem we are given a graph G and the objective is to find an independent
set of maximum size.

We first sketch the main idea of the proof. We give the reduction from an arbitrary SAT
instance on n variables and m clauses. The idea is to create a family of n very long paths
P1, P2, . . . , Pn of even length, corresponding to variables x1, x2, . . . , xn. Assume for now that on
each of these paths the solution is allowed to make one of two choices: the independent set either
contains all the odd-indexed vertices, or all the even-indexed vertices. Then for every clause we
construct a clause verification gadget and attach it to some place in the family. The gadget is
adjacent to paths corresponding to variables appearing in the clause, and the attachment points
reflect whether the variable’s appearance is positive or negative. The role of the clause gadget
is to verify that the clause is satisfied. Satisfaction of the clause corresponds to the condition
that at least one of the attachment points of the clause gadget needs to be not chosen into the
constructed independent set; hence the clause gadget needs to have the following property: the
behavior inside the gadget can be set optimally if and only if at least one of the attachment
points is free. It is possible to construct a gadget with exactly this property, and moreover the
gadget has constant pathwidth, so it does not increase much the width of the whole construction.
One technical problem that we still need to overcome is the first technical assumption about
the choices the solution makes on the paths Pi. It is namely not true that on a path of even
length there are only two maximum-size independent sets: the odd-indexed vertices and the
even-indexed vertices. The solution can first start with picking only odd-indexed vertices, then

4

make a gap of two vertices, and continue further with even-indexed vertices. Thus, on each path
there can be one “cheat” where the solution flips from odd indices to even indices. The solution
to this problem is a remarkably simple trick that is commonly used in similar reductions. We
namely repeat the whole sequence of clause gadgets n + 1 times, which ensures that at most
n copies are spoiled by possible cheats, and hence at least one of the copies is attached to
area where no cheat happens, and hence the behavior of the solution on the paths Pi correctly
encodes some satisfying assignment of the variable set. This concludes the sketch and we move
towards giving the formal proof.

Theorem 1. If Independent Set can be solved in O∗((2− ε)tw(G)) for some ε > 0 then SAT
can be solved in O∗((2− δ)n) time for some δ > 0.

Construction. Given an instance φ of SAT, we construct a graph G as follows (see Fig-
ure 1). We assume that every clause has an even number of variables: if not, we can add a
single variable to all odd size clauses and force this variable to false. First we describe the
construction of clause gadgets. For a clause C = {`1, `2, . . . , `c}, we introduce a gadget Ĉ as
follows. We take two paths, CP = cp1, cp2 . . . , cpc and CP ′ = cp′1, cp

′
2 . . . cp

′
c having c vertices

each, and connect cpi with cp′i for every i. For each literal `i, we introduce a vertex `i in Ĉ and
make it adjacent to cpi and cp′i. Finally we add two vertices cstart and cend, such that cstart is
adjacent to cp1 and cend is adjacent to cpc. Observe that the size of the maximum independent
set of Ĉ is c + 2. Also, since c is even, any independent set of size c + 2 in Ĉ must contain at
least one vertex in C = {`1, `2, . . . , `c}. Finally, notice that for any i, there is an independent
set of size c+ 2 in Ĉ that contains `i and none of `j for j 6= i.

We first construct a graph G1. We introduce n paths P1, . . . , Pn, each path has 2m vertices.
Let the vertices of the path Pi be p1i . . . p

2m
i . The path Pi corresponds to the variable vi. For

every clause Ci of φ, we introduce a gadget Ĉi. Now, for every variable vi, if vi occurs positively
in Cj , we add an edge between p2ji and the literal corresponding to vi in Ĉj . If vi occurs

negatively in Cj , we add an edge between p2j−1i and the literal corresponding to vi in Ĉj . Now
we construct the graph G as follows. We take n + 1 copies of G1, call them G1, . . ., Gn+1.
For every i ≤ n, we connect Gi and Gi+1 by connecting p2mj in Gi with p1j in Gi+1 for every
j ≤ n. This way, the paths Pj in each of the n copies Gi together form a long path of 2m(n+ 1)
vertices. This concludes the construction of G.

Lemma 1. If φ is satisfiable, then G has an independent set of size (mn+
∑

i≤m(|Ci|+2))(n+1).

Proof. Consider a satisfying assignment to φ. We construct an independent set I in G. For
every variable vi, if vi is set to true, then pick all the vertices on odd positions from all copies
of Pi, that is p1i , p

3
i , p

5
i and so on. If vi is false then pick all the vertices on even positions from

all copies of Pi, that is p2i , p
4
i , p

6
i and so on. It is easy to see that this is an independent set

of size mn(n + 1) containing vertices from all the paths. We will now consider the gadget Ĉj
corresponding to a clause Cj . We will only consider the copy of Ĉj in G1 as the other copies
can be dealt identically. Let us choose a true literal `a in Cj and let vi be the corresponding

variable. Consider the vertex `a in Ĉj . If vi occurs positively in Cj , then vi is true. Then I

does not contain p2ji , the only neighbour of `a outside of Ĉj . On the other hand if vi occurs

negatively in Cj , then vi is false. In this case I does not contain p2j−1i , the only neighbour of

`a outside of Ĉj . There is an independent set of size |Cj | + 2 in Ĉ that contains `a and none
out of `b for any b 6= a. We add this independent set to I and proceed in this manner for every
clause gadget. By the end of the process (

∑
i≤m(|Ci|+ 2))(n+ 1) vertices from clause gadgets

are added to I, yielding that the size of I is (mn +
∑

i≤m(|Ci| + 2))(n + 1), concluding the
proof.

Lemma 2. If G has an independent set of size (mn+
∑

i≤m(|Ci|+2))(n+1), then φ is satisfiable.

5

Ĉj

cend

cstart

p2jnp2j−1n

p2j−11 p2j1

`c

`1

cp′1

cpc

cp1

Pn

P1

Figure 1: Reduction to Independent Set: clause gadget Ĉj attached to the n paths repre-
senting the variables.

6

Proof. Consider an independent set of G of size (mn+
∑

i≤m |Ci|+ 2)(n+ 1). Set I can contain
at most m vertices from each copy of Pi for every i ≤ n and at most |Cj |+ 2 vertices from each
copy of the gadget Cj . Since I must contain at least that many vertices from each path and
clause gadget in order to contain at least (mn+

∑
i≤m |Ci|+ 2)(n+ 1) vertices, it follows that

I has exactly m vertices in each copy of each path Pi and exactly |Cj |+ 2 vertices in each copy

of each clause gadget Ĉj . For a fixed j, consider the n + 1 copies of the path Pj . Since Pj in
Gi is attached to Pj in Gi+1, these n+ 1 copies of Pi together form a path P having 2m(n+ 1)
vertices. Since |I ∩ P | = m(n + 1) it follows that I ∩ P must contain every second vertex of
P , except possibly in one position where I ∩ P skips two vertices of P . There are only n paths
and n + 1 copies of G1, hence the pigeon-hole principle implies that in some copy Gy of G1, I
contains every second vertex on every path Pi. From now onwards we only consider such a copy
Gy.

In Gy, for every i ≤ n, I contains every second vertex of Pi. We make an assignment to
the variables of φ as follows. If I contains all the odd numbered vertices of Pi then vi is set
to true, otherwise I contains all the even numbered vertices of Pi and vi is set to false. We
argue that this assignment satisfies φ. Indeed, consider any clause Cj , and look at the gadget

Ĉj . We know that I contains |Cj | + 2 vertices from Ĉj and hence I must contain a vertex `a
in Ĉj corresponding to a literal of Cj . Suppose `a is a literal of vi. Since I contains `a, if `a
occurs positively in Cj , then I can not contain p2ji and hence vi is true. Similarly, if `a occurs

negatively in Cj then I can not contain p2j−1i and hence vi is false. In both cases vi satisfies Cj
and hence all clauses of φ are satisfied by the assignment.

Lemma 3. pw(G) ≤ n+ 4.

Proof. We give a mixed search strategy to clean G using n+ 3 searchers. For every i we place
a searcher on the first vertex of Pi in G1. The n searchers slide along the paths P1, . . . Pn
in m rounds. In round j each searcher i starts on p2j−1i . Then, for every variable vi that

occurs positively in Cj , the searcher i slides forward to p2ji . Observe that at this point there is a

searcher on every neighbour of the gadget Ĉj . This gadget can now be cleaned with 3 additional

searchers. After Ĉj is clean, the additional 3 searchers are removed, and each of the n searchers

on the paths P1, . . . Pn slides forward along these paths, such that searcher i stands on p
2(j+1)
i .

At that point, the next round commences. When the searchers have cleaned G1 they slide onto
the first vertex of P1 . . . Pn in G2. Then they proceed to clean G2, . . . , Gn+1 in the same way
that G1 was cleaned. Now applying Proposition 1 we get that pw(G) ≤ n+ 4.

The construction, together with Lemmata 1, 2 and 3 proves Theorem 1.

4 Dominating Set

A dominating set of a graph G is a set S ⊆ V (G) such that V (G) = N [S]. In the Dominating
Set problem we are given a graph G and the objective is to find a dominating set of minimum
size.

The basic idea for this reduction is similar to the one for Independent Set. However, we
need one more new idea here, which will also be used in other reductions. We group variables
into an appropriate number of groups of size at most β = blog 3pc, where p is a constant
depending only on ε. Then, for every group we make a gadget such that an assignment on the
group should correspond to a selection on the gadget. These group gadgets are then connected
to clause gadgets so that every assignment on the group that satisfies the clause results in some
desired outcome.

7

p1p p2p p3p

gp

g′1

g1

p21 p31p11

x

x′SxS

Pp

P1

g′p

Figure 2: Reduction to Dominating Set: group gadget B̂. The set S is shown by the circled
vertices.

Theorem 2. If Dominating Set can be solved in O∗((3− ε)pw(G)) time for some ε > 0 then
SAT can be solved in O∗((2− δ)n) time for some δ > 0.

Construction. Given ε < 1 and an instance φ to SAT we construct a graph G as follows.
We first choose an integer p depending only on ε. Exactly how p is chosen will be discussed in
the proof of Theorem 2. We group the variables of φ into groups F1, F2, . . . , Ft, each of size at
most β = blog 3pc. Hence t = dn/βe. We now proceed to describe a “group gadget” B̂, which
is central in our construction.

To build the group gadget B̂, we introduce p paths P1, . . . , Pp, where the path Pi contains
the vertices p1i , p

2
i and p3i (see Figure 2). To each path Pi we attach two guards gi and g′i, both

of which are neighbours to p1i , p
2
i and p3i . When the gadgets are attached to each other, the

guards will not have any neighbours outside of their own gadget B̂, and will ensure that at least
one vertex out of p1i , p

2
i and p3i are chosen in any minimum size dominating set of G. Let P

be the vertex set containing all the vertices on the paths P1, . . . , Pp. For every subset S of P
that picks exactly one vertex from each path Pi, we introduce two vertices xS and x′S , where
xS is adjacent to all vertices of P \S (all those vertices that are on paths and not in S) and x′S
is only adjacent to xS . We conclude the construction of B̂ by making all the vertices x′S (for
every set S) adjacent to each other, that is making them into a clique, and adding a guard x
adjacent to x′S for every set S. In other words, the x′S ’s together with x form a clique and all
the neighbors of x reside in this clique.

We construct the graph G as follows (see Figure 3). For every group Fi of variables, we
introduce m(2pt + 1) copies of the gadget B̂, call them B̂j

i for 1 ≤ j ≤ m(2pt + 1). We can
imagine these t·m(2pt+1) gadgets arranged in t rows and m(2pt+1) columns, with the columns
being divided into 2pt + 1 regions of m columns each. For every fixed i ≤ t, we connect the

8

h′

h

B̂x
t

B̂x
1

ĉ`j

Figure 3: Reduction to Dominating Set: arranging the group gadgets. Note that x = m`+ j,
thus ĉ`j is attached to vertices in B̂x

1 , . . . , B̂x
t .

gadgets B̂1
i , B̂

2
i . . . , B̂

m(2pt+1)
i in a path-like manner. In particular, for every j < m(2pt+ 1) and

every ` ≤ p we make an edge between p3` in the gadget B̂j
i with p1` in the gadget B̂j+1

i . Now we

introduce two new vertices h and h′, with h adjacent to h′, p1j in B̂1
i for every i ≤ t, j ≤ p and

to p3j in B̂
m(2pt+1)
i for every i ≤ t, j ≤ p. That is, for all 1 ≤ i ≤ t, h is adjacent to the first

and last vertices of “long paths” obtained after connecting the gadgets B̂1
i , B̂

2
i . . . , B̂

m(2pt+1)
i in

a path-like manner.
For every 1 ≤ i ≤ t and to every assignment of the variables in the group Fi, we designate

a subset S of P in the gadget B̂ that picks exactly one vertex from each path Pj . Since there
are at most 2β different assignments to the variables in Fi, and there are 3p ≥ 2β such sets
S, we can assign a unique set to each assignment. Of course, the same set S can correspond
to one assignment of the group F1 and some other assignment of the group F2. Recall that
the clauses of φ are C1, . . . , Cm. For every clause Cj we introduce 2pt + 1 vertices ĉ`j , one for

each 0 ≤ ` < 2pt + 1, corresponding to the 2pt + 1 regions. The vertex ĉ`j will be connected

to the gadgets B̂m`+j
i for every 1 ≤ i ≤ t (which appear in the `-th region). In particular, for

every assignment of the variables in the group Fi that satisfy the clause Cj , we consider the

9

subset S of P that corresponds to the assignment. For every 0 ≤ ` < 2pt + 1, we make x′S in

B̂m`+j
i adjacent to ĉ`j . The best way to view this is that every clause Cj has 2pt + 1 private

gadgets in the i-row, B̂j
i , B̂

m+j
i , . . . , B̂m2pt+j

i , one in each region. Now we have 2pt+ 1 vertices
corresponding to the clause Cj , each connected to one of these gadgets. This concludes the
construction of G.

Lemma 4. If φ has a satisfying assignment, then G has a dominating set of size (p+1)tm(2pt+
1) + 1.

Proof. Given a satisfying assignment to φ, we construct a dominating set D of G that contains
the vertex h and exactly p + 1 vertices in each gadget B̂j

i . For each group Fi of variables we
consider the set S that corresponds to the restriction of the assignment to the variables in Fi.
From each gadget B̂j

i we add the set S to D and also the vertex x′S to D. It remains to argue
that D is indeed a dominating set. Clearly the size is bounded by (p+ 1)tm(2pt+ 1) + 1, as the
number of gadgets is tm(2pt+ 1).

For a fixed i ≤ t and j consider the vertices on the path Pj in the gadgets B̂`
i for every

` ≤ m(2pt + 1). Together these vertices form a path of length 3m(2pt + 1) and every third
vertex of this path is in S. Thus, all vertices on this path are dominated by other vertices on
the path, except perhaps for the first and last one. Both these vertices, however, are dominated
by h.

Now, fix some i ≤ t and ` ≤ m(2pt+ 1) and consider the gadget B̂`
i . Since D contains some

vertex on the path Pj , we have that for every j both gj and g′j are dominated. Furthermore, for
every set S∗ not equal to S that picks exactly one vertex from each Pj , vertex xS∗ is dominated
by some vertex on some Pj—namely by all vertices in S \ S∗ 6= ∅. The last assertion follows
since xS∗ is connected to all the vertices on the paths except S∗. On the other hand, xS is
dominated by x′S , and x′S also dominates all the other vertices x′S∗ for S∗ 6= S, as well as the
guard x.

The only vertices not yet accounted for are the vertices ĉ`j for every j ≤ m and ` < 2pt+ 1.
Fix a j and a ` and consider the clause Cj . This clause contains a literal set to true, and this
literal corresponds to a variable in the group Fi for some i ≤ t. Of course, the assignment to
Fi satisfies Cj . Let S be the set corresponding to this assignment of Fi. By the construction

of D, the dominating set contains x′S in B̂m`+j
i and x′S is adjacent to ĉ`j . This concludes the

proof.

Lemma 5. If G has a dominating set of size (p + 1)tm(2pt + 1) + 1, then φ has a satisfying
assignment.

Proof. Let D be a dominating set of G of size at most (p + 1)tm(2pt + 1) + 1. Since D must
dominate h′, without loss of generality we can assume that D contains h. Furthermore, inside
every gadget B̂`

i , D must dominate all the guards, namely gj and g′j for every j ≤ p, and also

x. Thus D contains at least p + 1 vertices from each gadget B̂`
i which in turn implies that D

contains exactly p + 1 vertices from each gadget B̂`
i . The only way D can dominate gj and g′j

for every j and in addition dominate x with only p + 1 vertices if D has one vertex from each
Pj , j ≤ p and in addition contains some vertex in N [x]. Let S be D ∩ P in B̂`

i . Observe that
xS is not dominated by D ∩ S. The only vertex in N [x] that dominates xS is x′S and hence D
contains x′S .

Now we want to show that for every 1 ≤ i ≤ t there exists one 0 ≤ ` ≤ 2tp such that for
fixed i, D ∩ P is same in all the gadgets B̂m`+r

i for every 1 ≤ r ≤ m, i.e., it is the same in

every gadget of the i-th row in the `-th region. Consider a gadget B̂`
i and its follower, B̂`+1

i .

Let S be D ∩ P in B̂`
i and S′ be D ∩ P in B̂`+1

i . Observe that if S contains paj in B̂`
i and pbj in

B̂`+1
i then we must have b ≤ a. We call a consecutive pair bad if for some j ≤ p, D contains

10

paj in B̂`
i and pbj in B̂`+1

i and b < a. Hence for a fixed i, we can at most have 2p consecutive
bad pairs, spoiling at most 2p regions. Now we mark all the bad pairs that occur among the
gadgets corresponding to some Fi. This way we can mark only 2tp bad pairs. Thus, by the
pigeon hole principle, there exists an ` ∈ {0, . . . , 2tp} such that there are no bad pairs in B̂m`+r

i

for all 1 ≤ i ≤ t and 1 ≤ r ≤ m.
We make an assignment φ by reading off D ∩ P in each gadget B̂m`+1

i . In particular, for

every group Fi, we consider S = D ∩ P in the gadget B̂m`+1
i . This set S corresponds to an

assignment of Fi, and this is the assignment of Fi that we use. It remains to argue that every
clause Cr is satisfied by this assignment.

Consider the vertex ĉr` . We know that it is dominated by some x′S in a gadget B̂m`+r
i . The

set S corresponds to an assignment of Fi that satisfies the clause Cr. Because D ∩ P remains
unchanged in all gadgets from B̂m`+1

i to B̂m`+r
i , this is exactly the assignment φ restricted to

the group Fi. This concludes the proof.

Lemma 6. pw(G) ≤ tp+O(3p)

Proof. We give a mixed search strategy to clean the graph with tp + O(3p) searchers. For a
gadget B̂ we call the vertices p1j and p3j , 1 ≤ j ≤ p, as entry vertices and exit vertices respectively.
We search the graph in m(2tp + 1) rounds. In the beginning of round ` there are searchers on
the entry vertices of the gadgets B̂`

i for every i ≤ t. Let 1 ≤ a ≤ m and 0 ≤ b < 2tp + 1 be
integers such that ` = a + mb. We place a searcher on ĉba. Then, for each i between 1 and p
in turn we first put searchers on all vertices of B̂`

i and then remove all the searchers from B̂`
i

except for the ones standing on the exit vertices. After all gadgets B̂`
1 . . . B̂

`
t have been cleaned

in this manner, we can remove the searcher from ĉba. To commence the next round, the searchers
slide from the exit positions of B̂`

i to the entry positions of B̂`+1
i for every i. In total, at most

tp+ |V (B̂)|+1 ≤ tp+O(3p) searchers are used simultaneously. This together with Proposition 1
give the desired upperbound on the pathwidth.

Proof (of Theorem 2). Suppose Dominating Set can be solved inO∗((3−ε)pw(G))= O∗(3λpw(G))
time, where λ = log3(3 − ε) < 1. We choose p large enough such that λ · p

bp log 3c = δ′

log 3 for

some δ′ < 1. Given an instance of SAT, we construct an instance of Dominating Set us-
ing the above construction and the chosen value of p. Then we solve the Dominating Set
instance using the O∗(3λpw(G)) time algorithm. Correctness is ensured by Lemmata 4 and 5.
Lemma 6 yields that the total time taken is upper bounded by O∗(3λpw(G)) ≤ O∗(3λ(tp+f(λ))) ≤
O∗(3λ

np
bp log 3c) ≤ O∗(3δ

′ n
log 3) ≤ O∗(2δ′′n) =O∗((2 − δ)n), for some δ′′, δ < 1. This concludes the

proof.

5 Max Cut

A cut in a graph G is a partition of V (G) into V0 and V1. The cut-set of the cut is the set of
edges whose one end point is in V0 and the other in V1. We say that an edge is crossing this
cut if it has one endpoint in V0 and one in V1, that is, the edge is in the cut-set. The size of
the cut is the number of edges in G which are crossing this cut. If the edges of G have positive
integer weights, then the weight of the cut is the sum of the weights of edges that are crossing
the cut. In the Max Cut problem, we are given a graph G together with an integer t and asked
whether there is a cut of G of size at least t. In the Weighted Max Cut problem every edge
has a positive integer weight and the objective is to find a cut of weight at least t.

Theorem 3. If Max Cut can be solved in O∗((2− ε)pw(G)) for some ε > 0, then SAT can be
solved in O∗((2− δ)n) time for some δ > 0.

11

v̂1

Pm

P1

v̂2 v̂3 v̂4 v̂5

x0

Figure 4: Reduction to Max Cut. The dashed edges have weight 1 and all the other edges
have weight 3n. The odd and even positions of the paths Pj are shown by black and white,
respectively. As an example, we show potential connections corresponding to the clauses C1 =
(v1 ∨ v̄2 ∨ v4) and C2 = (v̄1 ∨ v3 ∨ v̄5).

Construction. Given an instance φ of SAT, we first construct an instanceGw of Weighted
Max Cut as follows. We later explain how to obtain an instance of unweighted Max Cut
from here.

We start with introducing a vertex x0. Without loss of generality, we will assume that
x0 ∈ V0 in every solution. We introduce a vertex v̂i for each variable vi. For every clause Cj ,

we create a gadget as follows. We introduce a path P̂j having 4|Cj | vertices. All the edges on

P̂j have weight 3n. Now, we make the first and last vertex of P̂j adjacent to x0 with an edge

of weight 3n. Thus the path P̂j plus the edges from the first and last vertex of P̂j to x0 form

an odd cycle Ĉj . We will say that the first, third, fifth, etc, vertices are on odd positions on P̂j
while the remaining vertices are on even positions. For every variable vi that appears positively
in Cj , we select a vertex p at an even position (but not the last vertex) on P̂j and make v̂i
adjacent to p and p’s successor on P̂j with edges of weight 1. For every variable vi that appears

negatively in Cj we select a vertex p at an odd position on P̂j and make v̂i adjacent to p and

p’s successor on P̂j with edges of weight 1. We make sure that each vertex on P̂j receives an

edge at most once in this process. There are more than enough vertices on P̂j to accommodate
all the edges incident to vertices corresponding to variables in the clause Cj . We create such a
gadget for each clause and set t = m+ (12n+ 1)

∑m
j=1 |Cj |. This concludes the construction.

Lemma 7. If φ is satisfiable, then Gw has a cut of weight at least t.

Proof. Suppose φ is satisfiable. We put x0 in V0 and for every variable vi we put v̂i in V1 if vi is
true and v̂i in V0 if vi is false. For every clause Cj we proceed as follows. Let us choose a true

literal of Cj and suppose that this literal corresponds to a vertex pj on P̂j . We put the first

vertex on P̂j in V1, the second in V0 and then we proceed along P̂j putting every second vertex

into V1 and V0 until we reach pj . The successor p′j of pj on P̂j is put into the same set as pj .

12

Then we continue along P̂j putting every second vertex in V1 and V0. Notice that even though
Cj may contain more than one literal that is set to true, we only select one vertex pj from the

path P̂j and put pj and its successor on the same side of the partition. It remains to argue that
this cut has weight at least t.

For every clause Cj all edges on the path P̂j except for pjp
′
j are crossing, and the two

edges to x0 from the first and last vertex of P̂j are crossing as well. These edges contribute
12n|Cj | to the weight of the cut. We know that pj corresponds to a literal that is set to true,
and this literal corresponds to a variable vi. If vi occurs positively in Cj , then v̂i ∈ V1 and

pj is on an even position of P̂j . Thus both pj and its successor p′j are in V0 and hence both
v̂ipj and v̂ip

′
j are crossing, contributing 2 to the weight of the cut. For each of the remaining

variables vi′ appearing in Cj , one of the two neighbours of v̂i′ on P̂j appear in V0 and one

in V1, so exactly one edge from vi′ to P̂j is crossing. Thus the total weight of the cut is
t =

∑m
j=1(12n|Cj |+ |Cj |+ 1) = m+ (12n+ 1)

∑m
j=1 |Cj |. This completes the proof.

Lemma 8. If Gw has a cut of weight at least t, then φ is satisfiable.

Proof. Let (V0, V1) be a cut of G of maximum weight, hence the weight of this cut is at least t.
Without loss of generality, let x0 ∈ V0. For every clause Cj , at least one edge of the odd cycle

Ĉj is not crossing. If more than one edge of this cycle is not crossing, then the total weight of

the cut edges incident to the path P̂j is at most 3n(4|Cj | − 1) + 2n < 12n|Cj |. In this case, we

could change the partition (V0, V1) such that all edges of P̂j are crossing and the first vertex of

P̂j is in V1. Using the new partition the weight of the crossing edges in the cycle Ĉj is at least

12n|Cj | and the edges not incident to P̂j are unaffected by the changes. This contradicts that

(V0, V1) was a maximum weight cut. Thus it follows that exactly one edge of Ĉj is not crossing.
Given the cut (V0, V1), we set each variable vi to true if v̂i ∈ V1 and vi to false otherwise.

Consider a clause Cj and a variable vi that appears in Cj . Let uv be the edge of Ĉj that is
not crossing. If there is a vertex v̂i adjacent to both u and v, then it is possible that both
v̂iu and v̂iv are crossing. For every other variable vi′ in Cj , at most one of the edges from v̂i′

to P̂j is crossing. Thus, the weight of the edges that are crossing in the gadget Ĉj is at most
(12n + 1)|Cj | + 1. Hence, to find a cut-set of weight at least t in G, we need to have crossing

edges in Ĉj with sum of their weights exactly equal to 12n|Cj |+ |Cj |+ 1. It follows that there
is a vertex v̂i adjacent to both u and v such that both v̂iu and v̂iv are crossing.

If vi occurs in Cj positively, then u is on an even position and hence, u ∈ V0. Since v̂iu
is crossing it follows that vi is true and Cj is satisfied. On the other hand, if vi occurs in Cj
negated then u is on an odd position and hence, u ∈ V1. Since v̂iu is crossing it follows that vi is
false and Cj is satisfied. As this holds for each clause individually, this concludes the proof.

For every edge e ∈ E(Gw), let we be the weight of e in Gw. We construct an unweighted
graph G from Gw by replacing every edge e = uv by we paths from u to v on three edges. Let
W be the sum of the edge weights of all edges in Gw.

Lemma 9. G has a cut of size 2W + t if and only if Gw has a cut of weight at least t.

Proof. Given a partition of V (Gw), we partition V (G) as follows. The vertices of G that also
are vertices of V (G) are partitioned in the same way as in V (Gw). On each path of length 3, if
the endpoints of the path are in different sets we can partition the middle vertices of the path
such that all edges are cut. If the endpoints are in the same set we can only partition the middle
vertices such that 2 out of the 3 edges are cut. The reverse direction is similar.

Lemma 10. pw(G) ≤ n+ 5.

13

Proof. We give a search strategy to clean G with n + 5 searchers. We place one searcher on
each vertex v̂i and one searcher on x0. Then one can search the gadgets Ĉj one by one. In Gw
it is sufficient to use 2 searchers for each Ĉj , whereas in G after the edges have been replaced
by multiple paths on three edges, we need 4 searchers. This combined with Proposition 1 gives
the desired upper bound on the pathwidth of the graph.

The construction, together with Lemmata 7, 8, 9 and 10 proves Theorem 3.

6 Graph Coloring

A q-coloring of G is a function µ : V (G) → [q]. A q-coloring µ of G is proper if for every edge
uv ∈ E(G) we have µ(u) 6= µ(v). In the q-Coloring problem we are given as input a graph
G and the objective is to decide whether G has a proper q-coloring. In the List Coloring
problem, every vertex v is given a list L(v) ⊆ [q] of admissible colors. A proper list coloring of
G is a function µ : V (G) → [q] such that µ is a proper coloring of G that satisfies µ(v) ∈ L(v)
for every v ∈ V (G). In the q-List Coloring problem we are given a graph G together with
a list L(v) ⊆ [q] for every vertex v. The task is to determine whether there exists a proper list
coloring of G.

A feedback vertex set of a graph G is a set S ⊆ V (G) such that G \ S is a forest; we denote
by fvs(G) the size of the smallest such set. It is well-known that tw(G) ≤ fvs(G) + 1. Unlike
the other sections, where we give lower bounds for algorithms parameterized by pw(G), the
following theorem gives also a lower bound for algorithms parameterized by fvs(G). Such a
lower bound follows very naturally from the construction we are doing here, but not from the
constructions in the other sections. It would be interesting to explore whether it is possible to
prove tight bounds parameterized by fvs(G) for the problems considered in the other sections.

Theorem 4. Let q be a fixed positive integer. If q-Coloring can be solved in O∗((q− ε)fvs(G))
or O∗((q− ε)pw(G)) time for some ε > 0, then SAT can be solved in O∗((2− δ)n) time for some
δ > 0.

Construction. We will show the result for List Coloring first, and then give a simple
reduction that demonstrates that q-Coloring can be solved in O∗((q − ε)fvs(G)) time if and
only if q-List Coloring can.

Depending on ε and q we choose a parameter p. Now, given an instance φ to SAT we will
construct a graph G with a list L(v) for every v, such that G has a proper list-coloring if and
only if φ is satisfiable. Throughout the construction we will call color 1-red, color 2-white and
color 3-black.

We start by grouping the variables of φ into t groups F1, . . . , Ft of size at most blog qpc.
Thus t = d n

blog qpce. We will call an assignment of truth values to the variables in a group Fi a
group assignment. We will say that a group assignment satisfies a clause Cj of φ if Cj contains
at least one literal which is set to true by the group assignment. Notice that Cj can be satisfied
by a group assignment of a group Fi, even though Cj also contains variables that are not in Fi.

For each group Fi, we introduce a set Vi of p vertices v1i , . . . , v
p
i . The vertices in Vi get full

lists, that is, they can be colored by any color in [q]. The coloring of the vertices in Vi will
encode the group assignment of Fi. There are qp ≥ 2|Fi| possible colorings of Vi. Thus, to each
possible group assignment of Fi we attach a unique coloring of Vi. Notice that some colorings
of Vi may not correspond to any group assignments of Fi.

For each clause Cj of φ, we introduce a gadget Ĉj . The main part of Ĉj is a long path P̂j
that has one vertex for each group assignment that satisfies Ĉj . Notice that there are at most
tqp possible group assignments, and that q and p are constants independent of the input φ. The
list of every vertex on P̂j is {red,white, black}. We attach two vertices pstartj and pendj to the

14

{red, 2}

{red, 2}{red, 2}

{red, 4}
w′2

vli

w2 w3 w4

{red, 3}

{red, 2, 3, 4}w

v

w′3 w′4

{red, 3}

{red, 2}
{red, 2} {red, 4}

v

w {red, 2, 3, 4}

w4w3w2

vli

Figure 5: Reduction to q-Coloring: the way the connector connects a vertex v`i with v for a
particular “bad color” x ∈ [q] \ {µi(v`i)}. The left side shows the case x = red = 1, the right
side x = 2 (q = 4).

start and end of P̂j respectively, and the two vertices are not counted as vertices of the path P̂j
itself. The list of pstartj is {white}. If |V (P̂j)| is even, then the list of pendj is {white}, whereas

if |V (P̂j)| is odd then the list of pendj is {black}. The intention is that to properly color P̂j ,
one needs to use the color red at least once, and that once is sufficient. The position of the
red-colored vertex on the path P̂j encodes how the clause Cj is satisfied.

For every vertex v on P̂j , we proceed as follows. The vertex v corresponds to some group
assignment to Fi that satisfies the clause Cj . This assignment in turn corresponds to a coloring
of the vertices of Vi. Let this coloring be µi. We build a connector whose role is to enforce that
v can be red only if coloring µi appears on Vi. To build the connector, for each vertex v`i ∈ Vi
and color x ∈ [q] \ {µi(v`i)} we do the following to enforce that if v is red, then v`i cannot have
color x (see Figure 5).

• If x is red, then we introduce one vertex wy for every color y except for red. We make wy
adjacent to v`i and the list of wy is {red, y}. Then we introduce a vertex w that is adjacent
to v and to all vertices wy. The list of w is all of [q].

• If x is not red, we introduce two vertices wy and w′y for each color y except for red. We

make wy adjacent to v`i and w′y adjacent to wy. The list of wy is {x, red} while the list of
w′y is {y, red}. Finally, we introduce a vertex w adjacent to v and to w′y for all y. The list
of w is all of [q].

Notice that in the above construction we have reused the names w, wy and w′y for many different

vertices: in each connector, there is a separate vertex w for each vertex v`i ∈ Vi and color

x ∈ [q] \ {µi(v`i)}. Building a connector for each vertex v on P̂j concludes the construction of

the clause gadget Ĉj , and creating one such gadget for each clause concludes the construction
of G (see Figure 6). The following lemma, summarizes the most important properties of the
connector:

Lemma 11. Consider the connector corresponding to a vertex v on P̂j and a coloring µi of Vi.

1. Any coloring on Vi and any color c ∈ {white,black} on v can be extended to the rest of
the connector.

15

vp1v11

P̂j

pstartj pendj

V1 Vt

v1t vpt

Figure 6: Reduction to q-Coloring. The t groups of vertices V1, . . . , Vt represent the t groups
of variables F1, . . . , Ft (each of size dlog qpe). Each vertex of the clause path P̂j is connected
to one group Vi via a connector (multiple vertices on the path can be connected to the same
group).

2. Coloring µi on Vi and any color c ∈ {red,white,black} on v can be extended to the rest
of the connector.

3. In any coloring of the connector, if v is red, then µi appears on Vi.

Proof. 1. For each vertex v`i ∈ Vi and color x ∈ [q] \ {µi(v`i)} we do the following.

• If x is red, then in the construction of Ĉj we introduced a vertex wy with list {y, red} for
every color y 6= red adjacent to v`i , and a vertex w with list [q] adjacent to wy for every
y 6= red. If v`i is colored red, then we color each vertex wy with y and w with red. Notice
that w is adjacent to v, but v is colored either white or black, so it is safe to color w red.
If, on the other hand, v`i is not colored red, we can color wy red for every y. Then all the
neighbours of w have been colored with red, except for v which has been colored white or
black. Thus it is safe to color w with the color out of black and white which was not used
to color v.

• If x is not red, then in the construction of Ĉj we introduced two vertices wy and w′y for
each color y except for red, and also introduced a vertex w. The vertices wy are adjacent
to v`i and for every y 6= red, the vertex w′y is adjacent to wy. Finally, w is adjacent to
all the vertices w′y and to v. For every y the list of wy is {x, red} while the list of w′y is

{y, red}. The list of w is [q]. If v`i is colored with x, then we let wy take color red and w′y
take color y for every y 6= red. We color w with red. In the case that v`i is colored with a
color different from x, we let wy be colored with x and w′y be colored red for every y 6= red.
Finally, all the neighours of w except for v have been colored red, while v is colored with
either black or white. According to the color of v, we can either color w black or white.

2. We can assume that v is red, otherwise we are done by the previous statement. For each
vertex v`i ∈ Vi and color x ∈ [q] \ {µi(v`i)}, we do the following.

• If x is red, then in the construction of Ĉj we introduced a vertex wy with list {y, red} for
every color y 6= red adjacent to v`i , and a vertex w with list [q] adjacent to wy for every
y 6= red. Since v`i′ is not colored red by µi, we can color wy red for every y. Then all
the neighbours of w including v have been colored with red and it is safe to color w with
white.

16

• If x is not red, then in the construction of Ĉj we introduced two vertices wy and w′y for
each color y except for red, and also introduced a vertex w. The vertices wy are adjacent
to v`i and for every y 6= red the vertex w′y is adjacent to wy. Finally, w is adjacent to
all the vertices w′y and to v. For every y, the list of wy is {x, red} while the list of w′y is

{y, red}. The list of w is [q]. Since µi colors v`i with a color different from x, we let wy
be colored with x and w′y be colored red for every y 6= red. Finally, all the neighours of w
including v have been colored red so it is safe to color w white.

3. Suppose for contradiction that v is red, but some vertex v`i ∈ Vi has been colored with
a color x 6= µi(v

`
i). There are two cases. If x is red, then in the construction we introduced

vertices wy adjacent to v`i for every color y 6= red. Also we introduced a vertex w adjacent to v
and to wy for each y 6= red. The list of wy is {red, y} and hence wy must have been colored y
for every y 6= red. But then w is adjacent to v which is colored red, and to wy which is colored
y for every y 6= red. Thus vertex w has all colors in its neighborhood, a contradiction. In the
case when x is not red, then in the construction we introduced two vertices wy and w′y for each

y 6= red. Each wy was adjacent to v`i and had {x, red} as its list. Since v`i is colored x, all the
wy vertices must be colored red. For every y 6= red, we have that w′y is adjacent to wy and
has {red, y} as its list. Hence for every y 6= red, the vertex w′y is colored with y. But, in the
construction we also introduced a vertex w adjacent to v and to w′y for each y 6= red. Thus
again, vertex w has all colors in its neighbourhood, a contradiction.

Lemma 12. If φ is satisfiable, then G has a proper list-coloring.

Proof. Starting from a satisfying assignment of φ, we construct a coloring γ of G. The as-
signment to φ corresponds to a group assignment to each group Fi. Each group assignment
corresponds to a coloring of Vi. For every i, we let γ color the vertices of Vi using the coloring
corresponding to the group assignment of Fi.

Now we show how to complete this coloring to a proper coloring of G. Since the gadgets Ĉj
are pairwise disjoint, and there are no edges going between them, it is sufficient to show that
we can complete the coloring for every gadget Ĉj . Consider the clause Cj . The clause contains
a literal that is set to true, and this literal belongs to a variable in some group Fi. The group
assignment of Fi satisfies the clause Cj . Thus, there is a vertex v on P̂j that corresponds to
this assignment. We set γ(v) as red (that is, γ colors v red), pstartj is colored white and pendj

is colored with its only admissible color, namely black if |V (P̂j)| is even and white if |V (P̂j)| is

odd. The remaining vertices of P̂j are colored alternatingly white or black. By Lemma 11(2),
the coloring can be extended to every vertex of the connector between Vi and v: the coloring
appearing on Vi is the coloring µi corresponding to the group assignment Fi. For every other
vertex u on P̂j , the color of u is black or white, thus Lemma 11(1) ensures that the coloring can
be extended to any connector on u.

As this procedure can be repeated to color the gadget Ĉj for every clause Cj , we can complete
γ to a proper list-coloring of G.

Lemma 13. If G has a proper list-coloring γ, then φ is satisfiable.

Proof. Given γ, we construct an assignment to the variables of φ as follows. For every group Fi
of variables, if γ colors Vi with a coloring that corresponds to a group assignment of Fi, then
we set this assignment for the variables in Fi. Otherwise, we set all the variables in Fi to false.
We need to argue that this assignment satisfies all the clauses of φ.

Consider a clause Cj and the corresponding gadget Ĉj . By a simple parity argument, P̂j
cannot be colored using only the colors black and white. Thus, some vertex v on P̂j is colored

red. The vertex v corresponds to a group assignment of some group Fi that satisfies Ĉj . As

17

v is red, Lemma 11(3) implies that Vi is colored with the coloring µi that corresponds to this
assignment. The construction then implies that our chosen assignment satisfies Cj . As this is
true for every clause, this concludes the proof.

Observation 1. The vertices
⋃
i≤t Vi form a feedback vertex set of G. Furthermore, pw(G) ≤

pt+ 4

Proof. Observe that after removing
⋃
i≤t Vi, all that is left are the gadgets Ĉj , which do not have

any edges between each other. Each such gadget is a tree and hence
⋃
i≤t Vi form a feedback

vertex set of G. If we place a searcher on each vertex of
⋃
i≤t Vi it is easy to see that each gadget

Ĉj can be searched with 4 searchers. The pathwidth bound on G follows using Proposition 1.

Lemma 14. If q-List Coloring can be solved in O∗((q − ε)fvs(G)) or O∗((q − ε)pw(G)) time
for some ε > 0, then SAT can be solved in O∗((2− δ)n) time for some δ > 0.

Proof. Let O∗((q − ε)fvs(G))= O∗(qλfvs(G)) time, where λ = logq(q − ε) < 1. We choose a
sufficiently large p such that δ′ = λ p

p−1 < 1. Given an instance φ of SAT, we construct a graph
G using the construction above, and run the assumed q-List Coloring. Correctness follows
from Lemmata 12 and 13. By Observation 1, the graph G has a feedback vertex set of size
pd n
bp log qce. The choice of p implies that

λpd n

bp log qc
e ≤ λp n

(p− 1) log q
+ p ≤ δ′ n

log q
+ p ≤ δ′′n,

for some δ′′ < 1. Hence SAT can be solved in time O∗(2δ′′n) =O∗((2 − δ)n), for some δ > 0.
By Observation 1, we also know that pw(G) ≤ pt + 4. Thus, the feedback vertex set size and
the pathwidth of the constructed graph just differs by 4. This implies that q-List Coloring
cannot be solved in O∗((q − ε)pw(G)) time.

Finally, observe that we can reduce q-List-Coloring to q-Coloring by adding a clique
Q = {q1, . . . , qc} on q vertices to G and making qi adjacent to v when i /∈ L(v). Any coloring
of Q must use q different colors, and without loss of generality qi is colored with color i. Then
one can complete the coloring if and only if one can properly color G using a color from L(v)
for each v. We can add the clique Q to the feedback vertex set—this increases the size of the
minimum feedback vertex set by q. Since q is a constant independent of the input, this yields
Theorem 4.

7 Odd Cycle Transversal

An equivalent formulation of the Max Cut problem is to ask for a bipartite subgraph with
the maximum number of edges, which is the same as asking for a set of edges of minimum size
whose deletion makes the graph bipartite. We can also consider the vertex-deletion version of
this problem. An odd cycle transversal of a graph G is a subset S ⊆ V (G) such that G \ S is
bipartite. In the Odd Cycle Transversal problem, we are given a graph G together with
an integer k and asked whether G has an odd cycle transversal of size k.

Theorem 5. If Odd Cycle Transversal can be solved in O∗((3− ε)pw(G)) time for ε > 0,
then SAT can be solved in O∗((2− δ)n) time for some δ > 0.

Construction. Given ε > 0 and an instance φ of SAT, we construct a graph G as follows.
We choose an integer p based just on ε. Exactly how p is chosen will be discussed at the end
of this section. We start by grouping the variables of φ into t groups F1, . . . , Ft of size at most
h = blog 3pc. Thus t = d n

blog 3pce. We will call an assignment of truth values to the variables in

18

u a1 a2 a3 v

b1 b2 b3 b4

u a1 a2 a3 v

b1 b2 b3 b4

A(u, v) A(u, v) \ {u}

Figure 7: Reduction to Odd Cycle Transversal. The arrow A(u, v) from u to v with
the passive odd cycle transversal shown in white (left) and the active odd cycle transversal of
A(u, v) \ {u} (right).

a group Fi a group assignment. We will say that a group assignment satisfies a clause Cj of φ if
Cj contains at least one literal that is set to true by the group assignment. Notice that Cj can
be satisfied by a group assignment of a group Fi even though Cj also contains variables that
are not in Fi.

Now we describe an auxiliary gadget which will be very useful in our construction (see
Figure 7). For two vertices u and v by adding an arrow from u to v we will mean adding a path
ua1a2a3v on four edges starting in u and ending in v. Furthermore, we add four vertices b1, b2, b3
and b4 and edges ub1, b1a1, a1b2, b2a2, a2b3, b3a3, a3b4, b4v, and b4v. Denote the resulting graph
A(u, v). None of the vertices in A(u, v) except for u and v will receive any further neighbours
throughout the construction of G. The graph A(u, v) has the following properties, which are
useful for our construction.

• The unique smallest odd cycle transversal of A(u, v) is {a1, a3}. We call this the passive
odd cycle transversal of the arrow.

• In A(u, v) \ {a1, a3}, u and v are in different connected components.

• The set {a2, v} is a smallest odd cycle transversal of A(u, v) \ {u}. We call this the active
odd cycle transversal of the arrow.

The intuition behind an arrow from u to v is that if u is put into the odd cycle transversal, then
v can be put into the odd cycle transversal “for free.” When the active odd cycle transversal of
the arrow is picked, we say the arrow is active, otherwise we say the arrow is passive.

To construct G, we make t · p paths, {Pi,j} for 1 ≤ i ≤ t, 1 ≤ j ≤ p (see Figure 8). Each
path has 3m(tp+ 1) vertices, and the vertices of Pi,j are denoted by p`i,j for 1 ≤ ` ≤ 3m(tp+ 1).
For a fixed i, the paths {Pi,j : 1 ≤ j ≤ p} correspond to the set Fi of variables. For every
1 ≤ i ≤ t, 1 ≤ j ≤ p and 1 ≤ ` < 3m(tp + 1) we add three vertices a`i,j , b

`
i,j and q`i,j adjacent

to each other. We also add the edges a`i,jp
`
i,j and b`i,jp

`+1
i,j . One can think of the vertices of the

paths {Pi,j} layed out as rows in a matrix, where for every fixed 1 ≤ ` ≤ 3m(tp + 1) there is
a column {p`i,j : 1 ≤ i ≤ t, 1 ≤ j ≤ p}. We group the colums three by three. In particular,

For every i ≤ t and 0 ≤ ` < m(tp + 1) we define the sets P `i = {p3`+1
i,j , p3`+2

i,j , p3`+3
i,j : 1 ≤

j ≤ p}, A`i = {a3`+1
i,j , a3`+2

i,j , a3`+3
i,j : 1 ≤ j ≤ p}, B`

i = {b3`+1
i,j , b3`+2

i,j , b3`+3
i,j : 1 ≤ j ≤ p} and

Q`i = {q3`+1
i,j , q3`+2

i,j , q3`+3
i,j : 1 ≤ j ≤ p}.

For every i ≤ t and 0 ≤ ` < m(tp + 1) we make two new sets L`i and R`i of new vertices.
Both L`i and R`i are independent sets of size 5p, and we add all the edges possible between L`i
and R`i . From L`i we pick a special vertex λ`i and from R`i we pick ρ`i . We make all the vertices
in A`i adjacent to all vertices of L`i , and we make all vertices in B`

i adjacent to all vertices of R`i .
We make λ`i adjacent to ρ`+1

i , except for ` = m(tp+ 1)− 1.
We will say that a subset S of P `i which picks exactly one vertex from Pi,j for every 1 ≤ j ≤ p

is good. The idea is that there are 3p ≥ 2h good subsets of P `i , so we can make group assignments

19

L R Z L R Z L R Z

R ZZ LR L R ZZ LR L Z LR L

LZ R LZ R Z R

q1i,j

a1i,j b1i,j

p1i,j p2i,j p3i,j p4i,j p5i,j p6i,j p7i,j p8i,j p9i,j

L R Z L R Z L RZ

R ZZ LR L R ZZ LR LR L R L

LZ R LZ R ZZ

q1i,j

a1i,j b1i,j

p1i,j p2i,j p3i,j p4i,j p5i,j p6i,j p7i,j p8i,j p9i,j

L R Z L R Z L

R ZZ LR L R ZZ LR L

LZ R LZ R

q1i,j

a1i,j b1i,j

p1i,j p2i,j p3i,j p4i,j p5i,j p6i,j p7i,j p8i,j p9i,j

R Z

R ZZ L

LR

Figure 8: Reduction to Odd Cycle Transversal. The path Pi,j with three different ways of
removing a set Z and partitioning the remaining bipartite graph into classes L and R.

20

of Fi correspond to good subsets of P `i . For every good subset S of P `i we add a cycle X`
i,S .

The cycle X`
i,S has length 2p+ 1. We select a vertex on X`

i,S and call it x`i,S . For every vertex

u ∈ P `i \S we add an arrow from u to a vertex of X`
i,S . We add arrows in such a way that every

vertex of X`
i,S \ {x`i,S} is the endpoint of exactly one arrow.

For every i ≤ t and 0 ≤ ` < m(tp+1), we make a cycle Y `
i of length 3p.Notice that the length

of the cycle is odd. Every vertex of Y `
i corresponds to a good subset S of P `i . For each good

subset S of P `i we add an arrow from x`i,S of the cycle X`
i,S to the vertex in Y `

i that corresponds
to S.

We say that a good subset of P `i is equal with a good subset S′ of P `
′
i if for every 1 ≤ j ≤ t,

the distance along Pi,j between the vertex of S on Pi,j and the vertex of S′ on Pi,j is divisible
by 3. Informally, S and S′ are equal if they look identical when we superimpose P `i onto
P `
′
i . To every group assignment of variables Fi, we designate a good subset of P `i for every `.

We designate good subsets in such a way that good subsets corresponding to the same group
assignment are equal.

Finally, for every clause Cj , 1 ≤ j ≤ m, we will introduce tp + 1 cycles. That is, for every

0 ≤ r ≤ tp, we inroduce a cycle Ĉrj . The cycle contains one vertex for every i ≤ t and group
assignment to Fi, and potentially one dummy vertex to make it have odd length. Going around
the cycle counterclockwise we first encounter all the vertices corresponding to group assignments
of F1, then all the vertices corresponding to group assignments of F2, and so on. For i ≤ t and
every good subset S of P rm+j

i that corresponds to a group assignment of Fi that satisfies Cj we

add an arrow from xrm+j
i,S to the vertex on Ĉrj that corresponds to the same group assignment

of Fi as S does. This concludes the construction of G.
The intention behind the construction is that if φ is satisfiable, then a minimum odd cycle

transversal of G can pick:

• One vertex from each triangle {a`i,j , b`i,j , q`i,j} for each 1 ≤ i ≤ t, 1 ≤ j ≤ p, 1 ≤ ` <
3m(tp+ 1). There are tp(3m(tp+ 1)− 1) such triangles in total.

• One vertex from {p3`+1
i,j , p3`+2

i,j , p3`+3
i,j } for each 1 ≤ i ≤ t, 1 ≤ j ≤ p, 0 ≤ ` < m(tp + 1).

There are tpm(tp+ 1) such triples.

• Two vertices from every arrow added, without counting the starting point of the arrow.
For each i ≤ t and 0 ≤ ` < m(tp + 1), there are 2p3p arrows ending in some cycle X`

i,S .
Hence there are 2p3ptm(tp+ 1) such arrows. For every i ≤ t and 0 ≤ ` < m(tp+ 1) there
are 3p arrows ending in the cycle Y `

i . Hence there are 3ptm(tp+ 1) such arrows. For every
clause Cj , there are tp + 1 arrows added for every group assignment that satisfies that
clause. Let µ be the sum over all clauses of the number of group assignments that satisfy
that clause. The total number of arrows added is then µ(tp+ 1) + (2p+ 1)3ptm(tp+ 1).
Thus the odd cycle transversal can pick 2µ(tp+ 1) + 2(2p+ 1)3ptm(tp+ 1) vertices from
arrows.

• One vertex x`i,S for every i ≤ t and 0 ≤ ` < m(tp+ 1). There are tm(tp+ 1) choices for i
and `.

We let the α be the value of the total budget, that is the sum of the items above.

Lemma 15. If φ is satisfiable, then G has an odd cycle transversal of size α.

Proof. Given a satisfying assignment γ to φ, we construct an odd cycle transversal Z of G of size
α together with a partition of V (G)\Z into L and R such that every edge of G\Z goes between
a vertex in L and a vertex in R. The assignment to φ corresponds to a group assignment of
each Fi for 1 ≤ i ≤ t. For every 1 ≤ i ≤ t and 0 ≤ ` < m(tp+ 1), we add to Z the good subset
S of P `i that corresponds to the group assignment of Fi. Notice that for each fixed i, the sets

21

picked from P `i and P `
′
i are equal for any `, `′. At this point we have picked one vertex from

{p3`+1
i,j , p3`+2

i,j , p3`+3
i,j } for each 1 ≤ i ≤ t, 1 ≤ j ≤ p, 0 ≤ ` < m(tp+ 1).

For every fixed 1 ≤ i ≤ t, 1 ≤ j ≤ p, there are three cases. If p1i,j ∈ Z, we put p2i,j into L

and p3i,j into R. If p2i,j ∈ Z we put p1i,j into R and p3i,j into L. If p3i,j ∈ Z we put p1i,j into L and

p2i,j into R. Now, for every 4 ≤ ` ≤ 3m(tp+ 1) such that p`i,j /∈ Z we put p`i,j into the same set

out of {L,R} as p`
′
i,j where 1 ≤ `′ ≤ 3 and ` ≡ `′ mod 3.

For every 1 ≤ i ≤ t, 0 ≤ ` ≤ m(tp+ 1), we put L`i into L and R`i into R. For every triple of
a, b, q of pairwise adjacent vertices such that a ∈ A`i , b ∈ B`

i , and q ∈ Q`i , we proceed as follows.
The vertex a has a neighbour a′ in P `i and b has a neighbour b′ in P `i . There is a j such that b′

is the successor of a′ on Pi,j . Thus, there are three cases;

• a′ ∈ Z and b′ ∈ L, we put a in R, q in L and b in Z.

• a′ ∈ R and b′ ∈ Z, we put a in Z, q in R and b in L.

• a′ ∈ L and b′ ∈ R, we put a in R, q in Z and b in L.

For every 1 ≤ i ≤ t, 0 ≤ ` ≤ m(tp + 1), there are many arrows from vertices in P `i to
vertices on cycles X`

i,S for good subsets S of P `i . For each arrow, if its endpoint in P `i is in Z
we add the active odd cycle transversal of the arrow to Z, otherwise we add the passive odd
cycle transversal of the arrow to Z. In either case, the remaining vertices on the arrow form a
forest, and therefore we can insert the remaining vertices of the arrow into L and R according
to which sets out of {L,R,Z} u and v are in.

For every 1 ≤ i ≤ t, 0 ≤ ` ≤ m(tp + 1), there is exactly one set S such that the cycle X`
i,S

only has passive arrows pointing into it. This is exactly the set S which corresponds to the
restriction of γ to Fi. Each cycle X`

i,S′ that has at least one arrow pointing into them already
contains at least one vertex in Z—the endpoint of the active arrow pointing into the cycle.
Thus we can partition the remaining vertices of X`

i,S′ into L and R such that no edge has both

endpoints in L or both endpoints in R. For the cycle X`
i,S , we put x`i,S into Z and partition

the remaining vertices of X`
i,S into L and R such that no edge has both endpoints in L or both

endpoints in R. We add the active odd cycle transversal in the arrow from x`i,S to the cycle Y `
i

into Z. For all other good subsets S′, we add the passive odd cycle transversal in the arrow
from x`i,S to the cycle Y `

i into Z. Thus each cycle Y `
i contains one vertex in Z and the remaining

vertices of Y `
i can be distributed into L and R.

For every arrow that goes from a vertex x`i,S into a cycle Ĉrh, we add the active odd cycle

transversal of the arrow to Z if x`i,S ∈ Z and add the passive odd cycle transversal to Z otherwise.
Again the remaining vertices on each arrow can easily be partitioned into L and R such that
no edge has both endpoints in L or both endpoints in R. This concludes the construction of Z.
Since we have put the vertices into Z in accordance to the budget described in the construction
it follows that |Z| ≤ α. All that remains to show, is that for each 1 ≤ h ≤ m and 0 ≤ r ≤ tp,
the cycle Ĉrh has at least one active arrow pointing into it.

The cycle Ĉrh corresponds to the clause Ch. The clause Ch is satisfied by γ and hence it is
satisfied by the restriction of γ to some group Fi. This restriction is a group assignment of Fi
and hence it corresponds to a good subset S of P rm+h

i , which happens to be exactly Z∩P rm+h
i .

Thus xrm+h
i,S ∈ Z and since the restriction of γ to Fi satisfies Ch, there is an arrow pointing from

xrm+h
i,S and into Ĉrh. Since this arrow is active, this concludes the proof.

Lemma 16. If G has an odd cycle transversal of size α, then φ is satisfiable.

Proof. Let Z be an odd cycle transversal of G of size α. Since G \ Z is bipartite, the vertices
of G \ Z can be partitioned into L and R such that every edge of G \ Z has one endpoint in L
and the other in R. Given Z, L and R, we construct a satisfying assignment to φ. Every arrow

22

in G must contain at least two vertices in Z, not counting the startpoint of the arrow. Let ~Z
be a subset of Z containing two vertices from each arrow, but no arrow start point. Observe
that no two arrows have the same endpoint, and therefore |~Z| is exactly two times the number
of arrows in G. Let Z ′ = Z \ ~Z.

We argue that for any 1 ≤ i ≤ t and 0 ≤ ` < m(tp + 1) we have |Z ′ ∩ (L`i ∪ R`i ∪ A`i ∪
B`
i ∪ Q`i ∪ P `i)| ≥ 4p. Observe that no vertices in L`i , R

`
i , A

`
i , B

`
i , Q

`
i or P `i are endpoints

of arrows, and hence they do not contain any vertices of ~Z. Suppose for contradiction that
|Z ′ ∩ (L`i ∪ R`i ∪ A`i ∪ B`

i ∪Q`i ∪ P `i)| < 4p. Then there is a vertex in λ ∈ L`i \ Z ′, and a vertex
ρ ∈ R`i \ Z ′. Without loss of generality, λ ∈ L and ρ ∈ R. Furthermore, there is a 1 ≤ j ≤ p
such that

|Z ′ ∩ {p3`+1
i,j , p3`+2

i,j , p3`+3
i,j , a3`+1

i,j , a3`+2
i,j , a3`+3

i,j , b3`+1
i,j , b3`+2

i,j , b3`+3
i,j , q3`+1

i,j , q3`+2
i,j , q3`+3

i,j }| < 4.

Since {a3`+1
i,j , b3`+1

i,j , q3`+1
i,j }, {a

3`+2
i,j , b3`+2

i,j , q3`+2
i,j } and {a3`+3

i,j , b3`+3
i,j , q3`+3

i,j } form triangles and
must contain a vertex from Z ′ each, it follows that each of these triangles contain exactly one
vertex from Z ′, and that Z ′ ∩ {p3`+1

i,j , p3`+2
i,j , p3`+3

i,j } = ∅. Since λ ∈ L and ρ ∈ R, λ is adjacent

to all vertices of A`i,j and ρ is adjacent to all vertices of B`
i,j , it follows that A`i,j \ Z ′ ⊆ R and

B`
i,j \ Z ′ ⊆ L.

Hence, there are two cases to consider either (1) {p3`+1
i,j , p3`+3

i,j } ⊆ L and p3`+2
i,j ∈ R or (2)

{p3`+1
i,j , p3`+3

i,j } ⊆ R and p3`+2
i,j ∈ L. In the first case, observe that either a3`+2

i,j ∈ R or b3`+2
i,j ∈ L

and hence either a3`+2
i,j p3`+2

i,j or b3`+2
i,j p3`+3

i,j have both endpoints in the same set out of {L,R},
a contradiction. The second case is similar, either a3`+1

i,j ∈ R or b3`+1
i,j ∈ L and hence either

a3`+1
i,j p3`+1

i,j or b3`+1
i,j p3`+2

i,j have both endpoints in the same set out of {L,R}, a contradiction. We

conclude that |Z ′ ∩ (L`i ∪R`i ∪A`i ∪B`
i ∪Q`i ∪ P `i)| ≥ 4p.

For any 1 ≤ i ≤ t and 0 ≤ ` < m(tp + 1), Y `
i is an odd cycle so Y `

i contains a vertex in Z.

If Y `
i contains no vertices of Z ′, then it contains a vertex from ~Z and there is an active arrow

pointing into Y `
i . The starting point of this arrow is a vertex x`i,S for some good subset S of

P `i . Since the arrow is active and x`i,S is not the endpoint of any arrow, we know that x`i,S ∈ Z ′.
Hence for any 1 ≤ i ≤ t and 0 ≤ ` < m(tp+ 1), we have that either there is a good subset S of
P `i such that x`i,S ∈ Z ′ or at least one vertex of Y `

i is in Z ′.
The above arguments, together with the budget constraints, imply that for every 1 ≤ i ≤

t and 0 ≤ ` < m(tp + 1), we have |Z ′ ∩ (L`i ∪ R`i ∪ A`i ∪ B`
i ∪ Q`i ∪ P `i)| = 4p and that

|Z ′ ∩
⋃
{x`i,S} ∪ V (Y `

i)| = 1, where the union is taken over all good subsets S of P `i . It follows

Z ′ ∩ P `i is a good subset of P `i . Let S = Z ′ ∩ P `i . The cycle X`
i,S has odd length, and hence

it must contain some vertex from Z. On the other hand, all the arrows pointing into X`
i,S are

passive, so X`
i,S cannot contain any vertices from ~Z. Thus X`

i,S contains a vertex from Z ′, and

by the budget constraints this must be x`i,S .

Now, consider three consecutive vertices p`i,j , p
`+1
i,j , p`+2

i,j for some 1 ≤ i ≤ t, 1 ≤ j ≤ p,
1 ≤ ` ≤ 3m(tp + 1)− 2. We prove that at least one of them has to be in Z. Suppose not. We

know that neither λ
b`/3c
i , ρ

b`/3c
i , λ

b`/3c+1
i nor ρ

b`/3c+1
i are in Z. Thus, without loss of generality

{λb`/3ci , λ
b`/3c+1
i } ⊆ L and {ρb`/3ci , ρ

b`/3c+1
i } ⊆ R. There are two cases. Either p`i,j ∈ R and

p`+1
i,j ∈ L or p`+1

i,j ∈ L and p`+3
i,j ∈ R. In the first case, we obtain a contradiction since either

a`i,j ∈ R or b`i,j ∈ L. In the second case, we get a contradiction since either a`+1
i,j ∈ R or b`+1

i,j ∈ L.
Hence for any three consecutive vertices on Pi,j , at least one of them is in Z. Since the budget
constraints ensure that there are at most |V (Pi,j)|/3 vertices in Pi,j ∩ Z, it follows from the
pigeon hole principle that there is an 0 ≤ r ≤ tp such that for any 1 ≤ i ≤ t and 1 ≤ h ≤ m and

23

1 ≤ h′ ≤ m, the set P rm+h
i ∩ Z equals P rm+h′

i ∩ Z. Here equality is in the sense of equality of
good subsets of P `i .

For every 1 ≤ i ≤ t, P rm+1
i ∩ Z is a good subset of P rm+1

i . If P rm+1
i ∩ Z corresponds to

a group assignment of Fi, then we set the variables in Fi to this assignment. Otherwise we
set all the variables in Fi to false. We need to argue that every clause Ch is satisfied by this
assignment. Consider the cycle Ĉrh. Since it is an odd cycle, it must contain a vertex from Z,

the budget constraints and the discussion above implies that this vertex is from ~Z. Hence there
must be an active arrow pointing into Ĉrh. The starting point of this active arrow is a vertex
xmr+hi,S for some i and good subset S of Pmr+hi . The set S corresponds to a group assignment

of Fi that satisfies Ch. Since the arrow is active xmr+hi,S ∈ Z ′, and by the discussion above we

have that Pmr+hi ∩ Z ′ = S. Now, S = Pmr+hi ∩ Z ′ and S is equal to Pmr+1
i ∩ Z ′ and hence the

assignment to the variables of Fi satisfies Ch. Since this holds for all clauses, this concludes the
proof.

Lemma 17. pw(G) ≤ t(p+ 1) + 10p3p.

Proof. We show how to search the graph using at most t(p+ 1) + 10p3p searchers. The strategy
consists of m(tp+ 1) rounds numbered from round 0 to round m(tp+ 1)− 1. Each round has t
stages, numbered from 1 to t. In the beginning of round k there is a searcher on p3k+1

i,j and ρki
for every 1 ≤ i ≤ t, 1 ≤ j ≤ p. Let r and 1 ≤ h ≤ m be integers such that k+1 = rm+h.Recall,
that as we go around Ĉrh counterclockwise we first encounter vertices corresponding to group
assignments of F1, then to assignments of F2 and so on. In the beginning of round k we place
a searcher on the first vertex on Ĉrh that corresponds to an assignment of F1. If Ĉrh contains a
dummy vertex, we place a searcher on this vertex as well. These two searchers will remain on
their respective vertices throughout the round. In the beginning of stage s of round k we will
assume that the vertices on the cycle Ĉrh corresponding to group assignments of Fs′ , s

′ < s have
already been cleaned, and in the beginning of every stage s > 1, there is a searcher standing on
the first vertex corresponding to a group assignment of Fs.

In stage s of round k, we place searchers on all vertices of P ks , Aks , B
k
s , Qks , L

k
s , R

k
s , Y k

s and
all vertices of cycles Xk

s,S for every good subset S of P ks , on all vertices of arrows starting or

ending in such cycles, and on all vertices of Ĉrh corresponding to group assignments of Fs. In
total this amounts to less than 10p3p vertices.

In the last part of stage s of round k, we place searchers on p
3(k+1)+1
s,j for every 1 ≤ j ≤ p and

on ρk+1
s . Then we remove all the searchers that were placed out in the first part of phase s except

for the searcher on the last vertex on Ĉrh corresponding to a group assignment of Fs. Unless

s = 1 there is also a searcher on the last vertex on Ĉrh corresponding to a group assignment of
Fs−1. We remove this searcher, and the next stage can commence. In the end of the last stage
of round k we remove all the searchers from Ĉrh. Then the last stage can commence. At any
point in time, at most t(p+ 1) + 10p3p searchers are placed on G.

Proof (of Theorem 5). Suppose Odd Cycle Transversal can be solved in time O∗((3 −
ε)pw(G)) for some ε > 0. Then there is an ε′ < 1 such that O∗((3 − ε)pw(G)) ≤ O∗(3ε′pw(G)).
We choose p large enough such that ε′ · p+1

p−1 = δ′ < 1. Given an instance of SAT we construct
an instance of Odd Cycle Transversal using the above construction and the chosen value
of p. Then we solve the Odd Cycle Transversal instance using the O∗((3 − ε)pw(G))
time algorithm. Correctness is ensured by Lemmata 15 and 16. Lemma 17 yields that the
total time taken is upper bounded by O∗((3− ε)pw(G)) ≤ O∗(3ε′pw(G)) ≤ O∗(3ε′(t(p+1)+f(ε′))) ≤
O∗(3ε

′d n
bp log 3c e(p+1)

) ≤ O∗(3ε
′ n(p+1)
bp log 3c) ≤ O∗(3ε

′ n(p+1)
(p−1) log 3) ≤ O∗(3δ

′ n
log 3) ≤ O∗(2δ′n) =. O∗((2−δ)n)

for δ < 1.

24

Pn

ĉrj d̂rj

P1

t11 t21

t
2(mr+j)
1t

2(mr+j)−1
1

t
2(mr+j)
nt

2(mr+j)−1
n

t31

t1n t2n t3n

Figure 9: Reduction to Triangle Packing, showing how the vertices ĉrj and d̂rj representing
clause Cj = (x1 ∨ x̄2 ∨ x4) are connected to the paths P1, . . . , Pn.

8 Partition Into Triangles

A triangle packing in a graph G is a collection of pairwise disjoint vertex sets S1, S2, . . . St in G
such that Si induces a triangle in G for every i. The size of the packing is t. If V (G) =

⋃
i≤t Si,

then the collection S1 . . . St is a partition of G into triangles. In the Triangle Packing
problem, we are given a graph G and an integer t and asked whether there is a triangle packing
in G of size at least t. In the Partition Into Triangles problem, we are given a graph
G and asked whether G can be partitioned into triangles. Notice that since Partition Into
Triangles is the special case of Triangle Packing when the number of triangles is the
number of vertices divided by 3, the bound of Theorem 6 holds for Triangle Packing as well.

Theorem 6. If Partition Into Triangles can be solved in time O∗((2− ε)pw(G)) for ε > 0,
then SAT can be solved in O∗((2− δ)n) time for some δ > 0.

Construction. first show the lower bound for Triangle Packing and then modify our
construction to also work for the more restricted Partition Into Triangles problem. Given
an instance φ of SAT we construct a graph G as follows (see Figure 9). For every variable vi,
we make a path Pi on 2m(n+ 1) + 1 vertices. We denote the `-th vertex of Pi by p`i . For every
i, we add a set Ti of 2m(n + 1) vertices, and let the `-th vertex of Ti be denoted t`i . For every
1 ≤ ` ≤ 2m(n+ 1) we add the edges t`ip

`
i and t`ip

`+1
i .

For every clause Cj , we add n + 1 gadgets corresponding to the clause. In particular, for

every 0 ≤ r ≤ n we do the following. First we add the vertices ĉrj and d̂rj and the edge ĉrj d̂
r
j . For

every variable vi that occurs in Cj positively, we add the edges ĉrjt
2(mr+j)
i and d̂rjt

2(mr+j)
i . For

every variable vi that occurs in Cj negated, we add the edges ĉrjt
2(mr+j)−1
i and d̂rjt

2(mr+j)−1
i .

Doing this for every r and every clause Cj concludes the construction of G.

Lemma 18. If φ satisfiable, then G has a triangle packing of size mn(n+ 1) +m(n+ 1).

25

Proof. Consider a satisfying assignment to φ. For every variable vi that is set to true and integer
1 ≤ ` ≤ m(n + 1), we add {t2l−1i , p2l−1i , p2li } to the triangle packing. For every variable vi that
is set to false and integer 1 ≤ ` ≤ m(n+ 1), we add {t2li , p2li , p

2l+1
i } to the triangle packing. For

every clause Cj , there is a literal set to true. Suppose this literal corresponds to the variable
vi. Notice that if vi occurs positively in Cj , then vi is set to true, and if it occurs negatively

it is set to false. For each 0 ≤ r ≤ n, if vi occurs positively in Cj , then t
2(mr+j)
i has not yet

been used in any triangle, so we can add {ĉrj , d̂rj , t
2(mr+j)
i } to the triangle packing. On the other

hand, if vi occurs negated in Cj , then t
2(mr+j)−1
i has not yet been used in any triangle, so we

can add {ĉrj , d̂rj , t
2(mr+j)−1
i } to the triangle packing. In total mn(n+ 1) +m(n+ 1) triangles are

packed.

Lemma 19. If G has a triangle packing of size mn(n+ 1) +m(n+ 1), then φ satisfiable.

Proof. Observe that for any j and r, every triangle that contains ĉrj also contains d̂rj and vice

versa. Furthermore, if we remove all the vertices ĉrj and d̂rj for every j and r from G we obtain a
disconnected graph with n connected components, G[Ti∪V (Pi)] for every i. Thus, the only way
to pack mn(n+ 1) +m(n+ 1) triangles in G is to pack mn(n+ 1) triangles in each component
G[Ti ∪ V (Pi)] and in addition make sure that every pair (ĉrj , d̂

r
j) is used in some triangle in the

packing.
The only way to pack mn(n + 1) triangles in a component G[Ti ∪ V (Pi)] is to use every

second triangle of the form {t`i , p`i , p
`+1
i }, except possibly at one point where two triangles on

this form are skipped. By the pigeon hole principle there is an 0 ≤ r ≤ n such that for every i,
every second triangle of the form {t2mr+`i , p2mr+`i , p2mr+`+1

i } for 1 ≤ ` ≤ 2m is used. We make
an assignment to the variables of φ as follows. For every i such that {t2mr+1

i , p2mr+1
i , p2mr+2

i }
is used, vi is set to true, and otherwise {t2mr+2

i , p2mr+2
i , p2mr+3

i } is used in the packing and vi
is set to false. We prove that this assignment satisfies φ.

For every j, the pair (ĉrj , d̂
r
j) is used in some triangle in the packing. This triangle ei-

ther contains t
2(mr+j)
i or t

2(mr+j)−1
i for some i. If it contains t

2(mr+j)
i , then vi occurs pos-

itively in Cj . Furthermore, since the triangle packing contains every second triangle of the
form {t2mr+`i , p2mr+`i , p2mr+`+1

i } for 1 ≤ ` ≤ 2m, it follows that the triangle packing contains
{t2mr+1
i , p2mr+1

i , p2mr+2
i } and hence vi is set to true. By an identical argument, if the triangle

containing the pair (ĉrj , d̂
r
j) contains t

2(mr+j)−1
i , then vi occurs negated in Cj and vi is set to

false. This concludes the proof.

We now modify the construction to work for Partition Into Triangles instead of Tri-
angle Packing. Given the graph G as constructed from φ, we construct a graph G′ as follows.
For every 1 ≤ i ≤ n and 1 ≤ l ≤ m(n+ 1), we make a clique Q`i on four vertices. The vertices
of Q`i are all adjacent to t2li and to t2l−1i . For every i < n and and 1 ≤ l ≤ m(n + 1) we make
all vertices of Q`i adjacent to all vertices of Q`i+1. Suppose that 2n + 2 is p modulo 3 for some
p ∈ {0, 1, 2}. We remove p vertices from Q`n for every l ≤ m(n+ 1).

Lemma 20. G has a triangle packing of size α if and only if G′ can be partitioned into triangles.
Here, α is a non-negative integer.

Proof. In the forward direction, consider a triangle packing of size α in G as constructed in
Lemma 18. We can assume that the triangle packing has this form, because by Lemma 19 we
have that φ is satisfiable.

For every fixed 1 ≤ l ≤ m(n + 1), we proceed as follows. We know that there exists an i
such that both t2li and t2l−1i are used in the packing. For every i′ 6= i, exactly one out of t2li′ and
t2l−1i′ is used in the packing. For each such i′, we make a triangle containing the unused vertex

out of t2li′ and t2l−1i′ and two vertices of Q`i′ . Then we “clean up” Q`1, . . . , Q
`
n as follows.

26

In particular, we start with the yet unused vertices of Q`1. There are two of them. Make
a triangle containing these two vertices and one vertex of Q`2. Now Q`2 has one unused vertex
left. Make a triangle containing this vertex and the two unused vertices of Q`3. Continue in
this fashion until arrive at Q`i′ . At this point we have used 0, 1 or 2 vertices of Q`i′ a triangle
containing some vertices in Q`i′−1. The case when we have used 0 vertices of Q`i′ also covers the

case that i′ = 1. If we only used 0 or 1 vertices of Q`i′ , then we add a triangle that contains
3 vertices of Q`i′ . If there are still unused vertices in Q`i′ , then their number is either 1 or 2.
We make a triangle containing these vertices and 1 or 2 of the unused vertices of Q`i′+1. Now

we proceed to Q`i′+1 and continue in this manner until we reach Q`n. Since the total number of

vertices in
⋃
j≤nQ

`
j is 4n− p, we know that 2n− 2 of these vertices are used for triangles with

vertices of G, and 2n+ 2− p is divisible by 3 the process described above will partition all the
unused vertices of

⋃
j≤nQ

`
j into triangles.

In the reverse direction, we argue that in any partitioning of G′ into triangles, exactly α
triangles must lie entirely within G. In fact, we argue that for any l ≤ m(n+ 1) exactly n− 1
vertices out of

⋃
i≤n{t2li , t

2l−1
i } are used in triangles containing vertices from

⋃
i≤nQ

`
i .

Pick 1 ≤ j ≤ m and r such that l = mr + j. Exactly one out of
⋃
i≤n{t2li , t

2l−1
i } is in a

triangle with ĉrj and d̂rj . Furthermore, for each i ≤ n the vertex p2li must be in a triangle either

containing t2li or t2li . Hence, at most n− 1 vertices out of
⋃
i≤n{t2li , t

2l−1
i } are used in triangles

containing vertices from
⋃
i≤nQ

`
i . Furthermore, any triangle containing t2li or t2l−1i } must either

contain p2li , ĉrj or some vertex in
⋃
i≤nQ

`
i . Hence exactly n − 1 vertices out of

⋃
i≤n{t2li , t

2l−1
i }

are used in triangles containing vertices from
⋃
i≤nQ

`
i . Thus in the packing, exactly 3α vertices

in G′ are contained in triangles completely inside G, and hence G has a triangle packing of size
α.

To complete the proof for Partition Into Triangles we need to bound the pathwidth of
G′.

Lemma 21. pw(G′) ≤ n+ 10.

Proof. We give a search strategy for G′ that uses n + 10 searchers. The strategy consists of
m(n + 1) rounds and each round has n stages. In the beginning of round l, 1 ≤ l ≤ m(n + 1),
there are n searchers placed, one on each vertex p2l−1i for every i. Let r and 1 ≤ j ≤ m be

integers such that l = mr+ j. We place one searcher on ĉrj and one on d̂rj . These two searchers
will stay put throughout the duration of this round. In stage i of round l we place searchers on
all vertices of Q`i and Q`i+1. Then we place searchers on t2l−1i , t2li , p2li and p2l+1

i . At the end of

stage i we remove the searchers from Q`i , t
2l−1
i , t2li and p2li . We then proceed to the next stage.

At the end of the round we remove the searchers from ĉrj and d̂rj . Notice that now, there are

searchers on p2l+1
i for every i, and the next round can commence.

Lemmata 18,19,20 and 21 prove Theorem 6.

9 Conclusion

We have showed that for a number of basic graph problems, the best known algorithms pa-
rameterized by treewidth are optimal in the sense that base of the exponential dependence on
treewidth is best possible. Recall that for Dominating Set and Partition Into Triangles,
this running time was obtained using the technique of fast subset sum convolutions [50]. Thus
it could have been a real possibility that the running time is improved for some other problems
as well.

27

The results are proved under the Strong Exponential Time Hypothesis (SETH). While this
hypothesis is extremely strong and might not be accepted by everyone, our results at least make
a connection between rather specific graph problems and the very basic issue of better Sat
algorithms. Our results suggest that one should not try to find better algorithms on bounded
treewidth graphs for the problems considered in the paper: as this would disprove SETH, such
an effort is better spent on trying to disprove SETH directly in the domain of satisfiability.
Finally, we suggest the following open questions for future work:

• Can we prove similar tight lower bounds under the restriction that the graph is planar?
Or is it possible to find improved algorithms on bounded treewidth planar graphs?

• For the q-Coloring problem, we were able to prove lower bounds parameterized by
the feedback vertex set number. Can we prove such bounds for the other problems as
well? Recently, Jaffke and Jansen [33] strengthened our lower bounds for q-Coloring.
In particular, they showed that q-Coloring parameterized by the modulator to linear
forests (a forest where every connected component is a path), say lfvs(G), can not be
solved in time (q − ε)lfvs(G)|V (G)|O(1).

Acknowledgements. We sincerely thank all the reviewers for their insightful comments and
suggestions. Daniel Lokshtanov was supported by the Bergen Research Foundation and the
University of Bergen through project “BeHard”. Furthermore, he was supported by ERC
Starting Grant PaPaAlg (No. 715744). Saket Saurabh was supported by the ERC Start-
ing Grant PARAPPROX (No. 306992). Dániel Marx was supported by ERC Starting Grant
PARAMTIGHT (No. 280152) and Consolidator Grant SYSTEMATICGRAPH (No. 755978).

References

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results
for LCS and other sequence similarity measures. In Proceedings of the 56th Annual IEEE
Symposium on Foundations of Computer Science, FOCS, pages 59–78, 2015.

[2] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Proceedings of the 55th Annual IEEE Symposium on
Foundations of Computer Science, FOCS, pages 434–443, 2014.

[3] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and
basing hardness on an extremely popular conjecture. In Proceedings of the 47th Annual
ACM on Symposium on Theory of Computing, STOC, pages 41–50, 2015.

[4] Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket
Saurabh, and Dimitrios M. Thilikos. Irrelevant vertices for the planar disjoint paths prob-
lem. J. Comb. Theory, Ser. B, 122:815–843, 2017.

[5] Jochen Alber and Rolf Niedermeier. Improved tree decomposition based algorithms for
domination-like problems. In Proceedings of the 5th Latin American Symposium on The-
oretical Informatics, LATIN, volume 2286 of Lecture Notes in Computer Science, pages
613–628. Springer, 2002.

[6] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In Proceedings of the 47th Annual ACM on Sympo-
sium on Theory of Computing, STOC, pages 51–58, 2015.

28

[7] MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and Dániel Marx. Approxima-
tion schemes for steiner forest on planar graphs and graphs of bounded treewidth. J. ACM,
58(5):21:1–21:37, 2011.

[8] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets
Möbius: fast subset convolution. In Proceedings of the 39th Annual ACM on Symposium
on Theory of Computing, STOC, pages 67–74, 2007.

[9] Ivan Bliznets, Marek Cygan, Pawel Komosa, Lukás Mach, and Michal Pilipczuk. Lower
bounds for the parameterized complexity of minimum fill-in and other completion problems.
In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 1132–1151, 2016.

[10] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Inf. Comput., 243:86–111, 2015.

[11] Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems
over tree decompositions. In Proccedings of the 11th International Symposium on Pa-
rameterized and Exact Computation, IPEC, volume 63 of LIPIcs, pages 8:1–8:23. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[12] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfi-
ability of small depth circuits. In Proceedings of the 4th International Workshop on Pa-
rameterized and Exact Computation, IWPEC, volume 5917 of Lecture Notes in Computer
Science, pages 75–85. Springer, 2009.

[13] Shiri Chechik, Daniel H. Larkin, Liam Roditty, Grant Schoenebeck, and Robert Endre Tar-
jan ands Virginia Vassilevska Williams. Better approximation algorithms for the graph di-
ameter. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 1041–1052, 2014.

[14] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. On the computational hardness
based on linear FPT-reductions. J. Comb. Optim., 11(2):231–247, 2006.

[15] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower
bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006.

[16] Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect
matchings on graphs of bounded treewidth, cliquewidth, and genus. In Proceedings of the
27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1650–1669,
2016.

[17] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio
Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems
as hard as CNF-SAT. ACM Trans. Algorithms, 12(3):41:1–41:24, 2016.

[18] Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,
Jakub Pachocki, and Arkadiusz Socala. Tight bounds for graph homomorphism and sub-
graph isomorphism. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 1643–1649, 2016.

[19] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

29

[20] Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases
of perfect matchings. In Proceedings of the 45th Annual ACM on Symposium on Theory of
Computing, STOC, pages 301–310, 2013.

[21] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van
Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by
treewidth in single exponential time. In Proceedings of the 52nd Annual IEEE Symposium
on Foundations of Computer Science, FOCS, pages 150–159, 2011.

[22] Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. Known algorithms for Edge Clique
Cover are probably optimal. SIAM J. Comput., 45(1):67–83, 2016.

[23] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thi-
likos. Subexponential parameterized algorithms on bounded-genus graphs and -minor-free
graphs. J. ACM, 52(6):866–893, 2005.

[24] Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and its
algorithmic applications. Comput. J., 51(3):292–302, 2008.

[25] David Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica,
27(3):275–291, 2000.

[26] Samuel Fiorini, Nadia Hardy, Bruce A. Reed, and Adrian Vetta. Planar graph bipartization
in linear time. Discrete Applied Mathematics, 156(7), 2008.

[27] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, Berlin, 2006.

[28] Fedor V. Fomin, Serge Gaspers, Saket Saurabh, and Alexey A. Stepanov. On two techniques
of combining branching and treewidth. Algorithmica, 54(2):181–207, 2009.

[29] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal
lower bounds for problems parameterized by clique-width. SIAM J. Comput., 43(5):1541–
1563, 2014.

[30] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient compu-
tation of representative families with applications in parameterized and exact algorithms.
J. ACM, 63(4):29:1–29:60, 2016.

[31] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

[32] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[33] Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of graph
coloring problems. In Proceedings of the 10th International Conference on Algorithms and
Complexity, CIAC, volume 10236 of Lecture Notes in Computer Science, pages 345–356,
2017.

[34] Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planariza-
tion algorithm. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 1802–1811, 2014.

[35] Jon Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2005.

30

[36] Michael Lampis. Parameterized approximation schemes using graph widths. In Proceedings
of the 41st International Colloquium on Automata, Languages, and Programming, ICALP,
volume 8572 of Lecture Notes in Computer Science, pages 775–786. Springer, 2014.

[37] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs on
bounded treewidth are probably optimal. In Proceedings of the 22nd Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 777–789, 2011.

[38] Dániel Marx. On the optimality of planar and geometric approximation schemes. In
Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science,
FOCS, pages 338–348, 2007.

[39] Dániel Marx. Can you beat treewidth? Theory of Computing, 6(1):85–112, 2010.

[40] Dániel Marx and Valia Mitsou. Double-exponential and triple-exponential bounds for
choosability problems parameterized by treewidth. In 43rd International Colloquium on
Automata, Languages, and Programming, ICALP, volume 55 of LIPIcs, pages 28:1–28:15,
2016.

[41] Daniel Mölle, Stefan Richter, and Peter Rossmanith. Enumerate and expand: Improved
algorithms for connected vertex cover and tree cover. Theory Comput. Syst., 43(2):234–253,
2008.

[42] Jesper Nederlof, Johan M. M. van Rooij, and Thomas C. van Dijk. Inclusion/exclusion
meets measure and conquer. Algorithmica, 69(3):685–740, 2014.

[43] Rolf Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

[44] Mihai Patrascu and Ryan Williams. On the possibility of faster SAT algorithms. In
Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 1065–1075, 2010.

[45] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the di-
ameter and radius of sparse graphs. In Proceedings of the 45th Annual ACM on Symposium
on Theory of Computing, STOC, pages 515–524, 2013.

[46] Alexander D. Scott and Gregory B. Sorkin. Linear-programming design and analysis of
fast algorithms for max 2-csp. Discrete Optimization, 4(3-4):260–287, 2007.

[47] Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. Mixed searching and proper-path-
width. Theor. Comput. Sci., 137(2):253–268, 1995.

[48] Jan Arne Telle and Andrzej Proskurowski. Practical algorithms on partial k-trees with an
application to domination-like problems. In Proceedings of the 3rd Workshopon Algorithms
and Data Structures, WADS, volume 709 of Lecture Notes in Computer Science, pages
610–621. Springer, 1993.

[49] Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time
fixed parameter algorithm. J. Algorithms, 56(1):1–24, 2005.

[50] Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming
on tree decompositions using generalised fast subset convolution. In Proceedings of the
17th Annual European Symposium on Algorithms, ESA, volume 5757 of Lecture Notes in
Computer Science, pages 566–577. Springer, 2009.

31

[51] Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In Proceedings
of the 10th International Symposium on Parameterized and Exact Computation, IPEC,
volume 43 of LIPIcs, pages 17–29, 2015.

32

