
Clustering with Local Restrictions

Daniel Lokshtanov? and Dániel Marx??

Abstract. We study a family of graph clustering problems where each
cluster has to satisfy a certain local requirement. Formally, let µ be
a function on the subsets of vertices of a graph G. In the (µ, p, q)-
Partition problem, the task is to find a partition of the vertices into
clusters where each cluster C satisfies the requirements that (1) at most
q edges leave C and (2) µ(C) ≤ p. Our first result shows that if µ is an
arbitrary polynomial-time computable monotone function, then (µ, p, q)-
Partition can be solved in time nO(q), i.e., it is polynomial-time solvable
for every fixed q. We study in detail three concrete functions µ (num-
ber of nonedges in the cluster, maximum number of non-neighbours a
vertex has in the cluster, the number of vertices in the cluster), which
correspond to natural clustering problems. For these functions, we show
that (µ, p, q)-Partition can be solved in time 2O(p) · nO(1) and in ran-
domized time 2O(q) ·nO(1), i.e., the problem is fixed-parameter tractable
parameterized by p or by q.

1 Introduction

Partitioning objects into clusters or similarity classes is an important task in
various applications such as data mining, facility location, interpreting experi-
mental data, VLSI design, and many more. The partition has to satisfy certain
constraints: typically, we want to ensure that objects in a cluster are “close” or
“similar” to each other and/or objects in different clusters are “far” or “dissim-
ilar.” Additionally, we may want to partition the data into a certain prescribed
number k of clusters, or we may have upper/lower bounds on the size of the
clusters. Different objectives and different distance/similarity measures give rise
to specific combinatorial problems.

Correlation clustering [14, 1, 3, 15] deals with a specific form of similarity mea-
sure: for each pair of objects, we know that either they are similar or dissimilar.
This means that the similarity information can be expressed as an undirected
graph, where the vertices represent the objects and similar objects are adjacent.
In the ideal situation every connected component of the graph is a clique, in
which case the components form a clustering that completely agrees with the
similarity information. However, due to inconsistencies in the data or experimen-
tal errors, such a perfect partitioning might not always be possible. The goal in
correlation clustering is to partition the vertices into an arbitrary number of

? University of California, San Diego, USA. dlokshtanov@cs.ucsd.edu
?? Humboldt-Universität zu Berlin, Berlin, Germany. dmarx@cs.bme.hu. Research sup-

ported by the Alexander von Humboldt Foundation and OTKA grant 67651.

clusters in a way that agrees with the similarity information as much as possi-
ble: we want to minimize the number of pairs for which the clustering disagrees
with the input data (i.e., similar pairs that are put into different clusters, or
dissimilar pairs that are clustered together).

In many cases, such as in variants of the correlation clustering problem de-
fined in the previous paragraph, the objective is to minimize the total error of
the solution. Thus the goal is to find a solution that is good in a global sense,
but this does not rule out the possibility that the solution contains clusters that
are very bad. In this paper, the opposite approach is taken: we want to find a
partition where each cluster is “good” in a certain local sense. This means that
the partition has to satisfy a set of local constraints on each cluster, but we do
not try to optimize the total fitness of clusters.

The setting in this paper is the following. We want to partition the graph into
an arbitrary number of clusters such that (1) at most q edges leave each cluster,
and (2) each cluster induces a graph that is “cluster-like.” Defining what we mean
by the abstract notion of cluster-like gives rise to a family of concrete problems.
Formally, let µ be a function that assigns a nonnegative integer to each subset
of vertices in the graph and let us require µ(X) ≤ p for every cluster X of the
partition. There are many reasonable choices for the measure µ that correspond
to natural problems. In particular, in this paper we will obtain concrete results
for the following three measures:

1. nonedge(X): number of nonedges induced by X,
2. nondeg(X): maximum degree of the complement of the graph induced by X.
3. size(X) = |X|: number of vertices of X.

The first two functions express that each cluster should induce a graph that is
close to being a clique. The third function only requires that each cluster is small.
For a given function µ and integers p and q, we denote by (µ, p, q)-Partition
the problem of partitioning the vertices into clusters such that at most q edges
leave each cluster and µ(X) ≤ p for every cluster.

Our first result is very simple yet powerful. Let µ be a function satisfying the
mild technical conditions that it is polynomial-time computable and monotone
(i.e., if X ⊆ Y , then µ(X) ≤ µ(Y)). Observe that for example all three func-
tions defined above satisfy these conditions. Our first result shows that for every
function µ satisfying these conditions and every fixed integer q, the problem
(µ, p, q)-Partition can be solved in polynomial time (the value p is considered
to be part of the input). For example, it can be decided in polynomial time if
there is a clustering where at most 13 edges leave each cluster and each clus-
ter induces at most 27 nonedges (or even the more general question, where the
maximum number p of nonedges is given in the input). This might be surprising:
we believe that most people would guess that this problem is NP-hard. The al-
gorithm is based on a simple application of uncrossing of posimodular functions
and on the fact that for fixed q we can enumerate every (connected) cluster with
at most q outgoing edges. The crucial observation is that if every vertex can be
covered by a good cluster, then the vertices can be partitioned into good clusters.

2

Thus the problem boils down to checking if a given v is contained in a suitable
cluster.

While the algorithm is simple in hindsight, considerable efforts have been
spent on solving some very particular special cases. For example, Heggernes
et al. [9] gave a polynomial-time algorithm for (nonedge, 1, 3)-Partition and
Langston and Plaut [10] argued that the very deep results of Robertson and
Seymour on graph minors and immersions imply that (size, p, q)-Partition is
polynomial-time solvable for every fixed p and q. These results follow as straight-
forward corollaries from our first result.

Although this simple algorithm is polynomial for every fixed q, the running
time is about nO(q), thus it is not efficient even for small values of q. To improve
the running time, we look at the problem from the viewpoint of parameterized
complexity. We show that for several natural measures µ, including the three
defined above, the clustering problem can be solved in randomized time 2O(q) ·
nO(1), that is, the problem is fixed-parameter tractable (FPT) parameterized by
the bound q on the number of edges leaving a cluster. Moreover, the bound p
can be assumed to be part of the input. Thus this algorithm can be efficient for
small values of q (say, O(log n)) even if p is large. The algorithm has constant
probability of error, but it can be derandomized at the cost of worse dependence
on q in the running time (details will appear in the full version). The problem
(size, p, q)-Partition appears in the open problem list of the 1999 monograph
of Downey and Fellows [8] under the name “Minimum Degree Partition,” where
it is suggested that the problem is probably W[1]-hard parameterized by q. Our
result answers this question by showing that the problem is FPT, contrary to
the expectation of Downey and Fellows.

A crucial ingredient of our parameterized algorithm is the notion of impor-
tant separators, which has been used (implicitly or explicitly) to obtain fixed-
parameter tractability results for various cut or separator related problems. In
particular, we use the “randomized selection of important sets” argument that
was introduced very recently in [13] to prove the fixed-parameter tractability of
(edge and vertex) multicut. With these tools at hand, we can reduce (µ, p, q)-
Partition to a special case that we call the “Satellite Problem.” We show that
if the Satellite Problem is fixed-parameter tractable parameterized by q for a
particular function µ, then (µ, p, q)-Partition is also fixed-parameter tractable
parameterized by q. It seems that for many reasonable functions µ, the Satel-
lite Problem can be solved by dynamic programming techniques. In particular,
this is true for the three functions defined above, and this results in randomized
algorithms with running time 2O(q) ·nO(1). Note that the reduction to the Satel-
lite Problem works for every monotone µ, and we need arguments specific to
a particular µ only in the algorithms for Satellite Problem.

2 Clustering and uncrossing

Given an undirected graph G, we denote by ∆(X) the set of edges between X
and V (G) \ X, and define d(X) = |∆(X)|. We will use two well-known and

3

easily checkable properties of the function d: for X,Y ⊆ V (G), d satisfies the
submodular and posimodular inequalities

d(X) + d(Y) ≥ d(X ∩ Y) + d(Y ∪X) and d(X) + d(Y) ≥ d(X \ Y) + d(Y \X).

Let µ : 2V (G) → Z+ be a function assigning nonegative integers to sets
of vertices of G. Let p and q be two integers. We say that a set C ⊆ V (G)
is a (µ, p, q)-cluster if µ(C) ≤ p and d(C) ≤ q. A (µ, p, q)-partition of G is a
partition of V (G) into (µ, p, q)-clusters. The main problem considered in this
paper is finding such a partition. A necessary condition for the existence of
(µ, p, q)-partition is that for every vertex v ∈ V (G) there is a (µ, p, q)-cluster
that contains v. Therefore, we are also interested in the problem of finding a
cluster containing a vertex v.

(µ, p, q)-Partition
Input: A graph G, integers p, q.
Find: A (µ, p, q)-partition of G.

(µ, p, q)-cluster
Input: Graph G, integers p, q, vertex v.
Find: A (µ, p, q)-cluster C containing v.

The main observation of this section is that if µ is monotone (i.e., µ(X) ≤
µ(Y) for every X ⊆ Y), then this is actually a sufficient condition. Therefore, in
these cases, it is sufficient to solve (µ, p, q)-cluster.

Lemma 1. Let G be a graph, let p, q ≥ 0 be two integers, and let µ : 2V (G) → Z+

be a monotone function. If every v ∈ V (G) is contained in some (µ, p, q)-cluster,
then G has a (µ, p, q)-partition, and given a set of (µ, p, q)-clusters C1, . . . , Cn

whose union is V (G), a (µ, p, q)-partition can be found in polynomial time.

Proof. Let us consider a collection C1, . . . , Cn of (µ, p, q)-clusters whose union
is V (G). If the sets are pairwise disjoint, then they form a partition of V (G) and
we are done. If Ci ⊆ Cj , then the union remains V (G) even after throwing away
Ci. Thus we can assume that no set is contained in another. Suppose that Ci

and Cj intersect. Now either d(Ci) ≥ d(Ci \ Cj) or d(Cj) ≥ d(Cj \ Ci) must be
true: it is not possible that both d(Ci) < d(Ci \Cj) and d(Cj) < d(Cj \Ci) hold,
as this would violate the posimodularity of d. Suppose that d(Cj) ≥ d(Cj \Ci).
Now the set Cj \ Ci is also a (µ, p, q)-cluster: we have d(Cj \ Ci) ≤ d(Cj) ≤ q
by assumption and µ(Cj \ Ci) ≤ µ(Cj) ≤ p from the monotonicity of µ. Thus
we can replace Cj by Cj \ Ci in the collection: the union of the clusters is still
V (G). Similarly, if d(Cj) ≥ d(Cj \ Ci), then we can replace Cj by Cj \ Ci.

Repeating these steps (throwing away subsets and resolving intersections), we
eventually arrive at a pairwise disjoint collection of (µ, p, q)-clusters. Each step
decreases the number of cluster pairs Ci, Cj that have non-empty intersection.
Therefore, this process terminates after a polynomial number of steps. ut

In light of Lemma 1, it is sufficient to find a (µ, p, q)-cluster Cv for each vertex
v ∈ V (G). If there is a vertex v for which there is no such cluster Cv, then
obviously there is no (µ, p, q)-partition; if we have such a Cv for every vertex

4

v, then Lemma 1 gives us a (µ, p, q)-partition in polynomial time. For fixed q,
(µ, p, q)-Cluster can be solved by brute force if µ is polynomial-time com-
putable:enumerate every set F of at most q edges and check if the component
of G \ F containing v is a (µ, p, q)-cluster. If Cv is a (µ, p, q)-cluster containing
v, then we find it when F = ∆(Cv) is considered by the enumeration procedure.

Theorem 2. Let µ be a polynomial-time computable monotone function. Then
for every fixed q, there is an nO(q) time algorithm for (µ, p, q)-Partition.

As we have seen, an algorithm for (µ, p, q)-Cluster gives us an algorithm for
(µ, p, q)-Partition. In the rest of the paper, we devise more efficient algorithms
for (µ, p, q)-Cluster than the nO(q) time brute force method described above.

3 Parameterization by q

The main result of this section is that (µ, p, q)-Partition is (randomized) FPT
parameterized by q for the three functions nonedge, nondeg, and size.

Theorem 3. There is an algorithm for (size, p, q)-Partition, (nonedge, p, q)-
Partition and (nondeg, p, q)-Partition using 2O(q)|V (G)|O(1) randomized time.
If the input instance is a yes-instance the algorithm incorrectly returns no with
probability less than 1

2 . On no-instances the algorithm always answers no.

By Lemma 1, all we need to show is that (µ, p, q)-cluster is fixed-parameter
tractable parameterized by q. We introduce a somewhat technical variant of this
question, the Satellite Problem, and show that for every monotone function
µ, if Satellite Problem is FPT, then (µ, p, q)-cluster is FPT as well. Thus
we need arguments specific to a particular µ only for the Satellite Problem.

Satellite Problem
Input: A graph G, integers p, q, a vertex v ∈ V (G), a partition V0, V1,

. . . , Vn of V (G) such that v ∈ V0 and there is no edge between
Vi and Vj for any 1 ≤ i < j ≤ n.

Find: A (µ, p, q)-cluster C with V0 ⊆ C such that for every 1 ≤ i ≤ n,
either C ∩ Vi = ∅ or Vi ⊆ C.

That is, for every Vi, we have to decide whether to include or exclude it from
the solution C. If we exclude Vi from C, then d(C) increases by the number of
edges between V0 and Vi. If we include Vi into C, then µ(C) increases accordingly.
Thus we need to solve the knapsack-like problem of including sufficiently many
Vi such that d(C) ≤ q, but not including too many to ensure µ(C) ≤ p. As we
shall see in Section 3.3, in many cases this problem can be solved by dynamic
programming (and some additional arguments). The important fact that we use
is that there are no edges between Vi and Vj , thus for many reasonable functions
µ, the way µ(C) increases by including Vi is fairly independent from whether Vj
is included in C or not.

The reduction to Satellite Problem uses the concept of important sepa-
rators (Section 3.1). The reduction itself is given in Section 3.2. In Section 3.3,

5

we show how the Satellite Problem can be solved for the three functions
nonedge, nondeg, size.

3.1 Important separators and Important Sets

The notion of important separators was introduced in [12] to prove the fixed-
parameter tractability of multiway cut problems. This notion turned out to be
useful in other applications as well [5, 6, 17]. The basic idea is that in many
problems where terminals need to be separated in some way, it is sufficient to
consider separators that are “as far as possible” from one of the terminals. Let
s, t be two vertices of a graph G. An s− t separator is a set S ⊆ E(G) of edges
separating s and t, i.e., there is no s − t path in G \ S. An s − tseparator is
inclusionwise minimal if there is an s− t path in G \ S′ for every S′ ⊂ S.

Definition 4. Let s, t ∈ V (G) be vertices, S ⊆ E(G) be an s− t separator, and
let K be the component of G \ S containing s. We say that S is an important
s− t separator if it is inclusionwise minimal and there is no s− t separator S′

with |S′| ≤ |S| such that K ⊂ K ′ for the component K ′ of G \ S′ containing s.

We now define important sets, which are natural companions to important sep-
arators.

Definition 5. We say that a set X ⊆ V (G), v 6∈ X is important if (1) d(X) ≤
q, (2) G[X] is connected and (3) there is no Y ⊃ X, v 6∈ Y such that d(Y) ≤
d(X) and G[Y] is connected.

It is easy to see that X is an important set if and only if ∆(X) is an important
u−v separator for every u ∈ X. As there are differences between edge and vertex
separators, and some of the results appear only implicitly in previous papers,
the full version of this article [11] contains proofs of Theorem 6 and Lemma 7.
Since X is an important set if and only if ∆(X) is an important u−v separator,
we can use Theorem 6 and Lemma 7 to enumerate important sets.

Theorem 6 (?). 1 Let s, t ∈ V (G) be two vertices in graph G. For every k ≥ 0,
there are at most 4k important s− t separators of size at most k. Furthermore,
these important separators can be enumerated in time 4k · nO(1).

Lemma 7 (?). Let s, t ∈ V (G). If S is the set of all important s− t separators,
then

∑
S∈S 4−|S| ≤ 1. Thus S contains at most 4k separators of size at most k.

3.2 Reduction to the Satellite Problem

In this section we reduce (µ, p, q)-Cluster to the Satellite Problem.

Lemma 8. If Satellite Problem can be solved in time f(q) ·nO(1) for some
monotone µ, then there is a randomized 2O(q) ·f(q)·nO(1) algorithm with constant
error probability that finds a (µ, p, q)-cluster containing v (if one exists).

1 Proofs of results labelled with ? have been omitted due to space restrictions.

6

The following lemma establishes the connection between important sets and
finding (µ, p, q)-clusters: we can assume that the components of G \ C for the
solution C are important sets. In Lemma 10, we show that by randomly choosing
important sets, with some probability we can obtain an instance of the Satel-
lite Problem where V1, . . . , Vn contain all the components of G\C. This gives
us the reduction stated in Lemma 8 above.

Lemma 9. Let C be an inclusionwise minimal (µ, p, q)-cluster containing v.
Then every component of G \ C is an important set.

Proof. Let X be a component of G \ C. It is clear that X satisfies the first two
properties of Definition 5 (note that ∆(X) ⊆ ∆(C)). Thus let us suppose that
there is a Y ⊃ X, v 6∈ Y such that d(Y) ≤ d(X) and G[Y] is connected. Let
C ′ := C \ Y . Note that C ′ is a proper subset of C: every neighbor of X is in C,
thus a connected superset of X has to contain at least one vertex of C. It is easy
to see that C ′ is a (µ, p, q)-cluster: we have ∆(C ′) ⊆ (∆(C) \∆(X))∪∆(Y) and
therefore d(C ′) ≤ d(C) − d(X) + d(Y) ≤ d(C) ≤ q and µ(C ′) ≤ µ(C) ≤ p (by
the monotonicity of µ). This contradicts the minimality of C. ut

Lemma 10. Given a graph G, vertex v ∈ V (G), integers p, q, and a monotone
function µ : 2V (G) → Z+, we can construct in time 2O(q) ·nO(1) an instance I of
the Satellite Problem such that

– If some (µ, p, q)-cluster contains v, then I is a yes-instance with probability
2−O(q),

– If there is no (µ, p, q)-cluster containing v, then I is a no-instance.

Proof. For every u ∈ V (G), u 6= v, let us use the algorithm of Lemma 7 to
enumerate every important u − v separator of size at most q. For every such
separator S, let us put the component K of G\S containing u into the collection
S. Note that a component K can be obtained for more than one vertex u, but
we put only one copy into S.

Let S ′ be a subset of S, where each member K of S is chosen with probability
2−d(K) independently at random. Let Z be the union of the sets in S ′, let V1, . . . ,
Vn be the connected components of G[Z], and let V0 = V (G) \Z. It is clear that
V0, V1, . . . , Vn give an instance I of Satellite Problem, and a solution for I
gives a (µ, p, q)-cluster containing v. Thus we only need to show that if there is a
(µ, p, q)-cluster C containing v, then I is a yes-instance with probability 2−O(q).

Let C be an inclusionwise minimal (µ, p, q)-cluster containing v. Let B be
the vertices on the boundary of C, i.e., the vertices of C incident to ∆(C). Let
K1, . . . , Kt be the components of G \ C. Note that every edge of ∆(C) enters
some Ki, thus

∑t
i=1 d(Ki) = d(C) ≤ q. By Lemma 9, every Ki is an important

set, and hence it is in S. Consider the following two events:

(1) Every component Ki of G \ C is in S ′ (and hence Ki ⊆ Z).
(2) Z ∩B = ∅.

7

The probability that (1) holds is
∏t

i=1 4−d(Ki) = 4−
∑t

i=1 d(Ki) ≥ 4−q. Event
(2) holds if for every b ∈ B, no set K ∈ S with b ∈ K is selected into S ′.
It follows directly from the definition of important separators that for every
K ∈ S with b ∈ K, ∆(K) is an important b − v separator. Thus by Lemma 7,∑

K∈S,b∈K 4−|d(K)| ≤ 1. The probability that Z ∩B = ∅ can be bounded by

∏
K∈S,K∩B 6=∅

(1−4−d(K)) ≥
∏
b∈B

∏
K∈S,b∈K

(1−4−d(K)) ≥
∏
b∈B

∏
K∈S,b∈K

exp(
−4−d(K)

(1 − 4−d(K))
)

≥
∏
b∈B

∏
K∈S,b∈K

exp(−4

3
·4−d(K)) =

∏
b∈B

exp

−4

3
·

∑
K∈S,b∈K

4−d(K)

 ≥ (e−
4
3)|B| ≥ e−4q/3.

In the first inequality, we use that every term is less than 1 and every term on
the right hand side appears at least once on the left hand side; in the second
inequality, we use that 1 + x ≥ exp(x/(1 + x)) for every x > −1. Events (1)
and (2) are independent: (1) is a statement about the selection of subsets of S
that are disjoint from B, while (2) involves only sets intersecting B. Thus by
probability 2−O(q), both (1) and (2) hold.

Suppose that both (1) and (2) hold, we show that instance I of the Satellite
Problem is a yes-instance. In this case, every component Ki of G \ C is a
component Vj of G[Z]: Ki ⊆ Z by (1) and every neighbor of Ki is outside Z.
Thus C is a solution of I, as it can be obtained as the union of V0 and some
components of G[Z]. ut

3.3 Solving the Satellite Problem

In this section, we give efficient algorithms for solving the Satellite Problem
when the function µ is size, nonedge and nondeg. We describe the three algo-
rithms by increasing difficulty. In the case when µ is size, solving the Satellite
Problem turns out to be equivalent to the classical Knapsack problem with
polynomial bounds on the values and weights of the items.

Recall that the input to the Satellite Problem is a graph G, integers p,
q, a vertex v ∈ V (G), a partition V0, V1, . . . , Vn of V (G) such that v ∈ V0
and there is no edge between Vi and Vj for any 1 ≤ i < j ≤ n. The task is to
find a vertex set C, such that C = V0 ∪

⋃
i∈S Vi for a subset S of {1, . . . , n}

and C satisfies d(C) ≤ q and µ(C) ≤ p. For a subset S of {1, . . . , n} we define
C(S) = V0 ∪

⋃
i∈S Vi.

Lemma 11. The Satellite Problem for measure size can be solved in time
O(q|V (G)| log |V (G)|).

Proof. Notice that d(C) = d(V0) −
∑

i∈S d(Vi). Hence, we can reformulate the
Satellite Problem with µ = size as finding a subset S of {1, . . . , n} such that∑

i∈S d(Vi) ≥ d(V0) − q and
∑

i∈S |Vi| ≤ p − |V0|. Thus, we can associate with
every i an item with value d(Vi) and weight |Vi|. The objective is to find a set of
items with total value at least d(V0)− q and total weight at most p− |V0|. This

8

problem is known as Knapsack and can be solved in O(nv logw) time by a
classical dynamic programming [4, 7] algorithm, where n is the number of items,
v is the value we seek to attain and w is the weight limit. Since the value is
bounded from above by q and the weight by |V (G)|, the statement of the lemma
follows. ut

The case that µ = nonedge is slightly more complicated, however we can still
solve it using a dynamic programming algorithm. For the version of Satellite
Problem when µ = nondeg we do not have a polynomial time algorithm. Instead,
we give a 2q|V (G)|O(1) time randomized algorithm.

Lemma 12 (?). The Satellite Problem for nonedge can be solved in time
O(pn|E(G)||V (G)|). There is a randomized algorithm which given an instance of
nondeg-Satellite Problem runs in 2q|V (G)|O(1) time, correctly answers no on
all no-instances and answers yes on yes-instances with probability at least e−2q.

Repeating the algorithm for nondeg-Satellite Problem O(e2q) times will de-
crease the probability of false negatives from 1 − e−2q to 1

2 . Lemmata 10, 11,
and 12 give Theorem 3.

4 Parameterization by p

Theorem 13. There is a 8ep+o(p)|V (G)|O(1) time algorithm for the problem
(size, p, q)-Partition and a 8e3p+o(p)|V (G)|O(1) time algorithm for the problems
(nonedge, p, q)-Partition and (nondeg, p, q)-Partition.

Because of Lemma 1, it is sufficient to solve the corresponding (µ, p, q)-Cluster
problem within the same time bound. The setting is as follows. We are given a
graph G, integers p and q and a vertex v in G. The objective is to find a set
C not containing v such that d(C ∪ {v}) ≤ q and, depending on which problem
we are solving, either |C ∪ {v}| = size(C ∪ {v}) ≤ p, nonedge(C ∪ {v}) ≤ p or
nondeg(C ∪ {v}) ≤ p.

For a set S and vertex v, define ∆(S, v) to be the set of edges with one
endpoint in S and one in {v}. Define ∆(S, v) to be ∆(S) \ ∆(S, v), and let
d(S, v) = |∆(S, v)| and d(S, v) = |∆(S, v)|. We will say that a set C is v-minimal
if v /∈ C and d(C ′ ∪ {v}) > d(C ∪ {v}) for every C ′ ⊂ C. As size, nonedge and
nondeg are monotone we can focus on v-minimal sets C. The following fact uses
that there are no parallel edges:

Observation 14. Let C be a v-minimal set. Then d(C, v) < d(C, v) ≤ |C|

In particular, if d(C, v) ≥ d(C, v), then d(v) ≤ d(C ∪ {v}), contradicting that C
is minimal. Since d(C, v) < |C|, it follows that C must contain a vertex u such
that N [u] ⊆ C ∪ {v}. Now we show that there are not too many v-minimal sets
C of size at most p such that G[C] is connected.

Lemma 15. For any graph G, vertex v and integer p, there are at most 4p|V (G)|
v-minimal sets C such that |C| ≤ p and G[C] is connected. Furthermore, all such
sets can be listed in O(4p|V (G)|) time.

9

Proof. By Observation 14, any v-minimal set C of size at most p satisfies d(C, v) <
p. Let S be a set such that |S| ≤ p and G[S] is connected. Let F be a subset of
N(S) \ {v} of size at most p − 1. We prove by downward induction on |S| and
|F | that there are at most 22p−|S|−|F |−1 v-minimal sets such that |C| ≤ p , G[C]
is connected, S ⊆ C, and F ∩ C = ∅. If |S| = p then the only possibility for
C is S, while 22p−|S|−|F |−1 ≥ 1. Similarly, consider the case that |F | = p − 1.
Now, every vertex of F has at least one edge into C and hence d(C, v) = p− 1.
Hence N(C) = F ∪ {v} and the only possibility for C is the connected compo-
nent of G \ (F ∪ {v}) that contains S. Hence there is one possibility for C and
22p−|S|−|F |−1 ≥ 1.

For the inductive step, consider a set S such that |S| ≤ p and G[S] is con-
nected and a subset F of N(S)\{v} of size at most p−1. We want to bound the
number of v-minimal sets such that |C| ≤ p and G[C] is connected, S ⊆ C and
F∩C = ∅. If N(S)\(F∪{v}) is empty, then there is only one choice for C, namely
S, and 22p−|S|−|F |−1 ≥ 1. Otherwise, consider a vertex u ∈ N(S) \ (F ∪ {v}).
By the induction hypothesis, the number of v-minimal sets such that |C| ≤ p
and G[C] is connected, S ∪ {u} ⊆ C and F ∩ C = ∅ is at most 22p−|S|−|F |−2.
Similarly, the number of v-minimal sets such that |C| ≤ p and G[C] is connected,
S ⊆ C and (F ∪ {u}) ∩ C = ∅ is at most 22p−|S|−|F |−2. Since either u ∈ C or
u /∈ C, the two cases cover all possibilities for C and hence there are at most
2 · 22p−|S|−|F |−2 = 22p−|S|−|F |−1 possibilities for C.

For a fixed S and F , the above proof can be translated into a procedure
which lists all v-minimal sets such that |C| ≤ p and G[C] is connected, S ⊆ C
and F ∩C = ∅. We run the procedure for S = {u} and F = ∅ for every possible
choice of u. Hence, there are at most 4p|V (G)| v-minimal sets C such that |C| ≤ p
and G[C] is connected, and the sets can be efficiently listed. This concludes the
proof. ut

Observation 16. Let C be a v-minimal set of G and G[S] be a connected
component of G[C]. Then S is a v-minimal set.

In particular, if S is not a v-minimal set, then it contains a v-minimal set S′ ⊂ S
and it is easy to see that d({v} ∪ (C \ S) ∪ S′) ≤ d({v} ∪ C), contradicting the
minimality of C. Observation 16 tells us that any v-minimal set is the union
of connected v-minimal sets. This makes it possible to use Lemma 15. We are
now ready to give an algorithm for (size, p, q)-Cluster, the easiest of the three
clustering problems. Our algorithm is based on a combination of color coding [2]
with a dynamic programming algorithm which uses the observations made in
this section.

Proposition 17 ([16]). For every n, k there is a family of functions F of size
O(ek ·kO(log k) ·log n) such that every function f ∈ F is a function from {1, . . . , n}
to {1, . . . , k} and for every subset S of {1, . . . , n} there is a function f ∈ F that
is bijective when restricted to S. Furthermore, given n and k, F can be computed
in time O(ek · kO(log k) · log n).

Lemma 18. (size, p, q)-Cluster can be solved in time 2O(p)|V (G)|O(1).

10

Proof. We are given as input a graph G together with a vertex v and integers
p and q. The task is to find a vertex set C of size at most p − 1 such that
d({v} ∪ C) ≤ q. It is sufficient to search for a v-minimal set C satisfying these
properties. By Observation 16, C can be decomposed into C = S1 ∪ S2 . . . ∪ St

such that Si is a connected v-minimal set for every i, Si ∩Sj = ∅ for every i 6= j
and no edge of G has one endpoint in Si and the other in Sj for every i 6= j. The
algorithm of Lemma 15 can be used to list all connected v-minimal sets S1 . . . Sn;
we have n ≤ 4p|V (G)|. For a subset Z of {1, . . . , n}, define C(Z) = {v}∪

⋃
i∈Z Si.

Let Z ⊆ {1, . . . , n} be such that for every i, j ∈ Z with i 6= j, we have Si∩Sj = ∅.
We have that |C(Z)| = 1 +

∑
i∈Z |Si| and

d
(
C(Z)

)
≤ d(v) +

∑
i∈Z

(d(Si, v)− d(Si, v)).

If there is no edge with one endpoint in Si and the other in Sj for some i 6= j,
i, j ∈ Z, then the inequality above holds with equality. Our algorithm will select
a Z such that C =

⋃
i∈Z Si. To ensure that the algorithm picks Z such that

the sets Si and Sj will be disjoint for every pair of distinct integers i, j ∈ Z we
will use color coding. In particular, we construct a family F of functions from
V (G) \ {v} to {1, . . . , p − 1} as described in Proposition 17. The family F has
size O(ep · pO(log p) · log |V (G)|).

For each function f ∈ F we will think of the function as a coloring of V (G) \
{v} with colors from {1, . . . , p − 1}. We will only look for a v-minimal set C
whose vertices have different colors. This will not only ensure that any two sets
Si and Sj that we pick will be disjoint, it also automatically ensures that the size
of the set C we return is at most p− 1. If the input instance was a yes-instance
then a solution set C exists, and the construction of F ensures that there will
be a function f ∈ F which colors all vertices in C with different colors.

When considering a particular coloring f , we discard all sets from S1, . . . Sn

which have two vertices of the same color, so from this point, without loss of
generality, all sets in S1, . . . Sn have at most one vertex of each color. For a vertex
set S, define colors(S) to be the set of colors occuring on vertices on G. For every
0 ≤ i ≤ n, 0 ≤ j ≤ |E(G)| and R ⊆ {1, . . . , p− 1}, we define T [i, j, S] to be true

if there is a set Z ⊆ {1, . . . , i} such that all vertices of C(Z) have distinct colors,
d(v) +

∑
i∈Z(d(Si, v) − d(Si, v)) = j and colors(C(Z)) ⊆ R. Clearly, there is a

v-minimal set C such that d({v} ∪ C) ≤ q and all vertices of C have different
color if and only if T [n, j, {1, . . . , p − 1}] is true for some j ≤ q. We can fill the
table T using the following recurrence.

T [i, j, R] =

T [i− 1, j, R] if colors(Si) \R 6= ∅
T [i− 1, j, R] ∨ T [i− 1,

j + d(Si, v)− d(Si, v), R \ colors(Si)] otherwise

(1)

Here we initialize T [0, d(v), ∅] to true. The table has size 4p|V (G)|O(1)·2p|V (G)|O(1)

= 8p|V (G)|O(1) and can be filled in time proportional to its size. Hence the total
running time for the algorithm is (8e)p+o(p)|V (G)|O(1). ut

11

For (size, p, q)-Cluster the size of the set C we look for is already bounded
by p. For (nonedge, p, q)-Cluster and (nondeg, p, q)-Cluster, we cannot make
this assumption, thus further arguments are needed to obtain Theorem 13.

4.1 Hardness results

The algorithmic results in Section 3 still hold when parallel edges are allowed.
Interestingly, the positive results in Section 4 do not: in particular, Observa-
tion 14 breaks done if there are parallel edges. The following hardness result
shows that allowing parallel edges indeed make the problems more difficult:

Theorem 19 (?). (nonedge, p, q)-Partition and (nondeg, p, q)-Partition are
NP-complete for p = 0 on graphs with parallel edges. (size, p, q)-Partition is
W[1]-hard parameterized by p on graphs with parallel edges.

References

1. N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information:
ranking and clustering. In STOC 2005, pages 684–693, 2005.

2. N. Alon, R. Yuster, and U. Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
3. N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning,

56(1-3):89–113, 2004.
4. R. Bellman. Dynamic programming treatment of the travelling salesman problem.

J. ACM, 9(1):61–63, 1962.
5. J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the minimum

node multiway cut problem. In WADS, pages 495–506, 2007.
6. J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm

for the directed feedback vertex set problem. J. ACM, 55(5), 2008.
7. T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to algorithms,

2001.
8. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
9. P. Heggernes, D. Lokshtanov, J. Nederlof, C. Paul, and J. A. Telle. Generalized

graph clustering: Recognizing (o,q)-cluster graphs. In WG, pages 171–183, 2010.
10. M. A. Langston and B. C. Plaut. On algorithmic applications of the immersion

order : An overview of ongoing work presented at the third slovenian international
conference on graph theory. Discrete Mathematics, 182(1-3):191–196, 1998.

11. D. Lokshtanov and D. Marx. Clustering with local restrictions. In preparation.
Availiable at http://www.ii.uib.no/ daniello/papers/clusteringLocal.pdf.

12. D. Marx. Parameterized graph separation problems. Theoret. Comput. Sci.,
351(3):394–406, 2006.

13. D. Marx and I. Razgon. Fixed-parameter tractability of multicut parameterized
by the size of the cutset. To appear in STOC 2011.

14. C. Mathieu, O. Sankur, and W. Schudy. Online correlation clustering. In STACS,
pages 573–584, 2010.

15. C. Mathieu and W. Schudy. Correlation clustering with noisy input. In SODA,
pages 712–728, 2010.

16. M. Naor, L. J. Schulman, and A. Srinivasan. Splitters and near-optimal deran-
domization. In FOCS, pages 182–191, 1995.

17. I. Razgon and B. O’Sullivan. Almost 2-sat is fixed-parameter tractable (extended
abstract). In ICALP 2008(1)), pages 551–562, 2008.

12

