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1. INTRODUCTION
The constraint satisfaction problem (CSP) provides a framework in which it is possible
to express, in a natural way, many combinatorial problems encountered in artificial
intelligence and computer science. A CSP instance is represented by a set of variables,
a domain of values for each variable, and a set of constraints on the values that certain
collections of variables can simultaneously take. The basic aim is then to find an as-
signment of values to the variables that satisfies the constraints. Boolean CSP (when
all variables have domain {0, 1}) generalizes satisfiability problems such as 2SAT and
3SAT by allowing that constraints are given by arbitrary relations, not necessarily by
clauses.
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As Boolean CSP problems are NP-hard in general, there have been intensive efforts
at finding efficiently solvable special cases of the general problem. One well-studied
type of special cases is obtained by restricting the allowed constraint relations to a
fixed set Γ; we denote by SAT(Γ) the resulting problem. We expect that if the relations
in Γ are simple, then SAT(Γ) is easy to solve. For example, if Γ contains only binary
relations, then SAT(Γ) is polynomial-time solvable, as it can be expressed by 2SAT. On
the other hand, if Γ contains all the ternary relations, then SAT(Γ) can express 3SAT,
and hence it is NP-hard.

A celebrated classical result of T.J. Schaefer [1978] characterizes the complexity of
SAT(Γ) for every finite set Γ: it shows that if Γ has certain simple combinatorial prop-
erties, then SAT(Γ) is polynomial-time solvable, and if Γ does not have these proper-
ties, then SAT(Γ) is NP-hard. This result is surprising for two reasons. First, Ladner’s
Theorem [Ladner 1975] states that if P 6= NP, then there are problems in NP that are
neither in P nor NP-complete. Therefore, it is surprising that every SAT(Γ) problem is
either in P or NP-complete, and no intermediate complexity appears for this family of
problems. Second, it is surprising that the borderline between the P and NP-complete
cases of SAT(Γ) can be conveniently characterized by simple combinatorial properties.

Schaefer’s result has been generalized in various directions. Bulatov [2002] gener-
alized it from Boolean CSP to CSP over a 3-element domain and it is a major open
question if it can be generalized to arbitrary finite domains (see [Bulatov 2003; Feder
and Vardi 1999]). Creignou et al. [2008b] classified the polynomial-time solvable cases
of the problem EXACT ONES SAT(Γ), where the task is to find a satisfying assign-
ment such that exactly k variables have value 1, for some integer k given in the input.
Natural optimization variants of SAT(Γ) have been considered [Creignou et al. 2001;
Crescenzi and Rossi 2002; Khanna et al. 2000] with the goal of classifying the approx-
imability of the different problems. In MAX SAT(Γ) we have to find an assignment
maximizing the number of satisfied constraints, while in MIN UNSAT(Γ) we have
to find an assignment minimizing the number of unsatisfied constraints. MIN ONES
SAT(Γ) and MAX ONES SAT(Γ) ask for a satisfying assignment minimizing and max-
imizing, respectively, the number of variables having value 1.

Parameterized complexity. Recently, there have been investigations of the hardness
of CSP from the viewpoint of parameterized complexity [Marx 2005; Kratsch and
Wahlström 2010]. This paradigm investigates hardness in finer detail than classical
complexity, which focuses mostly on polynomial-time algorithms. A parameterization
of a problem is assigning an integer k to each input instance. Consider, for example, two
standard NP-complete problems VERTEX COVER and CLIQUE. Both have the natural
parameter k: the size of the required vertex cover/clique. Both problems can be solved
in time nO(k) on n-vertex graphs by complete enumeration. Notice that the degree of
the polynomial grows with k, so the algorithm becomes useless for large graphs, even
if k is as small as 10. However, VERTEX COVER can be solved in time O(2k · n2) [Flum
and Grohe 2006; Downey and Fellows 1999]. In other words, for every fixed cover size
there is a polynomial-time (in this case, quadratic in the number of vertices) algorithm
solving the problem where the degree of the polynomial is independent of the param-
eter. Problems with this property are called fixed-parameter tractable. The notion of
W[1]-hardness in parameterized complexity is analogous to NP-completeness in clas-
sical complexity. Problems that are shown to be W[1]-hard, such as CLIQUE [Flum
and Grohe 2006; Downey and Fellows 1999], are very unlikely to be fixed-parameter
tractable.

Kernelization. One of the most basic techniques for showing that a problem is fixed-
parameter tractable is to show that the computationally hard “core” of the problem can
be extracted in polynomial time. Formally, kernelization is a polynomial-time transfor-
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mation that, given an instance I of problem Q with parameter k, creates an equivalent
instance I ′ of problemQwith parameter k′ ≤ f(k) such that the size of I ′ is at most g(k)
for some functions f , g (usually, k′ ≤ k is achievable). For example, a classical result
of Nemhauser and Trotter [1975] shows that every instance I of VERTEX COVER with
parameter k can be transformed into an instance I ′ with parameter k′ ≤ k such that I ′
has at most g(k) = 2k vertices. Observe that the existence of a kernelization algorithm
forQ immediately implies thatQ is FPT, assuming thatQ is decidable: performing the
kernelization and then doing a brute force solution on I ′ clearly takes only nO(1) +f(k)
time for some function f . From the practical point of view, polynomial kernels, i.e.,
kernelization algorithms where g(k) is a polynomial, are of particular interest. If a
problem has this property, then this means that there is an efficient preprocessing
algorithm for the problem with a provable bound on the way it shrinks the instance.
Such a preprocessing can be an invaluable opening step in any practical solution for
the problem. Very recently, however, it has been shown that under standard complex-
ity assumptions, not every FPT problem has a polynomial kernel: e.g., the PATH(k)
problem can be solved in (randomized) time 2k ·nO(1) [Williams 2009], but has no poly-
nomial kernel unless NP ⊆ co-NP/poly [Bodlaender et al. 2009]. The negative toolkit
developed in [Bodlaender et al. 2009] has been successfully applied to a number of
other problems [Bodlaender et al. 2011; Dom et al. 2009].

Results. The parameterized complexity of EXACT ONES SAT(Γ) was studied in
[Marx 2005], where it was shown that a property called weak separability charac-
terizes the complexity of the problem: EXACT ONES SAT(Γ) is FPT if Γ is weakly
separable, and W[1]-complete otherwise. The problem MIN ONES SAT(Γ) is FPT for
every Γ by a simple branching algorithm, but it is not obvious to see for which Γ there
is a polynomial kernel. This question has been resolved in [Kratsch and Wahlström
2010] by showing that (unless NP ⊆ co-NP/poly) MIN ONES SAT(Γ) has a polynomial
kernel if and only if MIN ONES SAT(Γ) is in P or Γ has a property called mergeability.

We continue this line of research by considering the so far unexplored problem MAX
ONES SAT(Γ) and revisit EXACT ONES SAT(Γ). We will characterize (under standard
complexity assumptions) parameterized MAX ONES SAT(Γ) problems for finite con-
straint languages Γ as the following 5 types: solvable in polynomial time; NP-hard,
but having polynomial kernelization; being FPT but admitting no polynomial kernel-
ization; being W[1]-hard and in XP; and not being in XP. For EXACT ONES SAT(Γ), we
refine the classification of [Marx 2005] by precisely characterizing those weakly sepa-
rable sets Γ for which EXACT ONES SAT(Γ) is not only FPT, but admits a polynomial
kernel. Table I shows some examples.

Overview of the paper. Since the complexity characterizations of MAX ONES SAT(Γ)
and EXACT ONES SAT(Γ) use some quite technical tools, we defer overviews of the
proofs to Sections 3 and 4, respectively. However, let us say a few words here about the
difference between the two proofs, in terms of the tools and resulting characterizations,
and their relation to previous work.

For MAX ONES SAT(Γ), we may observe that if SAT(Γ) is NP-hard, then so is MAX
ONES SAT(Γ) with parameter k = 0, i.e., for such a language Γ, MAX ONES SAT(Γ)
is not even in XP (let alone FPT) unless P=NP. Hence we may restrict our attention to
those polynomial-time solvable cases identified by Schaefer [1978]. This allows us to
use powerful known results about the structure and expressiveness of such languages;
in particular, we use the theory of frozen partial co-clones due to Nordh and Zanut-
tini [2009] (see Section 3). This saves us a lot of technical work, and lets us give the
resulting characterization essentially as a list of maximal positive cases.

For EXACT ONES SAT(Γ), on the other hand, there are positive cases (i.e., languages
for which Exact Ones admits a polynomial kernel) even among languages Γ such that
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Table I. Examples of sets of relations Γ and the properties for MIN ONES SAT(Γ),
EXACT ONES SAT(Γ), and MAX ONES SAT(Γ). Problems marked PK have polyno-
mial kernels; problems marked FPT are FPT but admit no polynomial kernelization
unless NP ⊆ co-NP/poly.

Γ Min Ones Exact Ones Max Ones
width-2 affine P P P
{ODD3} PK PK P
{EVEN3} P FPT PK
{EVEN3, (x)} FPT FPT PK

{ODD4}, general affine FPT FPT PK
{(x ∨ y), (x 6= y)} PK PK PK
{((x→ y) ∧ (y 6= z))} PK FPT FPT

{(x ∨ y), (x 6= y), (x→ y)} PK W[1]-complete FPT
bijunctive PK W[1]-complete W[1]-hard, XP
{R1-IN-3} PK PK not in XP

{
∑

i xi = p (mod q)} FPT FPT not in XP
general FPT W[1] not in XP

SAT(Γ) is NP-hard. Since no useful structural characterization is known for such lan-
guages (at least, not to the detail that we would need), we need to resort to more
low-level tools, and work directly with algebraic closure operations called partial poly-
morphisms (see Section 4). These are the same tools with which previous results have
been derived [Marx 2005; Kratsch and Wahlström 2010]. On the other hand, since
both a P-vs-NP dichotomy and an FPT-vs-W[1]-dichotomy for EXACT ONES SAT(Γ) is
already known [Creignou et al. 2008b; Marx 2005], it only remains for us to state a
dichotomy for the kernelizability of EXACT ONES SAT(Γ). In this, we build explicitly
on previous work [Marx 2005; Kratsch and Wahlström 2010]. Concretely, we define a
new relational property called semi-separability, which is a sharpening of weak sep-
arability, and conclude (through a list of cases) that EXACT ONES SAT(Γ) admits a
polynomial kernel if and only if Γ is semi-separable and mergeable, unless NP ⊆ co-
NP/poly.

The paper is structured as follows. In Section 2, we provide some standard defi-
nitions and preliminary results. We also define a maximization problem MULTIPLE
COMPATIBLE PATTERNS (MCP), which will be useful in the kernelization lower bounds
for both the Exact Ones and Max Ones problems. We show that MCP is FPT, but ad-
mits no polynomial kernelization unless NP ⊆ co-NP/poly. In Section 3, we give the
complexity characterization for the MAX ONES SAT(Γ) problem, and in Section 4 we
complete the complexity characterization for EXACT ONES SAT(Γ). We wrap the paper
up in Section 5 with conclusions and further remarks.

2. PRELIMINARIES AND NOTATION
Boolean CSP. A formula φ is a pair (V,C) consisting of a set V of variables and a

set C of constraints. Each constraint ci ∈ C is a pair 〈si, Ri〉, where si = (xi,1, . . . , xi,ri)
is an ri-tuple of variables (the constraint scope) and Ri ⊆ {0, 1}ri is an ri-ary Boolean
relation (the constraint relation). A function f : V → {0, 1} is a satisfying assignment of
φ if (f(xi,1), . . . , f(xi,ri)) is in Ri for every ci ∈ C. Let Γ be a set of Boolean relations. A
formula is a Γ-formula if every constraint relation Ri is in Γ. In this paper, Γ is always
a finite set containing only non-empty relations. For a fixed finite Γ, every Γ-formula
φ = (V,C) can be represented with length polynomial in |V | and |C|: if r is the maxi-
mum arity of the relations in Γ, then the maximum number of different constraints is
|Γ| · |V |r, and each constraint relation can be represented by constant number of bits
(depending only on Γ). The weight w(f) of an assignment f is the number of variables
x with f(x) = 1.
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We also use some definitions from Nordh and Zanuttini [2009]. Let φ = (V,C) be
a formula and x ∈ V a variable. Then x is said to be frozen in φ if x takes the same
value in every satisfying assignment of φ. Further, let Γ be a set of relations, and R
an n-ary relation. Then Γ freezingly implements R if there is a formula φ over Γ ∪ {=}
such that R(x1, . . . , xn) ≡ ∃Xφ, where φ uses variables X ∪ {x1, . . . , xn} only, and all
variables in X are frozen in φ. If only relations of Γ are used, then we have a frozen
implementation without equality. This will be our standard notion of implementation
in the paper, and as such is shortened to simply “implements” (though see Lemma 2.2
below).

We recall some standard definitions concerning Boolean constraints (cf. [Creignou
et al. 2001]):

— R is 0-valid if (0, . . . , 0) ∈ R.
— R is 1-valid if (1, . . . , 1) ∈ R.
— R is Horn or weakly negative if it can be expressed as a conjunction of clauses such

that each clause contains at most one positive literal. It is known that R is Horn if and
only if it is AND-closed: if (a1, . . . , ar) ∈ R and (b1, . . . , br) ∈ R, then ((a1 ∧ b1), . . . , (ar ∧
br)) ∈ R.

— R is anti-Horn or weakly positive if it can be expressed as the conjunction of
clauses such that each clause contains at most one negated literal. It is known that R
is anti-Horn if and only if it is OR-closed: if (a1, . . . , ar) ∈ R and (b1, . . . , br) ∈ R, then
((a1 ∨ b1), . . . , (ar ∨ br)) ∈ R.

— R is bijunctive if it can be expressed as the conjunction of constraints such that
each constraint is the disjunction of two literals. It is known that R is bijunctive if
and only if it is closed under majority: Let maj(x, y, z) : {0, 1}3 → {0, 1} be such that
maj(x, x, y) = maj(x, y, x) = maj(y, x, x) = x (note that this fully defines maj). Then R
is majority-closed if for any (a1, . . . , ar), (b1, . . . , br), (c1, . . . , cr) ∈ R we have

(maj(a1, b1, c1), . . . ,maj(ar, br, cr)) ∈ R.

— R is affine if it can be expressed as a conjunction of constraints of the form x1 +
x2 + · · ·+ xt = b, where b ∈ {0, 1} and addition is modulo 2. The number of tuples in an
affine relation is always an integer power of 2. We denote by EVENr the r-ary relation
x1 + x2 + · · ·+ xr = 0 and by ODDr the r-ary relation x1 + x2 + · · ·+ xr = 1.

— R is width-2 affine if it can be expressed as a conjunction of constraints of the
form x = y, x 6= y, (x), and (¬x).

— R is monotone if a ∈ R and b ≥ a implies b ∈ R, where ≥ is applied component-
wise. Such a relation is implementable by positive clauses, by adding a clause over the
false positions of every maximal false tuple.

— The relation Rp-IN-q (for 1 ≤ p ≤ q) has arity q and Rp-IN-q(x1, . . . , xq) is true if and
only if exactly p of the variables x1, . . . , xq have value 1.

See also Creignou et al. [2008a]. The above is extended to properties of sets of rela-
tions, by saying that a set of relations Γ is 0-valid (1-valid, Horn, . . . ) if this holds for
every R ∈ Γ.

THEOREM 2.1 (SCHAEFER [1978]). Let Γ be a set of Boolean relations. Then
SAT(Γ) is in P if Γ has one of the following properties: 0-valid, 1-valid, Horn, anti-
Horn, bijunctive, or affine. Otherwise, SAT(Γ) is NP-complete.

Problem definitions. For a fixed set of relations Γ, MAX ONES SAT(Γ) is the following
problem:

MAX ONES SAT(Γ)
Input: A formula φ over Γ; an integer k.
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Parameter: k.
Task: Decide whether there is a satisfying assignment for φ of weight at
least k.

For example, MAX ONES SAT(¬x ∨ ¬y) is equivalent to Independent Set, and is
thus W[1]-complete. Further examples can be found in Table I. Similarly, EXACT ONES
SAT(Γ), for a fixed set of relations Γ, is the following problem.

EXACT ONES SAT(Γ)
Input: A formula φ over Γ; an integer k.
Parameter: k.
Task: Decide whether there is a satisfying assignment for φ of weight ex-
actly k.

Parameterized complexity and kernelization. A parameterized problem Q is a sub-
set of Σ∗ × N; the second component is called the parameter. The problem Q is
fixed-parameter tractable (FPT) if there is an algorithm that decides (I, k) ∈ Q in
time f(k) ·nO(1), where f is some computable function. A kernelization is a polynomial-
time mapping K : (I, k) 7→ (I ′, k′) such that (I, k) and (I ′, k′) are equivalent, k′ ≤ f(k),
and |I ′| ≤ g(k), for some functions f and g. Usually, f can be taken as the identity func-
tion, i.e., k′ ≤ k; this will be the case throughout this paper. If |I ′| is bounded by a poly-
nomial in k, thenK is a polynomial kernelization. It is well-known that every decidable
parameterized problem is fixed-parameter tractable if and only if it has a (not necessar-
ily polynomial) kernelization [Flum and Grohe 2006]. A polynomial parameter trans-
formation (short PPT) from Q to Q′ is a polynomial-time mapping Φ : (I, k) 7→ (I ′, k′)
such that (I, k) ∈ Q if and only if (I ′, k′) ∈ Q and such that k′ is polynomially bounded
in k; we denote the existence of such a reduction by Q ≤ppt Q′. These reductions were
introduced by Bodlaender et al. [2011], who also showed that they preserve polynomial
kernelizability. If Q ≤ppt Q′ and Q′ ≤ppt Q, then Q and Q′ are equivalent under PPT’s,
written Q ≡ppt Q′.

LEMMA 2.2. Let Γ be a set of Boolean relations, and R an r-ary Boolean relation
such that R has an implementation ∃Xφ over Γ (using equality only if =∈ Γ). Then
MAX ONES SAT(Γ) ≡ppt MAX ONES SAT(Γ ∪ {R}) and EXACT ONES SAT(Γ) ≡ppt

MAX ONES SAT(Γ ∪ {R}). In particular, this holds if Γ freezingly implements R and
R has no repeated columns (i.e., there are no i, j ∈ [r], i 6= j such that α(i) = α(j) for
every α ∈ R).

PROOF. We first claim that if R has no repeated columns, then there is an im-
plementation of R that does not use equality. Indeed, consider an implementation
R(x1, . . . , xr) ≡ ∃XφR with a minimum number of frozen variables X. Discard any
equality constraints (x = x) in φR, as they don’t restrict the set of solutions. Then
φR cannot contain an equality (xi = xj) for i, j ∈ [r], as this would (by assumption)
exclude some tuple α ∈ R. But there also cannot be an equality constraint (x = x′)
where x ∈ X, as we could instead simply replace every occurrence of x by x′, creating
an implementation with fewer variables in X. Hence φR does not contain any equality
constraints. Thus, we may assume that there is a frozen implementation ∃XφR of R
using only constraints from Γ. We further assume |X| ≤ 2, i.e., the most that X can
contain is one variable z0 frozen to 0 and one variable z1 frozen to 1.

Now let φ = (V,C) be a Γ ∪ {R}-formula. If z1 ∈ X, create a global variable c1, and if
z0 ∈ X, create a global variable c0. If φ contains no occurrence of R, then we are done.
Otherwise we replace every occurrence of R in φ by the implementation φR, replacing
each occurrence of a variable z1 by c1 and each occurrence of a variable z0 by c0. Note
that by assumption, this creates a formula where the new global variables are frozen
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to c1 = 1 and c0 = 0. Finally, if we have created a variable c1, then we increase k by 1.
This is a reduction preserving the entire solution set to the original formula φ, hence
a PPT for both MAX ONES SAT(Γ ∪ {R}) and EXACT ONES SAT(Γ ∪ {R}). Note that
a PPT in the other direction is trivial, e.g., a Γ-formula φ is already a valid Γ′-formula
for any Γ′ ⊇ Γ. Hence the problems are equivalent under PPTs.

The MCP problem. Our kernelization lower bounds will use the problem MULTIPLE
COMPATIBLE PATTERNS (MCP), defined as follows:

Multiple Compatible Patterns
Input: A set of patterns from {0, 1,F}r, where F (the wildcard character)
matches 0 or 1; an integer k.
Parameter: r + k.
Task: Decide whether there is a string in {0, 1}r that matches at least k
patterns.

For the kernelization lower bound, we give a PPT from MULTICOLORED
CLIQUE(k log n), the usual MULTICOLORED CLIQUE problem under a parameter of
p = k log n. The latter problem admits no polynomial kernel unless NP ⊆ co-NP/poly,
and furthermore was used by Hermelin et al. [2013] as one of the complete problems
for the “kernelization hardness” class MK[1]; see the discussion in Section 5.

LEMMA 2.3. MULTIPLE COMPATIBLE PATTERNS is FPT, NP-complete, and admits
no polynomial kernelization unless NP ⊆ co-NP/poly (and the polynomial hierarchy
collapses).

PROOF. The problem is trivially FPT, by enumeration of all 2r possible strings. We
show the remaining results via a reduction from MULTICOLORED CLIQUE(k log n). We
assume w.l.o.g. that every color class has cardinality exactly n, and that there are k
classes; let the members of color class i be ordered as vi,1, . . . , vi,n. Our patterns have
length k log n, divided into k chunks of length dlog ne each; each such chunk encodes
a choice of vertex in a color class. Our patterns are created as follows: For every edge
vi,pvj,q (where necessarily i 6= j), we create a pattern where chunk i encodes p in binary,
chunk j encodes q in binary, and all other chunks are filled with F (wildcards). We
claim that there are

(
k
2

)
compatible patterns if and only if the MCC instance is positive.

On the one hand, let C be a k-clique in G. Then C makes one selection in each color
class. The pattern where each chunk i encodes (in binary) the selection that C makes
in color class i will then match each of the patterns corresponding to the

(
k
2

)
edges in

C.
On the other hand, let p ∈ {0, 1}r be a pattern. It encodes a choice of one vertex in

each color class; let this set of vertices be C. Observe that by construction, for each pair
of color classes i, j, at most one pattern at a time can be matched. Therefore, it is only
possible to match

(
k
2

)
patterns if for every pair of color classes i, j, the choices of C in i

and j are adjacent, i.e., if C forms a clique. This completes the proof.

3. MAX ONES CHARACTERIZATION
In this section we present our characterization of the parameterized complexity prop-
erties of MAX ONES SAT(Γ) problems. As a very first distinction, we repeat the obser-
vation that if SAT(Γ) is NP-complete, then MAX ONES SAT(Γ) is NP-complete even
for a parameter k = 0: Clearly, for any formula φ there is a satisfying assignment with
at least zero true variables if and only if φ is satisfiable. By Schaefer’s characterization
of SAT(Γ) (Theorem 2.1), SAT(Γ) is in P if Γ is zero-valid, one-valid, affine, Horn, anti-
Horn, or bijunctive, and NP-complete otherwise. In the latter case MAX ONES SAT(Γ)
is not contained in XP, i.e., there is no nf(k) time algorithm, unless P = NP. Therefore,
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in the following we will consider MAX ONES SAT(Γ) for the six maximal constraint
languages for which SAT(Γ) is in P.

We begin with the polynomial cases, as proven by Khanna et al. [2000].

THEOREM 3.1 ([KHANNA ET AL. 2000]). MAX ONES SAT(Γ) is in P if Γ is 1-valid,
weakly positive (i.e. anti-Horn), or width-2 affine, and APX-hard in all other cases.

In the following sections we will address the remaining four maximal cases from
Schaefer’s characterization, namely affine, Horn, zero-valid, and bijunctive languages.
Among those, the bijunctive case turns out to be the most involved one, as it contains
cases of several different types (with somewhat involved relations). We address this
case using Nordh and Zanuttini’s [2009] notion of frozen partial co-clones (see later).

3.1. Affine cases
We show that for every affine constraint language Γ the MAX ONES SAT(Γ) problem
admits a polynomial kernelization with a linear number of variables.

LEMMA 3.2. Let Γ be an affine constraint language. Then MAX ONES SAT(Γ) ad-
mits a kernelization with O(k) variables (and polynomial total size).

PROOF. Let (φ, k) be an instance of MAX ONES SAT(Γ); if φ is infeasible, we return
a dummy negative instance. We call a variable fixed if it has the same value in every
satisfying assignment. It can be checked in polynomial time if a variable is fixed to
true (resp., false) by testing satisfiability with the variable set to false (resp., true).

If two variables x and y are fixed to the same value d ∈ {0, 1}, then we can obtain
an equivalent instance with one less variable: we replace all occurrences of y by x and
decrease the parameter by 1 if d = 1. Clearly, this does not permit x to take a value
different from d (i.e., 1− d), else both x and y would not have been fixed.

Let (φ′, k′) be the instance obtained after replacing all but at most two fixed variables
(one fixed to true and one fixed to false). If φ′ contains less than 2k′+2 ∈ O(k) variables,
then we return (φ′, k′) as a kernel. Otherwise, we show that (φ′, k′) has a satisfying
assignment of weight at least k′, in which case the kernelization algorithm can return
a dummy positive instance. We begin by replacing the at most two fixed variables by
the corresponding value, i.e., 0 or 1. We retain at least 2k′ variables and apply the
following procedure.

We pick an arbitrary variable x of φ′. Substituting x with 0 (resp., 1) makes a set S0

(resp., S1) of variables fixed. We claim that S0 = S1 (and hence we will denote S0 =
S1 by S). If, say, y ∈ S0 \ S1, then the projection of φ′ to {x, y} would be a binary
relation having exactly 3 tuples. However, the projection of an affine instance is an
affine relation, which cannot have exactly 3 tuples (as the size of an affine subspace
over the 2-element field is always a power of 2). Thus S0 = S1 as claimed. Furthermore,
let y ∈ S; since y is not fixed, substituting x with 0 and 1 cannot force y to the same
value. Therefore, one of the two substitutions forces at least half of the variables in S∪
{x} to 1. Let us perform this substitution and remove the variables in S ∪ {x} by
substituting them with the forced values. Observe that the resulting formula is still
feasible and has no fixed variables (it may contain constants).

Let us repeat the procedure described in the previous paragraph until at least 2k′

variables are removed. This means that at least k′ variables are substituted with the
value 1. Therefore, any solution of the remaining (feasible) instance, extended with the
substituted values of the removed variables, gives a satisfying assignment of weight
at least k′ for (φ′, k′).
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3.2. Horn cases
For constraint languages that are Horn but neither anti-Horn nor one-valid we show
that MAX ONES SAT(Γ) is W[1]-hard by a parameterized reduction from the W[1]-
complete problem INDEPENDENT SET. Recall that MAX ONES SAT(Γ) is in P if Γ is
anti-Horn or one-valid.

LEMMA 3.3. If Γ is Horn, but neither anti-Horn nor one-valid, then MAX ONES
SAT(Γ) is W[1]-hard.

PROOF. We first show that a constant zero variable c0 can be created (which takes
value zero (false) in any satisfying assignment). Let R ∈ Γ be a relation which is
not one-valid. If R is zero-valid, then putting variable c0 into all positions makes c0 a
constant zero variable. If R is not zero-valid, then let α = (α1, . . . , αr) ∈ R be a minimal
tuple of R (w.r.t. number of ones). Put a variable c1 in all positions that are true in α,
and c0 in all other positions. This forces c0 = 0 and c1 = 1: First, it is not possible
that c0 = c1, since R is neither zero-valid nor one-valid. Second, it is not possible
that c0 = 1 and c1 = 0, since R is Horn (i.e., invariant under conjunction) and c0 = 0
and c1 = 1 satisfies R, implying that c0 = c1 = 0 would also satisfy R. Thus, if R is not
zero-valid, we can get the constants zero c0 and one c1 (in both cases we have constant
zero).

Now we select a relation R ∈ Γ that is not anti-Horn. Let α, β ∈ R be tuples such
that α ∨ β /∈ R, and group the positions of R according to their values in α and β into
positions A through D. Note that α ∧ β ∈ R since R is Horn:

A B C D
α 0 0 1 1 ∈ R
β 0 1 0 1 ∈ R
α ∧ β 0 0 0 1 ∈ R
α ∨ β 0 1 1 1 /∈ R

Observe that both positions B and C must occur to distinguish the excluded tuple α∨β
from α and β, respectively. If there are no positions of type D then we implement the
independent set constraint (¬x ∨ ¬y) by putting the constant c0 into positions A (if
they exist), x into positions B, and y into positions C. Thus we have a reduction from
INDEPENDENT SET to MAX ONES SAT(Γ).

If positions of type D do exist, then we create a ternary relation R′ by putting vari-
ables x, y, and z into all positions B, C, and D, respectively, as well as putting c0 into
positions A:

x y z
0 1 1 ∈ R′
1 0 1 ∈ R′
0 0 1 ∈ R′
1 1 1 /∈ R′

Then R′ is not one-valid. If R′ is not zero-valid either, then we have seen above that we
can create a variable c1 = 1. Putting this variable c1 in place of z implements (¬x∨¬y),
and we have a reduction from INDEPENDENT SET.

Thus assume for the rest of the proof that R′ is zero-valid, i.e., (0, 0, 0) ∈ R′. We
observe that if (1, 0, 0) ∈ R′ then R′(x, y, y) = (¬x ∨ ¬y). Similarly, if (1, 1, 0) ∈ R′

then R′(x, x, y) = (¬x ∨ ¬y). In both cases we again have an immediate reduction from
INDEPENDENT SET. Finally, if (1, 0, 0), (1, 1, 0) /∈ R′ then we have
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x y z
0 0 0 ∈ R′
0 1 1 ∈ R′
1 0 1 ∈ R′
0 0 1 ∈ R′
1 0 0 /∈ R′
1 1 0 /∈ R′
1 1 1 /∈ R′

We implement R′′(x, y, z) = R′(x, y, z) ∧R′(y, x, z) and observe that

R′′(x, y, z) = {(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1)}.
This relation permits us to give a reduction from INDEPENDENT SET. We create a
global variable ẑ. For each (¬x ∨ ¬y) that we need to implement, we add a con-
straint R′′(x, y, ẑ). Now every non-zero satisfying assignment assigns true to ẑ. Thus
an independent set of size k corresponds to a satisfying assignment with k + 1 true
variables and vice versa.

In each case, we were able to reduce the W[1]-complete INDEPENDENT SET problem
to MAX ONES SAT(Γ), which proves the lemma.

3.3. Zero-valid cases
For zero-valid constraint languages Γ that are not covered by the previously considered
cases, we show that MAX ONES SAT(Γ) is not in XP unless P = NP.

LEMMA 3.4. If Γ is zero-valid, but neither anti-Horn, one-valid, affine, nor Horn,
then MAX ONES SAT(Γ) is not in XP unless P = NP.

PROOF. The proof is organized in two parts. First we show that we can implement
the relation R = {(0, 0, 0), (0, 1, 1), (1, 0, 1)}. Second we will reduce the NP-complete
SAT({R, (x 6= y)}) problem to MAX ONES SAT(Γ) instances with parameter k = 1,
proving the lemma. We will need a constant zero variable c0, which can be imple-
mented by taking a (zero-valid) relation R0 that is not one-valid, and making a con-
straint R0(c0, . . . , c0).

Implementing R. Note that a zero-valid relation is affine if and only if it is invariant
under exclusive disjunction (XOR); this can be easily seen since affine relations are
invariant under ternary XOR. Let R1, R2, R3 be relations that are not Horn, not anti-
Horn, and not XOR-closed, respectively. Let us choose a pair α1, β1 of tuples witnessing
that R1 is not invariant under conjunction, i.e., α1, β1 ∈ R1 but a1 ∧ b1 6∈ R1. Similarly
choose a pair α2, β2 violating invariance under disjunction on R2, and a pair α3, β3
violating XOR-invariance on R3.

We introduce three variables x, y, z, and apply constraints R1, R2, R3 on these vari-
ables by putting x (resp., y or z) at a position of constraint R` if at this position tuple α`

has value 0 and tuple β` has value 1 (resp., 1 and 0 or 1 and 1). Further, we put c0 in R`

where α` and β` are both 0. That is, we create the following constraints.

c0 x y z
α1 0 0 1 1 ∈ R1

β1 0 1 0 1 ∈ R1

α1 ∧ β1 0 0 0 1 /∈ R1

c0 x y z
α2 0 0 1 1 ∈ R2

β2 0 1 0 1 ∈ R2

α2 ∨ β2 0 1 1 1 /∈ R2

c0 x y z
α3 0 0 1 1 ∈ R3

β3 0 1 0 1 ∈ R3

α3 ⊕ β3 0 1 1 0 /∈ R3
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Note that a constraint might not contain all three variables x, y, z, but this will not
cause any problems in the arguments to follow. Let us point out, however, that each
variable occurs in at least one of the constraints: The variables x and y are placed at
least into R2 since their positions distinguish α2 and β2 from α2 ∨ β2. The variable z is
at least placed in R1 since those positions distinguish 0 ∈ R1 from α1 ∧ β1 /∈ R1. Thus
the conjunction of the three constraints contains all three variables x, y, and z.

Let us consider the constraint R′(x, y, z) implemented this way. Since every rela-
tion is zero-valid, we have (0, 0, 0) ∈ R′. The chosen tuples and the way R′ was con-
structed ensure that (0, 1, 1), (1, 0, 1) ∈ R′. Since α1 ∧ β1 6∈ R1, the constraint R1 en-
sures that (0, 0, 1) 6∈ R′. Similarly, R2 and R3 ensure that R′ does not contain (1, 1, 1)
and (1, 1, 0), respectively. Thus we know about the following included and excluded
tuples:

0 0 0 ∈ R′
0 1 1 ∈ R′
1 0 1 ∈ R′
0 0 1 /∈ R′
1 1 0 /∈ R′
1 1 1 /∈ R′

If (0, 1, 0), (1, 0, 0) 6∈ R′, then R′ is the relation R that we wanted to obtain. Suppose
that (0, 1, 0) ∈ R′. Then R′(c0, b, a) implements (a → b) and thus we get an implemen-
tation of the desired relation R as R′(x, y, z) ∧ (x → z) ∧ (y → z). Note that (x → z)
excludes (1, 0, 0) and (y → z) excludes (0, 1, 0); both are consistent with R.

If (1, 0, 0) ∈ R′, then R′(b, c0, a) implements (a → b) and we obtain R with the same
formula (using, e.g., R′(z, c0, x) for (x→ z)).

Reduction. Let Γ′ = {R, (x 6= y)}. Clearly, R is neither closed under conjunction nor
disjunction; hence it is neither Horn nor anti-Horn. Note also that R is also not bijunc-
tive or affine, since (0, 0, 0), (0, 1, 1), (1, 0, 1) are a witness against invariance under ma-
jority and 3-way XOR. Clearly, disequality, (x 6= y), is neither zero-valid nor one-valid.
Therefore, Γ′ is neither zero-valid, one-valid, Horn, anti-Horn, bijunctive, nor affine,
which implies that SAT(Γ′) is NP-complete (Theorem 2.1, i.e., Schaefer’s dichotomy
theorem). We will reduce SAT(Γ′) to MAX ONES SAT(Γ) with parameter k = 1.

Let φ′ be a formula over Γ′. Assume that φ′ is false for the all-zero assignment,
otherwise we may reduce to a dummy positive instance. We will create a formula φ
using only R, which has a non-zero solution if and only if φ′ is satisfiable: Copy all
constraints usingR from φ′ to φ, and add a single global variable ẑ. For every variable x
in φ′, create a variable x′ intended to be its negation, and add a constraint R(x, x′, ẑ).
Additionally for every constraint (x 6= y) in φ′, create a constraint R(x, y, ẑ) in φ. Now
every solution to φ where any variable is true must have ẑ = 1, which “activates” all
inequalities from φ′. Thus φ′ is satisfiable if and only if φ has a satisfying assignment
with at least one true variable, i.e., if (φ, 1) ∈ MAX ONES SAT(Γ).

3.4. Bijunctive cases
Concluding the characterization of MAX ONES SAT(Γ) problems, we address the re-
maining case of bijunctive constraint languages, which (additionally) are not Horn,
anti-Horn, or width-2 affine (from which it follows that Γ is not zero-valid or one-valid;
see Lemma 3.6). This corresponds to the constraint languages Γ that, using existen-
tially quantified variables, can implement all 2-SAT clauses; see Nordh and Zanuttini
[2009]. We find that the classification is not the same for these languages. There are
cases that create problems which admit polynomial kernelizations, problems which
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are fixed-parameter tractable but admit no polynomial kernelization unless NP ⊆ co-
NP/poly, and problems which are W[1]-hard.

To state and prove our results, we need some results of Nordh and Zanuttini [2009].
Recall the definition of a frozen implementation (with equality). The frozen partial co-
clone 〈Γ〉fr generated by Γ is the set of all relations that can be freezingly implemented
by Γ. The co-clone of Γ is the set of all relations that can be implemented by Γ by a more
general notion of implementation that also allows existentially quantified variables
(see Nordh and Zanuttini [2009]); thus frozen partial co-clones refine co-clones. Nordh
and Zanuttini [2009] gave a full description of all frozen partial co-clones contained in
the bijunctive co-clone. The free use of equality constraints in frozen implementations
is somewhat more general than what we wish to allow, but this issue can be dealt with
(cf. Lemma 2.2).

In particular, we need the following languages, which form the bases of some frozen
partial bijunctive co-clones. The definitions and naming is from Nordh and Zanuttini
[2009].

(1) Γp 6=
2 = {(x∨ y), (x 6= y)}. This represents the largest bijunctive case for which MAX

ONES SAT(Γ) admits a polynomial kernel.
(2) Γn

3 = {Rn
3 }, where Rn

3 = (¬x ∨ ¬y) ∧ (x 6= z). This language can be freezingly
implemented by every bijunctive language not covered by the previous case. It is
used in the kernel lower bound, in a PPT from the MCP problem.

(3) Γp 6=i
2 = {(x ∨ y), (x 6= y), (x → y)}. This represents the largest bijunctive case for

which MAX ONES SAT(Γ) is FPT.

Finally, we give a technical lemma to show that we have access to the constants.

LEMMA 3.5. Let Γ be a bijunctive constraint language which is neither zero-valid,
one-valid, nor width-2 affine. Then the constants can be implemented.

PROOF. We first claim that a bijunctive language which is closed under negation is
width-2 affine (hence this is not true for Γ). This follows from the lattice of co-clones,
but can also be shown directly as follows. Let R ∈ Γ be an arbitrary relation, and let
FR be an expression of R as a 2-CNF formula (note that clauses (x) or (¬x) would be
inconsistent with negation). We claim that we get a valid expression of R by replacing
every clause C = (`x ∨ `y) in FR by an expression (`x 6= `y), where `x ∈ {x,¬x} and
`y ∈ {y,¬y}. Indeed, if there were a tuple α ∈ R where `x and `y were both true, then
its complement (ᾱ) ∈ R would falsify C. The resulting formula is an expression of R
using constraints (x = y) and (x 6= y), proving that R is width-2 affine. Since R was
arbitrary, we find that Γ is width-2 affine, contradicting our assumptions.

Thus we can assume that there is a relation R ∈ Γ that is not closed under negation;
let α ∈ R such that the negation of α is not in R. Put a variable x in all positions
of R that are true in α, and y in all other positions (note that α might have no true or
no false positions, but this does not cause any problem in this proof). This constraint
forbids x = 0 and y = 1, but allows x = 1 and y = 0. Let R0 ∈ Γ be a relation that is
not zero-valid, and let β be an arbitrary tuple of R0. Put variable x into every position
where β is 1 and variable y into every position where β is 0. This forbids x = y = 0,
but allows x = 1 and y = 0. Similarly, let R1 be a relation that is not one-valid, and
use a tuple γ ∈ R1 to forbid x = y = 1. Therefore, these three constraints enforce x = 1
and y = 0, obtaining the constants.

Let us now proceed with settling the remaining cases of MAX ONES SAT(Γ).

LEMMA 3.6. Let Γ be a set of Boolean relations that is bijunctive but neither Horn,
anti-Horn, nor width-2 affine (i.e., Γ generates the co-clone of bijunctive relations).
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(1) If Γ ⊆ 〈Γp 6=
2 〉fr, then MAX ONES SAT(Γ) has a polynomial kernelization

(with O(k2) variables). Otherwise, MAX ONES SAT(Γ) admits no polynomial kernel-
ization, unless NP ⊆ co-NP/poly.

(2) If Γ ⊆ 〈Γp 6=i
2 〉fr, then MAX ONES SAT(Γ) is FPT (with running time 2k · nO(1)).

Otherwise, MAX ONES SAT(Γ) is W[1]-hard.

PROOF. Let (φ, k) be a MAX ONES SAT(Γ) instance. If φ is infeasible (which can be
tested since Γ is bijunctive), then (φ, k) is negative regardless of k; hence we assume
throughout that φ is feasible. By assumption, Γ is not Horn, anti-Horn, or width-2
affine. Hence it is also not zero-valid or one-valid, since, for example, invariance under
majority applied to α, β, 0 ∈ R would give α ∧ β ∈ R, implying that R would be Horn.
Thus we may apply Lemma 3.5. We split the proof into four parts.

Polynomial kernelization. If Γ ⊆ 〈Γp 6=
2 〉fr, then by the definition of a frozen co-clone,

every relation in Γ, and thus all of φ, has a frozen implementation over Γp6=
2 ∪ {=}, i.e.,

using positive clauses, equality, and disequality. We will refer to this implementation
when constructing a kernel, but the kernelization will apply to the original Γ as well.
Let a maximal set of at least two variables which are connected by disequality or
equality, with at least one disequality, be referred to as a class of variables. If there are
at least k variable classes, then every solution will contain at least k true variables,
and one of them can be found in polynomial time (since Γ is bijunctive). If any class
contains at least 2k variables, then either the variables of this class have fixed values,
in which case we make the corresponding assignments, or there exists a solution with
at least k true variables. Finally, if any variable does not occur in a variable class, it
can safely be set to 1. These observations leave a kernel with O(k) variable classes
and O(k2) variables in total. Finally, as the only changes we made to the formula were
assignments, we can apply the kernelization using only relations in Γ by replacing all
assigned variables by the constant variables c1 or c0.

Kernel lower bound. If Γ * 〈Γp 6=
2 〉fr, then, by [Nordh and Zanuttini 2009], Γ freezingly

implements Rn
3 . By Lemma 2.2, we thus have MAX ONES SAT(Γn

3 ) ≤ppt MAX ONES
SAT(Γ). We will show that, in turn, the MULTIPLE COMPATIBLE PATTERNS (MCP)
problem reduces to MAX ONES SAT(Γn

3 ) by a PPT.
Observe that Rn

3 can be written as (x 6= z) ∧ (y → z), or with renamed variables,
(x 6= y) ∧ (z → y). Let (I, k) be an instance of MCP, with string length r. Create
variables xj and yj and a constraint (xj 6= yj) for 1 ≤ j ≤ r, coding the entries of
the solution string; these variables contribute weight exactly r to any solution. The
intuition is that xj = 1 codifies that the solution string has value 0 at position j, and
that yj = 1 codifies value 1. Now for every pattern i, create a variable zi; for every
position j of pattern i containing 0, add a constraint (xj 6= yj)∧ (zi → xj); and for every
position j of pattern i containing 1, add a constraint (xj 6= yj) ∧ (zi → yj). Thus if zi is
set to true, then the positions of the solution string must match pattern i. Hence, any
solution with r + k true variables corresponds one-to-one to a string in {0, 1}r and k
patterns matching it. Thus, by Lemma 2.3, MAX ONES SAT(Γ) admits no polynomial
kernelization unless NP ⊆ co-NP/poly.

Fixed-parameter tractability. If Γ ⊆ 〈Γp 6=i
2 〉fr, then, as before, there is an implementa-

tion of φ over Γp 6=i
2 ∪{=}. Again consider the variable classes; if they number at least k,

then find a solution in polynomial time. Otherwise, we check all O(2k) assignments
to variables of the variable classes. For each such assignment, propagate assignments
to the remaining variables along all three constraint types. Any formula that remains
after this is one-valid, since there are only implications and positive clauses.
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W[1]-hardness. If Γ * 〈Γp 6=i
2 〉fr, then, by [Nordh and Zanuttini 2009], there is an

implementation of (¬x ∨ ¬y) over Γ ∪ {=}, hence by Lemma 2.2 there is a polynomial
parameter transformation (and hence an fpt-reduction) from INDEPENDENT SET to
MAX ONES SAT(Γ).

3.5. Summary
Our results for MAX ONES SAT(Γ) can be summarized as follows.

COROLLARY 3.7. Let Γ be a finite set of Boolean relations. Then MAX ONES SAT(Γ)
falls into one of the following cases.

(1) If Γ is one-valid, anti-Horn, or width-2 affine, then MAX ONES SAT(Γ) is in P.
(2) If Γ is affine, or if Γ ⊆ 〈(x ∨ y), (x 6= y)〉fr, then MAX ONES SAT(Γ) admits a

polynomial kernelization.
(3) If Γ ⊆ 〈(x ∨ y), (x 6= y), (x → y)〉fr but the previous cases do not apply, then MAX

ONES SAT(Γ) is in FPT, with a running time of 2k · nO(1), but there is no polynomial
kernelization unless NP ⊆ co-NP/poly.

(4) If Γ is Horn or bijunctive, but no previous case applies, then MAX ONES SAT(Γ)
is W[1]-hard and in XP.

(5) Otherwise MAX ONES SAT(Γ) is NP-complete for k = 1.

Remark 3.8. Containment of MAX ONES SAT(Γ) in XP, if Γ is Horn or bijunctive
(or anti-Horn or affine), can be easily seen. For example, given an instance (φ, k) over
a bijunctive constraint language, we may guess k variables (i.e., try all nk choices), set
them to true, and check satisfiability of the remaining formula. However, this argu-
ment has a subtle, but crucial point: we need that setting a variable to true still leaves
a formula that is bijunctive; the validity of this can be seen by adding the bijunctive
constraint (x) to the formula for each selected variable x. The same holds also for Horn
formulas, but the argument does not work for general zero-valid constraint languages.

For MAX ONES SAT(Γ), with the exception of a few cases of bijunctive languages,
the FPT cases generally coincide with the cases that admit polynomial kernelizations.
This contrasts MIN ONES SAT(Γ), for which there is a rich class of languages Γ such
that MIN ONES SAT(Γ) is FPT but admits no polynomial kernelization unless NP ⊆
co-NP/poly (indeed, this is true for every non-mergeable Γ such that MIN ONES SAT(Γ)
is NP-hard).

4. EXACT ONES CHARACTERIZATION
In this section we classify EXACT ONES SAT(Γ) into admitting or not admitting a
polynomial kernelization depending on the set of allowed relations Γ. Creignou et
al. [2008b] showed that EXACT ONES SAT(Γ) is in P when Γ is width-2 affine and NP-
hard otherwise. Fixed-parameter tractability of EXACT ONES SAT(Γ), i.e., solvability
in time f(k) · nO(1), was characterized by Marx [2005]; the result is a dichotomy into
FPT and W[1]-complete cases based on two partial polymorphisms (see Theorem 4.3).
Observe that EXACT ONES SAT(Γ) is always in XP (unlike MAX ONES SAT(Γ)), as it
can be solved in time nO(k) by trying all assignments of weight exactly k.

Clearly, our characterization of cases with polynomial kernels will be a refinement
of the fixed-parameter tractable cases. Accordingly, let us begin by recalling the notion
of a partial polymorphism and the concrete invariant called weak separability. We also
introduce a joined, stronger version of the two partial polymorphisms defining weak
separability; this will be used to characterize kernelizability of EXACT ONES SAT(Γ).

Definition 4.1. A t-ary partial polymorphism is a partially defined function f :
{0, 1}t → {0, 1}. For an r-ary relation R, we say that R is invariant under f if for
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any t tuples α1, . . . , αt ∈ R, such that f(α1(i), . . . , αt(i)) is defined for every i ∈ [r], we
have

(f(α1(1), . . . , αt(1)), . . . , f(α1(r), . . . , αt(r))) ∈ R.
We state partial polymorphisms in a matrix form, where the columns represent the tu-
ples for which f is defined, and the value below the horizontal line is the corresponding
value of f .

If f is fully defined, it is referred to as simply a polymorphism (cf. the list of relation
types in Section 2). Now we are able to formally state the three 3-ary partial polymor-
phisms relating to weak separability. Note that ordering of columns is immaterial (we
chose lexicographical ordering) and swapping of rows would give equivalent partial
polymorphisms.

Definition 4.2 ([Marx 2005]). Let FPT(1), FPT(2), and FPT(1 ./ 2) denote the fol-
lowing partial polymorphisms:

FPT(1)
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1

FPT(2)
0 0 0 1
0 1 0 1
0 1 1 1
0 0 1 1

FPT(1 ./ 2)
0 1 0 0 1
0 1 0 1 1
0 0 1 0 1
0 0 1 1 1

A boolean relation R is weakly separable if it is invariant under FPT(1) and FPT(2).
It is semi-separable if it is invariant under FPT(1 ./ 2). Note that invariance under
FPT(1 ./ 2) implies invariance under FPT(1) and FPT(2).

Fixed-parameter tractability of EXACT ONES SAT(Γ) is classified as follows.

THEOREM 4.3 ([MARX 2005]). EXACT ONES SAT(Γ) is fixed-parameter tractable
if every relation R ∈ Γ is weakly separable. In the remaining cases it is W[1]-complete.

Since any kernelization for a problem also implies fixed-parameter tractability, we
will only need to further classify the weakly separable cases.

For this, our main negative cases will come from MIN ONES SAT(Γ) and the MUL-
TIPLE COMPATIBLE PATTERNS (MCP) problem. For the former case, we first show
(Lemma 4.4) that MIN ONES SAT(Γ) reduces to EXACT ONES SAT(Γ) via a polyno-
mial parameter transformation (PPT), hence all negative cases for MIN ONES SAT(Γ)
transfer to EXACT ONES SAT(Γ). For additional negative cases (i.e., cases where MIN
ONES SAT(Γ) has a polynomial kernel, but EXACT ONES SAT(Γ) does not, under our
usual complexity assumption), we give conditions for having a PPT from MCP to EX-
ACT ONES SAT(Γ). For technical reasons, the proof will have several parts, depending
on the expressiveness of the language Γ, but the final conclusion will admit a concise
statement; see Corollary 4.24.

We now show that MIN ONES SAT(Γ) ≤ppt EXACT ONES SAT(Γ).

LEMMA 4.4. MIN ONES SAT(Γ) reduces to EXACT ONES SAT(Γ) by a polynomial
parameter transformation.

Remark 4.5. Let us first note that there is a trivial Turing reduction that effectively
makes a disjunction over k+1 instances, each asking for a solution with exactly k′ true
variables, for 0 ≤ k′ ≤ k. To get a many-one reduction needed to rule out (many-one)
polynomial kernelizations one may simply add k free variables to φ. This ensures that
any satisfying assignment with at most k true variables can be padded to exactly k true
variables. We give a slightly more technical reduction that requires no free variables,
which establishes that the reducibility is not an artifact of defining CSPs to allow
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free variables (e.g., one may instead require instances to be conjunctions of constraint
applications).

PROOF OF LEMMA 4.4.. Let (φ, k) be an instance of MIN ONES SAT(Γ). If Γ is zero-
valid, then MIN ONES SAT(Γ) is in P and we perform the reduction by solving the in-
stance in polynomial time and, depending on the outcome, outputting either a dummy
yes-instance or a dummy no-instance of EXACT ONES SAT(Γ). Otherwise, let R be a
relation from Γ that is not zero-valid. We show that we are able to create a formula φ0
on new variables whose minimum weight assignment has weight kmin ∈ O(k), and
which has satisfying assignments with i true variables for all i from kmin to kmin + k.
Then, (φ ∧ φ0, k + kmin) is in EXACT ONES SAT(Γ) if and only if (φ, k) is in MIN ONES
SAT(Γ).

We assume first that R contains two tuples α and β such that α < β, i.e., with bitwise
≤ and α 6= β. Putting variables x, y, and z into positions of R where α and β are both
zero, both one, or zero and one (as α < β), respectively, creates a relation R′ of arity up
to three. In any case, positions with variable z must exist. Let us first assume that R′
is ternary. Thus we know that (0, 1, 0), (0, 1, 1) ∈ R′ and we let φ0 consist of k variable-
disjoint copies of R′-constraints. The crucial observation is that each R′-constraint has
a satisfying assignment with one or two true variables, but not with zero true variables
since it is not zero-valid. Thus the formula φ0 has satisfying assignments with i true
variables for all values i = k, . . . , 2k, since the R′ constraints are variable-disjoint. The
cases where R′ has arity less than three are along the same lines, since z is always
present.

Now, otherwise, R contains no such tuples, and we let α and β be any two distinct
tuples from R. Putting variables w, x, y, and z into positions of R as follows.

w x y z
α 0 0 1 1 ∈ R
β 0 1 0 1 ∈ R

We implement a relation R′′. Note that, by assumption α ≮ β and β ≮ α, thus
positions x and y must exist. We discuss the case that all four position types ex-
ist and R′′ is 4-ary; the other cases are similar since x and y always exist. We im-
plement a new relation R′′′ by R′′′(w, x, x′, y, z) = R′′(w, x, y, z) ∧ R′′(w, x′, y, z). Thus
we have (0, 0, 0, 1, 1), (0, 1, 1, 0, 1) ∈ R′′′. We let φ0 consist of k variable-disjoint copies
of R′′′-constraints. Again φ0 has satisfying assignments with i true variables for all
values i = kmin, . . . , kmin + k where kmin = k or kmin = 2k depending on whether R′′′
has a satisfying assignment with one true variable (at least one is needed because
R is not zero-valid). If yes then each of the k copies can be satisfied with one or two
true variables so we get satisfying assignments with k to 2k true variables; we then
set kmin = k. Else, we know that assignments with two and three true variables are
possible, so over all k copies we can get 2k to 3k true variables and set kmin = 2k.

Using the kernelization dichotomy for MIN ONES SAT(Γ) [Kratsch and Wahlström
2010], we may exclude further choices of Γ, i.e., show that EXACT ONES SAT(Γ) does
not admit a polynomial kernelization. We recall that the kernelizability of MIN ONES
SAT(Γ) is governed by mergeability, and that a relation is mergeable if it is invariant
under the following partial polymorphism:

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.



Parameterized complexity and kernelizability of Max Ones and Exact Ones problems A:17

Mergeable
0 1 0 1 1 0 1
0 1 0 0 0 0 1
0 0 1 1 0 1 1
0 0 1 0 0 0 1
0 1 0 1 0 0 1

THEOREM 4.6 ([KRATSCH AND WAHLSTRÖM 2010]). Let Γ be a finite Boolean con-
straint language. Then MIN ONES SAT(Γ) falls into one of the following cases.

(1) If Γ is 0-valid, Horn, or width-2 affine, then MIN ONES SAT(Γ) is in P [Khanna
et al. 2000].

(2) If Γ is mergeable, then MIN ONES SAT(Γ) admits a polynomial kernelization.
(3) Otherwise MIN ONES SAT(Γ) is FPT, but does not admit a polynomial kerneliza-

tion unless NP ⊆ co-NP/poly.

Using Lemma 4.4 we immediately obtain the following corollary.

COROLLARY 4.7. Let Γ be any finite Boolean constraint language. If Γ is not merge-
able and MIN ONES SAT(Γ) is NP-hard then EXACT ONES SAT(Γ) does not admit a
polynomial kernelization unless NP ⊆ co-NP/poly.

By Khanna et al. [2000], MIN ONES SAT(Γ) is in P when Γ is zero-valid, Horn,
or width-2 affine; in all other cases it is NP-hard (APX-hard). The kernelizability of
EXACT ONES SAT(Γ) for the former choices of Γ will be considered in the following
section. In the remaining cases MIN ONES SAT(Γ) is NP-hard and thus, due to Corol-
lary 4.7 it remains to consider the case that Γ is mergeable; this is done in Section 4.2.
Both sections combined constitute a proof for the following theorem, characterizing
EXACT ONES SAT(Γ).

THEOREM 4.8. Let Γ be a finite constraint language that is weakly separable.

(1) If Γ is width-2 affine, then EXACT ONES SAT(Γ) is in P.
(2) If Γ is anti-Horn, or both mergeable and semi-separable, then EXACT ONES SAT(Γ)

admits a polynomial kernelization.
(3) In all other cases EXACT ONES SAT(Γ) does not admit a polynomial kernelization

unless NP ⊆ co-NP/poly.

Any weakly separable Γ that is mergeable and either (1) Horn or (2) zero-valid is also
width-2 affine.

4.1. Characterization I: Zero-valid, Horn, and width-2 affine
We begin by considering constraint languages Γ such that MIN ONES SAT(Γ) is in P,
i.e., zero-valid, Horn, and width-2 affine constraint languages.

4.1.1. Width-2 affine cases. If all relations in Γ are width-2 affine then, by Creignou et
al. [2008b], EXACT ONES SAT(Γ) is in P. To see this, recall that width-2 affine con-
straints can be implemented by assignments, equality, and disequality. It can be easily
checked whether a given formula is satisfiable. If it is, then the equalities and dise-
qualities partition the variables into equivalence classes. If disequalities are present,
then certain pairs of classes must take different values (i.e., variables of one class
must be assigned true and those of the other class must be assigned false, or vice
versa). One may observe that the remaining problem of reaching exactly k true vari-
ables is simply a subset sum question with all numbers being less than the input
size: For a pair of classes C1 and C2 whose variables must take opposite values we
get either min(|C1|, |C2|) true variables or max(|C1|, |C2|) true variables. This can be
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taken into account by decreasing k by min(|C1|, |C2|) and leaving the option of getting
max(|C1|, |C2|) −min(|C1|, |C2|) further true variables. For a single class C1 that is not
in a pair (because there are no disequalities involving one of its variables) we directly
have the choice between 0 and |C1| true variables. Because all numbers are less than
the input size this can be solved in polynomial time by dynamic programming.

4.1.2. Horn cases. We show that every weakly separable relation that is also Horn can
be implemented by {(¬x), (x), (x = y)}. Thus if Γ is Horn and weakly separable, then
it is also width-2 affine and EXACT ONES SAT(Γ) is polynomial.

LEMMA 4.9. Let R be a weakly separable relation. If R is Horn, then R is imple-
mentable by {(¬x), (x), (x = y)}.

PROOF. We show that R is closed under disjunction (a ∨ b) and under the polymor-
phism f(a, b, c) = a ∧ (b⊕ c⊕ 1). Let α, β, γ ∈ R:

α 0 0 0 0 1 1 1 1
β 0 0 1 1 0 0 1 1
γ 0 1 0 1 0 1 0 1
β ∧ γ 0 0 0 1 0 0 0 1 closed under conjunction (i)
β ∨ γ 0 1 1 1 0 1 1 1 FPT(1) on (i), β, γ
α ∧ (β ∨ γ) 0 0 0 0 0 1 1 1 closed under conjunction (ii)
α ∧ (β ∧ γ) 0 0 0 0 0 0 0 1 closed under conjunction (iii)
α ∧ (β ⊕ γ ⊕ 1) 0 0 0 0 1 0 0 1 FPT(2) on (iii),(ii), α

Thus, by [Creignou et al. 2008a], R can be implemented by {(x), (¬x), (x = y)}. (Note
that the first two lines prove invariance under (a ∨ b).)

We immediately get the following conclusion:

LEMMA 4.10. Let Γ be a finite constraint language that is weakly separable. If all
relations in Γ are Horn, then EXACT ONES SAT(Γ) is in P.

4.1.3. Zero-valid cases. For zero-valid (and weakly separable) constraint languages Γ,
we find that EXACT ONES SAT(Γ) is either polynomial-time solvable, when Γ is width-
2 affine, or that it does not admit a polynomial kernelization unless NP ⊆ co-NP/poly.
We will see that this coincides with whether or not Γ is mergeable. We begin by showing
that for zero-valid Γ mergeability implies that Γ is width-2 affine (and EXACT ONES
SAT(Γ) is in P).

LEMMA 4.11. Let R be a mergeable and weakly separable relation. If R is also
zero-valid, then it can be implemented using only equality, (x = y), and negative as-
signments, (¬x).

PROOF. Let R be a mergeable and zero-valid relation that is invariant under FPT(1)
and FPT(2). We show that R is invariant under conjunction (a ∧ b) and exclusive dis-
junction (a⊕ b). Let α, β ∈ R:

0 0 0 0 0
α 0 0 1 1
β 0 1 0 1
α ∧ β 0 0 0 1 mergeability on α, 0, β, 0
α ∧ ¬β 0 0 1 0 FPT(2) on 0, α ∧ β, α (i)
¬α ∧ β 0 1 0 0 FPT(2) on 0, α ∧ β, β (ii)
α⊕ β 0 1 1 0 FPT(1) on 0, (i), (ii)
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Thus R can be implemented by (¬x) and (x = y) according to [Creignou et al.
2008a].

We will now prove that we may assume to have positive and negative assignments
available in Γ. To this end, we give a polynomial parameter transformation from the
case with assignments to the case without assignments.

Let us briefly recall the effect of a polynomial parameter transformation in this con-
text: A lower bound for EXACT ONES SAT(Γ ∪ {(x), (¬x)}) transfers to EXACT ONES
SAT(Γ). A polynomial kernelization for EXACT ONES SAT(Γ ∪ {(x), (¬x)}) applies to
instances of EXACT ONES SAT(Γ): We apply the kernelization (which may introduce
assignments) and use the polynomial parameter transformation to replace any assign-
ments introduced in the kernelization to make the result an instance of EXACT ONES
SAT(Γ).

We first show how to implement assignments when we have equality available.

LEMMA 4.12. If Γ implements equality, then EXACT ONES SAT(Γ ∪ {(x), (¬x)})
reduces to EXACT ONES SAT(Γ) by a polynomial parameter transformation.

PROOF. Let (φ, k) be an instance of EXACT ONES SAT(Γ ∪ {(x), (¬x)}); by
Lemma 2.2, we may assume that =∈ Γ. First, we make a copy x′ of every variable x
of φ and add the constraint (x = x′). Additionally we add a single new variable c1 and
let the new parameter be k′ = 2k + 1. Thus the only way to have a satisfying assign-
ment with exactly k′ true variables is to set c1 to true. This permits us to replace all (x)
constraints by (x = c1). Second, we add k′ variables y1, . . . , yk′ as well as a variable c0
and implement constraints (c0 = yi) for all i ∈ {1, . . . , k′}. Thus the variables yi as well
as c0 take the same value in any satisfying assignment. Since assigning true to all
these variables would exceed the number of k′ true variables, they will be set to false.
Hence, we may replace all (¬x) constraints by (x = c0).

The formula φ′ obtained in this way has a satisfying assignment with exactly k′ true
variables if and only if φ has a satisfying assignment with k true variables.

Now, we can show that for constraint languages that are zero-valid and weakly sep-
arable but not Horn, we may assume (up to equivalence under polynomial parameter
transformations) that they contain assignments. That is, the case with assignment
constraints (x) and (¬x) has a polynomial parameter transformation to the case with-
out assignments.

LEMMA 4.13. Let Γ be a constraint language that is zero-valid but not Horn. Then
EXACT ONES SAT(Γ ∪ {(x), (¬x)}) reduces to EXACT ONES SAT(Γ) by a polynomial
parameter transformation.

PROOF. Given any instance (φ, k) of EXACT ONES SAT(Γ∪{(x), (¬x)}), we will show
how to express (x) and (¬x) to obtain an equivalent instance (φ′, k′) of EXACT ONES
SAT(Γ). We consider two cases depending on whether Γ contains one-valid relations
(all relations in Γ are zero-valid):

I) Γ contains a relation R that is zero-valid and one-valid. Let α be a tuple that is
not contained in R. We implement a binary constraint R′(x, y) by putting x into all
positions R where α is one and y into all positions where α is zero. Thus (0, 0), (1, 1) ∈
R′ and (1, 0) /∈ R′. Hence R′(x, y) ∧ R′(y, x) implements equality. We proceed as in
Lemma 4.12 to obtain an equivalent instance (φ′, k′) of EXACT ONES SAT(Γ).

II) No relation in Γ is one-valid. In this case, let us begin by observing that we can
implement (¬x) by R(x, . . . , x) using any R ∈ Γ. We add a new variable c0 and force it
to be zero by (¬c0).

Now, since Γ is not Horn, it must contain a relation R that is not invariant un-
der conjunction. Let α, β ∈ R be tuples witnessing this fact, i.e., tuples α and β such
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that γ = α∧β /∈ R. Observe that γ 6= 0 ∈ R and that γ < α ∈ R. We implement a binary
constraint R′(x, y) by putting c0 in all positions of R where α and γ are zero, putting x
into all positions where α and γ are one, and y into all positions where α is one and γ
is zero. Note that the latter two types of positions must exist to distinguish γ from 0
and α, respectively. Thus (0, 0), (1, 1) ∈ R′ and (1, 0) /∈ R′. Again, R′(x, y) ∧ R′(y, x)
implements equality and we can proceed as in Lemma 4.12.

Now we show that EXACT ONES SAT(Γ) does not admit a polynomial kernelization
if Γ is zero-valid and weakly separable but not width-2 affine (and hence also not Horn).

LEMMA 4.14. Let Γ be a zero-valid and weakly separable constraint language that
is not width-2 affine. Then EXACT ONES SAT(Γ) does not admit a polynomial kernel-
ization unless NP ⊆ co-NP/poly.

PROOF. Let Γ be a zero-valid constraint language that is not width-2 affine. We
first observe that Γ is not Horn, since it would then be width-2 affine by Lemma 4.9.
Then we see that Γ is not mergeable, since mergeability applied to α, 0, β, 0 ∈ R
(where R ∈ Γ) implies α ∧ β ∈ R; thus all relations in Γ would be Horn.

Let Γ′ = Γ ∪ {(x), (¬x)}. By Lemma 4.13, EXACT ONES SAT(Γ′) reduces to EX-
ACT ONES SAT(Γ) by a polynomial parameter transformation. Therefore, it suffices to
show that EXACT ONES SAT(Γ′) does not admit a polynomial kernelization. For this
observe that Γ′ is neither width-2 affine, Horn, zero-valid, nor mergeable (recall that
closure properties must hold for every relation in Γ′ ⊇ Γ). Thus, by [Khanna et al.
2000], MIN ONES SAT(Γ′) is NP-hard, and by Corollary 4.7, EXACT ONES SAT(Γ′)
does not admit a polynomial kernelization unless NP ⊆ co-NP/poly. By the polynomial
parameter transformation, the same holds for EXACT ONES SAT(Γ).

In conclusion we get the following picture for constraint languages which are zero-
valid, Horn, or width-2 affine (i.e., constraint languages Γ such that MIN ONES SAT(Γ)
is in P).

COROLLARY 4.15. Let Γ be a weakly separable constraint language that is zero-
valid, Horn, or width-2 affine. Then EXACT ONES SAT(Γ) is in P if Γ is width-2 affine,
otherwise it does not admit a polynomial kernelization unless NP ⊆ co-NP/poly. Equiv-
alently EXACT ONES SAT(Γ) is in P if Γ is mergeable, and otherwise it does not admit
a polynomial kernelization unless NP ⊆ co-NP/poly.

4.2. Characterization II: Remaining cases
Having handled the cases for which MIN ONES SAT(Γ) is in P, Corollary 4.7 allows
us to restrict our attention to sets of relations Γ that are mergeable as well as weakly
separable. We begin with a special case (for which we do not require mergeability).

LEMMA 4.16. Let R be a weakly separable relation. If R is anti-Horn, then R can be
implemented by equality, positive clauses, and assignment; hence R is semi-separable
and mergeable.

PROOF. We will show that R is invariant under a ∨ (b ∧ c̄). Let α, β, γ ∈ R:

α 0 0 0 0 1 1 1 1
β 0 0 1 1 0 0 1 1
γ 0 1 0 1 0 1 0 1
α ∨ γ 0 1 0 1 1 1 1 1 closed under disjunction (i)
α ∨ β ∨ γ 0 1 1 1 1 1 1 1 closed under disjunction (ii)
α ∨ (β ∧ γ̄) 0 0 1 0 1 1 1 1 FPT(2) on α, (i), (ii)
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Thus R is invariant under a ∨ (b ∧ c̄) implying by [Creignou et al. 2008a] that it can be
implemented using equality, negative assignments, and positive clauses all of which
are semi-separable and mergeable. It follows directly that R is semi-separable and
mergeable too.

LEMMA 4.17. Let Γ be a constraint language that is anti-Horn and weakly sep-
arable. Then there is either a polynomial parameter transformation from EXACT
ONES SAT(Γ) to d-HITTING SET, for some constant d, or one from EXACT ONES
SAT(Γ ∪ {(x), (¬x)}) to EXACT ONES SAT(Γ).

PROOF. By Lemma 4.16, Γ is mergeable; thus by Lemma 4.11 we may assume that Γ
contains at least one relation that is not zero-valid (or else EXACT ONES SAT(Γ) is in
P and we produce a trivial reduction). Pick some R ∈ Γ; we will attempt to implement
either (x) and (¬x) directly, or (x = y) and invoke Lemma 4.12. Since the construction
is similar to our previous constructions, we cover them only briefly.

If R is zero-valid and one-valid, then we implement (x = y) by grouping x and y
according to some tuple α /∈ R (we cannot obtain an implication since R is invariant
under FPT(2)).

If R is neither zero-valid nor one-valid, then grouping x and y according to some α ∈
R produces (x = 0)∧ (y = 1) (note that we cannot obtain (x 6= y), as it is not anti-Horn).

If R is zero-valid and not one-valid, then we get the constraint (¬x), and using any
non-zero-valid R′ ∈ Γ we get (x).

Finally, we get to assume that every relation R ∈ Γ is one-valid but not zero-valid;
we immediately get the constraint (x) = R(x, . . . , x). If there are any tuples α < β such
that α ∈ R, β /∈ R for any R ∈ Γ, then using (x) we may proceed as in Lemma 4.13
by placing c1 in the positions true in α, producing (x = y). Otherwise, we find that
every R ∈ Γ is upwards closed, i.e., for each α ∈ R and any β ≥ α we also have β ∈
R. In this case, every relation has an implementation using positive clauses only: To
implement such a relation R, for each maximal (w.r.t. bitwise ≤) tuple not in R make a
positive clause excluding the tuple. If k is larger than the number of variables, then the
instance is negative and we reduce to a dummy no-instance. Otherwise, since positive
clauses are upwards closed, the instance is a yes-instance if and only if there is a
satisfying assignment with at most k true variables. Thus we may simply replace our
instance by an equivalent instance of d-HITTING SET (where d is the maximum arity
of any R ∈ Γ).

Thus when Γ is anti-Horn, we either have a reduction from EXACT ONES SAT(Γ)
to d-HITTING SET, or we may conclude that we have constants available and that Γ
is mergeable as well as semi-separable. The latter case will be treated later by The-
orem 4.23. In the former case, we get a polynomial kernelization for EXACT ONES
SAT(Γ).

Now, we consider the case that Γ is mergeable and contains at least one relation
which is not anti-Horn. We first show that we can implement disequality and assign-
ments, then proceed with the kernelization dichotomy.

LEMMA 4.18. Let Γ be a weakly separable constraint language that is mergeable
but not anti-Horn. Then EXACT ONES SAT(Γ ∪ {(x 6= y)}) reduces to EXACT ONES
SAT(Γ) by a polynomial parameter transformation.

PROOF. There must be tuples α, β ∈ R for some R ∈ Γ such that α ∨ β /∈ R, i.e.,
witness tuples for the fact that R is not closed under disjunction (equivalently that R
is not anti-Horn). For convenience we collect the positions of R according to the values
of α and β into four types A through D. Note that positions of type B and C must exist
to distinguish α ∨ β from α and β (see table below). We first observe that α ∧ β /∈ R
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as α∧β, α, β ∈ R and α∨β /∈ R would form a witness against invariance under FPT(1).
It follows that the zero-tuple cannot be contained in R since α, 0, β, 0 ∈ R and α∧β /∈ R
would form a witness against mergeability. We summarize our conclusions.

A B C D
α 0 0 1 1 ∈ R
β 0 1 0 1 ∈ R
α ∨ β 0 1 1 1 /∈ R
α ∧ β 0 0 0 1 /∈ R
0 0 0 0 0 /∈ R

Let us now consider the case that R is not one-valid. In that case we can define a
binary relation R′ by plugging the first variable into positions A and B and the second
variable into positions C and D (at least B and C exist). Clearly, this gives (0, 1) ∈ R′
since α ∈ R and (0, 0), (1, 1) /∈ R′ since the zero and the one-tuple are not in R. Now
if (1, 0) ∈ R′ then R′ = {(0, 1), (1, 0)}, i.e., we have an implementation of disequality.

Otherwise R′ = {(0, 1)} and we can add two new variables c0 and c1 to any in-
stance (φ, k) of EXACT ONES SAT(Γ) as well as a constraint R′(c0, c1) obtaining φ′.
Clearly, (φ, k) and (φ′, k+1) are equivalent and by c0 and c1 we have constants zero and
one available. Using the constants allows us to implement disequality by putting c0
into positions A, c1 into positions D, the first variable into positions B, and the second
variable into positions C.

Let us now address the case that R is one-valid; so far we know the following:

A B C D
α 0 0 1 1 ∈ R
β 0 1 0 1 ∈ R
1 1 1 1 1 ∈ R
0 0 0 0 0 /∈ R
α ∧ β 0 0 0 1 /∈ R
α ∨ β 0 1 1 1 /∈ R

In this case we also know that positions of type A must exist, to distinguish the
included one-tuple from the excluded α ∨ β. We may also assume that we have the
constant one c1 available since R(c1, . . . , c1) forces this.

Now, if there are no positions of type D, then we put x, y, and z into positions A, B,
and C respectively, obtaining a ternary relation R′′ such that:

x y z
α′ 0 0 1 ∈ R′′
β′ 0 1 0 ∈ R′′
1 1 1 1 ∈ R′′
α′ ∧ β′ 0 0 0 /∈ R′′
α′ ∨ β′ 0 1 1 /∈ R′′

Otherwise, i.e., if positions of type D exist then we can also obtain an R′′ with these
properties by additionally putting c1 in positions D. We may conclude that (1, 0, 1) /∈
R′′, since otherwise (1, 0, 1), (1, 1, 1), (0, 0, 1) ∈ R′′ but (0, 1, 1) /∈ R′′ would violate in-
variance under FPT(2). Now putting c1 in place of z gives a binary relation R′′′ con-
taining (0, 0) and (1, 1) since (0, 0, 1) and (1, 1, 1) ∈ R′′ and not containing (0, 1) as
well as (1, 0) since (0, 1, 1), (1, 0, 1) /∈ R′′. Thus R′′′ is equality. Therefore we can im-
plement the constant zero c0 by adding k new variables s1, . . . , sk as well as equality
constraints R′′′(c0, si) for all i. Now we can implement disequality on two variables x
and y as R′′(c0, x, y).
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We continue by proving that we may assume to have assignments in Γ, if Γ imple-
ments (or contains) disequality.

LEMMA 4.19. If Γ implements disequality, then EXACT ONES SAT(Γ ∪ {(x), (¬x)})
reduces to EXACT ONES SAT(Γ) by a polynomial parameter transformation.

PROOF. Let (φ, k) be an instance of EXACT ONES SAT(Γ ∪ {(x), (¬x)}). We show
how to obtain an equivalent instance (φ′, k′) of EXACT ONES SAT(Γ) by implement-
ing (x) and (¬x): We start with φ′ = φ and let the new parameter be k′ = k + 1. We
add a new variable c1 as well as k′ + 1 variables y1, . . . , yk′+1 and implementations
of (c1 6= yi) for all i ∈ {1, . . . , k′ + 1}. Furthermore, we add c0 and an implementation
of (c1 6= c0). Observe that every feasible assignment for φ′ of weight k′ assigns one to c1
and zero to all yi; otherwise assigning one to all yi would give a total number of true
variables greater than k′. Thus by (c1 6= c0) it must assign zero to c0. Therefore we can
implement (x) by (x 6= c0) and (¬x) by (x 6= c1).

It is easy to see that any satisfying assignment with k′ true variables can be re-
stricted to a feasible assignment for φ with k true variables. The converse is straight-
forward too.

For the remaining cases we can now show that EXACT ONES SAT(Γ) does not admit
a polynomial kernelization if Γ is not semi-separable (i.e., not invariant under FPT(1 ./
2)).

THEOREM 4.20. Let Γ be a weakly separable constraint language. If Γ implements
disequality and contains a relation that is not invariant under FPT(1 ./ 2), then EXACT
ONES SAT(Γ) does not admit a polynomial kernelization unless NP ⊆ co-NP/poly.

PROOF. We give a polynomial parameter transformation from the MULTIPLE COM-
PATIBLE PATTERNS (MCP) problem, already used in Lemma 3.6. The definition of MCP
can be found in Section 2 and Lemma 2.3 shows that MCP does not admit a polyno-
mial kernelization unless NP ⊆ co-NP/poly. By Lemmas 4.19 and 2.2, we may assume
that Γ contains disequality and the assignments (x) and (¬x).

Let R be any relation from Γ that is not invariant under FPT(1 ./ 2). Let α, β, γ ∈ R
and δ /∈ R be a witness for this fact. Again we collect the positions of the tuples into
groups, A through E:

A B C D E
α 0 1 0 0 1 ∈ R
β 0 1 0 1 1 ∈ R
γ 0 0 1 0 1 ∈ R
δ 0 0 1 1 1 /∈ R

If no position in these tuples matches the D column, then δ = γ. If no position of
type B or C is present, then these tuples would also witness that R is not invariant
under FPT(1) or FPT(2), respectively, contradicting our assumption on Γ.

We use R to implement (x → y) ∧ (y 6= z). Put constant zero into positions A and
constant one into all positionsE. Put x, y, and z into positionsD,B, andC, respectively,
and add a constraint (y 6= z).

Now we can use the same reduction from MCP as in Lemma 3.6, since the reduction
maps yes-instances to formulas with satisfying assignments having exactly k + r ones
and no-instances to formulas where all satisfying assignments have less than k + r
ones.

It remains to consider the case that all relations in Γ are mergeable and semi-
separable, i.e., invariant under FPT(1 ./ 2). Note that this partial polymorphism con-
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tains all columns of the two partial polymorphisms FPT(1) and FPT(2) (if FPT(2) is
rearranged so that the first tuple is last), thus FPT(1 ./ 2) is stronger (i.e., it implies
the other two). Our main tool for the kernelization, as in [Kratsch and Wahlström
2010], is the notion of a sunflower. Ordinarily stated for set systems, we give here a
version for sets of tuples.

Definition 4.21 ([Kratsch and Wahlström 2010]). Let U be a finite set, let d ∈ N, and
let H ⊆ Ud. A sunflower (of tuples) with cardinality t and core C ⊆ {1, . . . , d} in U is a
subset consisting of t tuples that have the same element at all positions in C and, in the
remaining positions, no element occurs in more than one tuple. The set of remaining
positions P = {1, . . . , d} \ C is called the petals.

With an adaptation of Erdős and Rado’s Sunflower Lemma [Erdős and Rado 1960],
we are able to find a sunflower in any set of bounded-width tuples of sufficient cardi-
nality.

LEMMA 4.22 ([KRATSCH AND WAHLSTRÖM 2010]). Let U be a finite set, let d ∈ N,
and let H ⊆ Ud. If the size of H is greater than kd(d!)2, then it contains a sunflower of
cardinality k + 1.

THEOREM 4.23. Let Γ be a semi-separable and mergeable constraint language.
Then EXACT ONES SAT(Γ) admits a polynomial kernelization.

PROOF. If Γ is anti-Horn, then according to Lemma 4.17 we either have that EXACT
ONES SAT(Γ ∪ {(x), (¬x)}) reduces to EXACT ONES SAT(Γ), or EXACT ONES SAT(Γ)
reduces to the d-HITTING SET problem. In the latter case, we have a polynomial ker-
nelization using the fact that d-HITTING SET admits a polynomial kernelization [Abu-
Khzam 2010].

If Γ is not anti-Horn, then by Lemmas 4.18 and 4.19 we again have a polynomial
parameter transformation from EXACT ONES SAT(Γ ∪ {(x), (¬x)}) to EXACT ONES
SAT(Γ).

Thus it suffices to show that EXACT ONES SAT(Γ∪{(x), (¬x)}) admits a polynomial
kernelization; we remark that EXACT ONES SAT(Γ) trivially reduces to EXACT ONES
SAT(Γ′) for any Γ′ ⊇ Γ. For ease of notation, we assume w.l.o.g. that (x), (¬x) ∈ Γ.

Let (φ, k) be an instance of EXACT ONES SAT(Γ). We begin by adding two new vari-
ables c0 and c1 as well as constraints (¬c0) and (c1), and by increasing the parameter
value by one. Clearly, the obtained instance is equivalent to (φ, k) and c0 and c1 must
take values false and true, respectively, in any satisfying assignment. Slightly abusing
notation we call this new instance (φ, k).

Non zero-valid constraints. First we will reduce the number of constraints that are
not zero-valid. We exhaustively apply the following steps for each non zero-valid rela-
tion R in Γ (let d denote its arity):

— If the number of R-constraints in φ is greater than (d!)2 · kd, then we can find a
sunflower consisting of k + 1 R-constraints by applying Lemma 4.22 to the set of all
tuples of variables that occur in R-constraints. If the core of the sunflower is empty,
then no assignment of weight exactly k can be feasible, since the petal positions do not
share variables. In this case we reject the instance.

— Otherwise we observe that a sunflower can be simplified: Fix any constraint of
the sunflower and consider any two assignments α and β to the core variables, such
their extensions by setting all the petals to 0 (that is, the assignments (α, 0) and (β, 0))
are feasible. Note that the assignment to the core variables must always allow for
all petal variables to be set to zero, else such an assignment cannot be extended to
a satisfying assignment with k true variables (each of the k + 1 disjoint petals would
require at least one true variable). Furthermore, let γ be any assignment to the petal
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variables, such that (α, γ) is feasible. By an application of semi-separability it follows
that (β, γ) is also feasible:

(α, 0) 0 0 1 1 0 0
(α, γ) 0 0 1 1 1 0
(β, 0) 0 1 0 1 0 0
(β, γ) 0 1 0 1 1 0 FPT(1 ./ 2)

Thus assignments to the petals are independent of the assignments to the core vari-
ables.

— We have observed that it is sufficient and necessary for the core variables to take
any values such that the petal variables may take value zero. Therefore, we add one
new R-constraint, with only the core variables in their positions and the constant-zero
variable c0 in the petal positions.

— For each constraint of the sunflower, we replace the core variables by the con-
stant variables c0 and c1 matching some feasible assignment to the core, say α. The
assignment to the petals will then be consistent with any core assignment. Thus we
make the following replacements (w.l.o.g. the core consists of the first c positions):

R(x1, . . . , xc, y1,1, . . . , y1,p) ⇒ R(α, y1,1, . . . , y1,p)
R(x1, . . . , xc, y2,1, . . . , y2,p) ⇒ R(α, y2,1, . . . , y2,p)

...
...

R(x1, . . . , xc, yk+1,1, . . . , yk+1,p) ⇒ R(α, yk+1,1, . . . , yk+1,p)

Let us recall, however, that each constraint R(α, yi,1, . . . , yi,p) induces a zero-valid con-
straint on yi,1, . . . , yi,p. Therefore, we may implement these induced constraints using
only equality and negative assignments, according to Lemma 4.11. Thus in each re-
placement step we replace k + 1 R-constraints by 1 R-constraint for the core variables
plus a number of equality and negative assignment constraints on the petal variables.

— Each replacement decreases the number of R-constraints. Thus the number of
repetitions is bounded by the initial size of φ.

Zero-valid constraints. If R is zero-valid, then the sunflower lemma is not helpful,
as it may simply return a packing of k + 1 pairwise disjoint constraints (leading to no
further conclusion). Instead, zero-valid constraints are handled as follows. First, we
replace each zero-valid constraint by an implementation using negative assignments
and equality constraints, according to Lemma 4.11. Then we replace all occurrences of
variables x that have a negative assignment (¬x) by c0.

Next we consider the equivalence classes given by the equality constraints. Observe
that these classes implicitly assign a weight equal to the size of the class. If any class
contains more than k variables, then all those variables must take value zero in any
satisfying assignment of weight k. Accordingly, we replace the variables by c0. For
the remaining equivalence classes we choose one representative variable per class, say
variable x for some class C. All occurrences of variables from C\{x} (except for those in
the equality relations) are then replaced by x. Essentially we have simplified the class
to one variable of weight |C|. Note that equality constraints are the only remaining
zero-valid constraints.

Bounding the kernel size. After these replacements there are at most (d!)2 · kd copies
of any non-zero-valid R-constraint of arity d in Γ. Thus the total number of variables
in such constraints is bounded by O(d · (d!)2 · kd), since Γ is finite and independent of
the input. All other variables, i.e., those that only occur in equality constraints, must
be in some equivalence class of size at most k. The total number of such variables for
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which the representative is contained in a non-zero-valid constraint is clearly bounded
by k times the number of representatives, i.e., bounded by O(d · (d!)2 · kd+1).

It remains to bound and reduce the number of variables in classes where the rep-
resentative occurs only in equality constraints. (This includes free variables, i.e., vari-
ables that appear in no constraints, as a special case with equivalence class of size
one.) Note that, in the min ones setting, we would simply set those variables to zero.
Here they may be needed to reach the exact total weight of k. However, it clearly suf-
fices to keep bk/tc classes of size t for this purpose; additional copies have no impact.
The total number of variables in these classes is at most

k∑
t=1

bk/tc · t ≤ k2.

Thus the reduced instance has O(d · (d!)2 · kd+1) variables; where d is the maximum
arity of relations in Γ, i.e., a constant independent of (φ, k).

4.3. Summary
We sum up the properties of EXACT ONES SAT(Γ) in the following corollary.

COROLLARY 4.24. Let Γ be a finite Boolean constraint language. Then EXACT
ONES SAT(Γ) is FPT if and only if Γ is weakly separable, unless FPT = W[1]; and
admits a polynomial kernel if and only if Γ is semi-separable and mergeable, unless NP
⊆ co-NP/poly.

Similarly to MIN ONES SAT(Γ), the classification of EXACT ONES SAT(Γ) problems
does not follow the lattice of Boolean co-clones. It is natural to ask how the character-
izing partial polymorphisms relate to one another; we find that they are orthogonal:
Semi-separability does not imply mergeability, e.g., (x⊕y⊕z = 0) is semi-separable but
not mergeable (thus also weak separability does not imply mergeability). Mergeability
does not imply weak separability (or semi-separability), e.g., implications are merge-
able but not weakly separable. Finally, answering another natural question, merge-
ability and weak separability do not imply semi-separability, e.g., ((x→ y)∧ (y 6= z)) is
weakly separable and mergeable but not semi-separable.

5. CONCLUSION
We considered the (Boolean) CSP optimization problems MAX ONES SAT(Γ) and EX-
ACT ONES SAT(Γ) from the parameterized complexity and kernelizability perspec-
tives, and arrived at a complete classification for both problems. For MAX ONES
SAT(Γ), the problem had previously been classified for every choice of Γ as either
in P or NP-complete [Khanna et al. 2000]; we refine the NP-complete cases into cases
with polynomial kernels; cases which are FPT but do not admit polynomial kernels
unless NP ⊆ co-NP/poly; and two levels of hardness (W[1]-hard and in XP, respec-
tively NP-complete for k = 1). For EXACT ONES SAT(Γ), the problem had previously
been classified into P vs NP-complete [Creignou et al. 2008b], and into FPT vs W[1]-
complete [Marx 2005]; we refine the FPT-cases as either admitting a polynomial ker-
nel, or not admitting a polynomial kernel unless NP ⊆ co-NP/poly. This complements
the previously achieved kernelizability characterization of the MIN ONES SAT(Γ)
problem [Kratsch and Wahlström 2010].

In addition to polynomial (many-one) kernels as discussed in this paper, it is also
interesting to consider the existence of so-called Turing kernels of polynomial size
(see [Hermelin et al. 2013]), as these bring many of the same advantages as polynomial
kernels. Such kernels are not excluded by the framework of Bodlaender et al. [2009]
applied in this paper, and indeed there are problems with small Turing kernels which
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do not admit polynomial many-one kernels unless NP ⊆ co-NP/poly [Hermelin et al.
2013]. In [Hermelin et al. 2013], a hierarchy for kernelization hardness was proposed,
with classes defined under PPT-closure (which preserves existence of both polynomial
many-one kernels and polynomial Turing kernels). The fundamental classes of the hi-
erarchy are MK[1] (representing, essentially, problems with polynomial kernels) and
WK[1] (representing the kernelization hardness version of W[1], with complete prob-
lems including CLIQUE(k log n), the reparameterization of CLIQUE(k)). Thus, a prob-
lem which is WK[1]-hard admits no kind of Turing kernelization unless all problems
in WK[1] do; it is conjectured in [Hermelin et al. 2013] that this is not the case.

With this setup, it is not hard to show the following strengthenings of the kerneliz-
ability characterizations given above.

COROLLARY 5.1. For every finite constraint language Γ, both EXACT ONES SAT(Γ)
and MAX ONES SAT(Γ) are either in MK[1] (and admit polynomial kernels) or WK[1]-
hard.

PROOF. Recall that kernelization hardness for MULTIPLE COMPATIBLE PATTERNS
(MCP) was shown via a PPT from MULTICOLORED CLIQUE(k log n), which is WK[1]-
complete by [Hermelin et al. 2013]. Thus all cases of our problems for which a PPT
was given from MCP are WK[1]-hard as well. For MAX ONES SAT(Γ), an inspection of
the proof shows that every negative case for polynomial kernelizability is either MCP-
hard by PPT, CLIQUE(k)-hard by PPT, or NP-hard for k = 1. In the former two cases,
WK[1]-hardness follows directly; in the latter case, there is a polynomial-time many-
one reduction from CLIQUE(k log n) to MAX ONES SAT(Γ) with parameter k = 1, which
is certainly a PPT. For EXACT ONES SAT(Γ), we need the following claims: If EXACT
ONES SAT(Γ) is W[1]-hard, then CLIQUE(k) ≤ppt EXACT ONES SAT(Γ) (see [Marx
2005]); and if MIN ONES SAT(Γ) is NP-hard and Γ not mergeable, then MIN ONES
SAT(Γ) is WK[1]-complete (see [Kratsch and Wahlström 2010; Hermelin et al. 2013]).
The result follows since every negative case for polynomial kernelization of EXACT
ONES SAT(Γ) is either by PPT from MCP, or by PPT from MIN ONES SAT(Γ), or by
W[1]-hardness of the problem.

In fact, it is possible to show that both EXACT ONES SAT(Γ) and MAX ONES SAT(Γ)
break down more specifically into the cases of P, MK[1]-complete, WK[1]-complete, and
W[1]-hard (making for more proper dichotomies), but we omit the proof of this here.
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