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Overview

Main message

Small separators in graphs have interesting extremal properties that
can be exploited in combinatorial and algorithmic results.

@ Bounding the number of “important” cuts.
e Edge/vertex versions, directed/undirected versions.

@ Algorithmic applications: FPT algorithm for

o MULTIWAY CUT,
e DIRECTED FEEDBACK VERTEX SET, and



Minimum cuts

Definition: 0(R) is the set of edges with exactly one endpoint in R.
Definition: A set S of edges is a minimal (X, Y)-cut if there is no
X — Y path in G\ S and no proper subset of S breaks every X — Y
path.

Observation: Every minimal (X, Y)-cut S can be expressed as S =
5(R) for some X C Rand RNY = 0.
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Minimum cuts

Theorem
A minimum (X, Y)-cut can be found in polynomial time.

Theorem

The size of a minimum (X, Y)-cut equals the maximum size of a
pairwise edge-disjoint collection of X — Y paths.
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Finding minimum cuts

There is a long list of algorithms for finding disjoint paths and
minimum cuts.

Edmonds-Karp: O(|V(G)| - |E(G)|?)

Dinitz: O(|V(G)|? - |E(G)|)

Push-relabel: O(|V(G)[?)

Orlin-King-Rao-Tarjan: O(|V(G)|- |E(G)|)

But we need only the following result:

Theorem
An (X, Y)-cut of size at most k (if exists) can be found in time

O(k - (IV(6)[ + [E(G)]).



Finding minimum cuts

Theorem

An (X, Y)-cut of size at most k (if exists) can be found in time
O(k - (IV(G)| + [E(G)))).

We try to grow a collection P of edge-disjoint X — Y paths.

Residual graph:
@ not used by P: bidirected,
@ used by P: directed in the opposite direction.

original graph residual graph
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Finding minimum cuts

Theorem

An (X, Y)-cut of size at most k (if exists) can be found in time
O(k - (IV(G)| + [E(G)))).

We try to grow a collection P of edge-disjoint X — Y paths.

Residual graph:
@ not used by P: bidirected,
@ used by P: directed in the opposite direction.

original graph residual graph

sagyas: | 38

If we cannot find an augmenting path, we can find a (minimum)
cut of size |P|.
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Submodularity

Fact: The function 0 is submodular: for arbitrary sets A, B,

(A + [6(B) = [6(ANB)] + [6(AUB)|
1 1 0 0

Proof: Determine separately the contribution of the different types
of edges.
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Submodularity

Lemma

Let A be the minimum (X, Y')-cut size. There is a unique maximal
Rmax = X such that (Rmax) is an (X, Y)-cut of size A.



Submodularity

Lemma
Let A be the minimum (X, Y')-cut size. There is a unique maximal
Rmax = X such that (Rmax) is an (X, Y)-cut of size A.

Proof: Let Ry, R» O X be two sets such that §(R1),0(R2) are

(X, Y)-cuts of size \.
16(R1)| + [0(R2)| > |6(R1 N R2)| + |6(RLU Ry)| @

A A > A
= ’5(R1UR2)‘ <A\ ?@?

Note: Analogous result holds for a unique minimal Ry;,.



Finding Rmnin and Riax

Lemma
Given a graph G and sets X, Y C V(G), the sets Rmin and Rmax
can be found in polynomial time.

Proof: lteratively add vertices to X if they do not increase the
minimum X — Y cut size. When the process stops, X = Rnax.
Similar for Rmin.

But we can do better!



Finding Rmnin and Riax

Lemma

Given a graph G and sets X, Y C V/(G), the sets Rmin and Rmax
can be found in O(\- (|V(G)| + |E(G)|)) time, where X is the
minimum X — Y cut size.

Proof: Look at the residual graph.

original graph

Rmin: vertices reachable from X.
Rmax: vertices from which Y is not reachable.



Important cuts

Definition: 0(R) is the set of edges with exactly one endpoint in R.
Definition: A set S of edges is a minimal (X, Y)-cut if there is no
X — Y path in G\ S and no proper subset of S breaks every X — Y
path.

Observation: Every minimal (X, Y)-cut S can be expressed as S =
d(R) for some X C Rand RNY = 0.
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Important cuts

Definition
A minimal (X, Y)-cut 6(R) is important if there is no (X, Y)-cut
§(R") with R C R" and |6(R")| < |6(R).

Note: Can be checked in polynomial time if a cut is important
(6(R) is important if R = Rmax)-
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Important cuts

Definition
A minimal (X, Y)-cut 6(R) is important if there is no (X, Y)-cut
§(R") with R C R" and |6(R")| < |6(R).

Note: Can be checked in polynomial time if a cut is important
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Important cuts

Definition
A minimal (X, Y)-cut 6(R) is important if there is no (X, Y)-cut
§(R") with R C R" and |6(R")| < |6(R).

Note: Can be checked in polynomial time if a cut is important
(6(R) is important if R = Rmax)-
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Important cuts

The number of important cuts can be exponentially large.

Example:

This graph has 2%/2 important (X, Y)-cuts of size at most k.
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Important cuts

The number of important cuts can be exponentially large.

Example:

This graph has 2%/2 important (X, Y)-cuts of size at most k.

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.
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Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.
Proof: Let A be the minimum (X, Y)-cut size and let §(Rmnax) be
the unique important cut of size A such that Rnay is maximal.

(1) We show that Ryax € R for every important cut §(R).
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Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Proof: Let A be the minimum (X, Y)-cut size and let §(Rmnax) be
the unique important cut of size A such that Rnay is maximal.

(1) We show that Ryax € R for every important cut §(R).

By the submodularity of §:
[0(Rmax)| + [0(R)| = [6(Rmax N R)| + [6(Rmax U R)
A > A
!
[0(Rmax U R)| < [6(R)

I3
If R # Rmax U R, then 6(R) is not important.
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Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Proof: Let A be the minimum (X, Y)-cut size and let §(Rmnax) be
the unique important cut of size A such that Rnay is maximal.

(1) We show that Ryax € R for every important cut §(R).

By the submodularity of §:
[0(Rmax)| + [0(R)| = [6(Rmax N R)| + [6(Rmax U R)
A > A
!
[0(Rmax U R)| < [6(R)

I3
If R # Rmax U R, then 6(R) is not important.

Thus the important (X, Y)- and (Rmax, Y)-cuts are the same.
= We can assume X = Rpax.

12



Important cuts

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rnax is either in the cut or not.




Important cuts

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rpax is either in the cut or not.

Branch 1: If uv € S, then S\ uv is an important (X, Y)-cut of
size at most k — 1 in G\ uv.

Branch 2: If uv ¢ S, then S is an important
(X U v, Y)-cut of size at most k in G.
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Important cuts

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rpax is either in the cut or not.

Branch 1: If uv € S, then S\ uv is an important (X, Y)-cut of
size at most k — 1 in G\ uv.

= k decreases by one, \ decreases by at most 1.

Branch 2: If uv ¢ S, then S is an important
(X U v, Y)-cut of size at most k in G.

= k remains the same, A increases by 1.
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Important cuts

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving X = Rpax is either in the cut or not.

Branch 1: If uv € S, then S\ uv is an important (X, Y)-cut of
size at most k — 1 in G\ uv.

= k decreases by one, \ decreases by at most 1.

Branch 2: If uv ¢ S, then S is an important
(X U v, Y)-cut of size at most k in G.

= k remains the same, A increases by 1.

The measure 2k — \ decreases in each step.
= Height of the search tree < 2k
= < 22k — 4k important cuts of size at most k.
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Important cuts — some details

We are using the following two statements:

Branch 1: If uv € S, then

Sis an important (X, Y)-cut
in G

-p

S \ uv is an important
(X,Y)-cutin G\ uv

Branch 2: If Sis an (X U v, Y)-cut, then

Sis an important (X, Y)-cut
in G

-p

S is an important (XUv, Y)-
cut in G
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Important cuts — algorithm

Theorem

There are at most 4% important (X, Y)-cuts of size at most k and
they can be enumerated in time O(4% - k - (|V(G)| + |E(G)))).

Algorithm for enumerating important cuts:
@ Handle trivial cases (k =0, A =0, k < \)
@ Find Rmax.
© Choose an edge uv of §( Rmax)-
e Recurse on (G — uv, Ryax, Y, k —1).
e Recurse on (G, Rmax U v, Y, k).

@ Check if the returned cuts are important and throw away those
that are not.

15



Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Example: The bound 4% is essentially tight.

X

(dedodododedodede )Y
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Theorem

There are at most 4% important (X, Y)-cuts of size at most k.
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X

(dedodododedodede )Y

Any subtree with k leaves gives an important (X, Y)-cut of size k.
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Important cuts

Theorem

There are at most 4% important (X, Y)-cuts of size at most k.

Example: The bound 4% is essentially tight.

(dedodododedodede )Y

Any subtree with k leaves gives an important (X, Y)-cut of size k.
The number of subtrees with k leaves is the Catalan number

12k —2 .
Cioy = — > 4% /poly(k).
kot k<k—1>_ poly(k)

16



MuLTIWAY CUT

Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one

vertex of T.
MurTiway CUT t.l 1L t.z
Graph G, set T of vertices, inte- g
Input: \
ger k 5 5T
Find: A multiway cut S of at most k | [,y ® .. [T®
" edges. 2 7
[ [ ]

Polynomial for | T| = 2, but NP-hard for any fixed | T| > 3 [Dalhaus
et al. 1994].

17



MuLTIWAY CUT

Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one

vertex of T.
MurTiway CUT t.l T t.z
Graph G, set T of vertices, inte- T L
Input: \
ger k 5 5T
Find: A multiway cut S of at most k | [,y ® .. [T®
" edges. 2 7
[ [ ]

Trivial to solve in polynomial time for fixed k (in time n©(k)).

Theorem

MULTIWAY CUT can be solved in time 4% - k3 - (|V(G)| + |E(G)|).

17



MuLTIWAY CUT

Intuition: Consider a t € T. A subset of the solution S is a
(t, T\ t)-cut.

@ —~+
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MuLTIWAY CUT

Intuition: Consider a t € T. A subset of the solution S is a
(t, T\ t)-cut.

o o
i
t °
° ™
| [ ]
11
LI
o o

There are many such cuts.

But a cut farther from t and closer to T \ t seems to be more
useful.

18



MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MuLTIWAY CUT problem has a solution S that
contains an important (t, T \ t)-cut.

19



MULTIWAY CUT and important cuts

Pushing Lemma
Let t € T. The MuLTIWAY CUT problem has a solution S that
contains an important (t, T \ t)-cut.

Proof: Let R be the vertices reachable from t in G\ S for a
solution S.

~
[ ]
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MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MuLTIWAY CUT problem has a solution S that
contains an important (t, T \ t)-cut.

Proof: Let R be the vertices reachable from t in G\ S for a

solution S.
[ ] [ ]
t °
[ )
[ ]
R
[ ] [ ]
I —

d(R) is not important, then there is an important cut 6(R’) with
R C R"and |6(R")| < |6(R)|. Replace S with
S =(S\(R)UIR) = |5 <|S]
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MULTIWAY CUT and important cuts

Pushing Lemma

Let t € T. The MuLTIWAY CUT problem has a solution S that
contains an important (t, T \ t)-cut.

Proof: Let R be the vertices reachable from t in G\ S for a
solution S.

d(R) is not important, then there is an important cut 6(R’) with
R C R"and |6(R")| < |6(R)|. Replace S with

S =(S\(R)UIR) = |5 <|S]

S’ is a multiway cut: (1) There is no t-u path in G\ S’ and (2) a
u-v path in G\ S" implies a t-u path, a contradiction.
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Algorithm for MULTIWAY CUT

© If every vertex of T is in a different component, then we are
done.
@ Let t € T be a vertex that is not separated from every T \ t.
@ Branch on a choice of an important (¢, T \ t) cut S of size at
most k.
Q Set G:=G\ Sand k:=k—|S|.
© Go to step 1.
We branch into at most 4% directions at most k times: 4K° . nO(1)
running time.

Next: Better analysis gives 4% bound on the size of the search tree.

20



A refined bound

We have seen: at most 4% important cut of size at most k.
Better bound:
Lemma

If S is the set of all important (X, Y)-cuts, then > 5 ¢ 4151 <1
holds.
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A refined bound

Lemma

If S is the set of all important (X, Y)-cuts, then > ¢ 4~ 1%/ <1
holds.

Proof: We show the stronger statement > s g4~ 1°/ < 27, where
A is the minimum (X, Y)-cut size.

Branch 1: removing uv.
A increases by at most one and we add the edge uv to each
separator, increasing the cut by one. Thus the total contribution is

a4l = Nt 4Bl < 270D s = 2722,

SeS SeS

Branch 2: replacing X with X U v.
A increases by at least one. Thus the total contribution is

> aPlcor M) —o7A o,
Ses,

21



Refined analysis for MULTIWAY CUT

Lemma
The search tree for the MuLTIWAY CUT algorithm has 4% leaves.

Proof: Let L, be the maximum number of leaves with parameter
k. We prove L, < 4% by induction. After enumerating the set Sy of
important separators of size < k, we branch into |S,| directions.

Z 4k=1SI — gk . Z 47151 < 4k

SeSk Sesi

Still need: bound the work at each node.

22



Refined enumeration algorithms
We have seen:

Lemma
We can enumerate every important (X, Y')-cut of size at most k in
time O(4% - k- (|[V(G)| + |E(G)|)).

Problem: running time at a node of the recursion tree is not linear
in the number children.

23



Refined enumeration algorithms

We have seen:

Lemma
We can enumerate every important (X, Y')-cut of size at most k in
time O(4% - k- (|[V(G)| + |E(G)|)).

Problem: running time at a node of the recursion tree is not linear
in the number children.

Easily follows:

Lemma

We can enumerate a superset S, of every important (X, Y')-cut of
size at most k in time O(|S;| - k% - (|V(G)| + |E(G)|)) such that
> ses; 471°1 <1 holds.
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Refined enumeration algorithms

We have seen:

Lemma
We can enumerate every important (X, Y')-cut of size at most k in
time O(4% - k- (|[V(G)| + |E(G)|)).

Problem: running time at a node of the recursion tree is not linear
in the number children.

Needs more work:

Lemma

We can enumerate the set Sy of every important (X, Y)-cut of size
at most k in time O(|Sk| - k% - (|V(G)| + |E(G)|)).
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Algorithm for MULTIWAY CUT

Theorem

MuLTiwAY CUT can be solved in time
O(4% - k3 - (|V(G)| + |E(G)I))-

© If every vertex of T is in a different component, then we are
done.

@ Let t € T be a vertex that is not separated from every T \ t.

© Branch on a choice of an important (t, T \ t) cut S of size at
most k.

Q Set G:=G\ Sand k:=k—|S|.
© Go to step 1.

24



Simple application

Lemma:

At most k - 4% edges incident to t can be part of an inclusionwise
minimal s — t cut of size at most k.
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Simple application

Lemma:

At most k - 4% edges incident to t can be part of an inclusionwise
minimal s — t cut of size at most k.

Proof: We show that every such edge is contained in an important
(s, t)-cut of size at most k.

V @
° \ ~e
\ t

Suppose that vt € §(R) and [§(R)| = k.



Simple application

Lemma:

At most k - 4% edges incident to t can be part of an inclusionwise
minimal s — t cut of size at most k.

Proof: We show that every such edge is contained in an important
(s, t)-cut of size at most k.

V e
° ~e
t

R/

Suppose that vt € §(R) and [§(R)| = k.
There is an important (s, t)-cut §(R’) with R C R and [6(R’)| < k.
Clearly, vt € 6(R'): v € R, hence v € R'.

25



Anti isolation

Let s, t1,...,t, be vertices and 51, ..., S, be sets of at most k
edges such that S; separates t; from s, but S; does not separate t;

from s for any j # i.

It is possible that n is “large” even if k is “small.”

th b 3 ta t5 g
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Anti isolation

Let s, t1,...,t, be vertices and 51, ..., S, be sets of at most k
edges such that S; separates t; from s, but S; does not separate t;
from s for any j # i.

It is possible that n is “large” even if k is “small.”

th |3 |ta 5 I
e oo .0 o o
T 1
I 53 I
S
[}

Is the opposite possible, i.e., S; separates every t; except t;?

Lemma
If S; separates t; from s if and only j # i and every S; has size at
most k, then n < (k + 1) - 4k+1,
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Anti isolation

AR
s, i

S
[ ]

Is the opposite possible, i.e., S; separates every t; except t;?

Lemma

If Si separates t; from s if and only j # i and every S; has size at
most k, then n < (k + 1) - 4k+1,

Proof: Add a new vertex t. Every edge tt; is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.
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MUuULTICUT

MuLTICUT
Input:  Graph G, pairs (s1,t1), ..., (sp, t¢), integer k

. A set S of edges such that G \ S has no s;-t; path
Find .
for any i.

Theorem

MULTICUT can be solved in time f(k, ) - n°®) (FPT
parameterized by combined parameters k and /).
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MUuULTICUT

MuLTICUT
Input:  Graph G, pairs (s1,t1), ..., (sp, t¢), integer k
. A set S of edges such that G \ S has no s;-t; path
Find .
for any i.

Theorem

MULTICUT can be solved in time f(k, ) - n°®) (FPT
parameterized by combined parameters k and /).

Proof: The solution partitions {s1, t1,..., s, t;} into components.

Guess this partition, contract the vertices in a class, and solve
MurTiway CUT.

Theorem
MurTicuT is FPT parameterized by the size k of the solution.
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Directed graphs

-

Definition: d(R) is the set of edges leaving R.
Observation: Every inclusionwise-minimal directed (X, Y')-cut S
can be expressed as S = §(R) for some X C Rand RNY = ().

-

Definition: A minimal (X, Y)-cut 6(R) is important if there is no
(X, Y)-cut 6(R") with R € R" and [6(R")| < |6(R)|.
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Directed graphs

-

Definition: d(R) is the set of edges leaving R.
Observation: Every inclusionwise-minimal directed (X, Y')-cut S
can be expressed as S = §(R) for some X C Rand RNY = ().

-

Definition: A minimal (X, Y)-cut 6(R) is important if there is no
(X, Y)-cut 6(R") with R € R" and [6(R")| < |6(R)|.

The proof for the undirected case goes through for the directed case:

Theorem

There are at most 4% important directed (X, Y)-cuts of size at
most k.
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DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)

Let t € T. The MuLTIWAY CUT problem has a solution S that
contains an important (¢, T \ t)-cut.

Directed counterexample:
a
f'<l>f

Unique solution with k = 1 edges, but it is not an important cut

(boundary of {s, a}, but the boundary of {s,a, b} has same size). 29
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DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)

Let t € T. The MuLTIWAY CUT problem has a solution S that
contains an important (t, T \ t)-cut.

Problem in the undirected proof:

> =0

Replacing R by R’ cannot create a t — u path, but can create a
u — t path.
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DIRECTED MULTIWAY CUT

The undirected approach does not work: the pushing lemma is not
true.
Pushing Lemma (for undirected graphs)

Let t € T. The MuLTIWAY CUT problem has a solution S that
contains an important (t, T \ t)-cut.

Using additional techniques, one can show:

Theorem

DIRECTED MULTIWAY CUT is FPT parameterized by the size k of
the solution.
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DIRECTED MULTICUT

DIRECTED MULTICUT
Input:  Graph G, pairs (s1,t1), ..., (s¢, t¢), integer k

Find: A set S of edges such that G \ S has no s; — t; path
N for any /.

Theorem
DIRECTED MULTICUT is W[1]-hard parameterized by k.
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DIRECTED MULTICUT

DIRECTED MULTICUT
Input:  Graph G, pairs (s1,t1), ..., (s¢, t¢), integer k

Find: A set S of edges such that G \ S has no s; — t; path
© for any J.

Theorem
DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case ¢ = 2 can be reduced to DIRECTED MULTIWAY CUT:

S 8
% %

30



DIRECTED MULTICUT

DIRECTED MULTICUT
Input:  Graph G, pairs (s1,t1), ..., (s¢, t¢), integer k

Find: A set S of edges such that G \ S has no s; — t; path
© for any J.

Theorem
DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case ¢ = 2 can be reduced to DIRECTED MULTIWAY CUT:




DIRECTED MULTICUT

DIRECTED MULTICUT
Input:  Graph G, pairs (s1,t1), ..., (s¢, t¢), integer k

Find: A set S of edges such that G \ S has no s; — t; path
© for any J.

Theorem
DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case ¢ = 2 can be reduced to DIRECTED MULTIWAY CUT:

30



DIRECTED MULTICUT

DIRECTED MULTICUT
Input:  Graph G, pairs (s1,t1), ..., (s¢, t¢), integer k
Find: A set S of edges such that G \ S has no s; — t; path
© for any J.

Theorem
DIRECTED MULTICUT is W[1]-hard parameterized by k.

Corollary
DIRECTED MULTICUT with £ = 2 is FPT parameterized by the

size k of the solution.
Open: Is DIRECTED MuLTICUT with ¢ =3 FPT?

Open: s there an f(k, /) - n°1) algorithm for DIRECTED
MurticuT?



SKEW MULTICUT

SKEW MULTICUT
Input:  Graph G, pairs (s1,t1), ..., (s¢, ty), integer k
. A set S of k directed edges such that G \ S con-
Find: . S
tains no s; — t; path for any i > .




SKEW MULTICUT

SKEW MULTICUT
Input:  Graph G, pairs (s1,t1), ..., (s¢, ty), integer k

A set S of k directed edges such that G \ S con-

Find: : S
tains no s; — t; path for any i > .
S] @wrrmmnnnnn " .' .‘.::‘:.\. t1
90
Lene® 4,9° ¢
2 @Fsfintin®

Pushing Lemma

SKEW MULTCUT problem has a solution S that contains an
important (sg, {t1,..., t;})-cut.
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SKEW MULTICUT

SKEW MULTICUT
Input:  Graph G, pairs (s1,t1), ..., (s¢, ty), integer k

A set S of k directed edges such that G \ S con-

Find: : S
tains no s; — t; path for any i > .
S] @wrrmmnnnnn " .' .‘.::‘:.\. t1
90
Lene® 4,9° ¢
2 @Fsfintin®

Pushing Lemma

SKEW MULTCUT problem has a solution S that contains an
important (sg, {t1,..., t;})-cut.

Theorem

SKEW MULTICUT can be solved in time 4% . n0(1)



DIRECTED FEEDBACK VERTEX SET

DIRECTED FEEDBACK VERTEX/EDGE SET
Input: Directed graph G, integer k
Find: A set S of k vertices/edges such that G \ S
" is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the
edge version here.

Theorem

DIRECTED FEEDBACK EDGE SET is FPT parameterized by the
size k of the solution.

Solution uses the technique of Iterative compression introduced by
[Reed, Smith, Vetta 2004].
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The compression problem

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,

a set W of k + 1 edges such that G\ W
is acyclic
A set S of k edges such that G\'S is

Find: :
acyclic.

Easier than the original problem, as the extra input W gives us
useful structural information about G.

Lemma

The compression problem is FPT parameterized by k.
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The compression problem

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,

aset W of k + 1 vertices such that G \ W
is acyclic
A set S of k edges such that G\'S is

Find: :
acyclic.

Easier than the original problem, as the extra input W gives us
useful structural information about G.

Lemma
The compression problem is FPT parameterized by k.

A useful trick for edge deletion problems: we define the
compression problem in a way that a solution of k + 1 vertices are
given and we have to find a solution of k edges.
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The compression problem

Proof: Let W = {w1,... . wis1}
Let us split each w; into an edge t;s;.

\I A

t1 51 tr So t3S3 1454
@ By guessing the order of {wy,..., wiy1} in the acyclic
ordering of G\ S, we can assume that wy < wy < -+ < wy g
in G\ S [(k+1)! possibilities].
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The compression problem

Proof: Let W = {w1,... . wis1}
Let us split each w; into an edge t;s;.

\I A

\/L/

t1 51 tr So t3S3 1454

Claim:

G \ S is acyclic and has an ordering with wy < wp < -+ - < wy41

4

S covers every s; — t; path for every i > j

4
G\ S is acyclic
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The compression problem

Proof: Let W = {w1,... . wis1}
Let us split each w; into an edge t;s;.

\ AR |/
/AN LS

t1 51 tr So t3S3 1454

Claim:

G \ S is acyclic and has an ordering with wy < wp < -+ - < wy41

4

S covers every s; — t; path for every i > j

4
G\ S is acyclic

= We can solve the compression problem by (k + 1)! applications
of SKEW MULTICUT.
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Iterative compression

We have given a f(k)n®®) algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,

a set W of k + 1 vertices such that G \ W
is acyclic
A set S of k edges such that G\'S is

Find: .
acyclic.

Nice, but how do we get a solution W of size k + 17
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Iterative compression

We have given a f(k)n®®) algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION
Input: Directed graph G, integer k,

a set W of k + 1 vertices such that G \ W
is acyclic
A set S of k edges such that G\'S is

Find :
acyclic.

Nice, but how do we get a solution W of size k + 17
We get it for free!

Powerful technique: Ite@rative compressin (introduced by [Reed,
Smith, Vetta 2004] for BIPARTITE DELETION).
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Iterative compression

Let v, ..., v, be the edges of G and let G; be the subgraph
induced by {v1,...,v}.
For every i = 1,...,n, we find a set S; of at most k edges such

that G; \ S; is acyclic.
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Iterative compression

Let v, ..., v, be the edges of G and let G; be the subgraph
induced by {v1,...,v}.
For every i = 1,...,n, we find a set S; of at most k edges such

that G; \ S; is acyclic.
@ For i = 1, we have the trivial solution S; = ().

@ Suppose we have a solution S; for G;. Let W; contain the head
of each edge in S;. Then W; U {v;y1} is a set of at most k + 1
vertices whose removal makes G;,1 acyclic.

@ Use the compression algorithm for G; 1 with the set
W; U{vis1}.

o If there is no solution of size k for G; 1, then we can stop.
o Otherwise the compression algorithm gives a solution S;. 1 of
size k for G, 1.

We call the compression algorithm n times, everything else is
polynomial.
= DIRECTED FEEDBACK EDGE SET is FPT.
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Summary

Definition of important cuts.

Combinatorial bound on the number of important cuts.

Pushing argument: we can assume that the solution contains
an important cut. Solves MuLTIWAY CUT, SKEW
MurTiwAy CUT.

Iterative compression reduces DIRECTED FEEDBACK
VERTEX SET to SKEW MULTIWAY CUT.
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