Minicourse on parameterized algorithms and complexity

Part 6: Important Separators

Dániel Marx

Jagiellonian University in Kraków April 21-23, 2015

Overview

Main message

Small separators in graphs have interesting extremal properties that can be exploited in combinatorial and algorithmic results.

- Bounding the number of "important" cuts.
- Edge/vertex versions, directed/undirected versions.
- Algorithmic applications: FPT algorithm for
 - Multiway cut,
 - $\bullet~\ensuremath{\mathsf{D}\mathrm{I}\mathrm{R}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{E}\mathrm{D}}$ Feedback Vertex Set, and

Minimum cuts

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in R. **Definition:** A set S of edges is a **minimal** (X, Y)-**cut** if there is no X - Y path in $G \setminus S$ and no proper subset of S breaks every X - Y path.

Observation: Every minimal (X, Y)-cut S can be expressed as $S = \delta(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Minimum cuts

Theorem

A minimum (X, Y)-cut can be found in polynomial time.

Theorem

The size of a minimum (X, Y)-cut equals the maximum size of a pairwise edge-disjoint collection of X - Y paths.

There is a long list of algorithms for finding disjoint paths and minimum cuts.

- Edmonds-Karp: $O(|V(G)| \cdot |E(G)|^2)$
- Dinitz: $O(|V(G)|^2 \cdot |E(G)|)$
- Push-relabel: $O(|V(G)|^3)$
- Orlin-King-Rao-Tarjan: $O(|V(G)| \cdot |E(G)|)$

• . . .

But we need only the following result:

Theorem

An (X, Y)-cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|))$.

Theorem

An (X, Y)-cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|))$.

We try to grow a collection \mathcal{P} of edge-disjoint X - Y paths.

- not used by \mathcal{P} : bidirected,
- used by \mathcal{P} : directed in the opposite direction.

residual graph

Theorem

An (X, Y)-cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|))$.

We try to grow a collection \mathcal{P} of edge-disjoint X - Y paths.

- not used by \mathcal{P} : bidirected,
- used by \mathcal{P} : directed in the opposite direction.

residual graph

Theorem

An (X, Y)-cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|))$.

We try to grow a collection \mathcal{P} of edge-disjoint X - Y paths.

- not used by \mathcal{P} : bidirected,
- used by \mathcal{P} : directed in the opposite direction.

residual graph

Theorem

An (X, Y)-cut of size at most k (if exists) can be found in time $O(k \cdot (|V(G)| + |E(G)|))$.

We try to grow a collection \mathcal{P} of edge-disjoint X - Y paths.

- not used by \mathcal{P} : bidirected,
- used by \mathcal{P} : directed in the opposite direction.

Fact: The function δ is **submodular:** for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$

Fact: The function δ is **submodular:** for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$

Fact: The function δ is **submodular**: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ 0 1 1 0

Fact: The function δ is **submodular**: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ $1 \qquad 0 \qquad 1 \qquad 0$

Fact: The function δ is **submodular**: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ $0 \qquad 1 \qquad 0 \qquad 1$

Fact: The function δ is **submodular**: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ $1 \qquad 0 \qquad 0 \qquad 1$

Fact: The function δ is **submodular**: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ $1 \qquad 1 \qquad 1 \qquad 1$

Fact: The function δ is **submodular**: for arbitrary sets A, B, $|\delta(A)| + |\delta(B)| \ge |\delta(A \cap B)| + |\delta(A \cup B)|$ $1 \qquad 1 \qquad 0 \qquad 0$

Lemma

Let λ be the minimum (X, Y)-cut size. There is a unique maximal $R_{\max} \supseteq X$ such that $\delta(R_{\max})$ is an (X, Y)-cut of size λ .

Lemma

Let λ be the minimum (X, Y)-cut size. There is a unique maximal $R_{\max} \supseteq X$ such that $\delta(R_{\max})$ is an (X, Y)-cut of size λ .

Proof: Let $R_1, R_2 \supseteq X$ be two sets such that $\delta(R_1), \delta(R_2)$ are (X, Y)-cuts of size λ .

$$\begin{split} |\delta(R_1)| + |\delta(R_2)| &\geq |\delta(R_1 \cap R_2)| + |\delta(R_1 \cup R_2)| \\ \lambda & \lambda &\geq \lambda \\ &\Rightarrow |\delta(R_1 \cup R_2)| \leq \lambda \end{split}$$

Note: Analogous result holds for a unique minimal R_{\min} .

Finding R_{\min} and R_{\max}

Lemma

Given a graph G and sets $X, Y \subseteq V(G)$, the sets R_{\min} and R_{\max} can be found in polynomial time.

Proof: Iteratively add vertices to X if they do not increase the minimum X - Y cut size. When the process stops, $X = R_{max}$. Similar for R_{min} .

But we can do better!

Finding R_{\min} and R_{\max}

Lemma

Given a graph G and sets $X, Y \subseteq V(G)$, the sets R_{\min} and R_{\max} can be found in $O(\lambda \cdot (|V(G)| + |E(G)|))$ time, where λ is the minimum X - Y cut size.

Proof: Look at the residual graph.

 R_{\min} : vertices reachable from X. R_{\max} : vertices from which Y is **not** reachable.

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in R. **Definition:** A set S of edges is a **minimal** (X, Y)-**cut** if there is no X - Y path in $G \setminus S$ and no proper subset of S breaks every X - Y path.

Observation: Every minimal (X, Y)-cut *S* can be expressed as $S = \delta(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition

A minimal (X, Y)-cut $\delta(R)$ is **important** if there is no (X, Y)-cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important $(\delta(R)$ is important if $R = R_{max}$).

Definition

A minimal (X, Y)-cut $\delta(R)$ is **important** if there is no (X, Y)-cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important $(\delta(R)$ is important if $R = R_{max}$).

Definition

A minimal (X, Y)-cut $\delta(R)$ is **important** if there is no (X, Y)-cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important $(\delta(R)$ is important if $R = R_{max}$).

The number of important cuts can be exponentially large. **Example:**

This graph has $2^{k/2}$ important (X, Y)-cuts of size at most k.

The number of important cuts can be exponentially large. **Example:**

This graph has $2^{k/2}$ important (X, Y)-cuts of size at most k.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Proof: Let λ be the minimum (X, Y)-cut size and let $\delta(R_{\max})$ be the unique important cut of size λ such that R_{\max} is maximal.

(1) We show that $R_{\max} \subseteq R$ for every important cut $\delta(R)$.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Proof: Let λ be the minimum (X, Y)-cut size and let $\delta(R_{\text{max}})$ be the unique important cut of size λ such that R_{max} is maximal. (1) We show that $R_{\max} \subseteq R$ for every important cut $\delta(R)$. By the submodularity of δ : $|\delta(R_{\max})| + |\delta(R)| \ge |\delta(R_{\max} \cap R)| + |\delta(R_{\max} \cup R)|$ $\geq \lambda \downarrow$ λ $|\delta(R_{\max} \cup R)| \leq |\delta(R)|$ 1 If $R \neq R_{\max} \cup R$, then $\delta(R)$ is not important.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Proof: Let λ be the minimum (X, Y)-cut size and let $\delta(R_{\text{max}})$ be the unique important cut of size λ such that R_{max} is maximal. (1) We show that $R_{\max} \subseteq R$ for every important cut $\delta(R)$. By the submodularity of δ : $|\delta(R_{\max})| + |\delta(R)| \ge |\delta(R_{\max} \cap R)| + |\delta(R_{\max} \cup R)|$ $\geq \lambda \downarrow$ λ $|\delta(R_{\max} \cup R)| \leq |\delta(R)|$ 1 If $R \neq R_{\max} \cup R$, then $\delta(R)$ is not important.

Thus the important (X, Y)- and (R_{\max}, Y) -cuts are the same. \Rightarrow We can assume $X = R_{\max}$.

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the cut or not.

$$X = R_{\max} \frac{u}{v} \qquad Y$$

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the cut or not.

$$X = R_{\max} \frac{u}{v} \qquad Y$$

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-cut of size at most k - 1 in $G \setminus uv$.

Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -cut of size at most k in G.

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the cut or not.

$$X = R_{\max} \frac{u}{v} \qquad Y$$

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-cut of size at most k - 1 in $G \setminus uv$.

⇒ k decreases by one, λ decreases by at most 1. Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -cut of size at most k in G.

 \Rightarrow k remains the same, λ increases by 1.

(2) Search tree algorithm for enumerating all these cuts:

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the cut or not.

$$X = R_{\max} \frac{u}{v} \qquad Y$$

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-cut of size at most k - 1 in $G \setminus uv$.

⇒ k decreases by one, λ decreases by at most 1. Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -cut of size at most k in G.

 \Rightarrow k remains the same, λ increases by 1.

The measure $2k - \lambda$ decreases in each step. \Rightarrow Height of the search tree $\leq 2k$ $\Rightarrow \leq 2^{2k} = 4^k$ important cuts of size at most k.

Important cuts — some details

We are using the following two statements:

Branch 1: If $uv \in S$, then

S is an important (X, Y)-cut in G

$$\blacktriangleright \begin{array}{c} S \setminus uv \text{ is an important} \\ (X, Y) \text{-cut in } G \setminus uv \end{array}$$

Branch 2: If *S* is an $(X \cup v, Y)$ -cut, then

S is an important (X, Y)-cut in G

 $\begin{array}{c} S \text{ is an important } (X \cup v, Y) \\ \text{cut in } G \end{array}$

Important cuts — some details

We are using the following two statements:

Branch 1: If $uv \in S$, then

tant (X, Y)-cut in G.

Branch 2: If *S* is an $(X \cup v, Y)$ -cut, then

S is an important (X, Y)-cut in G

S is an important $(X \cup v, Y)$ cut in G

Converse is true!
Important cuts — some details

We are using the following two statements:

Branch 1: If $uv \in S$, then

Converse is not true:

Set $\{ab, ay\}$ is important (X, Y)-cut in $G \setminus xb$, but $\{xb, ab, ay\}$ is not an important (X, Y)-cut in G.

Branch 2: If *S* is an $(X \cup v, Y)$ -cut, then

S is an important (X, Y)-cut in G

S is an important $(X \cup v, Y)$ cut in G

Converse is true!

Important cuts — algorithm

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k and they can be enumerated in time $O(4^k \cdot k \cdot (|V(G)| + |E(G)|))$.

Algorithm for enumerating important cuts:

- Handle trivial cases ($k = 0, \lambda = 0, k < \lambda$)
- Ind Rmax.
- (a) Choose an edge uv of $\delta(R_{max})$.
 - Recurse on $(G uv, R_{max}, Y, k 1)$.
 - Recurse on $(G, R_{\max} \cup v, Y, k)$.
- One check if the returned cuts are important and throw away those that are not.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k.

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-cut of size k. The number of subtrees with k leaves is the Catalan number

$$C_{k-1} = \frac{1}{k} \binom{2k-2}{k-1} \ge 4^k / \operatorname{poly}(k).$$
 16

Definition: A multiway cut of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

Polynomial for |T| = 2, but NP-hard for any fixed $|T| \ge 3$ [Dalhaus et al. 1994].

Definition: A multiway cut of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

Trivial to solve in polynomial time for fixed k (in time $n^{O(k)}$).

Theorem

MULTIWAY CUT can be solved in time $4^k \cdot k^3 \cdot (|V(G)| + |E(G)|)$.

Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$ -cut.

Intuition: Consider a $t \in T$. A subset of the solution S is a $(t, T \setminus t)$ -cut.

There are many such cuts.

Intuition: Consider a $t \in T$. A subset of the solution *S* is a $(t, T \setminus t)$ -cut.

There are many such cuts.

Intuition: Consider a $t \in T$. A subset of the solution *S* is a $(t, T \setminus t)$ -cut.

There are many such cuts.

But a cut farther from t and closer to $T \setminus t$ seems to be more useful.

$\ensuremath{\operatorname{MULTIWAY}}\xspace$ CUT and important cuts

Pushing Lemma

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

$\ensuremath{\operatorname{MULTIWAY}}\xspace$ CUT and important cuts

Pushing Lemma

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

$\ensuremath{\mathrm{MULTIWAY}}\xspace$ CUT and important cuts

Pushing Lemma

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

 $\delta(R)$ is not important, then there is an important cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace *S* with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

$\ensuremath{\mathrm{MULTIWAY}}\xspace$ CUT and important cuts

Pushing Lemma

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

 $\delta(R)$ is not important, then there is an important cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \le |\delta(R)|$. Replace S with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \le |S|$

S' is a multiway cut: (1) There is no t-u path in $G \setminus S'$ and (2) a u-v path in $G \setminus S'$ implies a t-u path, a contradiction.

$\ensuremath{\mathrm{MULTIWAY}}\xspace$ CUT and important cuts

Pushing Lemma

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

 $\delta(R)$ is not important, then there is an important cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \le |\delta(R)|$. Replace S with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \le |S|$

S' is a multiway cut: (1) There is no t-u path in $G \setminus S'$ and (2) a u-v path in $G \setminus S'$ implies a t-u path, a contradiction.

Algorithm for MULTIWAY CUT

- If every vertex of *T* is in a different component, then we are done.
- 2 Let $t \in T$ be a vertex that is not separated from every $T \setminus t$.
- Solution Branch on a choice of an important $(t, T \setminus t)$ cut S of size at most k.
- Set $G := G \setminus S$ and k := k |S|.
- **6** Go to step 1.

We branch into at most 4^k directions at most k times: $4^{k^2} \cdot n^{O(1)}$ running time.

Next: Better analysis gives 4^k bound on the size of the search tree.

A refined bound

We have seen: at most 4^k important cut of size at most k. Better bound:

Lemma

If S is the set of all important (X, Y)-cuts, then $\sum_{S \in S} 4^{-|S|} \le 1$ holds.

A refined bound

Lemma

If S is the set of all important (X, Y)-cuts, then $\sum_{S \in S} 4^{-|S|} \le 1$ holds.

Proof: We show the stronger statement $\sum_{S \in S} 4^{-|S|} \le 2^{-\lambda}$, where λ is the minimum (X, Y)-cut size.

Branch 1: removing uv.

 λ increases by at most one and we add the edge uv to each separator, increasing the cut by one. Thus the total contribution is

$$\sum_{S \in \mathcal{S}_1} 4^{-(|S|+1)} = \sum_{S \in \mathcal{S}_1} 4^{-|S|} / 4 \le 2^{-(\lambda-1)} / 4 = 2^{-\lambda} / 2.$$

Branch 2: replacing X with $X \cup v$. λ increases by at least one. Thus the total contribution is

$$\sum_{S \in \mathcal{S}_2} 4^{-|S|} \le 2^{-(\lambda+1)} = 2^{-\lambda}/2.$$

Refined analysis for $\operatorname{MULTIWAY}\,\operatorname{CUT}$

Lemma

The search tree for the MULTIWAY CUT algorithm has 4^k leaves.

Proof: Let L_k be the maximum number of leaves with parameter k. We prove $L_k \leq 4^k$ by induction. After enumerating the set S_k of important separators of size $\leq k$, we branch into $|S_k|$ directions.

$$\sum_{S\in\mathcal{S}_k} 4^{k-|S|} = 4^k \cdot \sum_{S\in\mathcal{S}_k} 4^{-|S|} \leq 4^k$$

Still need: bound the work at each node.

Refined enumeration algorithms

We have seen:

Lemma

We can enumerate every important (X, Y)-cut of size at most k in time $O(4^k \cdot k \cdot (|V(G)| + |E(G)|))$.

Problem: running time at a node of the recursion tree is not linear in the number children.

Refined enumeration algorithms

We have seen:

Lemma

We can enumerate every important (X, Y)-cut of size at most k in time $O(4^k \cdot k \cdot (|V(G)| + |E(G)|))$.

Problem: running time at a node of the recursion tree is not linear in the number children.

Easily follows:

Lemma

We can enumerate a superset S'_k of every important (X, Y)-cut of size at most k in time $O(|S'_k| \cdot k^2 \cdot (|V(G)| + |E(G)|))$ such that $\sum_{S \in S'_k} 4^{-|S|} \le 1$ holds.

Refined enumeration algorithms

We have seen:

Lemma

We can enumerate every important (X, Y)-cut of size at most k in time $O(4^k \cdot k \cdot (|V(G)| + |E(G)|))$.

Problem: running time at a node of the recursion tree is not linear in the number children.

Needs more work:

Lemma

We can enumerate the set S_k of every important (X, Y)-cut of size at most k in time $O(|S_k| \cdot k^2 \cdot (|V(G)| + |E(G)|))$.

Algorithm for MULTIWAY CUT

Theorem MULTIWAY CUT can be solved in time $O(4^k \cdot k^3 \cdot (|V(G)| + |E(G)|)).$

- If every vertex of *T* is in a different component, then we are done.
- 2 Let $t \in T$ be a vertex that is not separated from every $T \setminus t$.
- Solution Branch on a choice of an important $(t, T \setminus t)$ cut S of size at most k.
- Set $G := G \setminus S$ and k := k |S|.
- Go to step 1.

Simple application

Lemma:

At most $k \cdot 4^k$ edges incident to t can be part of an inclusionwise minimal s - t cut of size at most k.

Simple application

Lemma:

At most $k \cdot 4^k$ edges incident to t can be part of an inclusionwise minimal s - t cut of size at most k.

Proof: We show that every such edge is contained in an important (s, t)-cut of size at most k.

Suppose that $vt \in \delta(R)$ and $|\delta(R)| = k$.

Simple application

Lemma:

At most $k \cdot 4^k$ edges incident to t can be part of an inclusionwise minimal s - t cut of size at most k.

Proof: We show that every such edge is contained in an important (s, t)-cut of size at most k.

Suppose that $vt \in \delta(R)$ and $|\delta(R)| = k$. There is an important (s, t)-cut $\delta(R')$ with $R \subseteq R'$ and $|\delta(R')| \leq k$. Clearly, $vt \in \delta(R')$: $v \in R$, hence $v \in R'$.

Let s, t_1, \ldots, t_n be vertices and S_1, \ldots, S_n be sets of at most k edges such that S_i separates t_i from s, but S_i does not separate t_j from s for any $j \neq i$.

Let s, t_1, \ldots, t_n be vertices and S_1, \ldots, S_n be sets of at most k edges such that S_i separates t_i from s, but S_i does not separate t_j from s for any $j \neq i$.

Let s, t_1, \ldots, t_n be vertices and S_1, \ldots, S_n be sets of at most k edges such that S_i separates t_i from s, but S_i does not separate t_j from s for any $j \neq i$.

Let s, t_1, \ldots, t_n be vertices and S_1, \ldots, S_n be sets of at most k edges such that S_i separates t_i from s, but S_i does not separate t_j from s for any $j \neq i$.

Let s, t_1, \ldots, t_n be vertices and S_1, \ldots, S_n be sets of at most k edges such that S_i separates t_i from s, but S_i does not separate t_j from s for any $j \neq i$.

It is possible that n is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_i except t_i ?

Let s, t_1, \ldots, t_n be vertices and S_1, \ldots, S_n be sets of at most k edges such that S_i separates t_i from s, but S_i does not separate t_j from s for any $j \neq i$.

It is possible that n is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_i except t_i ?

Let s, t_1, \ldots, t_n be vertices and S_1, \ldots, S_n be sets of at most k edges such that S_i separates t_i from s, but S_i does not separate t_j from s for any $j \neq i$.

It is possible that n is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_i except t_i ?

Let s, t_1, \ldots, t_n be vertices and S_1, \ldots, S_n be sets of at most k edges such that S_i separates t_i from s, but S_i does not separate t_j from s for any $j \neq i$.

It is possible that n is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_i except t_i ?

Lemma

If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.
Anti isolation

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Lemma

If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

Proof: Add a new vertex *t*. Every edge tt_i is part of an (inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the previous lemma.

Anti isolation

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Lemma

If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

Proof: Add a new vertex *t*. Every edge tt_i is part of an (inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the previous lemma.

Anti isolation

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Lemma

If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

Proof: Add a new vertex *t*. Every edge tt_i is part of an (inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the previous lemma.

Multicut

MULTICUTInput:Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer kFind:A set S of edges such that $G \setminus S$ has no $s_i - t_i$ path
for any i.

Theorem

MULTICUT can be solved in time $f(k, \ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).

Multicut

Multicut		
Input:	Graph G, pairs $(s_1, t_1), \ldots, (s_\ell, t_\ell)$, integer k	
Find:	A set S of edges such that $G \setminus S$ has no s_i - t_i path for any i .	

Theorem

MULTICUT can be solved in time $f(k, \ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).

Proof: The solution partitions $\{s_1, t_1, \ldots, s_\ell, t_\ell\}$ into components. Guess this partition, contract the vertices in a class, and solve MULTIWAY CUT.

Theorem

MULTICUT is FPT parameterized by the size k of the solution.

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving *R*. **Observation:** Every inclusionwise-minimal directed (X, Y)-cut *S* can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$. **Definition:** A minimal (X, Y)-cut $\vec{\delta}(R)$ is **important** if there is no (X, Y)-cut $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \le |\vec{\delta}(R)|$.

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving *R*. **Observation:** Every inclusionwise-minimal directed (X, Y)-cut *S* can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$. **Definition:** A minimal (X, Y)-cut $\vec{\delta}(R)$ is **important** if there is no (X, Y)-cut $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \le |\vec{\delta}(R)|$.

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving *R*. **Observation:** Every inclusionwise-minimal directed (X, Y)-cut *S* can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$. **Definition:** A minimal (X, Y)-cut $\vec{\delta}(R)$ is **important** if there is no (X, Y)-cut $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \leq |\vec{\delta}(R)|$.

The proof for the undirected case goes through for the directed case:

Theorem

There are at most 4^k important directed (X, Y)-cuts of size at most k.

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Directed counterexample:

Unique solution with k = 1 edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size).

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Directed counterexample:

Unique solution with k = 1 edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size).

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Directed counterexample:

Unique solution with k = 1 edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size).

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Problem in the undirected proof:

Replacing R by R' cannot create a $t \rightarrow u$ path, but can create a $u \rightarrow t$ path.

The undirected approach does not work: the pushing lemma is not true.

Pushing Lemma (for undirected graphs)

Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Using additional techniques, one can show:

Theorem

DIRECTED MULTIWAY CUT is FPT parameterized by the size k of the solution.

DIRECTED MULTICUT Input: Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer k Find: A set S of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem

DIRECTED MULTICUT is W[1]-hard parameterized by k.

DIRECTED MULTICUT Input: Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer k Find: A set S of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem

DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case $\ell = 2$ can be reduced to DIRECTED MULTIWAY CUT:

DIRECTED MULTICUT Input: Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer k Find: A set S of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem

DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case $\ell = 2$ can be reduced to DIRECTED MULTIWAY CUT:

DIRECTED MULTICUT Input: Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer k Find: A set S of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem

DIRECTED MULTICUT is W[1]-hard parameterized by k.

But the case $\ell = 2$ can be reduced to DIRECTED MULTIWAY CUT:

DIRECTED MULTICUT Input: Graph G, pairs $(s_1, t_1), \ldots, (s_{\ell}, t_{\ell})$, integer k Find: A set S of edges such that $G \setminus S$ has no $s_i \to t_i$ path for any *i*.

Theorem

DIRECTED MULTICUT is W[1]-hard parameterized by k.

Corollary

DIRECTED MULTICUT with $\ell = 2$ is FPT parameterized by the size *k* of the solution.

? Open: Is DIRECTED MULTICUT with $\ell = 3$ FPT? Open: Is there an $f(k, \ell) \cdot n^{O(1)}$ algorithm for DIRECTED MULTICUT?

Skew Multicut

Skew Multicut

Pushing Lemma

SKEW MULTCUT problem has a solution S that contains an important $(s_{\ell}, \{t_1, \ldots, t_{\ell}\})$ -cut.

Skew Multicut

Pushing Lemma

SKEW MULTCUT problem has a solution S that contains an important $(s_{\ell}, \{t_1, \ldots, t_{\ell}\})$ -cut.

Theorem

SKEW MULTICUT can be solved in time $4^k \cdot n^{O(1)}$.

DIRECTED FEEDBACK VERTEX SET

DIRECTED FEEDBACK VERTEX/EDGE SETInput:Directed graph G, integer kFind:A set S of k vertices/edges such that $G \setminus S$ is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the edge version here.

Theorem

DIRECTED FEEDBACK EDGE SET is FPT parameterized by the size k of the solution.

Solution uses the technique of **iterative compression** introduced by [Reed, Smith, Vetta 2004].

DIRECTED FEEDBACK EDGE SET COMPRESSION		
Input:	Directed graph G , integer k ,	
	a set W of $k + 1$ edges such that $G \setminus W$	
Find:	A set S of k edges such that $G \setminus S$ is	
	acyclic.	

Easier than the original problem, as the extra input W gives us useful structural information about G.

Lemma

The compression problem is FPT parameterized by k.

Directed Feedback Edge Set Compression		
Input:	Directed graph G , integer k ,	
	a set W of $k + 1$ vertices such that $G \setminus W$ is acyclic	
Find:	A set S of k edges such that $G \setminus S$ is acyclic.	

Easier than the original problem, as the extra input W gives us useful structural information about G.

Lemma

The compression problem is FPT parameterized by k.

A useful trick for edge deletion problems: we define the compression problem in a way that a solution of k + 1 vertices are given and we have to find a solution of k edges.

Proof: Let $W = \{w_1, \dots, w_{k+1}\}$ Let us split each w_i into an edge $\overrightarrow{t_i s_i}$.

By guessing the order of {w₁,..., w_{k+1}} in the acyclic ordering of G \ S, we can assume that w₁ < w₂ < ··· < w_{k+1} in G \ S [(k + 1)! possibilities].

Proof: Let $W = \{w_1, \dots, w_{k+1}\}$ Let us split each w_i into an edge $\overrightarrow{t_i s_i}$.

Claim:

 $G \setminus S$ is acyclic and has an ordering with $w_1 < w_2 < \cdots < w_{k+1}$ \downarrow S covers every $s_i \rightarrow t_j$ path for every $i \ge j$ \downarrow $G \setminus S$ is acyclic

Proof: Let $W = \{w_1, \dots, w_{k+1}\}$ Let us split each w_i into an edge $\overrightarrow{t_i s_i}$.

Claim:

 $G \setminus S$ is acyclic and has an ordering with $w_1 < w_2 < \cdots < w_{k+1}$ $\downarrow \\ S$ covers every $s_i \rightarrow t_j$ path for every $i \ge j$ $\downarrow \\ G \setminus S$ is acyclic

Proof: Let $W = \{w_1, \dots, w_{k+1}\}$ Let us split each w_i into an edge $\overrightarrow{t_i s_i}$.

Claim:

 $G \setminus S$ is acyclic and has an ordering with $w_1 < w_2 < \cdots < w_{k+1}$ $\downarrow \\ S$ covers every $s_i \rightarrow t_j$ path for every $i \ge j$ $\downarrow \\ G \setminus S$ is acyclic

⇒ We can solve the compression problem by (k + 1)! applications of SKEW MULTICUT.

We have given a $f(k)n^{O(1)}$ algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSIONInput:Directed graph G, integer k,
a set W of k + 1 vertices such that $G \setminus W$
is acyclicFind:A set S of k edges such that $G \setminus S$ is
acyclic.

Nice, but how do we get a solution W of size k + 1?

We have given a $f(k)n^{O(1)}$ algorithm for the following problem:

DIPECTED FEEDBACK EDGE SET COMPRESSION		
Input:	Directed graph G , integer k ,	
	a set W of $k+1$ vertices such that $G\setminus W$	
	is acyclic	
Find:	A set S of k edges such that $G \setminus S$ is	
	acyclic.	

Nice, but how do we get a solution W of size k + 1?

We get it for free!

Powerful technique: **iterative compression** (introduced by [Reed, Smith, Vetta 2004] for BIPARTITE DELETION).

Let v_1, \ldots, v_n be the edges of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$.

For every i = 1, ..., n, we find a set S_i of at most k edges such that $G_i \setminus S_i$ is acyclic.

Let v_1, \ldots, v_n be the edges of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$.

For every i = 1, ..., n, we find a set S_i of at most k edges such that $G_i \setminus S_i$ is acyclic.

- For i = 1, we have the trivial solution $S_i = \emptyset$.
- Suppose we have a solution S_i for G_i . Let W_i contain the head of each edge in S_i . Then $W_i \cup \{v_{i+1}\}$ is a set of at most k + 1 vertices whose removal makes G_{i+1} acyclic.
- Use the compression algorithm for G_{i+1} with the set $W_i \cup \{v_{i+1}\}$.
 - If there is no solution of size k for G_{i+1} , then we can stop.
 - Otherwise the compression algorithm gives a solution *S*_{*i*+1} of size *k* for *G*_{*i*+1}.

We call the compression algorithm n times, everything else is polynomial.

 \Rightarrow Directed Feedback Edge Set is FPT.

Summary

- Definition of important cuts.
- Combinatorial bound on the number of important cuts.
- Pushing argument: we can assume that the solution contains an important cut. Solves MULTIWAY CUT, SKEW MULTIWAY CUT.
- Iterative compression reduces DIRECTED FEEDBACK VERTEX SET to SKEW MULTIWAY CUT.