Minicourse on parameterized algorithms and complexity

Part 3: Randomized techniques

Dániel Marx

Jagiellonian University in Kraków
April 21-23, 2015
Why randomized?

- A guaranteed error probability of 10^{-100} is as good as a deterministic algorithm.
 (Probability of hardware failure is larger!)
- Randomized algorithms can be more efficient and/or conceptually simpler.
- Can be the first step towards a deterministic algorithm.
Polynomial-time vs. FPT randomization

Polynomial-time randomized algorithms
- Randomized selection to pick a typical, unproblematic, average element/subset.
- Success probability is constant or at most polynomially small.

Randomized FPT algorithms
- Randomized selection to satisfy a bounded number of (unknown) constraints.
- Success probability might be exponentially small.
Randomization

There are two main ways randomization appears:

- Algebraic techniques
 - Schwartz-Zippel Lemma
 - Linear matroids
- This lecture: combinatorial techniques.
Randomization as reduction

Problem A
(what we want to solve)

Randomized magic

Problem B
(what we can solve)
Color Coding

k-Path

Input: A graph G, integer k.

Find: A simple path of length k.

Note: The problem is clearly NP-hard, as it contains the Hamiltonian Path problem.

Theorem [Alon, Yuster, Zwick 1994]

k-Path can be solved in time $2^{O(k)} \cdot n^{O(1)}$.

Color Coding

- Assign colors from \([k]\) to vertices \(V(G)\) uniformly and independently at random.

\[
\begin{array}{c}
\text{Diagram of a graph with vertices and edges.}
\end{array}
\]
Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

Check if there is a path colored $1 - 2 - \cdots - k$; output "YES" or "NO". If there is no k-path: no path colored $1 - 2 - \cdots - k$ exists \Rightarrow "NO". If there is a k-path: the probability that such a path is colored $1 - 2 - \cdots - k$ is $\frac{1}{k^k}$ thus the algorithm outputs "YES" with at least that probability.
Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

- Check if there is a path colored $1 - 2 - \cdots - k$; output “YES” or “NO”.
 - If there is no k-path: no path colored $1 - 2 - \cdots - k$ exists \Rightarrow “NO”.
 - If there is a k-path: the probability that such a path is colored $1 - 2 - \cdots - k$ is k^{-k} thus the algorithm outputs “YES” with at least that probability.
Error probability

Useful fact

If the probability of success is at least p, then the probability that the algorithm does not say “YES” after $1/p$ repetitions is at most

$$(1 - p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38$$
Error probability

Useful fact

If the probability of success is at least \(p \), then the probability that the algorithm does not say “YES” after \(1/p \) repetitions is at most

\[
(1 - p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38
\]

Thus if \(p > k^{-k} \), then error probability is at most \(1/e \) after \(k^k \) repetitions.

Repeating the whole algorithm a constant number of times can make the error probability an arbitrary small constant.

For example, by trying \(100 \cdot k^k \) random colorings, the probability of a wrong answer is at most \(1/e^{100} \).
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check is if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.

9
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Finding a path colored $1 - 2 - \cdots - k$

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.
Color Coding

k-PATH

Color Coding

success probability:

k^{-k}

Finding a $1 - 2 - \cdots - k$ colored path

does not exist.

polynomial-time solvable
Improved Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

- Check if there is a **colorful** path where each color appears exactly once on the vertices; output “YES” or “NO”.

![Graph with colored vertices]

- 4
- 4
- 5
- 4
- 3
- 3
- 2
- 2
- 1
- 2
Improved Color Coding

- Assign colors from \([k]\) to vertices \(V(G)\) uniformly and independently at random.

Check if there is a colorful path where each color appears exactly once on the vertices; output “YES” or “NO”.

- If there is no \(k\)-path: no colorful path exists \(\Rightarrow “NO”\).
- If there is a \(k\)-path: the probability that it is colorful is

\[
\frac{k!}{k^k} > \left(\frac{k}{e}\right)^k = e^{-k},
\]

thus the algorithm outputs “YES” with at least that probability.
Improved Color Coding

- Assign colors from $[k]$ to vertices $V(G)$ uniformly and independently at random.

![Graph with colors]

- Repeating the algorithm $100e^k$ times decreases the error probability to e^{-100}.

How to find a colorful path?
- Try all permutations ($k! \cdot n^{O(1)}$ time)
- Dynamic programming ($2^k \cdot n^{O(1)}$ time)
Finding a colorful path

Subproblems:
We introduce $2^k \cdot |V(G)|$ Boolean variables:

\[x(v, C) = \text{TRUE} \text{ for some } v \in V(G) \text{ and } C \subseteq [k] \]

\[\nuparrow \]

There is a path P ending at v such that each color in C appears on P exactly once and no other color appears.

Answer:
There is a colorful path $\iff x(v, [k]) = \text{TRUE}$ for some vertex v.

Initialization & Recurrence:
Exercise.
Improved Color Coding

\[\text{k-PATH} \]

Color Coding

success probability:

\[e^{-k} \]

Finding a colorful path

Solvable in time

\[2^k \cdot n^{O(1)} \]
Derandomization

Definition

A family \mathcal{H} of functions $[n] \rightarrow [k]$ is a k-perfect family of hash functions if for every $S \subseteq [n]$ with $|S| = k$, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S$, $x \neq y$.

Theorem [Alon, Yuster, Zwick 1994]

There is a k-perfect family of functions $[n] \rightarrow [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).
Derandomization

Definition
A family \mathcal{H} of functions $[n] \to [k]$ is a k-perfect family of hash functions if for every $S \subseteq [n]$ with $|S| = k$, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S, x \neq y$.

Theorem [Alon, Yuster, Zwick 1994]
There is a k-perfect family of functions $[n] \to [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).

Instead of trying $O(e^k)$ random colorings, we go through a k-perfect family \mathcal{H} of functions $V(G) \to [k]$.

If there is a solution S
\Rightarrow The vertices of S are colorful for at least one $h \in \mathcal{H}$
\Rightarrow Algorithm outputs “YES”.
\Rightarrow k-PATH can be solved in deterministic time $2^{O(k)} \cdot n^{O(1)}$.
Derandomized Color Coding

\(k \)-PATH

\(k \)-perfect family

\(2^{O(k)} \log n \) functions

Finding a colorful path

Solvable in time

\(2^k \cdot n^{O(1)} \)
Bounded-degree graphs

Meta theorems exist for bounded-degree graphs, but randomization is usually simpler.

Dense k-vertex Subgraph

Input: A graph G, integers k, m.

Find: A set of k vertices inducing $\geq m$ edges.

Note: on general graphs, the problem is W[1]-hard parameterized by k, as it contains k-CLIQUE.

Theorem

$\text{Dense } k\text{-vertex Subgraph}$ can be solved in randomized time $2^{k(d+1)} \cdot n^{O(1)}$ on graphs with maximum degree d.
Dense k-vertex Subgraph

- Remove each vertex with probability $1/2$ independently.
Dense k-vertex Subgraph

- Remove each vertex with probability $1/2$ independently.
- With probability 2^{-k} no vertex of the solution is removed.
- With probability 2^{-kd} every neighbor of the solution is removed.
- \Rightarrow We have to find a solution that is the union of connected components!
Dense k-vertex Subgraph

- Remove each vertex with probability $1/2$ independently.

- With probability 2^{-k} no vertex of the solution is removed.
- With probability 2^{-kd} every neighbor of the solution is removed.

\Rightarrow We have to find a solution that is the union of connected components!
Dense k-vertex Subgraph

- Remove each vertex with probability $1/2$ independently.

k_1 vertices
m_1 edges

k_2 vertices
m_2 edges

k_3 vertices
m_3 edges

\ldots

k_i vertices
m_i edges

Select connected components with

- at most k vertices and
- at least m edges.

What problem is this?
Dense k-vertex Subgraph

- Remove each vertex with probability $1/2$ independently.

<table>
<thead>
<tr>
<th>k_1 vertices</th>
<th>k_2 vertices</th>
<th>k_3 vertices</th>
<th>k_i vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1 edges</td>
<td>m_2 edges</td>
<td>m_3 edges</td>
<td>m_i edges</td>
</tr>
</tbody>
</table>

Select connected components with
- at most k vertices and
- at least m edges.

What problem is this?

KNAPSACK!
Dense k-vertex Subgraph

Select connected components with
- at most k vertices and
- at least m edges.

This is exactly KNAPSACK!
(I.e., pick objects of total weight at most S and value at least V.)

We can interpret
- number of vertices = weight of the items
- number of edges = value of the items

If the weights are integers, then DP solves the problem in time polynomial in the number of objects and the maximum weight.
Dense k-vertex Subgraph

Random deletions success probability: $2^{-k(d+1)}$

Polynomial time
Balanced Separation

Useful problem for recursion:

Balanced Separation

<table>
<thead>
<tr>
<th>Input:</th>
<th>A graph G, integers k, q.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find:</td>
<td>A set S of at most k vertices such that $G \setminus S$ has at least two components of size at least q each.</td>
</tr>
</tbody>
</table>

Theorem

Balanced Separation can be solved in randomized time $2^{O(q+k)} \cdot n^{O(1)}$.
Remove each vertex with probability $1/2$ independently.
Remove each vertex with probability $1/2$ independently.
Balanced Separation

Remove each vertex with probability $1/2$ independently.

With probability 2^{-k} every vertex of the solution is removed.

With probability 2^{-q} no vertex of T_1 is removed.

With probability 2^{-q} no vertex of T_2 is removed.
Remove each vertex with probability $1/2$ independently.

With probability 2^{-k} every vertex of the solution is removed.

With probability 2^{-q} no vertex of T_1 is removed.

With probability 2^{-q} no vertex of T_2 is removed.

⇒ The reduced graph G' has two components of size $\geq q$ that can be separated in the original graph G by k vertices.

For any pair of large components of G', we find a minimum $s - t$ cut in G.
Balanced Separation

Random deletions
success probability:
\[2^{-(k+2q)} \]

Minimum Cut

Polynomial time
Conclusions

- Randomization gives elegant solution to many problems.
- Derandomization is sometimes possible (but less elegant).
- Small (but $f(k)$) success probability is good for us.
- Reducing the problem we want to solve to a problem that is easier to solve.