Minicourse on parameterized algorithms and complexity

Part 3: Randomized techniques

Dániel Marx

Jagiellonian University in Kraków April 21-23, 2015

Why randomized?

- A guaranteed error probability of 10⁻¹⁰⁰ is as good as a deterministic algorithm.
 (Probability of hardware failure is larger!)
- Randomized algorithms can be more efficient and/or conceptually simpler.
- Can be the first step towards a deterministic algorithm.

Polynomial-time vs. FPT randomization

Polynomial-time randomized algorithms

- Randomized selection to pick a typical, unproblematic, average element/subset.
- Success probability is constant or at most polynomially small.

Randomized FPT algorithms

- Randomized selection to satisfy a bounded number of (unknown) constraints.
- Success probability might be exponentially small.

Randomization

There are two main ways randomization appears:

- Algebraic techniques
 - Schwartz-Zippel Lemma
 - Linear matroids
- This lecture: combinatorial techniques.

Randomization as reduction

Problem B (what we can solve)

k-Path

Input: A graph **G**, integer **k**.

Find: A simple path of length k.

Note: The problem is clearly NP-hard, as it contains the

Hamiltonian Path problem.

Theorem [Alon, Yuster, Zwick 1994]

k-PATH can be solved in time $2^{O(k)} \cdot n^{O(1)}$.

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

- Check if there is a path colored $1 2 \cdots k$; output "YES" or "NO".
 - If there is no k-path: no path colored $1 2 \cdots k$ exists \Rightarrow "NO".
 - If there is a k-path: the probability that such a path is colored $1-2-\cdots-k$ is k^{-k} thus the algorithm outputs "YES" with at least that probability.

Error probability

Useful fact

If the probability of success is at least p, then the probability that the algorithm does not say "YES" after 1/p repetitions is at most

$$(1-p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38$$

Error probability

Useful fact

If the probability of success is at least p, then the probability that the algorithm does not say "YES" after 1/p repetitions is at most

$$(1-p)^{1/p} < (e^{-p})^{1/p} = 1/e \approx 0.38$$

- Thus if $p > k^{-k}$, then error probability is at most 1/e after k^k repetitions.
- Repeating the whole algorithm a constant number of times can make the error probability an arbitrary small constant.
- For example, by trying $100 \cdot k^k$ random colorings, the probability of a wrong answer is at most $1/e^{100}$.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.

- Edges connecting nonadjacent color classes are removed.
- The remaining edges are directed towards the larger class.
- All we need to check if there is a directed path from class 1 to class k.

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

• Check if there is a **colorful** path where each color appears exactly once on the vertices; output "YES" or "NO".

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

- Check if there is a colorful path where each color appears exactly once on the vertices; output "YES" or "NO".
 - If there is no k-path: no **colorful** path exists \Rightarrow "NO".
 - If there is a k-path: the probability that it is colorful is

$$\frac{k!}{k^k} > \frac{\left(\frac{k}{e}\right)^k}{k^k} = e^{-k},$$

thus the algorithm outputs "YES" with at least that probability.

• Assign colors from [k] to vertices V(G) uniformly and independently at random.

• Repeating the algorithm $100e^k$ times decreases the error probability to e^{-100} .

How to find a colorful path?

- Try all permutations $(k! \cdot n^{O(1)})$ time
- Dynamic programming $(2^k \cdot n^{O(1)})$ time

Finding a colorful path

Subproblems:

We introduce $2^k \cdot |V(G)|$ Boolean variables:

$$x(v,C) = \mathsf{TRUE}$$
 for some $v \in V(G)$ and $C \subseteq [k]$

There is a path *P* ending at *v* such that each color in *C* appears on *P* exactly once and no other color appears.

Answer:

There is a colorful path $\iff x(v, [k]) = \mathsf{TRUE}$ for some vertex v.

Initialization & Recurrence:

Exercise.

Derandomization

Definition

A family \mathcal{H} of functions $[n] \to [k]$ is a k-perfect family of hash functions if for every $S \subseteq [n]$ with |S| = k, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S$, $x \neq y$.

Theorem [Alon, Yuster, Zwick 1994]

There is a k-perfect family of functions $[n] \to [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).

Derandomization

Definition

A family \mathcal{H} of functions $[n] \to [k]$ is a k-perfect family of hash functions if for every $S \subseteq [n]$ with |S| = k, there is an $h \in \mathcal{H}$ such that $h(x) \neq h(y)$ for any $x, y \in S$, $x \neq y$.

Theorem [Alon, Yuster, Zwick 1994]

There is a k-perfect family of functions $[n] \to [k]$ having size $2^{O(k)} \log n$ (and can be constructed in time polynomial in the size of the family).

Instead of trying $O(e^k)$ random colorings, we go through a k-perfect family \mathcal{H} of functions $V(G) \to [k]$.

If there is a solution S

- \Rightarrow The vertices of S are colorful for at least one $h \in \mathcal{H}$
- ⇒ Algorithm outputs "YES".
- \Rightarrow k-PATH can be solved in **deterministic** time $2^{O(k)} \cdot n^{O(1)}$.

Derandomized Color Coding

Bounded-degree graphs

Meta theorems exist for bounded-degree graphs, but randomization is usually simpler.

Dense k-vertex Subgraph

Input: A graph G, integers k, m.

Find: A set of k vertices inducing $\geq m$ edges.

Note: on general graphs, the problem is W[1]-hard parameterized by k, as it contains k-CLIQUE.

Theorem

DENSE k-VERTEX SUBGRAPH can be solved in randomized time $2^{k(d+1)} \cdot n^{O(1)}$ on graphs with maximum degree d.

- With probability 2^{-k} no vertex of the solution is removed.
- With probability 2^{-kd} every neighbor of the solution is removed.
- ⇒ We have to find a solution that is the union of connected components!

- With probability 2^{-k} no vertex of the solution is removed.
- With probability 2^{-kd} every neighbor of the solution is removed.
- ⇒ We have to find a solution that is the union of connected components!

• Remove each vertex with probability 1/2 independently.

Select connected components with

- at most k vertices and
- at least *m* edges.

What problem is this?

DENSE k-VERTEX SUBGRAPH

Remove each vertex with probability 1/2 independently.

Select connected components with

- at most k vertices and
- at least *m* edges.

What problem is this?

KNAPSACK!

Select connected components with

- at most k vertices and
- at least *m* edges.

This is exactly KNAPSACK! (I.e., pick objects of total weight at most S and value at least V.)

We can interpret

- number of vertices = weight of the items
- number of edges = value of the items

If the weights are integers, then DP solves the problem in time polynomial in the number of objects and the maximum weight.

DENSE k-VERTEX SUBGRAPH

Polynomial time

Useful problem for recursion:

BALANCED SEPARATION

Input: A graph G, integers k, q.

Find:

A set S of at most k vertices such that $G \setminus S$ has at least two components of size at least q each.

Theorem

BALANCED SEPARATION can be solved in randomized time $2^{O(q+k)} \cdot n^{O(1)}$.

- Remove each vertex with probability 1/2 independently.
- With probability 2^{-k} every vertex of the solution is removed.
- With probability 2^{-q} no vertex of T_1 is removed.
- With probability 2^{-q} no vertex of T_2 is removed.

- Remove each vertex with probability 1/2 independently.
- With probability 2^{-k} every vertex of the solution is removed.
- With probability 2^{-q} no vertex of T_1 is removed.
- With probability 2^{-q} no vertex of T_2 is removed.
- \Rightarrow The reduced graph G' has two components of size $\geq q$ that can be separated in the original graph G by k vertices.
- For any pair of large components of G', we find a minimum s-t cut in G.

Conclusions

- Randomization gives elegant solution to many problems.
- Derandomization is sometimes possible (but less elegant).
- Small (but f(k)) success probability is good for us.
- Reducing the problem we want to solve to a problem that is easier to solve.