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What iterative compression is?

Iterative compression — main idea
Recursive approach exploiting instance structure exposed by a bit
oversized solution.

Solution compression:
1 First, apply some simple trick so that you can assume that a

slightly too large solution is available.
2 Then exploit the structure it imposes on the input graph to

construct an optimal solution.
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Vertex Cover

Vertex Cover
Input: undirected G , integer k
Question: is there a subset X ⊆ V (G ) of size at most k such that
for each uv ∈ E (G ) we have {u, v} ∩ X 6= ∅.
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Additional input: oversized solution

We exemplify the iterative compression technique by showing
2knO(1) algorithm for Vertex Cover.

Vertex Cover Compression
Input: undirected G , integer k,

vertex cover Z ⊆ V (G ) of size at most 2k
Question: is there a vertex cover of size at most k?

Where do we get Z from?

How do we use Z?
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Additional input: oversized solution

Where do we get Z from?

Use polynomial time 2-approximation:

Find any inclusionwise maximal matching M.

If |M| > k , then no VC of size ¬ k exists.

Otherwise, set Z = V (M), we have |Z | ¬ 2k.
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Additional input: oversized solution

How do we use Z?

Guess X ∩ Z = XZ (by branching into 2|Z | ¬ 4k cases).
Check if Z \ XZ is independent and |XZ ∪ N(Z \ XZ )| ¬ k.

Z

XZ Z \ XZ

V \ Z

N(Z \ XZ ) ∩ (V \ Z )
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Additional input: oversized solution

How do we use Z?

We have obtained 2|Z |nO(1) ¬ 4knO(1) time algorithm.

Can we improve the dependency on k to 2k?

Notice that it would be enough to have |Z | ¬ k + 1, but so
far we only have |Z | ¬ 2k.
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Vertex Cover

Vertex Cover Compression
Input: undirected G , integer k,

vertex cover Z ⊆ V (G ) of size at most k + 1
Question: is there a vertex cover of size at most k?

Idea: get Z from recursion!
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Vertex Cover Compression
Input: undirected G , integer k,
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Bootstrapping

How to get Z of size at most k + 1?

Assume that an instance I = (G , k) without Z is given.

Pick any v ∈ V (G ) and solve I ′ = (G \ {v}, k) recursively.

If I ′ is a NO-instance then I is a NO-instance.

Otherwise set Z = X ∪ {v}, where X is a solution for I ′.

(G , k,Z ) is VC Compression instance to solve.

Lemma
f (k)nc time algorithm for VC Compression
implies f (k)nc+1 time algorithm for VC.
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Vertex Cover - summary

Lemma
f (k)nc time algorithm for VC Compression
implies f (k)nc+1 time algorithm for VC.

Reduction: Vertex Cover → Vertex Cover Compression.

Vertex Cover Compression can be solved in time 2|Z |nO(1),
which leads to 2knO(1) algorithm for VC.
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Outline

1 Iterative compression - introduction.
2 Learning by example - vertex cover.
3 Learning by example - FVS in tournament.
4 Generic steps of the method.
5 5knO(1) algorithm for FVS.
6 3knO(1) algorithm for OCT - sketch.

11



FVS in tournaments

Feedback Vertex Set (FVS) in Tournaments

Input: a tournament (oriented clique) T , integer k
Question: is there a subset X ⊆ V (T ) of size at most k ,

such that T \ X is acyclic
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FVS in tournaments

Lemma
If a tournament contains a cycle, then it contains a 3-cycle.
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FVS in tournaments

Lemma
If a tournament contains a cycle, then it contains a 3-cycle.

This lemma implies a simple 3knO(1) branching algorithm.

By using iterative compression we will see how to improve the
running time to 2knO(1).
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FVS in tournaments

Start with the recursive trick, reducing the problem to its
compression version.

Feedback Vertex Set (FVS) in Tournaments Compression

Input: a tournament (oriented clique) T , integer k
a FVS Z ⊆ V (T ) of size at most k + 1

Question: is there a subset X ⊆ V (T ) of size at most k ,
such that T \ X is acyclic

Lemma

f (k)nc time algorithm for FVST Compression implies f (k)nc+1

time algorithm for FVST.
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FVS in tournaments

Pf: this time we use induction (loop) - alternative to recursion.

Let V (T ) = {v1, . . . , vn}.

We want to solve FVST (T [Vi ], k) for i = 1, . . . , n,
where Vi = {v1, . . . , vi}.
Set X1 = ∅, which is a solution for FVST (T [v1], k).
For 2 ¬ i ¬ n do

Zi = Xi−1 ∪ {vi},
let Xi be a solution to FVST Compression(T [Vi ], k,Zi ).
if no solution found for T [Vi ], then return NO.
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FVS in tournaments
Feedback Vertex Set (FVS) in Tournaments Compression

Input: a tournament (oriented clique) T , integer k
a FVS Z ⊆ V (T ) of size at most k + 1

Question: is there a subset X ⊆ V (T ) of size at most k ,
such that T \ X is acyclic

By guessing a partition Z = XZ ]W , we get to the disjoint version.

Disjoint FVS in Tournaments Compression
Input: a tournament (oriented clique) T , integer k

a FVS W ⊆ V (T ) of size at most k + 1
Question: is there a subset X ⊆ V (T ) of size at most k ,

disjoint with W, such that T \ X is acyclic

Lemma
Poly time algorithm for Disjoint FVST Compression implies
2knO(1) time algorithm for FVST Compression.
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FVS in tournaments

Disjoint FVS in Tournaments Compression
Input: a tournament (oriented clique) T , integer k
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Disjoint FVS in tournaments

Observation
For an acyclic tournament, there is a single topological ordering.
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Disjoint FVS in tournaments

Simple reduction rules:

Reduction 1
If T [W ] is not acyclic, then answer NO.

Let A = V (T ) \W (removable set).

Reduction 2
If for v ∈ A the graph T [W ∪ {v}] contains a cycle,
then remove v and reduce k by one.
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Disjoint FVS in tournaments

W

A = V (T ) \W

0 1 2 3 4 5

20 0 5 3 1 1 2 3 1 5 2 530 0 1 1 2 3 5 5
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Disjoint FVS in tournaments

W

A = V (T ) \W

0 1 2 3 4 5

2

0 0 5 3 1 1 2 3 1 5 2 53

0 0 1 1 2 3 5 5

Consequently Disjoint FVST Compression may be reduced to
finding longest nondecreasing subsequence.
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General framework

Iterative compression schema:

By using induction we can assume that a solution Z ⊆ V (G ),
|Z | ¬ k + 1 is given as part of input.

Branch into 2|Z | cases, guessing what part of Z should be in a
solution.

Solve a disjoint version of the problem, where given a solution
W ⊆ V (G ) we look for X ⊆ V (G ) \W of size at most k .

cknO(1) time algorithm for the disjoint version implies
(2c)knO(1) time algorithm for the general problem.
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General framework

Lemma

cknO(1) time algorithm for the disjoint version implies
(c + 1)knO(1) time algorithm for the general problem.

∑
X⊆Z

ck−|X | =
k+1∑
i=0

(
k + 1
i

)
ck−i1i = (c + 1)k+1/c
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General framework

Remarks:

To make induction work, we need to find a solution
(answering YES/NO is not enough).

By default iterative compression adds n factor to the running
time.

Ex: show that for VC and FVST this factor can be reduced to
O(k) (hint: use O(1)-approximation).

Some natural problems are not vertex deletion closed.

Ex: reduce Connected Vertex Cover (CVC) to
CVC-Compression.
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FVS

Feedback Vertex Set (FVS)

Input: undirected G , integer k
Question: is there a subset X ⊆ V (G ) of size at most k ,

such that G \ X is a forest
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FVS

FVS is vertex deletion closed, so we can apply iterative
compression schema and solving the following problem in time
cknO(1) leads to (c + 1)knO(1) time algorithm for FVS.

Disjoint FVS Compression
Input: undirected G , integer k

a FVS W ⊆ V (G ) of size at most k + 1
Question: is there a subset X ⊆ V (G ) of size at most k ,

disjoint with W, such that G \ X is a forest
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FVS - reduction rules

Reduction 0
If G [W ] contains a cycle, return NO.

W (forest)

A (forest)v

We want v to have ­ 2 incident edges going to W .
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FVS - reduction rules

Reduction 1
Remove all degree at most 1 vertices from G .

27



FVS - reduction rules

Reduction 2
If there is v ∈ A with deg(v) = 2 and at least one neighbor in A,
then add an edge between neighbours of v (even if there was one)
and remove v .
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FVS - reduction rules

W (forest)

A (forest)v (degA(v) ¬ 1)

Any leaf v in A has now at least two edges to W .
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FVS - one more reduction rule

W (forest)

A (forest)v

Reduction 3
If for v ∈ A = V (G ) \W the graph G [W ∪ {v}] contains a cycle,
then remove v and decrease k by one.
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FVS branching

W (forest)

A (forest)v

v

v
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FVS branching

Formally, we branch into instances:

(G \ {v}, k − 1,W ),

(G , k,W ∪ {v}).

Observation
A potential π(I ) = k +#cc(G [W ]) decreases in each branch.
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FVS branching

Formally, we branch into instances:

(G \ {v}, k − 1,W ),

(G , k,W ∪ {v}).

Observation
A potential π(I ) = k +#cc(G [W ]) decreases in each branch.

Lemma

Disjoint FVS Compression can be solved in time 4knO(1),
consequently there is 5knO(1) time algorithm for FVS.
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OCT

Odd Cycle Transversal (OCT)

Input: undirected G , integer k
Question: is there a subset X ⊆ V (G ) of size at most k ,

such that G \ X is bipartite
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OCT

The heart of the solution for OCT by iterative compression is the
following problem, which can be solved in polynomial time!

Annotated Bipartite Coloring
Input: bipartite G = (V1,V2,E ), integer k ,

a partial coloring f0 : V (G )→ {1, 2, ?}
Question: is there a subset X ⊆ V (G ) of size at most k ,

and a proper coloring f of G \ X consistent with f0.

V1

V2

1 2 ?

1 2 ?
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OCT

V1

V2

1 2 ?

1 2 ?

34



OCT

V1

V2

1 2 ?

1 2 ?

each blue vertex is either removed or recolored wrt V1 ] V2,

each green vertex is removed or maintains color wrt V1 ] V2,

for each e ∈ E (G \ X ) either both vertices are recolored, or
none,

algorithm: find min cut between green and blue!
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Summary

Iterative compression
Recursive approach exploiting instance structure exposed by a bit
oversized solution.

We have seen it applied to:

Vertex Cover,

FVS in Tournaments,

FVS,

OCT (sketch).
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