
Minicourse on parameterized
algorithms and complexity

Part 2: Iterative compression

Dániel Marx
(slides by Marek Cygan)

Jagiellonian University in Kraków
April 21-23, 2015

1

What iterative compression is?

Iterative compression — main idea
Recursive approach exploiting instance structure exposed by a bit
oversized solution.

Solution compression:
1 First, apply some simple trick so that you can assume that a

slightly too large solution is available.
2 Then exploit the structure it imposes on the input graph to

construct an optimal solution.

2

What iterative compression is?

Iterative compression — main idea
Recursive approach exploiting instance structure exposed by a bit
oversized solution.

Solution compression:
1 First, apply some simple trick so that you can assume that a

slightly too large solution is available.
2 Then exploit the structure it imposes on the input graph to

construct an optimal solution.

2

Vertex Cover

Vertex Cover
Input: undirected G , integer k
Question: is there a subset X ⊆ V (G) of size at most k such that
for each uv ∈ E (G) we have {u, v} ∩ X 6= ∅.

3

Vertex Cover

Vertex Cover
Input: undirected G , integer k
Question: is there a subset X ⊆ V (G) of size at most k such that
for each uv ∈ E (G) we have {u, v} ∩ X 6= ∅.

3

Additional input: oversized solution

We exemplify the iterative compression technique by showing
2knO(1) algorithm for Vertex Cover.

Vertex Cover Compression
Input: undirected G , integer k,

vertex cover Z ⊆ V (G) of size at most 2k
Question: is there a vertex cover of size at most k?

Where do we get Z from?

How do we use Z?

4

Additional input: oversized solution

We exemplify the iterative compression technique by showing
2knO(1) algorithm for Vertex Cover.

Vertex Cover Compression
Input: undirected G , integer k,

vertex cover Z ⊆ V (G) of size at most 2k
Question: is there a vertex cover of size at most k?

Where do we get Z from?

How do we use Z?

4

Additional input: oversized solution

We exemplify the iterative compression technique by showing
2knO(1) algorithm for Vertex Cover.

Vertex Cover Compression
Input: undirected G , integer k,

vertex cover Z ⊆ V (G) of size at most 2k
Question: is there a vertex cover of size at most k?

Where do we get Z from?

How do we use Z?

4

Additional input: oversized solution

Where do we get Z from?

Use polynomial time 2-approximation:

Find any inclusionwise maximal matching M.

If |M| > k , then no VC of size ¬ k exists.

Otherwise, set Z = V (M), we have |Z | ¬ 2k.

5

Additional input: oversized solution

Where do we get Z from?

Use polynomial time 2-approximation:

Find any inclusionwise maximal matching M.

If |M| > k , then no VC of size ¬ k exists.

Otherwise, set Z = V (M), we have |Z | ¬ 2k.

5

Additional input: oversized solution

Where do we get Z from?

Use polynomial time 2-approximation:

Find any inclusionwise maximal matching M.

If |M| > k , then no VC of size ¬ k exists.

Otherwise, set Z = V (M), we have |Z | ¬ 2k.

5

Additional input: oversized solution

Where do we get Z from?

Use polynomial time 2-approximation:

Find any inclusionwise maximal matching M.

If |M| > k , then no VC of size ¬ k exists.

Otherwise, set Z = V (M), we have |Z | ¬ 2k.

5

Additional input: oversized solution

Where do we get Z from?

Use polynomial time 2-approximation:

Find any inclusionwise maximal matching M.

If |M| > k , then no VC of size ¬ k exists.

Otherwise, set Z = V (M), we have |Z | ¬ 2k.

5

Additional input: oversized solution

How do we use Z?

Guess X ∩ Z = XZ (by branching into 2|Z | ¬ 4k cases).
Check if Z \ XZ is independent and |XZ ∪ N(Z \ XZ)| ¬ k.

Z

XZ Z \ XZ

V \ Z

N(Z \ XZ) ∩ (V \ Z)

6

Additional input: oversized solution

How do we use Z?

Guess X ∩ Z = XZ (by branching into 2|Z | ¬ 4k cases).

Check if Z \ XZ is independent and |XZ ∪ N(Z \ XZ)| ¬ k.

Z

XZ

Z \ XZ

V \ Z

N(Z \ XZ) ∩ (V \ Z)

6

Additional input: oversized solution

How do we use Z?

Guess X ∩ Z = XZ (by branching into 2|Z | ¬ 4k cases).

Check if Z \ XZ is independent and |XZ ∪ N(Z \ XZ)| ¬ k.

Z

XZ Z \ XZ

V \ Z

N(Z \ XZ) ∩ (V \ Z)

6

Additional input: oversized solution

How do we use Z?

Guess X ∩ Z = XZ (by branching into 2|Z | ¬ 4k cases).

Check if Z \ XZ is independent and |XZ ∪ N(Z \ XZ)| ¬ k.

Z

XZ Z \ XZ

V \ Z
N(Z \ XZ) ∩ (V \ Z)

6

Additional input: oversized solution

How do we use Z?

Guess X ∩ Z = XZ (by branching into 2|Z | ¬ 4k cases).
Check if Z \ XZ is independent and |XZ ∪ N(Z \ XZ)| ¬ k.

Z

XZ Z \ XZ

V \ Z
N(Z \ XZ) ∩ (V \ Z)

6

Additional input: oversized solution

How do we use Z?

We have obtained 2|Z |nO(1) ¬ 4knO(1) time algorithm.

Can we improve the dependency on k to 2k?

Notice that it would be enough to have |Z | ¬ k + 1, but so
far we only have |Z | ¬ 2k.

7

Additional input: oversized solution

How do we use Z?

We have obtained 2|Z |nO(1) ¬ 4knO(1) time algorithm.

Can we improve the dependency on k to 2k?

Notice that it would be enough to have |Z | ¬ k + 1, but so
far we only have |Z | ¬ 2k.

7

Additional input: oversized solution

How do we use Z?

We have obtained 2|Z |nO(1) ¬ 4knO(1) time algorithm.

Can we improve the dependency on k to 2k?

Notice that it would be enough to have |Z | ¬ k + 1, but so
far we only have |Z | ¬ 2k.

7

Vertex Cover

Vertex Cover Compression
Input: undirected G , integer k,

vertex cover Z ⊆ V (G) of size at most k + 1
Question: is there a vertex cover of size at most k?

Idea: get Z from recursion!

8

Vertex Cover

Vertex Cover Compression
Input: undirected G , integer k,

vertex cover Z ⊆ V (G) of size at most k + 1
Question: is there a vertex cover of size at most k?

Idea: get Z from recursion!

8

Bootstrapping

How to get Z of size at most k + 1?

Assume that an instance I = (G , k) without Z is given.

Pick any v ∈ V (G) and solve I ′ = (G \ {v}, k) recursively.

If I ′ is a NO-instance then I is a NO-instance.

Otherwise set Z = X ∪ {v}, where X is a solution for I ′.

(G , k,Z) is VC Compression instance to solve.

Lemma
f (k)nc time algorithm for VC Compression
implies f (k)nc+1 time algorithm for VC.

9

Bootstrapping

How to get Z of size at most k + 1?

Assume that an instance I = (G , k) without Z is given.

Pick any v ∈ V (G) and solve I ′ = (G \ {v}, k) recursively.

If I ′ is a NO-instance then I is a NO-instance.

Otherwise set Z = X ∪ {v}, where X is a solution for I ′.

(G , k,Z) is VC Compression instance to solve.

Lemma
f (k)nc time algorithm for VC Compression
implies f (k)nc+1 time algorithm for VC.

9

Bootstrapping

How to get Z of size at most k + 1?

Assume that an instance I = (G , k) without Z is given.

Pick any v ∈ V (G) and solve I ′ = (G \ {v}, k) recursively.

If I ′ is a NO-instance then I is a NO-instance.

Otherwise set Z = X ∪ {v}, where X is a solution for I ′.

(G , k,Z) is VC Compression instance to solve.

Lemma
f (k)nc time algorithm for VC Compression
implies f (k)nc+1 time algorithm for VC.

9

Bootstrapping

How to get Z of size at most k + 1?

Assume that an instance I = (G , k) without Z is given.

Pick any v ∈ V (G) and solve I ′ = (G \ {v}, k) recursively.

If I ′ is a NO-instance then I is a NO-instance.

Otherwise set Z = X ∪ {v}, where X is a solution for I ′.

(G , k,Z) is VC Compression instance to solve.

Lemma
f (k)nc time algorithm for VC Compression
implies f (k)nc+1 time algorithm for VC.

9

Bootstrapping

How to get Z of size at most k + 1?

Assume that an instance I = (G , k) without Z is given.

Pick any v ∈ V (G) and solve I ′ = (G \ {v}, k) recursively.

If I ′ is a NO-instance then I is a NO-instance.

Otherwise set Z = X ∪ {v}, where X is a solution for I ′.

(G , k,Z) is VC Compression instance to solve.

Lemma
f (k)nc time algorithm for VC Compression
implies f (k)nc+1 time algorithm for VC.

9

Bootstrapping

How to get Z of size at most k + 1?

Assume that an instance I = (G , k) without Z is given.

Pick any v ∈ V (G) and solve I ′ = (G \ {v}, k) recursively.

If I ′ is a NO-instance then I is a NO-instance.

Otherwise set Z = X ∪ {v}, where X is a solution for I ′.

(G , k,Z) is VC Compression instance to solve.

Lemma
f (k)nc time algorithm for VC Compression
implies f (k)nc+1 time algorithm for VC.

9

Vertex Cover - summary

Lemma
f (k)nc time algorithm for VC Compression
implies f (k)nc+1 time algorithm for VC.

Reduction: Vertex Cover → Vertex Cover Compression.

Vertex Cover Compression can be solved in time 2|Z |nO(1),
which leads to 2knO(1) algorithm for VC.

10

Vertex Cover - summary

Lemma
f (k)nc time algorithm for VC Compression
implies f (k)nc+1 time algorithm for VC.

Reduction: Vertex Cover → Vertex Cover Compression.

Vertex Cover Compression can be solved in time 2|Z |nO(1),
which leads to 2knO(1) algorithm for VC.

10

Outline

1 Iterative compression - introduction.
2 Learning by example - vertex cover.
3 Learning by example - FVS in tournament.
4 Generic steps of the method.
5 5knO(1) algorithm for FVS.
6 3knO(1) algorithm for OCT - sketch.

11

FVS in tournaments

Feedback Vertex Set (FVS) in Tournaments

Input: a tournament (oriented clique) T , integer k
Question: is there a subset X ⊆ V (T) of size at most k ,

such that T \ X is acyclic

12

FVS in tournaments

Feedback Vertex Set (FVS) in Tournaments

Input: a tournament (oriented clique) T , integer k
Question: is there a subset X ⊆ V (T) of size at most k ,

such that T \ X is acyclic

12

FVS in tournaments

Lemma
If a tournament contains a cycle, then it contains a 3-cycle.

13

FVS in tournaments

Lemma
If a tournament contains a cycle, then it contains a 3-cycle.

13

FVS in tournaments

Lemma
If a tournament contains a cycle, then it contains a 3-cycle.

13

FVS in tournaments

Lemma
If a tournament contains a cycle, then it contains a 3-cycle.

This lemma implies a simple 3knO(1) branching algorithm.

By using iterative compression we will see how to improve the
running time to 2knO(1).

14

FVS in tournaments

Lemma
If a tournament contains a cycle, then it contains a 3-cycle.

This lemma implies a simple 3knO(1) branching algorithm.

By using iterative compression we will see how to improve the
running time to 2knO(1).

14

FVS in tournaments

Start with the recursive trick, reducing the problem to its
compression version.

Feedback Vertex Set (FVS) in Tournaments Compression

Input: a tournament (oriented clique) T , integer k
a FVS Z ⊆ V (T) of size at most k + 1

Question: is there a subset X ⊆ V (T) of size at most k ,
such that T \ X is acyclic

Lemma

f (k)nc time algorithm for FVST Compression implies f (k)nc+1

time algorithm for FVST.

15

FVS in tournaments

Start with the recursive trick, reducing the problem to its
compression version.

Feedback Vertex Set (FVS) in Tournaments Compression

Input: a tournament (oriented clique) T , integer k
a FVS Z ⊆ V (T) of size at most k + 1

Question: is there a subset X ⊆ V (T) of size at most k ,
such that T \ X is acyclic

Lemma

f (k)nc time algorithm for FVST Compression implies f (k)nc+1

time algorithm for FVST.

15

FVS in tournaments

Start with the recursive trick, reducing the problem to its
compression version.

Feedback Vertex Set (FVS) in Tournaments Compression

Input: a tournament (oriented clique) T , integer k
a FVS Z ⊆ V (T) of size at most k + 1

Question: is there a subset X ⊆ V (T) of size at most k ,
such that T \ X is acyclic

Lemma

f (k)nc time algorithm for FVST Compression implies f (k)nc+1

time algorithm for FVST.

15

FVS in tournaments

Pf: this time we use induction (loop) - alternative to recursion.

Let V (T) = {v1, . . . , vn}.

We want to solve FVST (T [Vi], k) for i = 1, . . . , n,
where Vi = {v1, . . . , vi}.
Set X1 = ∅, which is a solution for FVST (T [v1], k).
For 2 ¬ i ¬ n do

Zi = Xi−1 ∪ {vi},
let Xi be a solution to FVST Compression(T [Vi], k,Zi).
if no solution found for T [Vi], then return NO.

16

FVS in tournaments

Pf: this time we use induction (loop) - alternative to recursion.

Let V (T) = {v1, . . . , vn}.
We want to solve FVST (T [Vi], k) for i = 1, . . . , n,
where Vi = {v1, . . . , vi}.

Set X1 = ∅, which is a solution for FVST (T [v1], k).
For 2 ¬ i ¬ n do

Zi = Xi−1 ∪ {vi},
let Xi be a solution to FVST Compression(T [Vi], k,Zi).
if no solution found for T [Vi], then return NO.

16

FVS in tournaments

Pf: this time we use induction (loop) - alternative to recursion.

Let V (T) = {v1, . . . , vn}.
We want to solve FVST (T [Vi], k) for i = 1, . . . , n,
where Vi = {v1, . . . , vi}.
Set X1 = ∅, which is a solution for FVST (T [v1], k).

For 2 ¬ i ¬ n do
Zi = Xi−1 ∪ {vi},
let Xi be a solution to FVST Compression(T [Vi], k,Zi).
if no solution found for T [Vi], then return NO.

16

FVS in tournaments

Pf: this time we use induction (loop) - alternative to recursion.

Let V (T) = {v1, . . . , vn}.
We want to solve FVST (T [Vi], k) for i = 1, . . . , n,
where Vi = {v1, . . . , vi}.
Set X1 = ∅, which is a solution for FVST (T [v1], k).
For 2 ¬ i ¬ n do

Zi = Xi−1 ∪ {vi},
let Xi be a solution to FVST Compression(T [Vi], k,Zi).
if no solution found for T [Vi], then return NO.

16

FVS in tournaments
Feedback Vertex Set (FVS) in Tournaments Compression

Input: a tournament (oriented clique) T , integer k
a FVS Z ⊆ V (T) of size at most k + 1

Question: is there a subset X ⊆ V (T) of size at most k ,
such that T \ X is acyclic

By guessing a partition Z = XZ]W , we get to the disjoint version.

Disjoint FVS in Tournaments Compression
Input: a tournament (oriented clique) T , integer k

a FVS W ⊆ V (T) of size at most k + 1
Question: is there a subset X ⊆ V (T) of size at most k ,

disjoint with W, such that T \ X is acyclic

Lemma
Poly time algorithm for Disjoint FVST Compression implies
2knO(1) time algorithm for FVST Compression.

17

FVS in tournaments
Feedback Vertex Set (FVS) in Tournaments Compression

Input: a tournament (oriented clique) T , integer k
a FVS Z ⊆ V (T) of size at most k + 1

Question: is there a subset X ⊆ V (T) of size at most k ,
such that T \ X is acyclic

By guessing a partition Z = XZ]W , we get to the disjoint version.

Disjoint FVS in Tournaments Compression
Input: a tournament (oriented clique) T , integer k

a FVS W ⊆ V (T) of size at most k + 1
Question: is there a subset X ⊆ V (T) of size at most k ,

disjoint with W, such that T \ X is acyclic

Lemma
Poly time algorithm for Disjoint FVST Compression implies
2knO(1) time algorithm for FVST Compression.

17

FVS in tournaments

Disjoint FVS in Tournaments Compression
Input: a tournament (oriented clique) T , integer k

a FVS W ⊆ V (T) of size at most k + 1
Question: is there a subset X ⊆ V (T) of size at most k ,

disjoint with W, such that T \ X is acyclic

Lemma
Poly time algorithm for Disjoint FVST Compression implies
2knO(1) time algorithm for FVST Compression.

17

Disjoint FVS in tournaments

Observation
For an acyclic tournament, there is a single topological ordering.

18

Disjoint FVS in tournaments

Simple reduction rules:

Reduction 1
If T [W] is not acyclic, then answer NO.

Let A = V (T) \W (removable set).

Reduction 2
If for v ∈ A the graph T [W ∪ {v}] contains a cycle,
then remove v and reduce k by one.

19

Disjoint FVS in tournaments

Simple reduction rules:

Reduction 1
If T [W] is not acyclic, then answer NO.

Let A = V (T) \W (removable set).

Reduction 2
If for v ∈ A the graph T [W ∪ {v}] contains a cycle,
then remove v and reduce k by one.

19

Disjoint FVS in tournaments

Simple reduction rules:

Reduction 1
If T [W] is not acyclic, then answer NO.

Let A = V (T) \W (removable set).

Reduction 2
If for v ∈ A the graph T [W ∪ {v}] contains a cycle,
then remove v and reduce k by one.

19

Disjoint FVS in tournaments

W

A = V (T) \W

0 1 2 3 4 5

20 0 5 3 1 1 2 3 1 5 2 530 0 1 1 2 3 5 5

20

Disjoint FVS in tournaments

W

A = V (T) \W

0 1 2 3 4 5

20 0 5 3 1 1 2 3 1 5 2 530 0 1 1 2 3 5 5

20

Disjoint FVS in tournaments

W

A = V (T) \W

0 1 2 3 4 5

20 0 5 3 1 1 2 3 1 5 2 530 0 1 1 2 3 5 5

20

Disjoint FVS in tournaments

W

A = V (T) \W

0 1 2 3 4 5

20 0 5 3 1 1 2 3 1 5 2 530 0 1 1 2 3 5 5

20

Disjoint FVS in tournaments

W

A = V (T) \W

0 1 2 3 4 5

2

0 0 5 3 1 1 2 3 1 5 2 530 0 1 1 2 3 5 5

20

Disjoint FVS in tournaments

W

A = V (T) \W

0 1 2 3 4 5

20 0 5 3 1 1 2 3 1 5 2 5

30 0 1 1 2 3 5 5

20

Disjoint FVS in tournaments

W

A = V (T) \W

0 1 2 3 4 5

2

0 0 5 3 1 1 2 3 1 5 2 5

3

0 0 1 1 2 3 5 5

20

Disjoint FVS in tournaments

W

A = V (T) \W

0 1 2 3 4 5

2

0 0 5 3 1 1 2 3 1 5 2 5

3

0 0 1 1 2 3 5 5

20

Disjoint FVS in tournaments

W

A = V (T) \W

0 1 2 3 4 5

2

0 0 5 3 1 1 2 3 1 5 2 5

3

0 0 1 1 2 3 5 5

20

Disjoint FVS in tournaments

W

A = V (T) \W

0 1 2 3 4 5

2

0 0 5 3 1 1 2 3 1 5 2 53

0 0 1 1 2 3 5 5

20

Disjoint FVS in tournaments

W

A = V (T) \W

0 1 2 3 4 5

2

0 0 5 3 1 1 2 3 1 5 2 53

0 0 1 1 2 3 5 5

20

Disjoint FVS in tournaments

W

A = V (T) \W

0 1 2 3 4 5

2

0 0 5 3 1 1 2 3 1 5 2 53

0 0 1 1 2 3 5 5

Consequently Disjoint FVST Compression may be reduced to
finding longest nondecreasing subsequence.

20

General framework

Iterative compression schema:

By using induction we can assume that a solution Z ⊆ V (G),
|Z | ¬ k + 1 is given as part of input.

Branch into 2|Z | cases, guessing what part of Z should be in a
solution.

Solve a disjoint version of the problem, where given a solution
W ⊆ V (G) we look for X ⊆ V (G) \W of size at most k .

cknO(1) time algorithm for the disjoint version implies
(2c)knO(1) time algorithm for the general problem.

21

General framework

Iterative compression schema:

By using induction we can assume that a solution Z ⊆ V (G),
|Z | ¬ k + 1 is given as part of input.

Branch into 2|Z | cases, guessing what part of Z should be in a
solution.

Solve a disjoint version of the problem, where given a solution
W ⊆ V (G) we look for X ⊆ V (G) \W of size at most k .

cknO(1) time algorithm for the disjoint version implies
(2c)knO(1) time algorithm for the general problem.

21

General framework

Iterative compression schema:

By using induction we can assume that a solution Z ⊆ V (G),
|Z | ¬ k + 1 is given as part of input.

Branch into 2|Z | cases, guessing what part of Z should be in a
solution.

Solve a disjoint version of the problem, where given a solution
W ⊆ V (G) we look for X ⊆ V (G) \W of size at most k .

cknO(1) time algorithm for the disjoint version implies
(2c)knO(1) time algorithm for the general problem.

21

General framework

Iterative compression schema:

By using induction we can assume that a solution Z ⊆ V (G),
|Z | ¬ k + 1 is given as part of input.

Branch into 2|Z | cases, guessing what part of Z should be in a
solution.

Solve a disjoint version of the problem, where given a solution
W ⊆ V (G) we look for X ⊆ V (G) \W of size at most k .

cknO(1) time algorithm for the disjoint version implies
(2c)knO(1) time algorithm for the general problem.

21

General framework

Lemma

cknO(1) time algorithm for the disjoint version implies
(c + 1)knO(1) time algorithm for the general problem.

∑
X⊆Z

ck−|X | =
k+1∑
i=0

(
k + 1
i

)
ck−i1i = (c + 1)k+1/c

22

General framework

Lemma

cknO(1) time algorithm for the disjoint version implies
(c + 1)knO(1) time algorithm for the general problem.

∑
X⊆Z

ck−|X | =
k+1∑
i=0

(
k + 1
i

)
ck−i1i = (c + 1)k+1/c

22

General framework

Remarks:

To make induction work, we need to find a solution
(answering YES/NO is not enough).

By default iterative compression adds n factor to the running
time.

Ex: show that for VC and FVST this factor can be reduced to
O(k) (hint: use O(1)-approximation).

Some natural problems are not vertex deletion closed.

Ex: reduce Connected Vertex Cover (CVC) to
CVC-Compression.

23

General framework

Remarks:

To make induction work, we need to find a solution
(answering YES/NO is not enough).

By default iterative compression adds n factor to the running
time.

Ex: show that for VC and FVST this factor can be reduced to
O(k) (hint: use O(1)-approximation).

Some natural problems are not vertex deletion closed.

Ex: reduce Connected Vertex Cover (CVC) to
CVC-Compression.

23

General framework

Remarks:

To make induction work, we need to find a solution
(answering YES/NO is not enough).

By default iterative compression adds n factor to the running
time.

Ex: show that for VC and FVST this factor can be reduced to
O(k) (hint: use O(1)-approximation).

Some natural problems are not vertex deletion closed.

Ex: reduce Connected Vertex Cover (CVC) to
CVC-Compression.

23

General framework

Remarks:

To make induction work, we need to find a solution
(answering YES/NO is not enough).

By default iterative compression adds n factor to the running
time.

Ex: show that for VC and FVST this factor can be reduced to
O(k) (hint: use O(1)-approximation).

Some natural problems are not vertex deletion closed.

Ex: reduce Connected Vertex Cover (CVC) to
CVC-Compression.

23

General framework

Remarks:

To make induction work, we need to find a solution
(answering YES/NO is not enough).

By default iterative compression adds n factor to the running
time.

Ex: show that for VC and FVST this factor can be reduced to
O(k) (hint: use O(1)-approximation).

Some natural problems are not vertex deletion closed.

Ex: reduce Connected Vertex Cover (CVC) to
CVC-Compression.

23

FVS

Feedback Vertex Set (FVS)

Input: undirected G , integer k
Question: is there a subset X ⊆ V (G) of size at most k ,

such that G \ X is a forest

24

FVS

FVS is vertex deletion closed, so we can apply iterative
compression schema and solving the following problem in time
cknO(1) leads to (c + 1)knO(1) time algorithm for FVS.

Disjoint FVS Compression
Input: undirected G , integer k

a FVS W ⊆ V (G) of size at most k + 1
Question: is there a subset X ⊆ V (G) of size at most k ,

disjoint with W, such that G \ X is a forest

25

FVS

FVS is vertex deletion closed, so we can apply iterative
compression schema and solving the following problem in time
cknO(1) leads to (c + 1)knO(1) time algorithm for FVS.

Disjoint FVS Compression
Input: undirected G , integer k

a FVS W ⊆ V (G) of size at most k + 1
Question: is there a subset X ⊆ V (G) of size at most k ,

disjoint with W, such that G \ X is a forest

25

FVS - reduction rules

Reduction 0
If G [W] contains a cycle, return NO.

W (forest)

A (forest)v

We want v to have ­ 2 incident edges going to W .

26

FVS - reduction rules

Reduction 0
If G [W] contains a cycle, return NO.

W (forest)

A (forest)

v

We want v to have ­ 2 incident edges going to W .

26

FVS - reduction rules

Reduction 0
If G [W] contains a cycle, return NO.

W (forest)

A (forest)v

We want v to have ­ 2 incident edges going to W .

26

FVS - reduction rules

Reduction 1
Remove all degree at most 1 vertices from G .

27

FVS - reduction rules

Reduction 2
If there is v ∈ A with deg(v) = 2 and at least one neighbor in A,
then add an edge between neighbours of v (even if there was one)
and remove v .

28

FVS - reduction rules

W (forest)

A (forest)v (degA(v) ¬ 1)

Any leaf v in A has now at least two edges to W .

29

FVS - one more reduction rule

W (forest)

A (forest)v

Reduction 3
If for v ∈ A = V (G) \W the graph G [W ∪ {v}] contains a cycle,
then remove v and decrease k by one.

30

FVS - one more reduction rule

W (forest)

A (forest)v

Reduction 3
If for v ∈ A = V (G) \W the graph G [W ∪ {v}] contains a cycle,
then remove v and decrease k by one.

30

FVS - one more reduction rule

W (forest)

A (forest)v

Reduction 3
If for v ∈ A = V (G) \W the graph G [W ∪ {v}] contains a cycle,
then remove v and decrease k by one.

30

FVS branching

W (forest)

A (forest)v

v

v

31

FVS branching

Formally, we branch into instances:

(G \ {v}, k − 1,W),

(G , k,W ∪ {v}).

Observation
A potential π(I) = k +#cc(G [W]) decreases in each branch.

32

FVS branching

Formally, we branch into instances:

(G \ {v}, k − 1,W),

(G , k,W ∪ {v}).

Observation
A potential π(I) = k +#cc(G [W]) decreases in each branch.

W (forest)

A (forest)v

v

v

32

FVS branching

Formally, we branch into instances:

(G \ {v}, k − 1,W),

(G , k,W ∪ {v}).

Observation
A potential π(I) = k +#cc(G [W]) decreases in each branch.

Lemma

Disjoint FVS Compression can be solved in time 4knO(1),
consequently there is 5knO(1) time algorithm for FVS.

32

OCT

Odd Cycle Transversal (OCT)

Input: undirected G , integer k
Question: is there a subset X ⊆ V (G) of size at most k ,

such that G \ X is bipartite

33

OCT

The heart of the solution for OCT by iterative compression is the
following problem, which can be solved in polynomial time!

Annotated Bipartite Coloring
Input: bipartite G = (V1,V2,E), integer k ,

a partial coloring f0 : V (G)→ {1, 2, ?}
Question: is there a subset X ⊆ V (G) of size at most k ,

and a proper coloring f of G \ X consistent with f0.

V1

V2

1 2 ?

1 2 ?

34

OCT

Annotated Bipartite Coloring
Input: bipartite G = (V1,V2,E), integer k ,

a partial coloring f0 : V (G)→ {1, 2, ?}
Question: is there a subset X ⊆ V (G) of size at most k ,

and a proper coloring f of G \ X consistent with f0.

V1

V2

1 2 ?

1 2 ?

34

OCT

Annotated Bipartite Coloring
Input: bipartite G = (V1,V2,E), integer k ,

a partial coloring f0 : V (G)→ {1, 2, ?}
Question: is there a subset X ⊆ V (G) of size at most k ,

and a proper coloring f of G \ X consistent with f0.

V1

V2

1 2 ?

1 2 ?

34

OCT

V1

V2

1 2 ?

1 2 ?

34

OCT

V1

V2

1 2 ?

1 2 ?

each blue vertex is either removed or recolored wrt V1] V2,

each green vertex is removed or maintains color wrt V1] V2,

for each e ∈ E (G \ X) either both vertices are recolored, or
none,

algorithm: find min cut between green and blue!

34

OCT

V1

V2

1 2 ?

1 2 ?

each blue vertex is either removed or recolored wrt V1] V2,

each green vertex is removed or maintains color wrt V1] V2,

for each e ∈ E (G \ X) either both vertices are recolored, or
none,

algorithm: find min cut between green and blue!

34

OCT

V1

V2

1 2 ?

1 2 ?

each blue vertex is either removed or recolored wrt V1] V2,

each green vertex is removed or maintains color wrt V1] V2,

for each e ∈ E (G \ X) either both vertices are recolored, or
none,

algorithm: find min cut between green and blue!

34

OCT

V1

V2

1 2 ?

1 2 ?

each blue vertex is either removed or recolored wrt V1] V2,

each green vertex is removed or maintains color wrt V1] V2,

for each e ∈ E (G \ X) either both vertices are recolored, or
none,

algorithm: find min cut between green and blue!

34

Summary

Iterative compression
Recursive approach exploiting instance structure exposed by a bit
oversized solution.

We have seen it applied to:

Vertex Cover,

FVS in Tournaments,

FVS,

OCT (sketch).

35

