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Abstract. The problem PLANAR k-TERMINAL CUT is as follows: given an undi-
rected planar graph with edge-costs and with k vertices designated as terminals,
find a minimum-cost set of edges whose removal pairwise separates the terminals.
It was known that the complexity of this problem is O(n2k−4 logn). We show that
there is a constant c such that the complexity is O(nc

√
k). This matches a recent

lower bound of Marx showing that the c
√

k term in the exponent is best possible
up to the constant c (assuming the Exponential Time Hypothesis).

1 Introduction

MULTIWAY CUT (also called MULTITERMINAL CUT) is a generalization of the classi-
cal minimum s− t cut problem: given a undirected graph G with edge-costs and given
a subset T of k vertices specified as terminals, the task is to find a minimum-cost set
of edges whose deletion pairwise separates the k terminal vertices from each other. The
study of the computational complexity of this problem was initiated almost thirty years
ago in a widely circulated paper by Dahlhaus, Johnson, Papadimitriou, Seymour, and
Yannakakis (eventually published [4, 5]). They showed the problem is NP-hard even for
k = 3, and they gave a 2-approximation algorithm, which has since been improved [1,
3, 8].

They showed that if k can be arbitrarily large, even the restriction to planar graphs
is NP-hard. Therefore, for each positive integer k, they consider the problem PLANAR
k-TERMINAL CUT and give an algorithm with a running time of O((4k)kn2k−1 logn).
This bound was since improved by roughly a factor of n3, to O(k4kn2k−4 logn), by
Hartvigsen [6].3

We show that the dependence on k of the exponent of n can be improved from 2k−4
to c
√

k for a constant c. In particular, we give an algorithm with running time dk ·nc
√

k

for constants c,d. This shows that the complexity of PLANAR k-TERMINAL CUT is
O(nc

√
k). A companion paper [9] shows that this is best possible (up to the particular

constant c), assuming the Exponential Time Hypothesis [7].
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Dahlhaus et al. observed that a solution of PLANAR MULTIWAY CUT in the dual
graph is a planar graph with O(k) branch vertices connected by paths. Thus an algorithm
can guess the branch vertices of this planar graph in the dual in time nO(k) and then
find min-cost paths between them, subject to constraints about enclosing terminals–
constraints that are not readily incorporated into shortest-path computation. Dahlhaus
et al. achieve their result by exploiting some structural properties of these paths. Our
approach is very different: Our algorithm computes a min Steiner tree on the terminals
in the dual graph and cuts the plane open along this tree, thereby forming a cycle on
which all the terminals lie, and adds zero-cost edges inside the cycle We prove that there
is an optimum solution that uses O(k) zero-cost edges; thus the solution after cutting
the tree open can still be described by a planar graph having O(k) vertices and therefore
treewidth O(

√
k). Since all the terminals lie on a cycle, the topological constraint that

certain paths enclose certain terminals can be completely expressed by requiring that
the paths cross the cycle in a certain order. Therefore dynamic programming on a tree
decomposition suffices to find the solution in the cut-open graph.

2 Preliminaries

Let G be an undirected graph. For a set X of vertices, δG(X) denotes the set of edges uv
such that u ∈ X ,v 6∈ X . Such a set is called a cut. A cut is simple if both X and V (G)−X
induce connected components. For nodes u,v in G, a set S of edges separates u and v in
G if every u-to-v path includes an edge of S.

Fact 2.1 S separates u,v iff there is a cut δG(X) such that u ∈ X ,v 6∈ X and δG(X)⊆ S;
moreover, the cut can be chosen to be simple.

We assume basic knowledge of the definitions of planar embedded graph, faces, and
the planar dual. Let G be a connected planar embedded graph, and let G∗ be its dual.

Fact 2.2 Edge-set S forms a simple cut in G iff S forms a simple cycle in G∗.

Definition 2.3. For nodes v1,v2 of G, edge-set S dual-separates v1 and v2 in G if S does
not include any edge incident to v1 or v2, and, for a face f1 incident to v1 and a face f2
incident to v2, S separates f1 and f2 in the planar dual G∗.

Lemma 2.4. If S dual-separates v1 and v2 in G then G contains a simple cycle of edges
in S that dual-separates v1 and v2.

Proof. For i = 1,2, let fi be a face of G incident to vi. By Fact 2.1, S contains the edges
of a simple cut in the planar dual G∗ that separates f1 and f2 in G∗. By Fact 2.2, the
edges of this simple cut form a simple cycle in G. ut

Definition 2.5. For edge-set S, let H∗ be the subgraph of G∗ consisting of S. Each face
f of H∗ corresponds to a collection X f of faces of G∗ (those embedded in f ). We say f
encloses the faces in X f . For x a vertex or edge of H∗, we say f encloses x if f encloses
all the faces that have x on their boundary. If f is not the infinite face, we consider the
faces and vertices enclosed by f to be also enclosed by H∗.



3 Reducing the problem to the biconnected case

For a pair (G,T ) where G is an undirected graph and T is a subset of vertices (the
terminals), an T -mcut (a multiway cut with respect to terminal set T ) is a set S of
edges such that G−S contains no path between distinct terminals. For disjoint subsets
X ,Y ⊂ T , we define an (X ,Y )-mcut to be a set S of edges such that G− S contains no
path between vertices of X and no path from X to Y .

For a planar embedded graph G, we say a pair (X ,Y ) of sets of vertices is biconnectivity-
inducing in G if every minimum-cost (X ,Y )-mcut forms a biconnected subgraph of G∗.

Fix a planar embedded graph Gin with positive edge-costs and n vertices. We define
two problems:
• Problem A: given a set T of k vertices, find a minimum-cost T -mcut.
• Problem B: given a pair (X ,Y ) of vertex-sets where k = |X |+ |Y |, find an (X ,Y )-
mcut S such that if (X ,Y ) is a biconnectivity-inducing pair, then S is guaranteed to be a
minimum-cost (X ,Y )-mcut.

We show that Problem A can be solved by 2k calls to an algorithm for Problem B,
plus additional O(3k) time. Let a(T ) be the minimum cost of a multiway cut for termi-
nal set T . Let b(X ,Y ) be a function such that
• if (X ,Y ) is 2-connectivity-inducing, then b(X ,Y ) is the minimum cost of an

(X ,Y )-mcut, and
• otherwise, b(X ,Y ) is the cost of some (X ,Y )-mcut.

We use a dynamic program based on the recurrence relation

Lemma 3.1. a(T ) = min /0 6=X⊆T b(X ,T −X)+a(T −X)

Proof. It is trivial that the left-hand side is at most the right hand side: the (X ,T −X)-
mcut and the multiway cut of T −X together gives a multiway cut for T . Our goal is to
show that the left-hand side is at least the right-hand side.

We generalize the notion of a multiway cut as follows. Let X1, . . . ,Xp be a partition
of T (p is arbitrary). An (X1, . . . ,Xp)-mcut is a tuple (S1, . . . ,Sp−1) of mutually disjoint
edge-sets of G such that, for i = 1, . . . ,k− 1, G− Si contains no path between distinct
nodes of Xi and no path from a node in Xi to a node in Xi+1 ∪Xi+2 ∪ ·· · ∪Xp. If Xp is
singleton then S1∪·· ·∪Sp−1 is a multiway cut separating all terminals in T .

The cost of a tuple (S1, . . . ,Sp) is the sum of costs of the edges. We say a partition
X1, . . . ,Xp is perfect if |Xp| = 1 and the minimum-cost of an (X1, . . . ,Xp)-mcut equals
a(T ). Observe that a perfect partition always exist: in particular, (T −{t},{t}) is a
perfect partition for every t ∈ T .

Among all perfect partitions of T , let X̂1, . . . , X̂p be the finest, and let (Ŝ1, . . . , Ŝp−1)
be a minimum (X̂1, . . . , X̂p)-mcut. We claim that (X̂1, X̂2 ∪ ·· · ∪ X̂p) is 2-connectivity-
inducing. Indeed, if (X̂1, X̂2∪·· ·∪ X̂p) were not 2-connectivity-inducing—if there were
a minimum-cost solution S that was not 2-connected in the dual—the partition X̂1, . . . , X̂p
could be refined by breaking X̂i into two parts according to the 2-connected components
of S in the dual.

As (Ŝ1, . . . , Ŝp−1) has cost a(T ), we have that a(T ) is at least the sum of the cost of
an (X̂1, X̂2∪·· ·∪ X̂p)-mcut and the cost of a multiway cut for X̂2∪·· ·∪ X̂p. By the claim



Fig. 1. Illustrates the reduction. The lines are the edges in the planar dual of
a minimum-cost (X̂ ,Ŷ )-mcut. The disks represent terminals. The thin lines
represent Ŝ, and the small disks are the terminals enclosed by Ŝ.

Fig. 2. Each terminal is replaced by a cycle. The size of the cycle is
the original degree of the terminal, and the the edges forming the cycle
all have cost M.

in the previous paragraph, (X̂1, X̂2 ∪ ·· · ∪ X̂p) is 2-connectivity-inducing, thus the first
term is at least b(X̂1, X̂2 ∪ ·· · ∪ X̂p). The second term is at least a(X̂2 ∪ ·· · ∪ X̂p). Thus
with the choice X = X̂1 shows that the left-hand side is at least the right-hand side. ut

4 Algorithm for Problem B

Here is pseudocode for the algorithm for Problem B.

Procedure BSOLVE(Gin,X ,Y ):
input: planar graph Gin, pair of disjoint terminal sets (X ,Y )
output: (X ,Y )-mcut that is min-cost if (X ,Y ) is biconnectivity-inducing.

Let M be a number greater than the sum of all costs
0 For each terminal t,
1 replace t by a size-degree(t) cycle of edges of cost M

let t∗ (called the rep of t) denote the face thus formed
Let Ĝin be the resulting graph and let Ĝ∗in denote its planar dual

2 In Ĝ∗in, find min-cost Steiner tree T ∗ connecting all terminal reps
3 Replace each edge of T ∗ with two copies, and replace each node v on T ∗

with degree(v) copies connected by a star of d−1 zero-cost edges
4 Let G1 denote the planar embedded graph derived in this way from Ĝ∗in
5 Let C(G1) be the cycle in G1 formed by copies of edges of T ∗

Label terminal reps by 1,2, . . . ,k in clockwise order about C(G1)
6 return the minimum-cost set in
{RE(H,M,G1) : (H,M) an X-valid representative topology, |M| ≤ βk}

Line 1 is illustrated in Fig. 2. Line 3 is illustrated in Figures 3 and 4. In Line 6, β is a
constant to be determined.

Line 6 uses the notion of topology and the procedure RE(H,M,G1). We will presently
define this notion. The basic idea underlying the procedure BSOLVE is to enumerate
topologies and, for each, find the minimum-cost solution “consistent” with that topol-
ogy.
• Of course, the procedure cannot enumerate all topologies. We will define what it
means for topologies to be isomorphic; the procedure will enumerate representatives of
distinct isomorphism classes.



Fig. 3. Figure shows part of graph before and after duplicating
tree edges (thick edges). Node v on tree is replaced by degree(v)
copies connected by a zero-cost star. Graph edges not in tree
remain incident to copies of v so as to preserve the embedding.

T* fT

Fig. 4. Cutting along T ∗ and adding new (dotted) zero-cost edges between copies of the vertices

• Furthermore, we will show it suffices that the procedure consider only representative
topologies of small size, and that there are not too many such topologies.
•We describe a property, X-validity, that captures what a topology must do in order to
correspond to an (X ,Y )-mcut. The procedure considers only valid representative topolo-
gies.
• In Line 6, the procedure RE is invoked on each valid small representative topology.
We would like to say that RE finds a minimum-cost topology in G1 that is isomorphic
to the valid representative topology. This is not necessarily true; instead, the procedure
finds a valid solution in G1 whose cost is no greater than the minimum cost of a topology
in G1 isomorphic to the representative.

Definition 4.1. A label structure is a planar embedded graph H containing
• a simple cycle C(H) that strictly encloses no nodes, and
• a subset of nodes of C(H) labeled 1,2, . . . ,k in clockwise order along the cycle

(the terminal reps, short for representatives).
Note: The graph G1 with the cycle C(G1) in Lines 4-5 is a label structure.
Let H be a label structure and let M be a subset of edges. We say M is a feasible solution
for H if no edges of M are incident to labeled nodes. For a subset X ⊂ {1, . . . ,k}, we
say M is X-valid for H if M dual-separates every element of X from every other labeled
node in H.
Let M1=edges strictly enclosed by C(H) and M2 =M−M1. We say (H,M) is a topology
in H if, for i= 1,2, the edges of Mi form a forest with leaves on C(H). The size of (H,M)
is |V (H)|.

Definition 4.2. For a topology (G1,M1), where G1 is the graph obtained in Line 4, the
solution induced in Gin is the set of edges of M1 that are in Gin (including edges of T ∗

with copies in M1).

The definition of dual-separates implies the following lemma.

Lemma 4.3. An X-valid topology induces an (X ,{1, . . . ,k}−X)-mcut.



Definition 4.4. Suppose that, for i = 1,2, (Gi,Mi) is a topology. An isomorphism be-
tween (H1,M1) and (H2,M2) is a homeomorphism between the subgraph M1 of H1 and
the subgraph M2 of H2 that maps interior edges to interior edges and that preserves the
order on the cycle of {endpoints of interior edges}∪{labeled nodes}.

Lemma 4.5. Isomorphism between topologies preserves X-validity.

We can bound the number of representative topologies considered in Line 6 by using
Catalan numbers:

Lemma 4.6. The number of isomorphism classes of topologies of size at most s is at
most αs, and representatives of these classes can be enumerated in O(αs) time, where
α is a universal constant.

This bound depends on the size of the topologies considered; the following theorem,
proved in Section 5, states that only small ones need be considered.

Theorem 4.7. If (X ,Y ) is biconnectivity-inducing then there is an X-valid topology
(G,M) of size at most βk that is isomorphic to a topology in G1 whose cost is at most
that of an optimal (X ,Y )-mcut in Gin, where β is a universal constant.

The following theorem is proved in Section 6.

Theorem 4.8. There is a procedure RE(H,M,G1) that returns a feasible solution M1
with the following properties:
1) If M is X-valid for H then M1 is X-valid for G1.
2) If there is a topology (G1,M′1) isomorphic to (H,M) then M1 is no more costly than
M′1.

3) The time required is at most nγ
√
|V (H)| for a constants γ .

Finally, putting these results together, we obtain

Theorem 4.9. BSOLVE(Gin,X ,Y ) finds an (X ,Y )-mcut in Gin that is optimal if (X ,Y )

is biconnectivity-inducing, and the procedure takes at most αβknc
√

βk time.

Proof. By Property 1 of Theorem 4.8, BSOLVE returns an X-valid topology of G1,
which by Lemma 4.3 induces an (X ,Y )-mcut. We choose the constant β in Line 6 ac-
cording to Theorem 4.7. Therefore, there exists some small X-valid topology (G,M),
among those considered in Line 6, that is isomorphic to a topology (G1,M′1) in G1 that
induces an optimal (X ,Y )-mcut. Therefore, by Property 2 of Theorem 4.8, RE(G,M,G1)
returns a feasible solution M1 for G1 whose cost is at most that of M′1 and therefore at
most the optimal cost of an (X ,Y )-mcut. The running time is dominated by having to
call RE at most αβk times (Lemma 4.6), each taking time nγ

√
βk. ut

This theorem plus the reduction to the biconnected case yields our main result, an algo-
rithm for planar k-terminal cut that requires O(dknc

√
k) time.



5 Proof of Theorem 4.7

Suppose (X ,Y ) is biconnectivity-inducing in Gin, and let S⊂E(Gin) be a minimum-cost
(X ,Y )-cut in Gin, breaking ties by minimizing the number of edges not in T ∗. Because
of the transformation of Line 3 of BSOLVE, the edges of S alone do not dual-separate
terminals in G1, so S is not X-valid for G1: some zero-cost edges are needed. For a
set A of external edges of G1, define cr(A) as follows: if A contains edges incident to
different copies of the same node of G∗in, include in cr(A) the internal edges forming a
simple path between the different copies. We refer to the edges in cr(A) as crossings.

Lemma 5.1. For any set A of external edges of G1, if A induces the solution S in Gin
then A∪ cr(A) is X-valid for G1.

Among all sets A that induce S, let AS be one that minimizes |cr(A)|. Without loss
of generality, we assume that AS does not include more than one copy of an edge of
S. If G1 contained a cycle consisting of edges of AS then G∗in would contain a cycle
C consisting of edges of S such that C did not enclose any terminal, so S would not
be minimum. Thus AS is a forest in G1. A similar argument shows that all the leaves
of AS are endpoints of cr(AS). Thus (G1,AS ∪ cr(AS)) is a topology in G1, and it is
X-valid by Lemma 5.1. Moreover, since the number of leaves is ≤ 2|cr(AS)|, at most
2|cr(AS)| nodes have three or more incident edges in AS. This implies that there is a
topology (H,M) isomorphic to (G1,AS ∪ cr(AS)) of size at most 3|cr(AS)|. We next
show |cr(AS)| ≤ 24k, which implies Theorem 4.7.

Define a branchpoint of a graph to be a node of degree three or greater. We refer
to the edges of S as red edges, and to the subgraph of Ĝ∗in they form as the red graph.
We refer to its faces as red faces. The red degree of a node of Ĝ∗in is the number of
incident red edges. We use spliced red graph to refer to the graph obtained from the
red graph by splicing out degree-two vertices. By minimality of S, each face of the red
graph encloses at least one terminal. Euler’s formula then implies e ≤ 3(k− 2), so the
sum of degrees of branchpoints of the red graph is at most 6(k−2).

Recall that T ∗ is a minimum Steiner tree in Ĝ∗in, which we call the blue graph. (The
red and the blue graphs can share edges.) Each leaf is a terminal rep, so there are k
leaves, so the spliced blue graph has at most 2k− 3 edges, so the sum of degrees of
branchpoints in the unspliced blue graph is at most 2(2k−3).

For a singular red face R, define a blue ear of R to be a path B of blue edges such
that B connects two nodes on the boundary of a singular red face and each internal node
of B is strictly enclosed by R and has blue degree two.

We prove the bound on the number of crossings by a charging scheme, where we
charge the crossings to the red branch nodes, blue branch nodes, terminals, and blue
ears. We already have a bound of O(k) on the total degree of the branch nodes. The
following lemma gives a similar bound on the blue ears.

Lemma 5.2. The number of blue ears of singular red faces is at most 14k.

The proof is illustrated in Figure 5. Let R be a red face, and let R′ be the graph
obtained from R by including the blue ears of R. Let R′′ be the graph obtained from R′

by splicing out nodes of blue degree two that are strictly enclosed by R. Consider the



Fig. 5. Proof of Theorem 5.2. On the left is a singular red face (the box) enclosing some blue
edges. In the middle is the subgraph of the dual induced by the enclosed faces; it is a tree. As
illustrated by the figure on the right, every tree node of degree zero or two is a face that either
encloses a terminal or has a red branchpoint on its boundary.

planar dual of R′′, and let GR denote the subgraph of the planar dual consisting of the
edges of blue ears. Because every edge of GR is a cut-edge, we infer that GR is a tree.

A face of R′′ is a red-blue face if its boundary consists of a red path and a blue path,
and is a red-blue-red-blue face if it consists of two red and two blue paths (alternating).
The leaves of GR are red-blue faces in R′′, and the degree-two nodes of GR are red-blue-
red-blue faces.

Proposition 5.3. Every red-blue face either encloses a terminal or has a red branch-
point on its boundary.

Proof. Suppose PQ is the boundary of a red-blue face, where P is red and Q is blue. If
len(P)< len(Q) then Q could be replaced in the Steiner tree by P, reducing the length,
a contradiction. Therefore len(Q) ≤ len(P). If PQ does not enclose a terminal and P
does not have a branchpoint, replacing P by Q in the optimal solution yields an optimal
solution with fewer non-blue edges, a contradiction. ut

Proposition 5.4. The only red-blue-red-blue faces are those that enclose terminals and
those that have red branchpoints on their boundary

Fig. 6. Illustrates the proof of Lemma 5.4. The horizontal line segments are
red, as is the dashed curve, and the vertical line segments are blue. The solid
circle represents a terminal in the same red face as the red-blue-red-blue face.

p

s

r

q

Proof. Suppose F is a red-blue-red-blue face of R′′ that does not enclose a terminal and
does not have a red branchpoint on its boundary. See Figure 6. The boundary of F is
pqrs where p and r are blue and q and s are red, and p divides R′′ into a part enclosing
F and a part enclosing a terminal.

If len(p) ≤ len(q), then replacing q with p in the red path yields a solution that
is no more expensive but has fewer non-blue edges, a contradiction. Thus len(p) >
len(q). Similarly len(p)> len(s). Removing the path p from the blue graph yields two
disconnected components. If the one not containing r contains the intersection of p with
s, the graph obtained from the blue graph by replacing p with s is a cheaper solution, a
contradiction. The other case is similar. ut



Fig. 7. There are two crossings, u1u2 and e. P1 includes no nodes of multiplicity
greater than two and no nodes of red degree greater than two. Therefore the path P1
can be replaced by the dotted line and the two crossings eliminated.

P1

P2
u1u2

e

The proof of Lemma 5.2 now follows from the fact that GR is a tree and from
Prop. 5.4 and Prop. 5.3, which bound the number of leaves and degree-two nodes in
terms of terminals and red branchpoints.

To complete the proof of the theorem, we now bound the crossings by charging to
branchnodes, blue ears, and terminals.

Recall that G∗1 is obtained from Ĝ∗in by cutting along the edges of T ∗, so every edge
of T ∗ is represented in G∗1 by two copies, and every node u of T ∗ is represented by a
number of copies equal to the degree of u in T ∗. The multiplicity of one such copy is the
number of copies, i.e. the degree of u in T ∗. If a copy has multiplicity greater than two
then u is a branchpoint of the blue graph. The red degree of one such copy is defined
to be u’s red degree in Ĝ∗in (so here we may count red edges incident to u that are no
longer incident to a given copy of u). Let u1u2 ∈ cr(AS). In the following, for each case,
we assume the previous cases do not hold. By definition of cr(AS), there are red edges
incident to u1 and u2. For i = 1,2, let Pi be a maximal path, starting with ui, of edges in
G∗1 that are both red and blue, such that every node of Pi except possibly the last has red
degree two and multiplicity two.

Case 1: P1 or P2 ends at a branchpoint of the red graph. In this case we charge the
crossing to the red branchpoint. The number of crossings charged to such a branchpoint
is at most the degree of the branchpoint, so at most 6k crossings are charged in this way.

Case 2: P1 or P2 ends at a node of multiplicity greater than two. In this case, we
charge the crossing to the branchpoint of the blue graph. The number of crossings
charged to a branchpoint w by this rule is at most the degree of w in the blue graph.
Thus the total number of such crossings is at most 4k.

Case 3: P1 or P2 ends at a node with no incident red edge in G∗1. Since the red edges
form a two-connected subgraph of Ĝ∗in, the last node of Pi has red degree two or more.
It follows that in G∗1 some e ∈ cr(AS) is incident to the last node of Pi. However, since
every node in P1 and in P2 has multiplicity at most two, the configuration is as shown in
in Figure 7, and the two crossings can be eliminated, a contradiction.

Case 4: For i = 1 and i = 2, Pi ends at a node v of red degree two and multiplicity
two, but the second red edge incident to v and the second blue edge incident to v differ.
Let u be the node of Ĝ∗in whose copies are u1 and u2. Since the red edges form a two-
connected subgraph of Ĝ∗in, the neighbors of u in this subgraph are connected in the
subgraph by a path Q that avoids u. Let Q′ be the cycle obtained from Q by adding the
red edges incident to u. (See Figure 8.) For i = 1,2, let P′i be the path obtained from Pi
by appending the second red edge incident to the end of Pi.

Because all the nodes of P1 ∪ P2 have red degree two, Q′ includes all the edges
corresponding to those in P′1 ∪P′2. Let bi be the blue edge of G∗1 incident to the end of
Pi, and let b′i be the corresponding edge of Ĝ∗in. The cycle Q′ shows that b′1 and b′2 are
in different faces f1 and f2 of the red graph. Because the nodes of P1 ∪P2 have red



Fig. 8. Case 4. On left, at end of Pi, red path and
blue path diverge. Red edge incident to the end
of Pi differs from blue edge bi incident to the end
of Pi. Right figure shows Ĝ∗in: a path Q joining
the red neighbors of u, forming a cycle Q′. Edges
b′1 and b′2 are in different but neighboring red
faces.

P1

P2
u1u2

b1

b2

b1'

b2'

Q'

degree two, the edges of P′1∪P′2 belong to the boundaries of f1 and f2. The faces f1 and
f2 cannot both be plural faces, else the edges between them could be removed while
maintaining feasibility. Assume without loss of generality that f2 is a singular face. Let
B be a maximal path of blue edges starting with b′2 such that every node except the last
has blue degree two and is strictly internal to f2.

Subcase a: The last node of B has blue degree one. That last node is a terminal. We
charge the crossing to the terminal. There are at most k crossings thus charged.

Subcase b: The last node of B has blue degree greater than two. We charge the
crossing to this blue branchpoint. The number of crossings charged to this branchpoint
is at most its degree, so the total number of crossings thus charged is at most 4k.

Subcase c: B forms a path between two nodes on the boundary of f2. In this case, we
charge the crossing to the blue ear. The number of such ears is bounded by Lemma 5.2.

6 Realization

In this section, we prove Theorem 4.8. Given a topology, we try to find a realization of
minimum cost in a label structure:

Definition 6.1. Let (H,M) be a topology of some label structure H, and let G be an-
other label structure. A realization of (H,M) in G consists of a mapping φv : V (M)→
V (G) and a mapping φe : E(M)→ 2E(G) such that
• φv preserves the order among {endpoints of interior edges}∪{labeled nodes} on

the cycles C(H) and C(G).
• For every interior edge xy ∈ E(M), φe(xy) is an interior edge between φv(x) and

φv(y).
• For every exterior edge xy ∈ E(M), φe(xy) is a path of exterior edges between

φv(x) and φv(y).
The cost of a realization is ∑xy∈E(M) cost(φe(xy)).

Lemma 6.2. If (H1,M1) and (H2,M2) are isomorphic topologies and (H1,M1) has a
realization of cost R in label structure G, then so does (H2,M2).

The following lemma shows that a realization of a valid topology is indeed a solution:

Lemma 6.3. Let (H,M) be an X-valid topology. Let (φv,φe) be a realization of (H,M)
in a label structure G having cost R. Then there is an X-valid set S⊆ E(G) of weight at
most R that is X-valid in G.



Proof. Let S be the union of the edge sets of the path φe(uv) for every edge uv ∈M. It
is clear that the total cost of the edge set S is at most R, the cost of the realization. We
claim that S is X-valid in G. Let i ∈ X be a labeled node and let j 6= i be some other
labeled node. By the definition of valid topology and Lemma 2.4, there is a cycle C1 in
M dual-separating i and j. Replacing each interior edge uv ∈C1 with the edge φe(uv)
and each exterior edge uv ∈C1 with the path φe(uv), we can obtain a closed walk C2 of
G. We claim that C2 dual-separates i and j in G∗.

Let R1
i j and R2

i j be the segment of C(H) (resp., C(G)) between labeled nodes i and
j in clockwise direction. Let I1 be the interior edges I1 with exactly one endpoint on
R1

i j. We claim that |I1| is odd. As C1 is a simple cycle that dual-separates i and j, there
is a dual path Q1 (i.e., a sequence of faces and edges) in the exterior of H from a face
of i to a face of j such that Q1 contains exactly one edge of C1. Let R1 be the set of
vertices that can be reached from R1

i j−{i, j} on exterior edges without using an edge
of Q1 or going through i or j. By planarity, R1 does not contain any vertex of the cycle
of H outside R1

i j. A simple parity argument shows that the number of edges in the cycle
C1 with exactly one endpoint in R1 is even. As C1 does not go through i and j (by the
definition of topology), every such edge is either in Q1 (there is exactly one such edge)
or it is an interior edge with exactly one endpoint in R1

i j. Thus there are exactly |I1|+1
such edges and hence |I1| is odd.

Let I2 ⊆ E(G) contain those edges of S used by C2 that have exactly one endpoint
in R2

i j. Observe that |I1|= |I2|: by the definition of realization, the order on the cycle is
preserved and hence each edge of I1 is mapped to a distinct edge of I2. It also follows
that C2 uses each edge of I2 only once. Suppose that C2 does not dual-separate i and j:
there is a dual path Q2 in the exterior of G from a face of i to a face of j. Let R2 be the
set of vertices that can be reached from R2

i j−{i, j} on exterior edges of G without using
an edge of Q2 or going through i or j. As C2 does not go through i and j (by definition
of dual-separate) and disjoint from Q2, only the edges in I2 have exactly one endpoint
in R2. We have observed that C2 uses each such edge exactly once and |I2|= |I1| is odd,
a contradiction. ut

In light of Lemma 6.3, all we need is to find minimum-cost realizations of valid
topologies. We will use the following embedding result, whose proof uses standard
dynamic programming techniques on tree decompositions.

Theorem 6.4. Let D be a directed graph, U a set of elements, and functions cv : V (D)×
U → Z+ ∪{∞}, ce : V (D)×V (D)×U ×U → Z+ ∪{∞}. In time |U |O(tw(D)), we can
find a mapping φ : V (D)→U that minimizes

∑
v∈V (D)

cv(v,φ(v))+ ∑
(u,v)∈E(D)

ce(u,v,φ(u),φ(v)).

Lemma 6.5. Given a topology (H,M) and another label structure G, a minimum-cost

realization of (H,M) in G can be found in time |V (G)|O(
√
|V (M)|).

Proof. Let D be the directed graph obtained as an arbitrary orientation of the subgraph
of H spanned by M. For every edge −→xy of D arising from an interior edge of H, we
define ce(x,y,x′,y′) to be 0 if x′y′ is an interior edge of G and ∞ otherwise. If −→xy arises



from an exterior edge, then ce(x,y,x′,y′) is the cost of the shortest path from x′ to y′ in
G containing only exterior edges. We introduce some further directed edges as follows.
If x,y are two vertices that are endpoints of interior edges of H such that x is between
terminal vertices i and i+1 on the cycle and y is the next vertex (in clockwise direction)
with this property, then we introduce a directed edge −→xy and define ce(x,y,x′,y′) to be
0 if terminal i, vertex x′, vertex y′, terminal i+ 1 follow each other in this order (in
clockwise direction) and ∞ otherwise.

If x ∈V (H) (resp., x′ ∈V (G)) is an endpoint of an interior edge of H (resp., G) and
it is between i and i+1 (resp., i′ and i′+1) on the cycle in clockwise direction, then we
define cv(x,x′) = 0 if i = i′ and cv(x,x′) = ∞ otherwise. If x ∈V (H) is not an endpoint
of an interior vertex, then we set cv(x,x′) = 0 for every x′ ∈V (G).

Let us use the algorithm of Theorem 6.4 to find a mapping φv. As D is planar, its
treewidth is O(

√
|V (M)|). Therefore, the running time of this step is |V (G)|O(

√
|V (M)|).

For every interior edge xy ∈ E(M), we define φe(xy) to be the interior edge φv(x)φv(y),
while if xy ∈ E(M) is exterior, then we define it to be a shortest path between φv(x) and
φv(y) using only the exterior edges of G. It is easy to verify that (φv,φe) is a realization
of (H,M) in G and its cost is the cost of the mapping φ . Furthermore, every realization
can be transformed into a mapping with the same cost. Thus the realization obtained
this way is indeed a minimum-cost realization. ut

To prove Theorem 4.8, the procedure RE(G,M,G1) uses the algorithm of Lemma 6.5
to find a minimum-cost realization of (G,M) in G1. By Lemma 6.3, the result is X-
valid. The second statement of Theorem 4.8 follows from Lemma 6.2. The running
time follows from the statement of Lemma 6.5.
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