
Bin packing with fixed number of bins revisited

Klaus Jansen1?, Stefan Kratsch2, Dániel Marx3??, and Ildikó Schlotter4? ? ?

1 Institut für Informatik, Christian-Albrechts-Universität Kiel, 24098 Kiel, Germany
2 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

3 Tel Aviv University, Israel
4 Budapest University of Technology and Economics, H-1521 Budapest, Hungary

Abstract. As Bin Packing is NP-hard already for k = 2 bins, it is
unlikely to be solvable in polynomial time even if the number of bins
is a fixed constant. However, if the sizes of the items are polynomially
bounded integers, then the problem can be solved in time nO(k) for an in-
put of length n by dynamic programming. We show, by proving the W[1]-
hardness of Unary Bin Packing (where the sizes are given in unary
encoding), that this running time cannot be improved to f(k) · nO(1)

for any function f(k) (under standard complexity assumptions). On the
other hand, we provide an algorithm for Bin Packing that obtains in

time 2O(k log2 k)+O(n) a solution with additive error at most 1, i.e., either
finds a packing into k + 1 bins or decides that k bins do not suffice.

1 Introduction

The aim of this paper is to clarify the exact complexity of Bin Packing for
a small fixed number of bins. An instance of Bin Packing consists of a set of
rational item sizes, and the task is to partition the items into a minimum number
of bins with capacity 1. Equivalently, we can define the problem such that the
sizes are integers and the input contains an integer B, the capacity of the bins.

Complexity investigations usually distinguish two versions of Bin Packing.
In the general version, the item sizes are arbitrary integers encoded in binary,
thus they can be exponentially large in the size n of the input. In the unary
version of the problem, the sizes are bounded by a polynomial of the input size;
formally, this version requires that the sizes are given in unary encoding.

In the general (not unary) case, a reduction from Partition shows that
Bin Packing is NP-hard [7]. Thus it is hard to decide whether a given set of
items can be packed into exactly two bins. Apart from NP-hardness, this has a
number of other known implications. First of all, unless P = NP, it is impossible
to achieve a better polynomial-time approximation ratio than 3/2, matching the
best known algorithm [16].

In contrast, however, there are much better approximation results when the
optimum number of bins is larger [4, 12]. De la Vega and Lueker [4] found an

? Research supported by the EU project AEOLUS, Contract Number 015964.
?? Supported by ERC Advanced Grant DMMCA.

? ? ? Supported by the Hungarian National Research Fund (OTKA 67651).

asymptotic polynomial-time approximation scheme (APTAS) for Bin Packing
with ratio (1 + ε)OPT (I) + 1 and running time O(n) + f(1/ε) (if the items
are sorted). To bound the function f , one has to consider the integer linear
program (ILP) used implicitly in [4]. This ILP has 2O(1/ε log(1/ε)) variables and
length 2O(1/ε log(1/ε)) logn. Using the algorithm by Lenstra [13] or Kannan [11],

this ILP can be solved within time 22O(1/ε log(1/ε))

O(log n) ≤ 22O(1/ε log(1/ε))

+
O(log2 n). Thus, the algorithm of [4] can be implemented such that the ad-
ditive term f(1/ε) in the running time is double exponential in 1/ε. Setting
ε = 1

OPT (I)+1 , this algorithm computes a packing into at most OPT (I) + 1 bins

in time O(n) + 22OPT(I) log(OPT(I))

.
Using ideas in [6, 10], the algorithm of de la Vega and Lueker can be improved

to run in time O(n) + 2O(1/ε3 log(1/ε)). Setting again ε = 1
OPT (I)+1 , we obtain an

additive 1-approximation that runs in O(n) + 2O(OPT (I)3 log(OPT (I))) time.
Karmarkar and Karp [12] gave an asymptotic fully polynomial-time approx-

imation scheme (AFPTAS) that packs the items into (1 + ε)OPT (I) +O(1/ε2)
bins. The AFPTAS runs in time polynomial in n and 1/ε, but has a larger ad-
ditive term O(1/ε2). Plotkin, Shmoys and Tardos [14] achieved a running time
of O(n log(1/ε) + ε−6) log6(1/ε)) and a smaller additive term O(1/ε log(1/ε)).

Bin Packing remains NP-hard in the unary case as well [7]. However, for
every fixed k, Unary Bin Packing can be solved in polynomial time: a standard
dynamic programming approach gives an nO(k) time algorithm. Although the
running time of this algorithm is polynomial for every fixed value of k, it is
practically useless even for, say, k = 10, as an n10 time algorithm is usually
not considered efficient. Our first result is an algorithm with significantly better
running time that approximates the optimum within an additive constant of 1:

Theorem 1. There is an algorithm for Bin Packing which computes for each
instance I of length n a packing into at most OPT (I) + 1 bins in time

2O(OPT (I) log2 OPT (I)) +O(n).

Note that the algorithm works not only for the unary version, but also for the
general Bin Packing as well, where the item sizes can be exponentially large.

It is an obvious question whether the algorithm of Theorem 1 can be improved
to an exact algorithm with a similar running time. As the general version of
Bin Packing is NP-hard for k = 2, the question makes sense only for the
unary version of the problem. By proving that Unary Bin Packing is W[1]-
hard parameterized by the number k of bins, we show that there is no exact
algorithm with running time f(k) · nO(1) for any function f(k) (assuming the
standard complexity hypothesis FPT 6= W[1]).

Theorem 2. Unary Bin Packing is W[1]-hard, parameterized by the number
of bins.

Thus no significant improvement over the nO(k) dynamic programming algorithm
is possible for Unary Bin Packing. From the perspective of parameterized

2

complexity, the general (not unary) Bin Packing is not even known to be
contained in the class XP, when parameterized by the number of bins.

Finally, let us mention that the existence of a polynomial-time algorithm
with additive error of 1 (or any other constant) is a fundamental open problem,
discussed for example in [5, Section 2.2.9]. Such a polynomial-time algorithm
would be a significant breakthrough even in the unary case. Our algorithm shows
that obtaining such an approximation is easy in the unary case for fixed number
of bins. Thus an important consequence of our result is that any hardness proof
ruling out the possibility of constant additive error approximation for the unary
version has to consider instances with an unbounded number of bins.

For proofs omitted due to lack of space, marked by a ?, see the full paper.

2 Additive 1-approximation for Bin Packing in FPT time

This section deals with the following version of Bin Packing: given an integerK
and a set I of items with rational item sizes (encoded in binary), and the task is
to pack the items into K bins of capacity 1. We prove Theorem 1 by describing
an algorithm for this problem which uses at most K+1 bins for each I , provided
that OPT (I) = K, where OPT (I) is the minimum number of bins needed for I .

Our algorithm computes a packing into K or K+1 bins. We suppose K ≥ 2;
otherwise we pack all items into a single bin. We divide the instance I into three
groups:

Ilarge = {a ∈ I | size(a) > 1
2x

1
log(K)},

Imedium = {a ∈ I | 1
y

1
K ≤ size(a) ≤ 1

2x
1

log(K)},
Ismall = {a ∈ I | size(a) < 1

y
1
K },

where x, y are constants specified later. In the first phase of our algorithm we
consider the large items. Since each bin has at most b2x log(K)c large items
and OPT (I) = K, the total number of large items in I is at most Kb2x log(K)c.
Suppose that Ilarge = {a1, . . . , a`} where ` ≤ Kb2x log(K)c. We can assign large
items to bins via a mapping f : {1, . . . , `} → {1, . . . ,K}. A mapping f is feasible,
if and only if

∑
i|f(i)=j size(ai) ≤ 1 for all j = 1, . . . ,K. The total number of

feasible mappings or assignments of large items to bins is at mostKKb2x log(K)c =
2O(K log2(K)). Each feasible mapping f generates a pre-assignment preass(bj) ∈
[0, 1] for the bins bj ∈ {b1, . . . , bK}; i.e. preass(bj) =

∑
i|f(i)=j size(ai) ≤ 1.

Notice that at least one of the 2O(K log2(K)) mappings corresponds to a packing
of the large items in an optimum solution.

In the second phase we use a geometric rounding for the medium items. This
method was introduced by Karmarkar and Karp [12] for the Bin Packing prob-
lem. Let Ir be the set of all items from Imedium whose sizes lie in (2−(r+1), 2−r]
where 2r > x log(K) or equivalently 1

x
1

log(K) >
1
2r (see Fig. 1(a) for an example Ir

where we have divided the set Ir into groups of size d 2r

x log(K)e). Let r(0) be the

smallest integer r such that 2r > x log(K). Then, 2r(0)−1 ≤ x log(K) and 2r(0) >
x log(K). This implies that the interval with the smallest index r(0) contains
items of size in (1/2r(0)+1, 1/2r(0)] and that 1

2x
1

log(K) ∈ (1/2r(0)+1, 1/2r(0)].

3

≤ g = g = g

(a) The original instance Ir grouped
into groups of size g = d 2r

x log(K)
e.

Jr J ′r
(b) The rounded instance Jr and J ′r.

Fig. 1. The original and the rounded instances for the interval (2−(r+1), 2−r].

For each r ≥ r(0) let Jr and J ′r be the instances obtained by applying lin-
ear grouping with group size g = d 2r

x log(K)e to Ir. To do this we divide each

instance Ir into groups Gr,1, Gr,2, . . . , Gr,qr such that Gr,1 contains the g largest
items in Ir, Gr,2 contains the next g largest items and so on (see Fig. 1(a)).
Each group of items is rounded up to the largest size within the group (see also
Fig. 1(b)). Let G′r,i be the multi-set of items obtained by rounding the size of
each item in Gr,i. Then, Jr =

⋃
i≥2G

′
r,i and J ′r = G′r,1.

Furthermore, let J =
⋃
Jr and J ′ =

⋃
J ′r. Then, Jr ≤ Ir ≤ Jr∪J ′r where ≤ is

the partial order on Bin Packing instances with the interpretation that IA ≤ IB
if there exists a one-to-one function h : IA → IB such that size(x) ≤ size(h(x))
for all items x ∈ IA. Furthermore, J ′r consists of one group of items with the
largest medium items in (2−(r+1), 2−r]. The cardinality of each group (with ex-
ception of maybe the smallest group in Ir) is equal to d 2r

x log(K)e.

Lemma 1. For K ≥ 2 and x ≥ 4, we have size(J ′) ≤ log(yK)
x log(K) .

Proof. Each non-empty set J ′r contains at most d 2r

x log(K)e items each of size at

most 1/2r. Hence size(J ′r) ≤ (2r

x log(K) + 1) 1
2r = 1

x log(K) + 1
2r . This implies that

the total size size(J ′) =
∑

r≥r(0) size(J ′r) ≤
∑

r≥r(0)(
1

x log(K) + 1
2r). Let r(1) be

the index with 1
yK ∈ (2−(r(1)+1), 2−r(1)]. This implies that r(1) ≤ blog(yK)c.

Then, the number of indices r ∈ {r(0), . . . , r(1)} is equal to the number of inter-
vals (2−(r+1), 2−r] which may contain a medium item. Since 1

x log(K) > 1/2r(0)

and K ≥ 2, we have 2r(0) > x log(K) ≥ x or equivalently r(0) > log(x log(K)) ≥
log(x). For x ≥ 4 we obtain r(0) ≥ 3.

Thus, the number of such intervals is r(1)−r(0)+1 ≤ r(1)−2 ≤ blog(yK)c−2.
Using 1

2r(0) <
1

x log(K) and
∑

r≥r(0) 1/2r ≤ 1/2r(0)−1, we get

size(J ′) ≤ (blog(yK)c − 2) 1
x log(K) +

∑
r≥r(0)

1
2r

≤ log(yK)−2
x log(K) + 1

2r(0)−1 ≤ log(yK)−2
x log(K) + 2

x log(K) ≤
log(yK)
x log(K) . ut

The lemma above implies OPT (J ′) = 1 for x ≥ 4,K ≥ 2 and log(y) ≤ (x−1),
since these items have total size at most 1. A possible choice is x = 4 and y ≤ 8.

4

1 2 3 K...

(5 × , 4 ×) ∈ V3

Fig. 2. The dynamic program for rounded medium items J = ∪jJr

By
⋃
r≥r(0) Jr ≤ Imedium ≤

⋃
r≥r(0)(Jr ∪J ′r) and J ′ =

⋃
r≥r(0) J

′
r, we obtain:

Lemma 2.

OPT (Ilarge ∪
⋃

r≥r(0)

Jr ∪ Ismall) ≤ OPT (Ilarge ∪ Imedium ∪ Ismall)

OPT (Ilarge ∪ Imedium ∪ Ismall) ≤ OPT (Ilarge ∪
⋃

r≥r(0)

Jr ∪ Ismall) + 1.

Lemma 3. There are at most O(K log(K)) different rounded sizes for medium
items for x ≥ 1 and K ≥ 2.

Proof. Let n(Ir) be the number of medium items in Ir, and let m(Ir) be the
number of groups (or rounded sizes) generated by the linear grouping for Ir.

Then, size(Ir) ≥ 1
2r+1n(Ir) ≥ 1

2r+1 [(m(Ir)−1)
⌈

2r

x log(K)

⌉
]. Notice that one group

may have less than d 2r

x log(K)e items. This implies that

m(Ir)− 1 ≤ 2r+1size(Ir)

d 2r

x log(K)e
.

Using dae ≥ a for a ≥ 0, m(Ir) ≤ 2x log(K)size(Ir)+1. For x ≥ 1 andK ≥ 2,
we have r(0) > log(x) ≥ 0 and, therefore, r(0) ≥ 1. Since the number of intervals
for the medium items is at most r(1) − r(0) + 1 ≤ r(1) ≤ blog(yK)c, the total
number of rounded medium sizes

∑
r≥r(0)m(Ir) ≤

∑
r≥r(0)(2x log(K)size(Ir) +

1) ≤ 2x log(K)
∑

r≥r(0) size(Ir) + log(yK). Since all medium items fit into K

bins and x, y are constants, size(Imedium) =
∑

r≥r(0) size(Ir) ≤ K and

∑

r≥r(0)

m(Ir) ≤ 2xK log(K) + log(yK) ≤ O(K log(K)).

ut

Now we describe the third phase of our algorithm. The rounded medium item
sizes lie in the interval [1

yK ,
1

2x log(K)] and there are at most R ≤ O(K log(K))

many different rounded item sizes. For each j = 1, . . . , R let kj be the number
of items for each rounded item size xj . Since xj ≥ 1

yK and OPT (I) = K, the

number kj ≤ K/xj ≤ K2y for each item size xj . To describe a packing for

5

one bin b we use a mapping p : {1, . . . , R} → {0, . . . , yK} where p(j) gives the
number of items of size xj in b. A mapping p is feasible, if and only if

∑
j p(j)xj+

preass(b) ≤ 1 where preass(b) is the total size of large items assigned to b in
the first phase of the algorithm. The total number of feasible mappings for one
bin is at most (yK + 1)O(K log(K)) = 2O(K log2(K)). Using a dynamic program
we go over the bins from b1 up to bK . For each A = 1, . . . ,K, we compute a
set VA of vectors (a1, . . . , aR) where aj gives the number of items of size xj used
for the bins b1, . . . , bA (see also Fig. 2). The cardinality of each set VA is at

most (K2y+ 1)O(K log(K)) = 2O(K log2(K)). The update step from one bin to the
next (computing the next set VA+1) can be implemented in time

2O(K log2(K)) · 2O(K log2(K)) · poly(K) ≤ 2O(K log2(K)).

If there is a solution for our Bin Packing instance I into K bins, then
the set VK contains the vector (n1, . . . , nR) that corresponds to the number of
rounded medium item sizes in

⋃
r≥r(0) Jr. Notice that the other set

⋃
r≥r(0) J

′
r

will be placed into the additional bin bK+1. We can also compute a packing
of the medium items into the bins as follows. First, we compute all vector
sets VA for A = 1, . . . ,K. If for two vectors a = (a1, . . . , aK) ∈ VA and a′ =
(a′1, . . . , a

′
K) ∈ VA+1 the medium items given by the difference a′ − a and the

preassigned large items fit into bin bA+1, we store the corresponding pair (a, a′)
in a set SA+1. By using a directed acyclic graph D = (V,E) with vertex
set V = {[a,A]|a ∈ VA, A = 1, . . . ,K} and E = {([a,A], [a′, A + 1])|(a, a′) ∈
SA+1, A = 1, . . . ,K−1}, we may compute a feasible packing of large and medium
rounded items into the bins b1, . . . , bK . This can be done via depth first search
starting with the vector (n1, . . . , nR) ∈ VK that corresponds to the number of
rounded medium item sizes. The algorithm to compute the directed acyclic graph
and the backtracking algorithm can be implemented in time

2O(K log2(K)).

In the last phase of our algorithm we add the small items via a greedy
algorithm to the bins. Consider a process which starts with a given packing of
the original large and medium items into the bins b1, . . . , bK+1. We insert the
small items of size at most 1

yK with the greedy algorithm Next Fit (NF) into
the bins b1, . . . , bK+1. The correctness of this step is proved in the next lemma.
Notice that NF can be implemented in linear time with at most O(n) operations.

Lemma 4. If OPT (I) = K, K ≥ 2, and y ≥ 2, then our algorithm packs all
items into at most K + 1 bins.

Proof. Assume by contradiction that we use more than K + 1 bins for the small
items. In this case, the total size of the items packed into the bins is more than
(K+1)(1− 1

yK) = K+1−K+1
yK . Note that K+1

yK ≤ K+1
2K < 1 by y ≥ 2 and K ≥ 2.

Thus, the total size of the items is larger than K, yielding OPT (I) > K. ut

The algorithm for Bin Packing for OPT (I) = K works as follows:

6

(1) Set x = 4, y = 2 and divide I into three groups Ilarge, Imedium, and Ismall.

(2) Assign the large items to K bins considering all feasible pre-assignments.
(3) Use geometric rounding on the sizes of the medium items; for each inter-

val (2−(r+1), 2−r] apply linear grouping with group size d 2r

x log(K)e to the

item set Ir and compute rounded item sets Jr and J ′r.
(4) For each pre-assignment apply the dynamic program to assign the medium

items in
⋃
Jr to the bins b1, . . . , bK , and place the set

⋃
j J
′
r into bK+1.

(5) Take a feasible packing into K + 1 bins for one pre-assignment (there is one
by OPT (I) = K), replace the rounded items by their original sizes and after-
wards assign the small items via a greedy algorithm to the bins b1, . . . , bK+1.

3 Parameterized hardness of Bin Packing

The aim of this section is to prove that Unary Bin Packing is W[1]-hard,
parameterized by the number k of bins. In this version of Bin Packing, we are
given a set of integer item sizes encoded in unary, and two integers b and k. The
task is to decide whether the items can be packed into k bins of capacity b.

To prove the W[1]-hardness of this problem when parameterized by the num-
ber of bins, we use the hardness of an intermediate problem, a variant of Unary
Bin Packing involving vectors of constant length c and bins of varying sizes.

Let [c] = {1, . . . , c} for any c ∈ N, and let Nc be the set of vectors with c coor-
dinates, each in N. We use boldface letters for vectors. Given vectors v,w ∈ Nc,
we write v ≤ w, if vj ≤ wj for each j ∈ [c], where vj is the j-th coordinate of v.

For a fixed c, we will call the following problem c-Unary Vector Bin Pack-
ing. We are given a set of n items having sizes s1, s2, . . . , sn with each si ∈ Nc
encoded in unary, and k vectors B1,B2, . . . ,Bk from Nc representing bin sizes.
The task is to decide whether [n] can be partitioned into k sets J1, J2, . . . , Jk
such that

∑
h∈Ji sh ≤ Bi for each i ∈ [k].

Lemma 5 shows that Theorem 2 follows from the W[1]-hardness of c-Unary
Vector Bin Packing, for any fixed c. In Section 3.1, we introduce two con-
cepts, k-non-averaging and k-sumfree sets, that will be useful tools in the hard-
ness proof. The reduction itself appears in Section 3.2.

Lemma 5 (?). For every fixed integer c ≥ 1, there is a parameterized reduction
from c-Unary Vector Bin Packing to Unary Bin Packing, where both
problems are parameterized by the number of bins.

3.1 Non-averaging and sumfree sets

Given an integer k, we are going to construct a set A containing n non-negative
integers with the following property: for any k elements a1, a2, . . . , ak in A it
holds that their arithmetical mean 1

k

∑k
i=1 ai can only be contained in A if all

of them are equal, i.e. a1 = a2 · · · = ak. Sets having this property will be called
k-non-averaging. Such sets have already been studied by several researchers [1,

7

3]. Although, up to our knowledge, the construction presented here does not
appear in the literature in this form, it applies only standard techniques1.

First, let us fix an arbitrary integer d. (In fact, it will suffice to assume d = 2,
but for completeness, we present the case for an arbitrary d.) Depending on d, let
us choose m to be the smallest integer for which md ≥ n, i.e. let m = dn1/de. We
construct a set X containing each vector (x1, x2, . . . , xd, y) where 0 ≤ xi ≤ m−1

for all i ∈ [d] and
∑d

i=1 x
2
i = y. Clearly, |X | = md, so in particular, |X | ≥ n.

Lemmas 6 and 7 show that we can easily construct a non-averaging set A
from X , having n elements. Setting d = 2, we get that the maximal element in A
is smaller than 25k2n2 = O(k2n2). Also, A can be constructed in O(k2n3) time.

Lemma 6 (?). If u1,u2, . . . ,uk and v are elements of X and v = 1
k

∑k
i=1 ui,

then u1 = u2 = · · · = uk = v.

Lemma 7 (?). If b = k(m− 1) + 1, then the set A = {v1 + v2b+ · · ·+ vcbc−1 |
v ∈ X} is k-non-averaging. Moreover, the largest element N in A is smaller
than 4d(2k)dn1+2/d, and A can be constructed in time linear in O(2dnN).

A set F is k-sumfree, if for any two sets S1, S2 ⊆ F of the same size k′ ≤ k,∑
x∈S1

x =
∑

x∈S2
x holds if and only if S1 = S2. Such sets have been studied

extensively in the literature, also under the name Bk-sequences [8, 9, 15].
It is easy to verify that the set S = {(k + 1)i | 0 ≤ i < n} is a k-sumfree set

of size n. The maximal element in such a set is of course (k+ 1)n−1. Intuitively,
the elements of S are the (k + 1)-base representations of those 0-1 vectors VS
in Nn that have exactly one coordinate of value 1. Since no vector in Nn can
be obtained in more than one different ways as the sum of at most k vectors
from VS , an easy argument shows that S is k-sumfree.

Although this will be sufficient for our purposes, we mention that a con-
struction due to Bose and Chowla [2] shows that a k-sumfree set of size n with
maximum element at most (2n)k can also be found (see also [9], Chapter II). If k
is relatively small compared to n, the bound (2n)k is a considerable reduction
on the bound (k + 1)n−1 of the construction above.

Lemma 8 ([2]). For any integers n and k, there exists a k-sumfree set having n
elements, with the maximum element being at most (2n)k.

3.2 Hardness of the vector problem

The following lemma contains the main part of the hardness proof. By Lemma 5,
it immediately implies Theorem 2.

Lemma 9. 10-Unary Vector Bin Packing is W[1]-hard.

Proof. We present an FPT reduction from the W[1]-hard Clique parameterized
by the size of the desired clique. Let G = (V,E) and k be the input graph and
the parameter given for Clique. We assume V = [n] and |E| = m, and we write

1 We thank Imre Ruzsa for explaining us these techniques.

8

xhyh for the h-th edge of G according to some arbitrary ordering. We construct
an instance I of 10-Unary Vector Bin Packing with

(
k
2

)
+ k + 1 bins.

Item sizes. The sizes of the items in I will be contained in S∪T , where S =⋃
(i,j)∈([k]

2) Si,j , T = T= ∪ T< ∪ T>, T= =
⋃
i∈[k] Ti,i, T

< =
⋃

(i,j)∈([k]
2) Ti,j ,

and T> =
⋃

(j,i)∈([k]
2) Ti,j ; here we use

(
[k]
2

)
= {(i, j) | 1 ≤ i < j ≤ k}. For each

possible pair of i and j, |Si,j | = m and |Ti,j | = n will hold.
To determine the item sizes, we first construct a k-non-averaging set A of

size n, using Lemma 7. Let A contain the elements a1 ≤ a2 ≤ · · · ≤ an. By
Lemma 7, we know an = O(k2n2). Let A =

∑
h∈[n] ah, clearly A = O(k2n3).

We also construct a k-sumfree set F containing k2 elements, using Lemma 8.
Let us index the elements of F by pairs of the form (i, j) ∈ [k]2, so let F = {fi,j |
(i, j) ∈ [k]2}. We also assume that fi1,j1 < fi2,j2 holds if and only if (i1, j1) is
lexicographically smaller than (i2, j2). By Lemma 8, we know fk,k = O(k2k).
Again, we let F =

∑
f∈F f , so F = O(k2k+2).

For some 1 ≤ i < j ≤ k, let Si,j =
⋃m
h=1 si,j(h), and for some 1 ≤ i, j ≤ k

let Ti,j =
⋃n
h=1 ti,j(h). The exact values of si,j(h) and ti,j(h) are as follows:

si,j(h) = (ik + j, 1, 0, 0, 0, 0, 0, 0, axh, ayh) if (i, j) ∈
(

[k]
2

)
, h ∈ [m],

ti,i(h) = (0, 0, fi,i, 1, 0, 0, 0, 0, (k− i)ah, (i− 1)ah) if i ∈ [k], h ∈ [n],

ti,j(h) = (0, 0, 0, 0, fi,j, 1, 0, 0, ah, 0) if (i, j) ∈
(

[k]
2

)
, h ∈ [n],

ti,j(h) = (0, 0, 0, 0, 0, 0, fi,j, 1, 0, ah) if (j, i) ∈
(

[k]
2

)
, h ∈ [n].

Bin capacities. We define
(
k
2

)
+k+ 1 bins as follows: we introduce bins pi,j

for each (i, j) ∈
(

[k]
2

)
, bins qi for each i ∈ [k], and one additional bin r. The

capacities of the bins pi,j and qi are given below (depending on i and j). To
define qi, we let F<i =

∑
i<j≤k fi,j and F>i =

∑
1≤j<i fi,j for each i ∈ [k].

Finally, we set the capacity of r in a way that the total size of the bins equals
the total size of the items. Hence, any solution must completely fill all bins.

pi,j = (ik + j, 1, 0, 0, (n− 1)fi,j , n− 1, (n− 1)fj,i, n− 1, A,A)

qi = (0, 0, (n− 1)fi,i, n− 1, F<i , k − i, F>i , i− 1, (k − i)A, (i− 1)A)

It is easy to see that r ∈ N10. Observe that |S ∪ T | = m
(
k
2

)
+ nk2, the unary

encoding of the item sizes in S needs a total of at most O(mk4 +nk2A) bits, and
the unary encoding of the item sizes in T needs a total of at most O(nF + k3A)
bits. By the bounds on A and F , the reduction given is indeed an FPT reduction.

Main idea. At a high-level abstraction, we think of the constructed instance
as follows. First, a bin qi requires n − 1 items from Ti,i, which means that we
need all items from Ti,i, except for some item ti,i(h). Choosing an index h ∈ [n]
for each i will correspond to choosing k vertices from G. Next, we have to fill up
the bin qi, by taking altogether k− 1 items from T< and T> in a way such that
the sum of their last two coordinates equals the last two coordinates of ti,i(h).
The sumfreeness of F and the non-averaging property of A will imply that the
chosen items must be of the form ti,j(h) and tj,i(h) for some j.

9

This can be thought of as “copying” the information about the chosen ver-
tices, since as a result, each bin pi,j will miss only those items from Ti,j and
from Tj,i that correspond to the i-th and j-th chosen vertex in G. Suppose pi,j
contains all items from Ti,j and Tj,i except for the items, say, ti,j(ha) and tj,i(hb).
Then, we must fill up the last two coordinates of pi,j exactly by choosing one
item from Si,j . But choosing the item sj,i(e) will only do if the edge correspond-
ing to e ∈ [m] connects the vertices corresponding to ha and hb, ensuring that
the chosen vertices form a clique.

Correctness. Now, let us show formally that I is solvable if and only if G
has a clique of size k. Clearly, I is solvable if and only if each of the bins can
be filled exactly. Thus, a solution for I means that the items in S ∪ T can be
partitioned into sets {Pi,j | (i, j) ∈

(
[k]
2

)
}, {Qi | i ∈ [k]}, and R such that

pi,j =
∑

v∈Pi,j
v for each (i, j) ∈

(
[k]
2

)
, (1)

qi =
∑

v∈Qi
v for each i ∈ [k], and (2)

r =
∑

v∈R
v. (3)

Direction ⇒. First, we argue that if G has a clique of size k, then I is
solvable. Suppose that c1, c2, . . . , ck form a clique in G. Let di,j be the number

for which cicj is the di,j-th edge of G. Using this, we set Pi,j for each (i, j) ∈
(

[k]
2

)

and Qi for each i ∈ [k] as follows, letting R include all the remaining items.

Pi,j = {ti,j(h) | h 6= ci} ∪ {tj,i(h) | h 6= cj} ∪ {si,h(di,j)}. (4)

Qi = {ti,j(ci) | j 6= i} ∪ {ti,i(h) | h 6= ci}. (5)

It is easy to see that the sets Pi,j for some (i, j) ∈
(

[k]
2

)
and the sets Qi for

some i ∈ [k] are all pairwise disjoint. Thus, in order to verify that this indeed
yields a solution, it suffices to check that (1) and (2) hold, since in that case, (3)

follows from the way r is defined. For any (i, j) ∈
(

[k]
2

)
, using

∑

h6=ci
ti,j(h) =

∑

h6=ci
(0, 0, 0, 0, fi,j, 1, 0, 0, ah, 0)

= (0, 0, 0, 0, (n− 1)fi,j , n− 1, 0, 0, A− aci , 0),
∑

h6=cj
tj,i(h) =

∑

h6=cj
(0, 0, 0, 0, 0, 0, fj,i, 1, 0, ah)

= (0, 0, 0, 0, 0, 0, (n− 1)fi,j , n− 1, 0, A− acj),
si,h(di,j) = (ik + j, 1, 0, 0, 0, 0, 0, 0, aci, acj),

we get (1) by the definition of Pi,j . To see (2), we only have to use the definition
of Qi, and sum up the equations below:

∑

i<j≤k
ti,j(ci) =

∑

i<j≤k
(0, 0, 0, 0, fi,j, 1, 0, 0, aci, 0)

10

= (0, 0, 0, 0, F<i , k − i, 0, 0, (k − i)aci , 0),
∑

1≤j<i
ti,j(ci) =

∑

1≤j<i
(0, 0, 0, 0, 0, 0, fi,j, 1, 0, aci)

= (0, 0, 0, 0, 0, 0, F>i , i− 1, 0, (i− 1)aci),∑

h6=ci
ti,i(h) =

∑

h6=ci
(0, 0, fi,i, 1, 0, 0, 0, 0, (k− i)ah, (i− 1)ah)

= (0, 0, (n− 1)fi,i, n− 1, 0, 0, 0, 0, (k− i)(A− aci), (i− 1)(A− aci)).

Direction ⇐. To prove the other direction, suppose that a solution exists,
meaning that some sets {Pi,j | (i, j) ∈

(
[k]
2

)
}, {Qi | i ∈ [k]} and R fulfill the

conditions of (1), (2), and (3). We show that this implies a clique of size k in G.
Let X denote the set of items that are contained in some particular bin x.

Observing the second, fourth, sixth, and eighth coordinates of the items in S∪T
and the bin x, we can immediately count the number of items from S, T=, T<,
and T> that are contained in X . The following table shows the information
obtained by this argument for each possible X .

|X ∩ S| |X ∩ T=| |X ∩ T<| |X ∩ T>|
X = Pi,j for some (i, j) 1 0 n− 1 n− 1
X = Qi for some i 0 n− 1 k − i i− 1

X = R (m− 1)
(
k
2

)
k 0 0

Next, observe that r3 =
∑

i∈[k] fi,i. This means that R contains exactly k

vectors from
⋃
i∈[k] Ti,i such that the third coordinate of their sum is

∑
i∈[k] fi,i.

But since F is k-sumfree, this can only happen if R contains exactly one vector
from each of T1,1, T2,2, . . . , Tk,k. Let these vectors be {ti,i(ci) | i ∈ [k]}. We claim
that the vertices {ci | i ∈ [k]} form a clique in G.

Using q3
i = (n − 1)fi,i, the table above, and f1,1 < f2,2 < · · · < fk,k we

obtain that Qi must contain every item in Ti,i \ {ti,i(ci)}, for each i ∈ [k]. Also,
we know that Qi must contain k − i items from T< and i− 1 from T>, so from
the values of q5

i and q7
i and the fact that F is k-sumfree, we also obtain that Qi

must contain exactly one item from each of the sets Ti,j where j 6= i. Note that
apart from these (n− 1) + (k − 1) vectors, Qi cannot contain any other items.

Now, note that the last two coordinates of the sum
∑

h6=ci ti,i(h) are (k −
i)(A−aci) and (i− 1)(A−aci). Since the last two coordinates of qi are (k− i)A
and (i−1)A, we get that

∑
v∈Qi\Ti,i v must have (k− i)aci and (i−1)aci at the

last two coordinates. As argued above, Qi \ Ti,i contains exactly one item from
each of the sets Ti,j where j 6= i. Fixing some i and letting Ti,j ∩Qi = {ti,i(hj)},
this implies

∑
i<j≤k ahj = (k − i)aci and

∑
1≤j<i ahj = (i − 1)aci . But as A

is k-non-averaging, this yields hj = ci for each j 6= i. This means that (5) holds.

Next, let us consider the set Pi,j for some (i, j) ∈
(

[k]
2

)
. First, the first two

coodinates of pi,j imply that Pi,j must contain exactly one element of Si,j . Let
us define di,j such that Pi,j ∩ Si,j = si,j(di,j). Furthermore, the table above and

11

the result (5) shows that Pi,j must contain (n−1) items from both of the sets T<

and T>. Recall that {ti,j(ci) | (i, j) ∈ [k]2} ⊆ ⋃i∈[k] Qi. Using p5
i,j = (n− 1)fi,j

and p7
i,j = (n−1)fj,i, and taking into account the ordering of the elements of F ,

it follows that (4) holds.
Finally, let us focus on the last two coordinates of the sum

∑
v∈Pi,j v. Clearly,

if i < j then the sum of the vectors in Ti,j \{ti,j(ci)} has A−aci and 0 as the last
two coordinates, and similarly, the sum of the vectors in Tj,i \ {tj,i(cj)} has 0
and A− acj in the last two coordinates. From this, (4) and the definition of pi,j
yield that si,j(di,j) must contain aci and acj in the last two coordinates. But by
the definition of Si,j , this can only hold if (ci, cj) is an edge in G. This proves
the second direction of the correctness of the reduction. ut

References

1. N. Alon and I. Z. Ruzsa. Non-averaging subsets and non-vanishing transversals.
J. Comb. Theory, Ser. A, 86(1):1–13, 1999.

2. R. C. Bose and S. Chowla. Theorems in the additive theory of numbers. Comment.
Math. Helv., 37(1):141–147, 1962-63.

3. A. P. Bosznay. On the lower estimation of non-averaging sets. Acta Math. Hung.,
53:155–157, 1989.

4. W. F. de la Vega and G. Lueker. Bin packing can be solved in within 1+ε in linear
time. Combinatorica, 1:349–355, 1981.

5. J. E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms
for bin packing: A survey. In D. Hochbaum, editor, Approximation Algorithms for
NP-Hard Problems, pages 46–93. PWS Publishing, Boston, 1997.

6. F. Eisenbrand and G. Shmonin. Caratheodory bounds for integer cones. OR
Letters, 34:564–568, 2006.

7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

8. S. W. Graham. Bh sequences. In Analytic number theory, Vol. 1 (1995), volume
138 of Progr. Math., pages 431–449. Birkhäuser Boston, Boston, MA, 1996.

9. H. Halberstam and K. F. Roth. Sequences. Springer-Verlag, New York, 1983.
10. K. Jansen. An EPTAS for scheduling jobs on uniform processors: using an MILP

relaxation with a constant number of integral variables. In ICALP 09: 36th Inter-
national Colloquium on Automata, Languages and Programming, pages 562–573,
2009.

11. R. Kannan. Minkowski’s convex body theorem and integer programming. Math.
of OR, 12:415–440, 1987.

12. N. Karmarkar and R. Karp. An efficient approximation scheme for the one-
dimensional bin-packing problem. In FOCS 1982: 23rd IEEE Symposium on Foun-
dations of Computer Science, pages 312–320, 1982.

13. H. Lenstra. Integer programming with a fixed number of variables. Math. of OR,
8:538–548, 1983.

14. S. Plotkin, D. Tardos, and E. Tardos. Fast approximation algorithms for fractional
packing and covering problems. Math. of OR, 20:257–301, 1995.

15. I. Z. Ruzsa. Solving a linear equation in a set of integers. I. Acta Arith., 65(3):259–
282, 1993.

16. D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Res.
Logist., 41(4):579–585, 1994.

12

