
Bin packing with fixed number of bins revisited

Klaus Jansena,1, Stefan Kratschb,4, Dániel Marxc,2, Ildikó Schlotterd,3,∗

a Institut für Informatik, Christian-Albrechts-Universität Kiel, 24098 Kiel, Germany
b Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

c Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SZTAKI), Budapest,
Hungary

d Budapest University of Technology and Economics, H-1521 Budapest, Hungary

Abstract

As Bin Packing is NP-hard already for k = 2 bins, it is unlikely to be solvable in polynomial time
even if the number of bins is a fixed constant. However, if the sizes of the items are polynomially
bounded integers, then the problem can be solved in time nO(k) for an input of length n by dynamic
programming. We show, by proving the W[1]-hardness of Unary Bin Packing (where the sizes are
given in unary encoding), that this running time cannot be improved to f(k) ·nO(1) for any function
f(k) (under standard complexity assumptions). On the other hand, we provide an algorithm for

Bin Packing that obtains in time 2O(k log2 k) +O(n) a solution with additive error at most 1, i.e.,
either finds a packing into k + 1 bins or decides that k bins do not suffice.

Keywords: Bin Packing, parameterized complexity, additive approximation, W[1]-hardness

1. Introduction

The aim of this paper is to clarify the exact complexity of Bin Packing for a small fixed number
of bins. An instance of Bin Packing consists of a set of rational item sizes, the task is to partition
the items into a minimum number of bins with capacity 1. Equivalently, we can define the problem
such that the sizes are integers and the input contains an integer B, the capacity of the bins.

Complexity investigations usually distinguish two versions of Bin Packing. In the general
version, the item sizes are arbitrary integers encoded in binary, thus they can be exponentially
large in the size n of the input. In the unary version of the problem, the sizes are bounded by
a polynomial of the input size; formally, this version requires that the sizes are given in unary
encoding.

∗Corresponding author. Tel.: +3614632585. Fax: +3614633157.
Email addresses: kj@informatik.uni-kiel.de (Klaus Jansen), kratsch@cs.uu.nl (Stefan Kratsch),

dmarx@cs.bme.hu (Dániel Marx), ildi@cs.bme.hu (Ildikó Schlotter)
1Supported by DFG Project, Entwicklung und Analyse von effizienten polynomiellen Approximationsschemata

für Scheduling- und verwandte Optimierungsprobleme, Ja 612/14-1.
2Research supported by the European Research Council (ERC) grant “PARAMTIGHT: Parameterized complexity

and the search for tight complexity results,” reference 280152.
3Supported by the Hungarian National Research Fund (grant OTKA 67651), and by the European Union and

the European Social Fund (grant TÁMOP 4.2.1./B-09/1/KMR-2010-0003).
4Present address: Utrecht University, 3508 TB Utrecht, The Netherlands.

Preprint submitted to Elsevier March 12, 2012

In the general (not unary) case, a reduction from Partition shows that Bin Packing is
NP-hard [8]. Thus it is hard to decide whether a given set of items can be packed into exactly
two bins. Apart from NP-hardness, this has a number of other known implications. First of all,
unless P = NP, it is impossible to achieve a better polynomial-time approximation ratio than 3/2,
matching the best known algorithm [20].

In contrast, however, there are much better approximation results when the optimum number
of bins is larger [7, 14]. Fernandez de la Vega and Lueker [7] found an asymptotic polynomial-
time approximation scheme (APTAS) for Bin Packing with ratio (1 + ε)OPT (I) + 1 and running
time O(n) + f(1/ε) (if the items are sorted). To bound the function f , one has to consider the
integer linear program (ILP) used implicitly in [7]. This ILP has 2O(1/ε log(1/ε)) variables and
length 2O(1/ε log(1/ε)) logn. Using the algorithm by Lenstra [15] or Kannan [13], this ILP can be

solved within time 22
O(1/ε log(1/ε))

O(logn) ≤ 22
O(1/ε log(1/ε))

+ O(log2 n). Thus, the algorithm of [7]
can be implemented such that the additive term f(1/ε) in the running time is double exponential
in 1/ε. Setting ε = 1

OPT (I)+1 , this algorithm computes a packing into at most OPT (I) + 1 bins in

time O(n) + 22
OPT (I) log(OPT (I))

.
Using ideas in [5, 12], the algorithm of Fernandez de la Vega and Lueker can be improved to run

in time O(n)+ 2O(1/ε3 log(1/ε)). Setting again ε = 1
OPT (I)+1 , we obtain an additive 1-approximation

that runs in O(n) + 2O(OPT (I)3 log(OPT (I))) time.
Karmarkar and Karp [14] gave an asymptotic fully polynomial-time approximation scheme

(AFPTAS) that packs the items into (1 + ε)OPT (I) + O(1/ε2) bins. The AFPTAS runs in time
polynomial in n and 1/ε, but has a larger additive term O(1/ε2). Plotkin, Shmoys and Tardos [17]
achieved a running time ofO(n log(1/ε)+ε−6) log6(1/ε)) and a smaller additive termO(1/ε log(1/ε)).

Bin Packing remains NP-hard in the unary case as well [8]. However, for every fixed k, Unary
Bin Packing with k bins can be solved in polynomial time: a standard dynamic programming
approach gives an nO(k) time algorithm. Although the running time of this algorithm is polynomial
for every fixed value of k, it is practically useless even for, say, k = 10, as an n10 time algorithm
is usually not considered efficient. Our first result is an algorithm with significantly better running
time that approximates the optimum within an additive constant of 1:

Theorem 1. There is an algorithm for Bin Packing which computes for each instance I of
length n a packing into at most OPT (I) + 1 bins in time

2O(OPT (I) log2 OPT (I)) +O(n).

Note that the algorithm works not only for the unary version, but also for the general Bin Packing
as well, where the item sizes can be exponentially large.

It is an obvious question whether the algorithm of Theorem 1 can be improved to an exact
algorithm with a similar running time. As the general version of Bin Packing is NP-hard for k = 2,
the question makes sense only for the unary version of the problem. By proving that Unary Bin
Packing is W[1]-hard parameterized by the number k of bins, we show that there is no exact
algorithm with running time f(k) · nO(1) for any function f(k) (assuming the standard complexity
hypothesis FPT 6= W[1]).

Theorem 2. Unary Bin Packing is W[1]-hard, parameterized by the number of bins.

Thus no significant improvement over the nO(k) dynamic programming algorithm is possible for
Unary Bin Packing.

2

≤ g = g = g

(a) The original instance Ir grouped into

groups of size g = d 2r

x log(k)
e.

Jr J ′
r

(b) The rounded instance Jr and J ′
r.

Figure 1: The original and the rounded instances for the interval (2−(r+1), 2−r].

Furthermore, we also prove that assuming the Exponential Time Hypothesis (saying that 3SAT
over n variables can not be solved in 2o(n) time) no algorithm can solve Unary Bin Packing in
f(k)no(k/ log k) time for any function f .

2. Additive 1-approximation for Bin Packing in FPT time

This section deals with the following version of Bin Packing: given an integer k and a set I of
items with rational item sizes (encoded in binary), and the task is to pack the items into k bins of
capacity 1. We prove Theorem 1 by describing an algorithm for this problem which uses at most
k + 1 bins for each I, provided that OPT (I) = k, where OPT (I) is the minimum number of bins
needed for I.

Our algorithm computes a packing into k or k + 1 bins. We suppose k ≥ 2; otherwise we pack
all items into a single bin. We divide the instance I into three groups:

Ilarge =

{
a ∈ I | size(a) > 1

2x

1

log(k)

}
,

Imedium =

{
a ∈ I | 1

y

1

k
≤ size(a) ≤ 1

2x

1

log(k)

}
,

Ismall =

{
a ∈ I | size(a) < 1

y

1

k

}
,

where x, y are positive constants specified later. In the first phase of our algorithm we consider the
large items. Since each bin has at most b2x log(k)c large items and OPT (I) = k, the total number of
large items in I is at most kb2x log(k)c. Suppose that Ilarge = {a1, . . . , a`} where ` ≤ kb2x log(k)c.
We can assign large items to bins via a mapping f : {1, . . . , `} → {1, . . . , k}. A mapping f is feasible
if and only if

∑
i|f(i)=j size(ai) ≤ 1 for all j = 1, . . . , k. The total number of feasible mappings or

assignments of large items to bins is at most kkb2x log(k)c = 2O(k log2(k)), since x is constant. Each
feasible mapping f generates a pre-assignment preass(bj) ∈ [0, 1] for the bins bj ∈ {b1, . . . , bk};
i.e. preass(bj) =

∑
i|f(i)=j size(ai) ≤ 1. Notice that at least one of the 2O(k log2(k)) mappings

corresponds to a packing of the large items in an optimum solution.
In the second phase we use a geometric rounding for the medium items. This method was

introduced by Karmarkar and Karp [14] for the Bin Packing problem. Let Ir be the set of

3

all items from Imedium whose sizes lie in (2−(r+1), 2−r]. We let r(0) be the integer for which
1
2x

1
log(k) ∈ (1/2r(0)+1, 1/2r(0)]. Similarly, we let r(1) be the index with 1

yk ∈ (2−(r(1)+1), 2−r(1)].

Then, the number of indices r ∈ {r(0), . . . , r(1)} is equal to the number of intervals (2−(r+1), 2−r]
which may contain a medium item. (See Fig. 1(a) for an example Ir where we have divided the
set Ir into groups of size d 2r

x log(k)e). Note that the definitions of r(0) and r(1) imply the following

bounds:

1

2r(0)
<

1

x log(k)
, (1)

r(1) ≤ blog(yk)c. (2)

For each r ∈ {r(0), . . . , r(1)} let Jr and J ′
r be the instances obtained by applying linear grouping

with group size g = d 2r

x log(k)e to Ir. To do this we divide each instance Ir into groupsGr,1, Gr,2, . . . , Gr,qr

such that Gr,1 contains the g largest items in Ir, Gr,2 contains the next g largest items and so on
(see Fig. 1(a)). Each group of items is rounded up to the largest size within the group (see also
Fig. 1(b)). Let G′

r,i be the multi-set of items obtained by rounding the size of each item in Gr,i.
Then, Jr =

⋃
i≥2 G

′
r,i and J ′

r = G′
r,1.

Furthermore, let J =
⋃
Jr and J ′ =

⋃
J ′
r. Then, Jr ≤ Ir ≤ Jr ∪ J ′

r where ≤ is the partial
order on Bin Packing instances with the interpretation that IA ≤ IB if there exists a one-to-one
function h : IA → IB such that size(a) ≤ size(h(a)) for all items a ∈ IA. Furthermore, J ′

r consists of
one group of items with the largest medium items in (2−(r+1), 2−r]. The cardinality of each group
(with exception of maybe the smallest group in Ir) is equal to d 2r

x log(k)e.

Lemma 1. For k ≥ 2 and x ≥ 4, we have size(J ′) ≤ log(yk)
x log(k) .

Proof. Each non-empty set J ′
r contains at most d 2r

x log(k)e items each of size at most 1/2r. Hence

size(J ′
r) ≤

(
2r

x log(k)
+ 1

)
1

2r
=

1

x log(k)
+

1

2r
.

This implies that the total size of J ′ is

size(J ′) =

r(1)∑
r=r(0)

size(J ′
r) ≤

r(1)∑
r=r(0)

(
1

x log(k)
+

1

2r

)
.

The bound (1) for k ≥ 2 yields 2r(0) > x log(k) ≥ x, or equivalently, r(0) > log(x log(k)) ≥ log(x).
For x ≥ 4 we obtain r(0) ≥ 3. Using also the upper bound (2) on r(1), we have that

r(1)− r(0) + 1 ≤ r(1)− 2 ≤ blog(yk)c − 2. (3)

Now, by (1) and
∑r(1)

r=r(0) 1/2
r ≤ 1/2r(0)−1, we get

size(J ′) ≤ (blog(yk)c − 2)
1

x log(k)
+

r(1)∑
r=r(0)

1

2r

≤ log(yk)− 2

x log(k)
+

1

2r(0)−1
≤ log(yk)− 2

x log(k)
+

2

x log(k)
≤ log(yk)

x log(k)
.

This completes the proof. �

4

The lemma above implies OPT (J ′) = 1 for x ≥ 4, k ≥ 2 and log(y) ≤ (x− 1), since these items
have total size at most 1. A possible choice is x = 4 and y ≤ 8.

By
⋃r(1)

r=r(0) Jr ≤ Imedium ≤
⋃r(1)

r=r(0)(Jr ∪ J ′
r) and J ′ =

⋃r(1)
r=r(0) J

′
r with OPT (J ′) = 1, we obtain:

Lemma 2.

OPT (Ilarge ∪
r(1)⋃

r=r(0)

Jr ∪ Ismall) ≤ OPT (Ilarge ∪ Imedium ∪ Ismall)

OPT (Ilarge ∪ Imedium ∪ Ismall) ≤ OPT (Ilarge ∪
r(1)⋃

r=r(0)

Jr ∪ Ismall) + 1.

Lemma 3. There are O(k log(k)) different rounded sizes for medium items for x ≥ 4 and k ≥ 2.

Proof. Let n(Ir) be the number of medium items in Ir, and let m(Ir) be the number of groups
(or rounded sizes) generated by the linear grouping for Ir. Then,

size(Ir) ≥
1

2r+1
n(Ir) ≥

1

2r+1

(
(m(Ir)− 1)

⌈
2r

x log(k)

⌉)
.

Notice that one group may have less than d 2r

x log(k)e items. This implies that

m(Ir)− 1 ≤ 2r+1size(Ir)⌈
2r

x log(k)

⌉ .

Using dae ≥ a for a ≥ 0, we get

m(Ir) ≤ 2x log(k)size(Ir) + 1.

For x ≥ 4 and k ≥ 2, the bound (3) implies r(1)− r(0) + 1 ≤ log(yk), which gives us that the total
number of rounded medium sizes is

r(1)∑
r=r(0)

m(Ir) ≤
r(1)∑

r=r(0)

(2x log(k)size(Ir) + 1) ≤ 2x log(k)

r(1)∑
r=r(0)

size(Ir) + log(yk).

Since all medium items fit into k bins and x, y are constants, size(Imedium) =
∑r(1)

r=r(0) size(Ir) ≤ k

and
r(1)∑

r=r(0)

m(Ir) ≤ 2xk log(k) + log(yk) = O(k log(k)).

This completes the proof. �

Now we describe the third phase of our algorithm. The rounded medium item sizes lie in
the interval [1

yk ,
1

2x log(k)] and there are R = O(k log(k)) many different rounded item sizes. For

each j = 1, . . . , R let kj be the number of items for each rounded item size xj . Since xj ≥ 1
yk

5

1 2 3 k...

(5 × , 4 ×) ∈ V3

Figure 2: The dynamic program for rounded medium items J = ∪rJr

and OPT (I) = k, the number kj ≤ k/xj ≤ k2y for each item size xj . To describe a packing for one
bin b we use a mapping p : {1, . . . , R} → {0, . . . , yk} where p(j) gives the number of items of size xj

in b. A mapping p is feasible if and only if
∑

j p(j)xj + preass(b) ≤ 1, where preass(b) is the total
size of large items assigned to b in the first phase of the algorithm. The total number of feasible
mappings for one bin is at most (yk + 1)O(k log(k)) = 2O(k log2(k)). Using a dynamic program we go
over the bins from b1 up to bk. For each A = 1, . . . , k, we compute a set VA of vectors (a1, . . . , aR)
where aj gives the number of items of size xj used for the bins b1, . . . , bA (see also Fig. 2). The

cardinality of each set VA is at most (k2y + 1)O(k log(k)) = 2O(k log2(k)). The update step from one
bin to the next (computing the next set VA+1) can be implemented in time

2O(k log2(k)) · 2O(k log2(k)) · poly(k) ≤ 2O(k log2(k)).

If there is a solution for our Bin Packing instance I into k bins, then the set Vk contains the

vector (n1, . . . , nR) that corresponds to the number of rounded medium item sizes in
⋃r(1)

r=r(0) Jr.

Notice that the other set
⋃r(1)

r=r(0) J
′
r will be placed into the additional bin bk+1. We can also compute

a packing of the medium items into the bins as follows. First, we compute all vector sets VA

for A = 1, . . . , k. If for two vectors a = (a1, . . . , ak) ∈ VA and a′ = (a′1, . . . , a
′
k) ∈ VA+1 the medium

items given by the difference a′ − a and the preassigned large items fit into bin bA+1, we store the
corresponding pair (a, a′) in a set SA+1. By using a directed acyclic graph D = (V,E) with vertex
set V = {[a,A]|a ∈ VA, A = 1, . . . , k} and E = {([a,A], [a′, A+1])|(a, a′) ∈ SA+1, A = 1, . . . , k− 1},
we may compute a feasible packing of large and medium rounded items into the bins b1, . . . , bk.
This can be done via depth first search starting with the vector (n1, . . . , nR) ∈ Vk that corresponds
to the number of rounded medium item sizes. The algorithm to compute the directed acyclic graph
and the backtracking algorithm can be implemented in time

2O(k log2(k)).

In the last phase of our algorithm we add the small items via a greedy algorithm to the bins.
Consider a process which starts with a given packing of the original large and medium items into
the bins b1, . . . , bk+1. We insert the small items of size at most 1

yk with the greedy algorithm Next

Fit (NF) into the bins b1, . . . , bk+1. The correctness of this step is proved in the next lemma. Notice
that NF can be implemented in linear time with O(n) operations.

Lemma 4. If OPT (I) = k, k ≥ 2, and y ≥ 2, then our algorithm packs all items into at most k+1
bins.

6

Proof. Assume by contradiction that we use more than k + 1 bins for the small items. In this
case, the total size of the items packed into the bins is more than (k + 1)(1 − 1

yk) = k + 1 − k+1
yk .

Note that k+1
yk ≤ k+1

2k < 1 by y ≥ 2 and k ≥ 2. Thus, the total size of the items is larger than k,

yielding OPT (I) > k. �

The algorithm for Bin Packing for OPT (I) = k works as follows:

(1) Set x = 4, y = 2 and divide the instance I into three groups Ilarge, Imedium, and Ismall.

(2) Assign the large items to k bins considering all different feasible pre-assignments.

(3) Use geometric rounding on the sizes of the medium items; for each interval (2−(r+1), 2−r]
apply linear grouping with group size d 2r

x log(k)e to the item set Ir and compute rounded item

sets Jr and J ′
r.

(4) For each pre-assignment apply the dynamic program to assign the medium items in
⋃
Jr to

the bins b1, . . . , bk, and place the set
⋃

j J
′
r into the additional bin bk+1.

(5) Take a feasible packing into k+ 1 bins for one pre-assignment (there is one by OPT (I) = k),
replace the rounded items by their original sizes and afterwards assign the small items via a
greedy algorithm to the bins b1, . . . , bk+1.

3. Parameterized hardness of Bin Packing

The aim of this section is to prove that Unary Bin Packing is W[1]-hard, parameterized by
the number k of bins. In this version of Bin Packing, we are given a set of integer item sizes
encoded in unary, and two integers b and k. The task is to decide whether the items can be packed
into k bins of capacity b.

To prove the W[1]-hardness of this problem when parameterized by the number of bins, we use
the hardness of an intermediate problem, a variant of Unary Bin Packing involving vectors of
constant length c and bins of varying sizes.

Let [c] = {1, . . . , c} for any c ∈ N, and let Nc be the set of vectors with c coordinates, each
in N. We use boldface letters for vectors. Given vectors v,w ∈ Nc, we write v ≤ w, if vj ≤ wj for
each j ∈ [c], where vj is the j-th coordinate of v. As usual, the addition of vectors is defined as the
addition of their corresponding components.

For a fixed c, we will call the following problem c-Unary Vector Bin Packing. We are
given a set of n items having sizes s1, s2, . . . , sn with each si ∈ Nc encoded in unary, and k vec-
tors B1,B2, . . . ,Bk from Nc representing bin sizes. The task is to decide whether [n] can be
partitioned into k sets J1, J2, . . . , Jk such that

∑
h∈Ji

sh ≤ Bi for each i ∈ [k].
Before proving Lemma 6 saying that c-Unary Vector Bin Packing for any constant c can be

reduced to Unary Bin Packing by a parameterized reduction, we need some simple observations
about vectors. For integers b and c, we let the representation with base b of a vector v ∈ Nc

be R(v, b) = v1 + v2b+ · · ·+ vcbc−1.

Proposition 5. (1) Suppose that for given vectors v,w ∈ Nc and for any j ∈ [c − 1] it holds
that vj < b and wj < b; the last coordinates of the vectors can be unbounded. Then R(v, b) = R(w, b)
holds if and only if v = w.
(2) For any v1,v2, . . . ,vk ∈ Nc it holds that

∑k
i=1 R(vi, b) = R(

∑k
i=1 vi, b).

7

Proof. We prove (1) by induction on c, the case c = 1 is trivial. So suppose c > 1 and R(v, b) =
R(w, b). First, observe v1 = R(v, b) mod b = R(w, b) mod b = w1. By v1 < b and w1 < b, this
implies v1 = w1.

Now, let v̄ (and w̄) be the vector in Nc−1 whose coordinates are the last c− 1 coordinates of v
(v, respectively). Clearly, we have R(v, b) = v1 + bR(v̄, b) and R(v, b) = v1 + bR(v̄, b). Using
also v1 = w1, we obtain R(v̄, b) = R(w̄, b). By induction, this yields v̄ = w̄, which finishes the
proof of (1).

Claim (2) can be shown by an easy calculation:
∑

i∈[k] R(vi, b) =
∑

i∈[k]

∑
j∈[c] v

j
i b

j−1 =∑
j∈[c] b

j−1(
∑

i∈[k] v
j
i) = R(

∑
i∈[k] vi, b). �

Lemma 6 below shows that Theorem 2 follows from the W[1]-hardness of c-Unary Vector Bin
Packing, for any fixed c. In Section 3.1, we introduce two concepts, k-non-averaging and k-sumfree
sets, that will be useful tools in the hardness proof. The reduction itself appears in Section 3.2.

Lemma 6. For every fixed integer c ≥ 1, there is a parameterized reduction from c-Unary Vector
Bin Packing to Unary Bin Packing, where both problems are parameterized by the number of
bins.

Proof. Let I be an instance of c-Unary Vector Bin Packing containing n items with item
sizes s1, s2, . . . , sn in Nc, and k vectors B1,B2, . . . ,Bk from Nc representing bin sizes. Clearly, we
can assume that Bi ≤

∑
h∈[n] sh for each i ∈ [k], as otherwise the instance I is trivially solvable.

We construct an instance I ′ of Unary Bin Packing as follows. Let N be the maximum value
of the integers {sji | i ∈ [n], j ∈ [c]}, and let b = nN + 1. For each item appearing in I with size si
for some i ∈ [n], we create a corresponding item in I ′ whose size is the representation of si with
base b. Let also Bi be the representation of Bi with base b, let B be the maximum among the
numbers Bi, i ∈ [k], and let us introduce a set T of k new items having sizes Ti = 2B + 1 − Bi

for each i ∈ [k]. We set the bin size to 2B + 1. Note that the number of items in the constructed
instance I ′ is n+ k.

We claim that the Unary Bin Packing instance I ′ has a solution with k bins if and only if I
is feasible. It is straightforward to see that any solution of I can be transformed into a solution
of I ′ by putting the item of size Ti into the i-th bin, as well as those items of I ′ with sizes R(sh, b)
for which the original item of size sh is put in the i-th bin. For the other direction, note that each
item in T has size at least B + 1, because Bi ≤ B for all i ∈ [k] by the definition of B. Hence, two
items from T cannot be put in the same bin, so it can be assumed without loss of generality that a
solution of I ′ puts the item having size Ti into the i-th bin. Therefore, the total size of the items
not in T contained in the i-th bin is at most 2B + 1 − Ti = Bi. Using Proposition 5 and the fact
b > nN , it follows that for any S ⊆ [n] we have

∑
h∈S R(sh, b) ≤ Bi if and only if

∑
h∈S sh ≤ Bi.

Hence, the items of I corresponding to the items of I ′ in the i-th bin have total size at most Bi.
Finally, observe that the maximal integer in this instance is smaller than 2B + 1 ≤ 2(bc) + 1 =

2(nN + 1)c + 1. Clearly, N < |I| (as I is encoded in unary), and c is a fixed constant, so this is
polynomial in |I|. Thus, the whole construction takes polynomial time. �

3.1. Non-averaging and sumfree sets

We call a set A k-non-averaging, if for any subset of at most k elements in A it holds that the
arithmetic mean of these elements is not contained in A. Such sets have already been studied by
several researchers [6, 2, 1, 4]. Below we describe a method that constructs a k-non-averaging set

8

having n elements. Although, up to our knowledge, the construction presented does not appear in
the literature in this form, it applies only standard techniques.

We will also use the concept of k-sumfree sets. A set B is called k-sumfree, if no two different
subsets of B having cardinality k′ ≤ k can have the same sum. Such sets have been studied
extensively in the literature, also under the name Bk-sequences (which stands for integer sequences
whose elements form a k-sumfree set) [9]. For more on this area, see [11, 10, 18, 19].

Non-averaging sets. Given an integer k, we are going to construct a set A containing n non-
negative integers with the following property: for any k elements a1, a2, . . . , ak in A it holds that
their arithmetical mean 1

k

∑k
i=1 ai can only be contained in A if all of them are equal, i.e. a1 =

a2 · · · = ak. Sets having this property will be called k-non-averaging.
First, let us fix an arbitrary integer d. (In fact, it will suffice to assume d = 2, but for com-

pleteness, we present the case for an arbitrary d.) Depending on d, let us choose m to be the
smallest integer for which md ≥ n, i.e. let m = dn1/de. We construct a set X containing each

vector (x1, x2, . . . , xd, y) where 0 ≤ xi ≤ m− 1 for all i ∈ [d] and
∑d

i=1 x
2
i = y. Clearly, |X | = md,

so in particular, |X | ≥ n.

Lemma 7. If u1,u2, . . . ,uk and v are elements of X and v = 1
k

∑k
i=1 ui, then u1 = u2 = · · · =

uk = v.

Proof. Let us define ti for each i ∈ [k] such that ui = v + ti. Note that ti is a vector whose
coordinates are possibly negative. We will show that all of its coordinates must be equal to zero.

Using that the j-th coordinates of kv and
∑k

i=1 ui are equal for each j = 1, . . . , d, d + 1, we
obtain the followings.

First, if j ∈ [d], then
∑k

i=1(v
j + tji) = kvj , resulting in

∑k
i=1 t

j
i = 0. Second, observe that the

last coordinate of ui can be written in the form
∑d

j=1(v
j + tji)

2. Thus, we obtain k
∑d

j=1(v
j)2 =∑k

i=1

∑d
j=1(v

j + tji)
2, yielding the equation

∑k
i=1

∑d
j=1((t

j
i)

2 + 2vjtji) = 0. Using
∑k

i=1 t
j
i = 0 we

have
∑k

i=1

∑d
j=1 2v

jtji = 0, implying
∑k

i=1

∑d
j=1(t

j
i)

2 = 0. But this can only hold if tji = 0 for

every i ∈ [k] and j ∈ [d]. This altogether means that vj = uj
i for each j ∈ [d], so by v,ui ∈ X we

have v = ui for each i, proving the lemma. �

Next, we construct a non-averaging set A from the set X .

Lemma 8. If b = k(m − 1) + 1, then the set A = {v1 + v2b + · · · + vdbd−1 | v ∈ X} is k-non-
averaging. Moreover, the largest element N in A is smaller than 4d(2k)dn1+2/d, and A can be
constructed in time linear in O(2dnN).

Proof. Note that for any vector v = (x1, x2, . . . , xd, y) ∈ X we have xi ≤ m − 1 if i ∈ [d].
This shows that the sum of any k vectors in X must have coordinates at most k(m − 1), except
maybe for the last coordinate. Therefore, if we set b such that b > k(m − 1), then by combining
claims (1) and (2) of Prop. 5, we obtain that for any k + 1 vectors u1,u2, . . . ,uk,v in X we have

that
∑k

i=1 ui = kv holds if and only if
∑k

i=1 R(ui, b) = kR(v, b). Thus, the bound on b guarantees
that the set A = {R(v, b) | v ∈ X} is indeed k-non-averaging by Lemma 7.

Let us upper bound the maximal integer in A as a function of d, k, and n. First, it should be
clear that the maximal element N of A is R(w, b) for the vector w = (m− 1, . . . ,m− 1, d(m− 1)2).

9

Thus, N = (m − 1) b
d−1
b−1 + d(m − 1)2bd < dbdm2 < d(km)dm2 by our assumption on b. Using the

definition of m = dn1/de, we have m ≤ n1/d + 1 ≤ 2n1/d. Thus, we obtain N < 4d(2k)dn1+2/d.
Finally, it is clear that any element of X can be constructed in O(d log2 m) time, and its rep-

resentation can be obtained in O(bdd2 logm) = O(N) time. By |X | = md ≤ 2dn, we get that X
and A can be constructed in O(2dnN) time. �

Using Lemma 8 and setting d = 2, we can find a k-non-averaging set A having n elements such
that the maximal element in A is smaller than 25k2n2 = O(k2n2). Also, A can be constructed
in O(k2n3) time.

Sumfree sets. A set F is k-sumfree, if for any two subsets S1, S2 ⊆ F of the same size k′ ≤ k,∑
x∈S1

x =
∑

x∈S2
x holds if and only if S1 = S2.

It is easy to verify that the set S = {(k + 1)i | 0 ≤ i < n} is a k-sumfree set of size n. To
see this, assume for the sake of contradiction that there exist two different subsets S1, S2 ⊆ S of
the same size k′ ≤ k with

∑
x∈S1

x =
∑

x∈S2
x. Notice that the elements of S are the (k + 1)-base

representations of those 0-1 vectors VS in Nn that have exactly one coordinate of value 1. Let
us consider the two different subsets V1, V2 ⊆ VS of size k′ containing precisely those vectors in
VS whose (k + 1)-base representations are contained in the sets S1 and S2, respectively. Using∑

x∈S1
x =

∑
x∈S2

x and claim (2) of Prop. 5, we get R(
∑

v∈V1
v, k + 1) = R(

∑
v∈V2

v, k + 1). As
both V1 and V2 contain at most k 0-1 vectors and our base is k+1 > k, claim (1) of Prop. 5 implies∑

v∈V1
v =

∑
v∈V2

v. But since no vector in Nn can be obtained in more than one different way as
the sum of at most k vectors from VS , this contradicts V1 6= V2. Hence, S is indeed k-sumfree. The
maximal element in the set S is of course (k + 1)n−1.

Although this will be sufficient for our purposes, we mention that a construction due to Bose
and Chowla [3] shows that a k-sumfree set of size n with maximum element at most (2n)k can also
be found (see also [11], Chapter II). If k is relatively small compared to n, the bound (2n)k is a
considerable reduction on the bound (k + 1)n−1 of the construction above.

Lemma 9 ([3]). For any integers n and k, there exists a k-sumfree set having n elements, with
the maximum element being at most (2n)k.

3.2. Hardness of the vector problem

The following lemma contains the main part of the hardness proof. By Lemma 6, it immediately
implies Theorem 2.

Lemma 10. 10-Unary Vector Bin Packing is W[1]-hard.

Proof. We give an FPT reduction from Subgraph Isomorphism. Given graphs G and H, the
Subgraph Isomorphism problem asks whether G contains a subgraph which is isomorphic to H.
This problem is W[1]-hard when parameterized by the number |E(H)| of edges of H.

Let G = (V,E) and H = (U,F) be an instance of Subgraph Isomorphism. We assume
V = [n], |E| = m, U = {u1, u2, . . . , u`}, and |F | = k. Thus, the parameter value of the given
instance is k. W.l.o.g. we suppose ` = |U | ≤ k, as otherwise we can obtain an equivalent problem
instance by adding a clique on λ new vertices both to G and to H; setting λ = max(`, 5) ensures the
smaller graph to have at least as many edges as vertices. We are going to construct an instance I
of 10-Unary Vector Bin Packing with k + `+ 1 bins.

10

Notation and other ingredients. We will write ei for the i-th edge of G according to some
arbitrary fixed ordering. Let P denote the set {(i, j) | uiuj ∈ F and i < j}, and let P ′ denote the
set {(i, j) | uiuj ∈ F or i = j}. Note that |P| = k but |P ′| = 2k + `. For each vertex ui in H we
define d<i = |{j | uiuj ∈ F, j < i}| to denote the number of edges going from ui to a vertex with
smaller index in H, and we also define d>i = |{j | uiuj ∈ F, j > i}|.

To define the item sizes, we need to construct an `-non-averaging set A of size n, using Lemma 8.
Let A contain the elements a1 ≤ a2 ≤ · · · ≤ an. Taking d = 2, by Lemma 8, we know an = O(`2n2).
Let A =

∑
v∈[n] av, clearly A = O(`2n3).

We also construct an `-sumfree set B containing 2k + ` elements, using Lemma 9. Let us index
the elements of B by the pairs contained in P ′, so let B = {bi,j | (i, j) ∈ P ′}. We also assume that
bi1,j1 < bi2,j2 holds if and only if (i1, j1) is lexicographically smaller than (i2, j2). By Lemma 9, we
know that bk,k = O((2k + `)`) = O((3k)`) holds. Again, we let B =

∑
b∈B b, so B = O((3k)`+1).

Moreover, we set B<
i =

∑
(j,i)∈P bi,j and B>

i =
∑

(i,j)∈P bi,j for each i ∈ [`].
Item sizes. We are going to define two sets of item sizes in I, contained in the sets S and

T . The item sizes in S are further divided into sets Si,j where (i, j) ranges over all pairs in P,
i.e. S =

⋃
(i,j)∈P Si,j . Similarly, the item sizes in the set T are further divided into sets Ti,j where

(i, j) ranges over all pairs in P ′. Furthermore, in connection to the sets Ti,j we distinguish between
three cases, depending on whether (i, j) ∈ P, or (j, i) ∈ P, or 1 ≤ i = j ≤ ` holds; we define three
sets T<, T>, and T= corresponding to these cases as shown below. Now, the set T is defined by
T = T= ∪ T< ∪ T>.

T= =
⋃

i∈[`] Ti,i,

T< =
⋃

(i,j)∈P Ti,j , and

T> =
⋃

(i,j)∈P Tj,i.

For each pair (i, j) ∈ P, |Si,j | = m will hold. Also, for each pair (i, j) ∈ P ′, |Ti,j | = n will hold.
Given a pair (i, j) ∈ P, we put an item si,j(e) into Si,j for each edge e in G, so we let Si,j =⋃

e∈E si,j(e). Similarly, given a pair (i, j) ∈ P ′ we put an item ti,j(v) into Ti,j for each vertex v in
G, so we let Ti,j =

⋃
v∈V ti,j(v). The exact values of si,j(e) and ti,j(v) are the following 10-vectors:

si,j(e) = (ki+ j,1, 0 ,0, 0 ,0, 0 ,0, ax , ay) if (i, j) ∈ P, e = xy ∈ E,
ti,i(v) = (0 ,0,bi,i,1, 0 ,0, 0 ,0,d>(i)av,d

<(i)av) if i ∈ [`], v ∈ V ,
ti,j(v) = (0 ,0, 0 ,0,bi,j ,1, 0 ,0, av , 0) if (i, j) ∈ P, v ∈ V ,
tj,i(v) = (0 ,0, 0 ,0, 0 ,0,bj,i,1, 0 , av) if (i, j) ∈ P, v ∈ V .

Bin capacities. We define k + ` + 1 ≤ 2k + 1 bins as follows: we introduce bins pi,j for
each (i, j) ∈ P, bins qi for each i ∈ [`], and one additional bin r. The capacities of the bins pi,j

and qi are given below (depending on i and j).

pi,j = (ki+ j,1, 0 , 0 ,(n− 1)bi,j ,n− 1,(n− 1)bj,i,n− 1, A , A)
qi = (0 ,0,(n− 1)bi,i,n− 1, B>

i ,d>(i), B<
i ,d<(i),d>(i)A,d<(i)A)

Finally, we set the capacity of r in a way that the total capacity of the bins equals the total size of
the items. Hence, any solution must completely fill all bins.

It is easy to see that each component of r is non-negative. Observe that |S∪T | = mk+n(2k+`),
the unary encoding of the item sizes in S needs a total of O(mk2` + mkA) bits, and the unary
encoding of the item sizes in T needs a total of at most O(nB + kA) bits. By the bounds on A
and B, the reduction given is indeed an FPT reduction.

11

Main idea. At a high-level abstraction, we think of the constructed instance as follows. First,
a bin qi requires n−1 items from Ti,i, which means that we need all items from Ti,i, except for one
item ti,i(w). Choosing such an index w ∈ [n] for each i ∈ [`] will correspond to choosing ` vertices
from G. Next, we have to fill up the bin qi, by taking altogether d<(i) + d>(i) items from T<

and T> in a way such that the sum of their last two coordinates equals the last two coordinates
of ti,i(w). The sumfreeness of B and the non-averaging property of A will imply that each of the
chosen items must be of the form ti,j(w) or tj,i(w) for some j.

This can be thought of as “copying” the information about the chosen vertices, since as a result,
each bin pi,j will miss only those items from Ti,j and from Tj,i that correspond to the i-th and j-
th chosen vertex in G. Suppose pi,j contains all items from Ti,j and Tj,i except for the items,
say, ti,j(ha) and tj,i(hb). Then, we must fill up the last two coordinates of pi,j exactly, by choosing
one item from Si,j . But choosing the item si,j(e) for some uiuj ∈ F will only do if the edge
corresponding to e ∈ E connects the vertices ha and hb in G corresponding to vertices ui and uj in
H. This ensures that whenever ui and uj are connected in H, the i-th and the j-th chosen vertices
in G are also connected. This means that H is indeed a subgraph of G.

Correctness. Now, let us show formally that I is solvable if and only if G contains a subgraph
isomorphic to H. Clearly, I is solvable if and only if each of the bins can be filled exactly. Thus, a
solution for I means that the items in S ∪ T can be partitioned into sets {Pi,j | (i, j) ∈ P}, {Qi |
i ∈ [`]}, and R such that

pi,j =
∑

v∈Pi,j

v for each (i, j) ∈ P (4)

qi =
∑
v∈Qi

v for each i ∈ [`], and (5)

r =
∑
v∈R

v. (6)

Next, we are going to count the number of items from S, T=, T<, and T> that are contained in
one of the sets among {Pi,j | (i, j) ∈ P}, {Qi | i ∈ [`]}, or R in an arbitrary solution. To argue in
general, let X denote the set of items that are contained in some particular bin x. Observing the
second, fourth, sixth, and eighth coordinates of the items in S ∪ T and the capacity of the bin x,
we can immediately count the number of items from S, T=, T<, and T> that are contained in X.
For example, the only items having a non-zero element on the second coordinate are the items in S;
since each of them have value 1 on this coordinate, we obtain that each bin pi,j contains exactly one
element from S (as the second coordinate of pi,j is 1), and each bin qi contains zero items from S
(as the second coordinate of qi is 0). Table 1 shows the information obtained by this argument for
each possible bin x.

Direction ⇒. First, we argue that if G contains H as a subgraph, then I is solvable. Suppose
that H appears as a subgraph of G on the vertices c1, c2, . . . , c` in V such that for each i ∈ [`] the
vertex ui can be mapped to ci, meaning that uiuj ∈ F implies cicj ∈ E. Let ei,j be the edge cicj
of G for each (i, j) ∈ P. We set Pi,j for each (i, j) ∈ P and Qi for each i ∈ [`] as follows, letting R
include all the remaining items.

Pi,j = {ti,j(v) | v 6= ci} ∪ {tj,i(v) | v 6= cj} ∪ {si,j(ei,j)}. (7)

Qi = {ti,j(ci) | (i, j) ∈ P} ∪ {tj,i(ci) | (i, j) ∈ P} ∪ {ti,i(v) | v 6= ci}. (8)

12

S T= T< T>

Pi,j for some (i, j) ∈ P 1 0 n− 1 n− 1
Qi for some i ∈ [`] 0 n− 1 d>(i) d<(i)
R (m− 1)k ` 0 0

Table 1: The number of items contained in the different item sets S, T=, T<, and T>, depicted for each bin. In
the table, each row corresponds to the items of one bin. Some entry for a particular bin x shows how many items
packed by some arbitrary solution into x are contained in the item set corresponding to the given column.

It is easy to see that the sets Pi,j for some (i, j) ∈ P and the sets Qi for some i ∈ [`] are all pairwise
disjoint. Thus, in order to verify that this indeed yields a solution, it suffices to check that (4) and
(5) hold, since in that case (6) follows from the way r is defined. For any (i, j) ∈ P, using∑

v 6=ci

ti,j(v) =
∑
v 6=ci

(0 ,0,0,0, bi,j , 1 , 0 , 0 , av , 0)

= (0 ,0,0,0,(n− 1)bi,j ,n− 1, 0 , 0 ,A− aci , 0),∑
v 6=cj

tj,i(v) =
∑
v 6=cj

(0 ,0,0,0, 0 , 0 , bj,i , 1 , 0 , av)

= (0 ,0,0,0, 0 , 0 ,(n− 1)bj,i,n− 1, 0 ,A− acj),

si,j(ei,j) = (ki+ j,1,0,0, 0 , 0 , 0 , 0 , aci , acj),

we get (4) by the definition of Pi,j . To see (5), we only have to use the definition of Qi, and sum
up the equations below:∑
j:(i,j)∈P

ti,j(ci) =
∑

j:(i,j)∈P

(0,0, 0 , 0 , bi,j , 1 , 0 , 0 , aci , 0)

= (0,0, 0 , 0 ,B>
i ,d>(i), 0 , 0 , d>(i)aci , 0),∑

j:(i,j)∈P

tj,i(ci) =
∑

j:(i,j)∈P

(0,0, 0 , 0 , 0 , 0 , bj,i , 1 , 0 , aci)

= (0,0, 0 , 0 , 0 , 0 ,B<
i ,d<(i), 0 , d<(i)aci),∑

v 6=ci

ti,i(v) =
∑
v 6=ci

(0,0, bi,i , 1 , 0 , 0 , 0 , 0 , d>(i)av , d<(i)av)

= (0,0,(n− 1)bi,i,n− 1, 0 , 0 , 0 , 0 ,d>(i)(A− aci),d
<(i)(A− aci)).

Direction ⇐. To prove the other direction, suppose that a solution exists, meaning that some
sets {Pi,j | (i, j) ∈

(
[k]
2

)
}, {Qi | i ∈ [k]} and R fulfill the conditions of (4), (5), and (6). We show

that this implies that G contains a subgraph isomorphic to H.
Let us observe that r3 =

∑
i∈[`] bi,i. This means that R contains exactly ` vectors from

⋃
i∈[`] Ti,i

such that the third coordinate of their sum is
∑

i∈[`] bi,i. But since B is `-sumfree, this can
only happen if R contains exactly one vector from each of T1,1, T2,2, . . . , T`,`. Let these vectors
be {ti,i(ci) | i ∈ [`]}. We will argue that the vertices {ci | i ∈ [`]} prove that H is a subgraph of G,
by showing cicj ∈ E for each (i, j) ∈ P.

13

Using q3i = (n−1)bi,i, Table 1, and b1,1 < b2,2 < · · · < b`,` we obtain that Qi must contain every
item in Ti,i \ {ti,i(ci)}, for each i ∈ [`]. Also, we know that Qi must contain d>(i) items from T<

and d<(i) items from T>, so from the values of q5i and q7i and the fact that B is `-sumfree (note
d<(i) + d>(i) < `), we also obtain that Qi must contain exactly one item from each of the sets Ti,j

where (i, j) ∈ P or (j, i) ∈ P. Observe that apart from these (n − 1) + d<(i) + d>(i) items, Qi

cannot contain any other items.
Now, fix some i and note that the last two coordinates of the sum

∑
v 6=ci

ti,i(v) are exactly

d>(i)(A − aci) and d<(i)(A − aci). Since the last two coordinates of qi are d>(i)A and d<(i)A,
we get that

∑
v∈Qi\Ti,i

v must have d>(i)aci and d<(i)aci at the last two coordinates. As argued

above, Qi \ Ti,i contains exactly one item from each of the sets Ti,j where (i, j) ∈ P or (j, i) ∈ P.
Let us define hj for each j 6= i where (i, j) ∈ P ′ such that Ti,j ∩ Qi = {ti,j(hj)}. Then we
obtain

∑
(i,j)∈P ahj = d>(i)aci and

∑
(j,i)∈P ahj = d<(i)aci . But as A is `-non-averaging, this

yields hj = ci for each j. This means that (8) holds.
Next, let us consider the set Pi,j for some (i, j) ∈ P. First, the first two coodinates of pi,j imply

that Pi,j must contain exactly one element of Si,j . Let us define ei,j such that Pi,j ∩Si,j = si,j(ei,j).
Furthermore, Table 1 shows that Pi,j must contain (n− 1) items from both of the sets T< and T>.
Recall that {ti,j(ci) | (i, j) ∈ P ′, i 6= j} ⊆

⋃
i∈[`] Qi by the result (8), so from each set Ti,j where

i 6= j there can be at most n−1 items contained in Pi,j . Using p5i,j = (n−1)bi,j and p7i,j = (n−1)bj,i,
and taking into account the ordering of the elements of B, it follows that (7) holds as well.

Finally, let us focus on the last two coordinates of the sum
∑

v∈Pi,j
v for some (i, j) ∈ P. The

sum of the vectors in Ti,j \{ti,j(ci)} has A−aci and 0 as the last two coordinates, and similarly, the
sum of the vectors in Tj,i \ {tj,i(cj)} has 0 and A− acj in the last two coordinates. From this, (7)
and the definition of pi,j yield that si,j(ei,j) must contain aci and acj in the last two coordinates.
But by the definition of Si,j , this can only hold if (ci, cj) is an edge in G. This proves the second
direction of the correctness of the reduction. �

Lemmas 6 and 10 together prove Theorem 2, establishing the W[1]-hardness of Unary Bin
Packing when parameterized by the number of bins. Hence, unless the standard complexity-
theoretic assumption W[1] 6= FPT fails, there is no algorithm for Unary Bin Packing with
running time of the form f(k)nO(1) for some funcion f .

Next, in Theorem 3 we show an even stronger lower bound on the running time of any algorithm
solving Unary Bin Packing, assuming the Exponential Time Hypothesis (ETH). This hypothesis
says that there is no 2o(n) time algorithm for n-variable 3SAT. Note that since ETH is a stronger
assumption than W[1] 6= FPT, Theorem 3 is not a direct consequence of Theorem 2. Instead, the
proof of Theorem 3 relies on a result by Marx [16] and makes use of the fact that the parameterized
reductions presented in Lemmas 6 and 10 are from Subgraph Isomorphism.

Theorem 3. There is no algorithm solving the Unary Bin Packing problem in f(k)no(k/ log k)

time for some function f , where k is the number of bins in the input and n is the input length,
unless ETH fails.

Proof. Suppose that we are given an input I1 of the Subgraph Isomorphism problem where
n1 is the length of the input given and k1 is the number of edges of the smaller graph. By the
reductions present in Lemmas 6 and 10, we can construct an equivalent instance I2 of Unary Bin

Packing in f(k1)n
O(1)
1 time with k2 = Θ(k1) bins. This shows that if Unary Bin Packing can

be solved in f ′(k2)|I2|o(k2/ log k2) time for some function f ′, then Subgraph Isomorphism can be

14

solved in f ′′(k1)n
o(k1/ log k1)
1 time for some function f ′′. By Theorem 1.5 in [16], this would imply

that ETH fails. �

We would like to remark that both Theorems 2 and 3 remain true for the special version of
Unary Bin Packing where the total size of the items equals the total capacity of the bins.
Finally, let us mention that, by the generality of Unary Bin Packing, our hardness results might
be useful when proving hardness of other problems as well.

4. Conclusion

We studied the parameterized complexity of Bin Packing where the parameter is the number
k of bins. We presented an algorithm with running time 2O(k log2 k) +O(n) that provides a packing
with additive error 1, where n denotes the input size. This result is an improvement over the
additive 1-approximation that can be derived using the APTAS given by Fernandez de la Vega and
Lueker [7]. Improving the running time further, perhaps to 2O(k)nO(1) time, is an obvious direction
for further research. Let us recall here that it is a long-standing open question whether there is a
polynomial-time additive 1-approximation for Bin Packing.

We also examined Unary Bin Packing where each item size is encoded in unary. We focused
on the question whether the well-known dynamic programming algorithm running in nO(k) time
can be improved considerably. We proved the W[1]-hardness of this problem when parameterized
by k. This rules out the possibility of giving an f(k)nO(1) algorithm for any computable function
f , supposing W[1]6=FPT. The reduction at some point uses certain number-theoretic constructions
(k-non-averaging and k-sumfree sets), which might be useful in other hardness proofs. Using the
Exponential Time Hypothesis (which is a stronger assumption than W[1]6=FPT), we proved that
there is no algorithm for Unary Bin Packing running in time no(k/ log k). One can notice that our
results leave open the question whether there exists an algorithm for Unary Bin Packing that
runs in no(k) time. Also, it might be possible to prove stronger parameterized hardness results for
this problem such as W[2]-hardness, or even W[t]-hardness for every t.

Acknowledgement

We are grateful to Imre Ruzsa for explaining us the techniques used for the construction of
k-non-averaging sets.

[1] H. L. Abbott. Extremal problems on non-averaging and non-dividing sets. Pacific J. Math.,
91:1–12, 1980.

[2] N. Alon and I. Z. Ruzsa. Non-averaging subsets and non-vanishing transversals. J. Comb.
Theory, Ser. A, 86(1):1–13, 1999.

[3] R. C. Bose and S. Chowla. Theorems in the additive theory of numbers. Comment. Math.
Helv., 37(1):141–147, 1962-63.

[4] A. P. Bosznay. On the lower estimation of non-averaging sets. Acta Math. Hung., 53:155–157,
1989.

[5] F. Eisenbrand and G. Shmonin. Caratheodory bounds for integer cones. OR Letters, 34:564–
568, 2006.

15

[6] P. Erdős and E. G. Straus. Non-averaging sets II. Combinatorial Theory and its Applications,
Vol. II, Colloquia Mathematica Societatis János Bolyai, 4:405–411, 1970.

[7] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved in within 1+ ε in linear
time. Combinatorica, 1:349–355, 1981.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[9] S. W. Graham. Bh sequences. In Analytic number theory, Vol. 1 (1995), volume 138 of Progr.
Math., pages 431–449. Birkhäuser Boston, Boston, MA, 1996.

[10] R. K. Guy. Unsolved problems in number theory. Problem Books in Mathematics. Springer-
Verlag, New York, third edition, 2004.

[11] H. Halberstam and K. F. Roth. Sequences. Springer-Verlag, New York, 1983.

[12] K. Jansen. An EPTAS for scheduling jobs on uniform processors: using an MILP relaxation
with a constant number of integral variables. In ICALP 09: 36th International Colloquium on
Automata, Languages and Programming, pages 562–573, 2009.

[13] R. Kannan. Minkowski’s convex body theorem and integer programming. Math. of OR, 12:415–
440, 1987.

[14] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In FOCS 1982: 23rd IEEE Symposium on Foundations of Computer
Science, pages 312–320, 1982.

[15] H. W. Lenstra. Integer programming with a fixed number of variables. Math. of OR, 8:538–548,
1983.

[16] D. Marx. Can you beat treewidth? Theory of Computing, 6(1):85–112, 2010.

[17] S. A. Plotkin, D. B. Shmoys, and E. Tardos. Fast approximation algorithms for fractional
packing and covering problems. Math. of OR, 20:257–301, 1995.

[18] I. Z. Ruzsa. Solving a linear equation in a set of integers. I. Acta Arith., 65(3):259–282, 1993.

[19] I. Z. Ruzsa. Solving a linear equation in a set of integers. II. Acta Arith., 72(4):385–397, 1995.

[20] D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Res. Logist.,
41(4):579–585, 1994.

16

