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Abstract. We study the problem of finding small s–t separators that
induce graphs having certain properties. It is known that finding a min-
imum clique s–t separator is polynomial-time solvable (Tarjan 1985),
while for example the problems of finding a minimum s–t separator that
is a connected graph or an independent set are fixed-parameter tractable
(Marx, O’Sullivan and Razgon, manuscript). We extend these results the
following way:
(1) Finding a minimum c-connected s–t separator is FPT for c = 2 and

W [1]-hard for any c ≥ 3.

(2) Finding a minimum s–t separator with diameter at most d is W [1]-
hard for any d ≥ 2.

(3) Finding a minimum r-regular s–t separator is W [1]-hard for any
r ≥ 1.

(4) For any decidable graph property, finding a minimum s–t separator
with this property is FPT parameterized jointly by the size of the
separator and the maximum degree.

We also show that finding a connected s–t separator of minimum size
does not have a polynomial kernel, even when restricted to graphs of
maximum degree at most 3, unless NP ⊆ coNP/poly.

1 Introduction

One of the classic topics in combinatorial optimization and algorithmic graph
theory deals with finding cuts and separators in graphs. Recently, the study
of this type of problems from a parameterized complexity point of view has
attracted a large amount of interest [5, 6, 11, 14–21]. Given a graph G and two
vertices s and t of G, a subset of vertices S ⊆ V (G)\{s, t} is an s–t separator if s
and t appear in different connected components of the graph G−S. In separation
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problems, we are typically looking for small separators S. A natural extension
of the problem is to demand G[S], i.e., the subgraph induced by S, to satisfy a
certain property. (For convenience, when the graph G[S] has a certain property,
we will say that the set S itself also has this property; for example, we say that
a set S ⊆ V (G) is 2-connected if G[S] is 2-connected.) A classical result in this
direction by Tarjan [22] shows that finding small clique separators is polynomial-
time solvable. To our knowledge, this is the only known polynomial-time solvable
problem of this type. Therefore, we explore here the problem from the viewpoint
of parameterized complexity.

Parameterized complexity associates with every instance of a problem a non-
negative integer k, called the parameter. As is common in the parameterized
study of separator problems, the parameter k in this paper will always be the
size of the separator we are looking for. We use n and m to denote the number
of vertices and edges, respectively, in the input graph. A parameterized problem
is fixed-parameter tractable (or FPT) if it can be solved in time f(k) · nO(1) for
some function f that only depends on k [9]. By showing that a parameterized
problem is W[1]-hard, we can give strong evidence that it is unlikely to be FPT;
we refer to [9] for more background on parameterized complexity.

For any graph class G, let us consider the following parameterized problem.

G-Separator
Input: A graph G, two vertices s and t of G, and an integer k.
Parameter: k.
Question: Does G have an s–t separator S of size at most k such
that G[S] ∈ G?

If G is the class of all complete graphs, then G-Separator is polynomial-time
solvable by the result of Tarjan [22]. Furthermore, Marx et al. [18, 19] showed
that the problem is fixed-parameter tractable for many natural classes G. We
say that G is hereditary if, for every graph in G, each of its induced subgraphs
also belongs to G.

Theorem 1 ([18, 19]). For any decidable and hereditary graph class G, the G-
Separator problem can be solved in time fG(k) · (n+m).

For example, by letting G be the class of all graphs without edges, Theorem 1
shows that finding an independent set of size at most k separating s and t is FPT.
The proof is based on a combinatorial statement called Treewidth Reduction
Theorem, which shows (roughly speaking) that all the inclusionwise minimal s–t
separators lie in a bounded-treewidth part of the graph and hence they can be
found efficiently. Note that if G is hereditary, then we can always assume that
the separator is inclusionwise minimal (otherwise we can remove vertices from
it without leaving G).

Theorem 1 naturally raises the question what the parameterized complex-
ity of the G-Separator problem is for graph classes G that are not hereditary.
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Perhaps the most natural candidate is the class of connected graphs. The Con-
nected Separator problem of deciding whether a graph G has a connected
s–t separator of size at most k has been studied by Marx et al. [19]. Although
it is not immediately clear how to apply the Treewidth Reduction Theorem to
this problem, Marx et al. [19] managed to extend their framework from [18] to
prove the following result.

Theorem 2 ([19]). The Connected Separator problem can be solved in
time f(k) · (n+m).

Our results. Motivated by the results in [18, 19], we study the problem of
finding small s–t separators satisfying different non-hereditary properties. Let us
focus on the three tractable classes mentioned above (connected graphs, cliques,
independent sets) and try to investigate further related classes.

As Connected Separator is FPT, it is natural to explore what happens
if we require higher-order connectivity. It turns out that, somewhat surprisingly,
finding a c-connected s–t separator of size at most k remains FPT also for c = 2,
but becomes W [1]-hard for any c ≥ 3. In order to prove this, we show that
the natural c-connected generalization of Steiner Tree is FPT for c = 2 and
W [1]-hard for any c ≥ 3. This result could be of independent interest.

We can generalize the class of cliques by considering the class of graphs with
diameter at most d. We show that the problem of finding an s–t separator of size
at most k that induces a graph with diameter d in G is W [1]-hard for any d ≥ 2.
This is in stark contrast with the case d = 1, as the problem of finding a clique
separator of size at most k is known to be solvable in polynomial time [22].

Independent sets can be thought of as 0-regular graphs. This motivates ex-
ploring the problem of finding an r-regular s–t separator. We show that, unlike
the r = 0 case which is FPT by Theorem 1, for any r ≥ 1, it is W [1]-hard to
decide if a graph G has an r-regular s–t separator of size at most k.

All the above results are on general graphs, i.e., graph G can be arbitrary.
It comes as no surprise that the problem is much easier restricted to bounded-
degree graphs. In particular, finding a small connected separator is FPT due
to the fact that a bounded-degree graph contains only a bounded number of
small connected sets. More interestingly, we show in Section 4 that for every
(not necessarily hereditary) decidable graph class G, the G-Separator problem
can be can be solved in time hG(k,∆) ·m log n on graphs of maximum degree
at most ∆. We prove this by showing that the following problem can be solved
in time f(|V (H)|, ∆) ·m log n on graphs of maximum degree at most ∆: Given
two graphs G and H and two vertices s and t of G, decide whether G has an s–t
separator S such that G[S] is isomorphic to H. This means that we can solve the
G-Separator problem by simply trying all members H of G having k vertices.

Finally, we investigate the existence of polynomial kernels for the problem of
finding small s–t separators. A parameterized problem is said to admit a kernel if
there is a polynomial-time algorithm that transforms each instance of the prob-
lem into an equivalent instance whose size and parameter value are bounded from
above by g(k) for some (possibly exponential) function g. It is known that a pa-
rameterized problem is FPT if and only if it is decidable and admits a kernel [9].
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In the desirable case that g(k) is a polynomial in k, we say that the problem ad-
mits a polynomial kernel. Many problems have been shown to admit polynomial
kernels, including classes of problems that are covered by some kernelization
meta-theorems [3, 12]. Recently developed methods for proving non-existence of
polynomial kernels, up to some complexity theoretical assumptions [2, 4, 13], sig-
nificantly contributed to the establishment of kernelization as an important and
rapidly growing subfield of parameterized complexity.

Although the Connected Separator problem is FPT by Theorem 2 and
therefore admits a kernel [9], we show in Section 5 that this problem does not
have a polynomial kernel, even when restricted to input graphs of maximum
degree at most 3, unless NP ⊆ coNP/poly. This means that techniques other
than kernelization (e.g., treewidth reduction) seem to be essential for the efficient
solution of the problem even on bounded-degree graphs.

2 Finding s–t Separators with Higher Connectivity

Theorem 2 states that the problem of finding a connected s–t separator of size
at most k is FPT. In this section, we study the parameterized complexity of
finding s–t separators of higher connectivity. A graph G = (V,E) is c-connected
if |V | > c and G − X is connected for every X ⊆ V with |X| < c. Menger’s
Theorem provides an equivalent definition (see [8]): a graph is c-connected if
any two of its vertices can be joined by c internally vertex-disjoint paths. For
any integer c ≥ 1, the c-Connected Separator problem takes as input a
graph G, two vertices s and t of G, and an integer k (the parameter), and asks
whether there is an s–t separator of size at most k that induces a c-connected
graph. Theorem 2 states that this problem is FPT when c = 1. Interestingly, it
turns out that the problem remains FPT for c = 2, but becomes W [1]-hard for
any c ≥ 3.

The algorithm in [19] for finding a minimum connected s–t separator uses an
FPT algorithm for Steiner Tree as a subroutine. For our purposes, we need
to define the following natural c-connected generalization of the Steiner Tree
problem. For any integer c ≥ 1, the c-Connected Steiner problem takes as
input a graph G, a set T ⊆ V (G) of terminals and an integer k (the parameter).
The objective is to decide whether G has a c-connected subgraph H on at most
k vertices such that H contains all the terminals. Such a graph H is called a
solution. A solution H is minimal if no proper subgraph of H is a solution,
and H is minimum if there is no solution H ′ with |V (H ′)| < |V (H)|. When
c = 1, this problem is equivalent to the well-known Steiner Tree problem,
which is known to be FPT when parameterized by k [10]. We show below that
the c-Connected Steiner problem remains FPT when c = 2, but becomes
W [1]-hard for higher values of c.

A different way of generalizing Steiner Tree would be to require the weaker
condition saying that H contains c internally vertex-disjoint paths between any
two terminals. The following lemma shows that for c = 2 this is almost the same
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problem, as any minimal solution satisfying the weaker requirement satisfies the
stronger requirement as well:

Lemma 1. (F)1 Let H be a graph and T ⊆ V (H) a set of vertices such that
there are two internally vertex-disjoint paths between any t1, t2 ∈ T . If H has no
proper subgraph (containing T ) having this property, then H is 2-connected.

We note that for c ≥ 3, the analog of Lemma 1 is not true. Thus the weaker
requirement would result in a different problem, but we do not investigate it
further in the current paper.

Our algorithm for 2-Connected Steiner crucially depends on the following
structural property of any minimal solution:

Lemma 2. Let (G,T, k) be an instance of the 2-Connected Steiner problem.
If H is a minimal solution, then H − T is a forest.

Proof. Since the lemma trivially holds when |T | ≤ 1, we assume that |T | ≥ 2.
Suppose H is a minimal solution. We show that every cycle in H contains at
least one vertex of T , which implies that H − T is a forest. For contradiction,
let C be a cycle in H that contains none of the terminals. We will identify an
edge e of C such that it remains true in H − e that there are two internally
vertex-disjoint paths between any two terminals. Then by Lemma 1, H − e has
a 2-connected subgraph which is a solution, contradicting the minimality of H.

We define a partition T1, T2 of the terminals as follows. A terminal t ∈ T
belongs to T2 if there is another terminal t′ ∈ T such that for every pair P1, P2

of internally vertex-disjoint paths between t and t′ in H, both P1 and P2 use at
least one vertex of C, i.e., if t and t′ belong to different connected components
of H − V (C). Note that in such a case t′ is also in T2. We define T1 = T \ T2.

Let t ∈ T1. By definition, for any t′ ∈ T \ {t}, there exist two internally
vertex-disjoint paths in H between t and t′ such that at least one of them does
not use any vertex of C. Let H ′ be the graph obtained from H by deleting any
edge of C. Then H ′ still contains two internally vertex-disjoint paths between t
and any t′ ∈ T \ {t}, as any path between t and t′ that used the deleted edge
can be rerouted on the cycle. Hence, if T2 is empty, we can delete any edge from
C and obtain a new solution, contradicting the minimality of H.

Now suppose T2 6= ∅. Let us define a shortcut of C to be a path P of length at
least 2 between two vertices a and b of C, such that none of the internal vertices
of P are in C. It follows from the definition of T2 that for each t ∈ T2, there are
two distinct vertices a, b on C such that there are two internally vertex-disjoint
paths Pa, Pb from t to a and b, respectively, whose internal vertices are not in
C. In other words, for every t ∈ T2, there is a shortcut of C that contains t. Let
M be a shortest subpath of C such that there is a shortcut P ∗ of C between
the endpoints a and b of M . Let M be the other path between a and b on the
cycle C. Let a′ be the neighbor of a on M (possibly a′ = b). We claim that after
removing the edge aa′ from H, the obtained graph H − aa′ still contains two
internally vertex-disjoint paths between each pair of terminals in T2.
1 Proofs marked with a star have been omitted due to page restrictions.
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By the well-known properties of the 2-connected components of graphs, the
relation “being in the same 2-connected component” (or equivalently, the relation
“there is a cycle containing both edges”) defined on the edges of H − aa′ is an
equivalence relation. Every edge of M is in the same equivalence class of this
relation: M together with P ∗ forms a cycle containing all these edges. We claim
that every t ∈ T2 is also in this 2-connected component. As observed above, there
is a shortcut Pt going through t. Let Mt be the subpath of the cycle C between
the endpoints of Pt avoiding aa′. The paths Pt and Mt together form a cycle.
This cycle contains at least one edge of M , since Mt cannot be a proper subpath
of M by the minimality of M . Thus the edges of this cycle are in the same 2-
connected component as the edges of M . We have shown that every t ∈ T2 is in
this 2-connected component of H − aa′. Consequently, there are two internally
vertex-disjoint paths in H − aa′ between any two terminals t1, t2 ∈ T , yielding
the desired contradiction to the assumption that H is a minimal solution.

We conclude that every cycle in H contains at least one vertex of T , which
implies that H − T is a forest. ut

Lemma 2 tells us that we have to find an appropriate forest that connects
to the terminals in an appropriate way. Fixed-parameter tractability results for
finding trees (or more generally, bounded-treewidth graphs) under various tech-
nical constraints can usually be obtained using standard application of dynamic
programming. Here we need the following variant:

Lemma 3. (F) Let F be a forest, G an undirected graph, and c : V (F ) ×
V (G)→ Z+ a cost function. In time f(|V (F )|) · nO(1), one can find a mapping
φ : V (F )→ V (G) such that φ(u)φ(v) ∈ E(G) for every uv ∈ E(F ) and the total
cost

∑
v∈V (F ) c(v, φ(v)) is minimized.

The structural observation of Lemma 2 and the algorithm of Lemma 3 allow
us to establish the fixed-parameter tractability of the 2-Connected Steiner
problem, which could be interesting in its own right. Furthermore, it will be used
as a subroutine in our FPT-algorithm for finding a 2-connected s–t separator of
size at most k.

Theorem 3. The 2-Connected Steiner problem is FPT.

Proof. Let (G,T, k) be a yes-instance of the 2-Connected Steiner problem
and let H be a minimal solution. By Lemma 2, H − T is a forest. We try all
graphs H on at most k vertices that are candidates for being isomorphic to the
solution H: that is, H is 2-connected, T ⊆ V (H), and H − T is a forest. The
number of such graphs is a function of k only. For each such H, we define a cost
function c such that for x ∈ V (H − T ) and y ∈ V (G), we have c(x, y) = 0 if
NH(x) ∩ T ⊆ NG(y) ∩ T and c(x, y) = ∞ otherwise. In other words, we allow
mapping x to y only if every terminal neighbor of x is also a neighbor of y. Let us
use the algorithm of Lemma 3 to find a mapping φ of H − T into G minimizing
the cost. If the cost of φ is 0, then φ can be extended to a mapping of H into
G, showing that H is a subgraph of G, which gives us a solution. Otherwise,

6



we proceed with the next candidate H. If the algorithm finds no solution after
processing all candidates, we can safely return “no”. ut

In order to prove that 2-Connected Separator is FPT, we will make use
of the Treewidth Reduction Theorem due to Marx, O’Sullivan and Razgon [18,
19]. In fact, instead of using the Treewidth Reduction Theorem itself, we use
a lemma (a slight reformulation of Lemma 2.8 in [18]) that forms its crucial
ingredient. In order to state it, we need an additional definition. Let G be a
graph and C ⊆ V (G). The graph torso(G,C) has vertex set C, and vertices
a, b ∈ C are connected by an edge if ab ∈ E(G) or if there is a path in G
connecting a and b whose internal vertices are not in C.

Lemma 4 ([18]). Let s and t be two vertices of a graph G, let k be an integer,
and let C be the union of all minimal s–t separators in G of size at most k. Then
there is an f(k) · (n+m) time algorithm that returns a set C ′ ⊇ C ∪{s, t}, such
that the treewidth of torso(G,C ′) is at most g(k).

Note that even if G has a 2-connected s–t separator S of size at most k, G
might not have a minimal s–t separator of size at most k that is 2-connected,
since 2-connectivity is not a hereditary property. However, G does contain a
minimal s–t separator that can be extended to a 2-connected set of size at most
k. We call a set S′ ⊆ V (G) k-biconnectable if there is a 2-connected set S ⊆ V (G)
of size at most k such that S′ ⊆ S.

Observation 4 Let G be a graph. A set S′ ⊆ V (G) is k-biconnectable if and
only if (G,S′, k) is a yes-instance of the 2-Connected Steiner problem.

The set C ′ in Lemma 4 contains every minimal s–t separator S′ that is k-
biconnectable, but there is no guarantee that S′ can be extended to a 2-connected
set within C ′. The next lemma shows that we can extend C ′ to a larger set C ′′

such that every k-biconnectable s–t separator S′ ⊆ C ′ can be extended to a
2-connected s–t separator S ⊆ C ′′ of size at most k.

Lemma 5. Let s and t be two vertices of a graph G, and let k be an integer.
There is a set C ′′ ⊆ V (G) such that the treewidth of torso(G,C ′′) is bounded by
a constant depending only on k and the following holds: if G has a 2-connected
s–t separator of size at most k, then G also has a 2-connected s–t separator S
of size at most k such that S ⊆ C ′′. Moreover, such a set C ′′ can be found in
time h(k) · nO(1).

Proof. Let C ′ ⊆ V (G) be the set of Lemma 4 that contains every minimal s–t
separator of G of size at most k, such that the treewidth of torso(G,C ′) is
bounded by a function of k. Let K1, . . . ,Kq be the connected components of
G − C ′, and let Ni be the neighborhood of Ki in C ′ for 1 ≤ i ≤ q. By the
definition of torso, each Ni forms a clique in torso(G,C ′). Since each clique of a
graph must appear in a single bag of any tree decomposition of that graph, we
have |Ni| ≤ tw(torso(G,C ′)) + 1, so the size of each Ni is bounded by a function
of k only.
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Our algorithm for constructing C ′′ iterates over all i ∈ {1, . . . , q}, all non-
empty subsets X ⊆ Ni, all graphs Fi,X on at most k − |X| vertices, and all
possible ways in which the vertices of Fi,X can be made adjacent to the vertices
of X. For each of those choices, let Gi,X be the graph obtained from G[V (Ki)∪X]
and Fi,X by adding edges between these two graphs in the way that we chose
earlier. We then run the algorithm of Theorem 3 to check if there is a solution
Hi,X for the 2-Connected Steiner problem with instance (Gi,X , V (Fi,X) ∪
X, k − |V (Fi,X)| − |X|). If so, we take Hi,X to be the minimum such solution;
otherwise we let Hi,X = ∅. For each Hi,X , we mark all the vertices of Hi,X that
belong to Ki. Finally, we define C ′′ to be the set consisting of all the vertices of
C ′ plus all the vertices that were marked during this entire process.

In order to prove the correctness of this algorithm, let us consider a 2-
connected s–t separator S of size at most k in G such that |S \C ′′| is as small as
possible. We need to show that |S \C ′′| = 0. For contradiction, we assume that
|S \C ′′| ≥ 1. Let Ki be a connected component of G−C ′ such that Ki contains
a vertex of S \C ′′, let Si = S \V (Ki), and let X = S∩Ni. Note that X 6= ∅. Also
note that Si is a k-biconnectable set in the graph G[V (Ki)∪Si]. Hence, by Ob-
servation 4, (G[V (Ki) ∪ Si], Si, k) is a yes-instance of 2-Connected Steiner.
Since X 6= ∅, in some iteration of the algorithm, we considered a graph Gi,X
that is isomorphic to G[V (Ki) ∪ Si] and hence found a minimum solution Hi,X

of 2-Connected Steiner for exactly the instance (G[V (Ki) ∪ Si], Si, k). Let
S′ = Si ∪ V (Hi,X). By construction, S′ is 2-connected. Note that S ∩ C ′ is an
s–t separator, since otherwise there would be a minimal s–t separator of size at
most k in G that contains a vertex outside C ′, contradicting Lemma 4. Since
S ∩ C ′ ⊆ S′, S′ is an s–t separator. It is clear that S′ ⊆ C ′′, which means that
|S′ \ C ′′| = 0. Hence |S′ \ C ′′| < |S \ C ′′|, contradicting the minimality of S.

For each i ∈ {1, . . . , q}, C ′′ contains at most k|Ni|k vertices of Ki, and hence
the treewidth of torso(Ki, C

′′∩V (Ki)) is bounded by a constant depending only
on k. It follows that the difference between the treewidth of torso(G,C ′′) and
the treewidth of torso(G,C ′) is a constant depending on k (see also Lemma 2.9
in [19]), implying that the treewidth of torso(G,C ′′) is bounded by a function of
k. Finding the set C ′ can be done in time f(k) · (m+ n) by Lemma 4. For each
choice of i and X, the possible number of different graphs Gi,X , and consequently
the number of instances of 2-Connected Steiner we have to solve, is bounded
by some function of k. Since 2-Connected Steiner is FPT by Theorem 3, the
overall running time of the algorithm is h(k) · nO(1) for some function h that
depends only on k. ut

Theorem 5. The 2-Connected Separator problem is FPT.

Proof. Let (G, s, t, k) be an instance of 2-Connected Separator. We start by
constructing the set C ′′ ⊆ V (G) of Lemma 4. Let G∗ = torso(G,C ′′). We assign
a color to each edge uv in G∗: we color uv black if uv is also an edge in G, and
we color uv red otherwise. By Lemma 5, G contains a 2-connected s–t separator
S of size at most k if and only if G∗ contains an s–t separator S∗ of size at most
k such that deleting the red edges from G∗[S∗] results in a 2-connected graph.
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The theorem now follows from Courcelle’s Theorem [7] and the fact that this
problem can be expressed in monadic second-order logic (see [19]). ut

We now show that the c-Connected Steiner problem becomes hard when
the connectivity of the solution is required to be at least 3.

Theorem 6. (F) c-Connected Steiner is W [1]-hard for any c ≥ 3.

Since we can transform an instance of c-Connected Steiner into an in-
stance of c-Connected Separator by making two new vertices s and t adja-
cent to each of the terminals, Theorem 6 readily implies the following result.

Theorem 7. c-Connected Separator is W [1]-hard for any c ≥ 3.

3 More W [1]-Hardness Results on General Graphs

We say that a graph G is r-regular if the degree of every vertex in G is exactly r.
For every r ≥ 0, let r-Regular Separator denote the problem of deciding
whether an input graph G has an s–t separator S of size at most k such that G[S]
is r-regular. Since the class of 0-regular graphs is hereditary, Theorem 1 implies
that 0-Regular Separator, i.e., the problem of finding an s–t separator that
is an independent set of size at most k, is FPT. We show that r-Regular
Separator is W [1]-hard for every r ≥ 1 when parameterized by k. Note that
the class of r-regular graphs is not hereditary for any r ≥ 1.

Theorem 8. (F) r-Regular Separator is W [1]-hard for any r ≥ 1.

The diameter of a graph G is the maximum distance between any two vertices
in G, where the distance between two vertices u and v is defined as the number
of edges in a shortest path from u to v. The problem of finding an s–t separator
that forms a clique is well-known to be solvable in polynomial time [22]. Since
cliques induce subgraphs of diameter 1, it is natural to consider the problem of
finding an s–t separator that induces a graph of diameter 2, or, more generally,
of any fixed diameter d ≥ 2. Note that for any d ≥ 2, the class of graphs with
diameter (at most) d is not hereditary; consider for example a chordless cycle
on 2d+ 1 vertices. The class of graphs with diameter 1, however, is hereditary.
d-Diameter Separator is the problem of deciding if an input graph G has an
s–t separator S of size at most k such that G[S] has diameter d.

Theorem 9. (F) d-Diameter Separator is W [1]-hard for any d ≥ 2.

4 Finding s–t Separators in Graphs of Bounded Degree

Theorem 1 states that G-Separator is FPT for any decidable and hereditary
graph class G. In the previous sections, we identified several non-hereditary graph
classes G for which G-Separator is W [1]-hard on general graphs. In this section,
we prove that for any decidable (but not necessarily hereditary) graph class G,
the G-Separator problem is FPT on graphs of bounded degree. We do this by
showing that the following problem is FPT on graphs of bounded degree.
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Pattern Separator
Input: Two graphs G and H, and two vertices s and t of G.
Parameter: k = |V (H)|.
Question: Does G have an s–t separator S such that G[S] is
isomorphic to H?

We use a variant of the color coding technique of Alon, Yuster and Zwick [1]
to reduce the Pattern Separator problem on bounded degree graphs to the
problem of finding an s–t separator of size at most k that has a certain hereditary
property, which enables us to use Theorem 1.

For the remainder of this section, let G and H be two graphs, let s and t be
two vertices of G, and let H1, . . . ,Hc be the connected components of H. We
use n and m to denote the number of vertices and edges in G, respectively, and
k to denote the number of vertices in H. Let ψ be a (not necessarily proper)
coloring of a graph G. A subset of vertices V ′ ⊆ V (G) is colorful if ψ colors no
two vertices of V ′ with the same color. For any subset C ′ of colors, we say that
V ′ ⊆ V (G) is C ′-colorful if |V ′| = |C ′| and every vertex in V ′ receives a different
color from C ′.

Definition 1. Let ψ : V (G) → {1, 2, . . . , c, c + 1} be a (c + 1)-coloring of G.
We say that ψ is H-good if G has an s–t separator S satisfying the following
properties:

(i) each connected component of G[S] is colored monochromatically with a color
from {1, . . . , c};

(ii) no two connected components of G[S] receive the same color;
(iii) the connected component of G[S] with color i is isomorphic to Hi;
(iv) every vertex in NG(S) receives color c+ 1.

It immediately follows from Definition 1 that (G,H, s, t) is a yes-instance
of Pattern Separator if and only if G has an H-good coloring. The main
idea of our algorithm is that finding a separator S satisfying these requirements
essentially boils down to finding a separator that is a colorful independent set,
which is fixed-parameter tractable by the results of [18, 19]. The following lemma
plays a crucial role in our FPT algorithm.

Lemma 6. (F) Given a (c+1)-coloring ψ of G, we can decide in g(k) · (n+m)
time whether ψ is H-good.

Let (G,H, s, t) be an instance of Pattern Separator, where the graph
G has maximum degree at most ∆. Suppose (G,H, s, t) is a yes-instance, and
let S be an s–t separator of G such that G[S] is isomorphic to H. Since |S| =
|V (H)| = k, and every vertex in S has at most ∆ neighbors, |NG[S]| ≤ (∆+1)k.
Using the notion of a k-perfect family of hash functions, we can construct in
time ((∆+ 1)k)! · 2O((∆+1)k) · log n a family Φ of (c+ 1)-colorings of G such that
(G,H, s, t) is a yes-instance if and only if Φ contains an H-good coloring, where
the size of Φ is bounded by ((∆+ 1)k)! · 2O((∆+1)k) · log n (see for example [1]).
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By Lemma 6, we can check for each coloring in Φ whether or not it is H-good in
g(k) · (n+m) time, for some function g that does not depend on n. This yields
the following result.

Theorem 10. (F) Pattern Separator can be solved in f(k,∆)·m log n time
on graphs of maximum degree at most ∆.

We can solve G-Separator by using our algorithm for Pattern Separator
to try every member of G having size at most k:

Theorem 11. (F) For any decidable class G, the G-Separator problem can
be solved in time hG(k,∆) ·m log n on graphs of maximum degree at most ∆.

5 No Polynomial Kernel for Connected Separator

In this section, we show that the Connected Separator problem does not ad-
mit a polynomial kernel, even when restricted to graphs with maximum degree at
most 3, unless NP ⊆ coNP/poly. The Connected Separator problem is easily
seen to be NP-complete by a simple polynomial-time reduction from Steiner
Tree. The following result shows that the problem remains NP-complete on
graphs of maximum degree at most 3.

Theorem 12. (F) The Connected Separator problem is NP-complete on
graphs of maximum degree at most 3, in which the vertices s and t have degree 2.

An or-composition algorithm for a parameterized problem Q ⊆ Σ∗ ×N is an
algorithm that receives as input a sequence ((x1, k), . . . , (xr, k)), with (xi, k) ∈
Σ∗ × N+ for each 1 ≤ i ≤ r, and outputs a pair (x′, k′), such that

– the algorithm uses time polynomial in
∑r
i=1 |xi|+ k;

– k′ is bounded by a polynomial in k; and
– (x′, k′) ∈ Q if and only if there exists an i ∈ {1, . . . , r} with (xi, k) ∈ Q.

A parameterized problem Q is said to be or-compositional if there exists an
or-composition algorithm for Q.

Theorem 13. (F) The Connected Separator problem, restricted to graphs
with maximum degree at most 3, is or-compositional.

Combining results of Bodlaender et al. [2] and Fortnow and Santhanam [13]
on the non-existence of polynomial kernels, together with Theorems 12 and 13,
yields the following result.

Theorem 14. (F) The Connected Separator problem, restricted to graphs
of maximum degree at most 3, has no polynomial kernel, unless NP ⊆ coNP/poly.

Acknowledgements. We would like to thank P̊al Grøn̊as Drange for fruitful
discussions.
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