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ABSTRACT
We generalize the structure theorem of Robertson and Sey-
mour for graphs excluding a fixed graph H as a minor to
graphs excluding H as a topological subgraph. We prove
that for a fixed H, every graph excluding H as a topological
subgraph has a tree decomposition where each part is either
“almost embeddable” to a fixed surface or has bounded de-
gree with the exception of a bounded number of vertices.
Furthermore, such a decomposition is computable by an al-
gorithm that is fixed-parameter tractable with parameter
∣H ∣.

We present two algorithmic applications of our structure
theorem. To illustrate the mechanics of a “typical” appli-
cation of the structure theorem, we show that on graphs
excluding H as a topological subgraph, Partial Dominat-
ing Set (find k vertices whose closed neighborhood has

maximum size) can be solved in time f(H,k) ⋅ nO(1) time.
More significantly, we show that on graphs excluding H as
a topological subgraph, Graph Isomorphism can be solved
in time nf(H). This result unifies and generalizes two pre-
viously known important polynomial-time solvable cases of
Graph Isomorphism: bounded-degree graphs [18] and H-
minor free graphs [22]. The proof of this result needs a
generalization of our structure theorem to the context of
invariant treelike decomposition.

Categories and Subject Descriptors
F.2 [Theory of Computing]: Analysis of Algorithms and
Problem Complexity; G.2.2 [Mathematics of Comput-
ing]: Discrete Mathematics—Graph Theory

General Terms
Algorithms
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1. INTRODUCTION
We say that a graph H is a minor of G if H can be ob-

tained from G by deleting vertices, deleting edges, and con-
tracting edges. A graphG isH-minor free ifH is not a minor
of G. Robertson and Seymour [25] proved a structure theo-
rem for the class ofH-minor graphs: roughly speaking, every
H-minor free graph can be decomposed in a way such that
each part is “almost embeddable” into a fixed surface. This
structure theorem has important algorithmic consequences:
many natural computational problems become easier when
restricted to H-minor free graphs [4, 13, 6, 15, 14, 5, 10].
These algorithmic results can be thought of as far-reaching
generalizations of algorithms on planar graphs and bounded-
genus surfaces.

A more general way of defining restricted classes of graphs
is to exclude topological subgraphs instead of minors. A
graph H is a topological subgraph (or topological minor) of
graph G if a subdivision of H is a subgraph of G. It is easy
to see that if H is a topological subgraph of G, then H is
also a minor of G. Thus the class of graphs excluding H as
a topological subgraph is a more general class than H-minor
free graphs.

One can ask if graphs excluding H as a topological sub-
graph admit a similar structure theorem as H-minor free
graphs. However, graphs excluding a topological subgraph
can be much more general. For example, no 3-regular graph
can contain a subdivision of K5 (as K5 is 4-regular). There-
fore, the class of graphs excluding K5 as a topological sub-
graph includes in particular every 3-regular graph. This
suggests that it is unlikely that this class can be also char-
acterized by (almost) embeddability into surfaces.

Nevertheless, our first result is a structure theorem for
graphs excluding a graph H as a topological subgraph. We
prove that, in some sense, only the bounded-degree graphs
make this class more general than H-minor free graphs.
More precisely, we prove a structure theorem that decom-
poses graphs excluding H as a topological subgraph into
almost bounded-degree parts and into H ′-minor free parts
(for some other graph H ′). The H ′-minor free parts can
be further refined into almost-embeddable parts using the
structure theorem of Robertson and Seymour [25], to obtain
our main structural result (see Corollary 4.4 for the precise
statement):



Theorem 1.1 (informal). For every fixed graph H,
every graph excluding H as a topological subgraph has a tree
decomposition where every torso

(i) either has bounded degree with the exception of a bounded
number of vertices, or

(ii) almost embeddable into a surface of bounded genus.

Furthermore, such a decomposition can be computed in time
f(H) ⋅ ∣V (G)∣

O(1) for some computable function f .

Our structure theorem allows us to lift problems that are
tractable on both bounded-degree graphs and on H-minor
free graphs to the class of graphs excluding H as a topolog-
ical subgraph. We demonstrate this principle on the Par-
tial Dominating Set problem (find k vertices whose closed
neighborhood is maximum). Following a bottom-up dy-
namic programming approach, we solve the problem in each
bag of the tree decomposition (using the fact that the prob-
lem can be solved in linear-time on both bounded-degree
and on almost-embeddable graphs).

Theorem 1.2. Partial Dominating Set can be solved
in time f(k,H) ⋅ nO(1) when restricted to graphs excluding
H as a topological subgraph.

One could prove similar results for other basic problems such
as Independent Set or Dominating Set. However, a re-
sult of Dvorak et al. [7] shows that problems expressible in
first-order logic can be solved in linear time on classes of
graphs having bounded expansion, and therefore on graphs
excluding H as a topological subgraph. The problems In-
dependent Set and Dominating Set (for a fixed k) can
be expressed in first-order logic, thus the analogs of Theo-
rem 1.2 for these problems follow from [7]. On the other
hand, Partial Dominating Set is not expressible in first-
order logic, hence the techniques of Dvorak et al. [7] do not
apply to this problem.

The main algorithmic result of the paper concerns the
Graph Isomorphism problem (given graphs G1 and G2,
decide if they are isomorphic). Graph Isomorphism is
known to be polynomial-time solvable for bounded-degree
graphs [18, 2] and for H-minor free graphs [22, 9]. In fact,
for these classes of graphs, even the more general canoniza-
tion problem can be solved in polynomial time: there is an
algorithm labeling the vertices of the graph with positive
integers such that isomorphic graphs get isomorphic label-
ings. It is tempting to expect that our structure theorem
together with a bottom-up strategy give a canonization al-
gorithm for graphs excluding H as a topological subgraph:
in each bag, we use the canonization algorithm either for
bounded-degree graphs or H-minor free graphs (after en-
coding somehow the canonized versions of the child bags,
which seems to be a technical problem only). However, this
approach is inherently doomed to failure: there is no guar-
antee that our decomposition algorithm produces isomor-
phic decompositions for isomorphic graphs. Therefore, even
if two graphs are isomorphic, the bottom-up canonization
algorithm could be working on two completely different de-
compositions and therefore could obtain different results on
the two graphs.

We overcome this difficulty by generalizing our structure
theorem to the context of treelike decompositions introduced
by the first author in [11, 9]. A treelike decomposition is
similar to a tree decomposition, but it is defined over a di-
rected acyclic graph instead of a rooted tree, and therefore

it contains several tree decompositions. The Invariant De-
composition Theorem (Section 8) generalizes the structure
theorem by giving an algorithm that computes a treelike de-
composition in a way that the decompositions obtained for
isomorphic graphs are isomorphic. Then the Lifting Lemma
(Section 9) formalizes the bottom-up strategy informally de-
scribed in the previous paragraph: if we can compute treelike
decompositions for a class of graphs in an invariant way and
we have a canonization algorithm for the bags, then we have
a canonization algorithm for this class of graphs. Although
the idea is simple, in order to encode the child bags, we have
to state this algorithmic result in a more general form: in-
stead of graphs, we have to work with weighted relational
structures. This makes the statement and proof of the Lift-
ing Lemma more technical. Putting together these results,
we obtain:

Theorem 1.3. For every fixed graph H, Graph Isomor-
phism can be solved in polynomial-time restricted to graphs
excluding H as a topological subgraph.

Let us quickly remark that it is unlikely that Theorem 1.3
could be generalized to all classes of graphs with bounded
expansion, as the isomorphism problem on such a class can
be as hard as on general graphs. To see this, consider two
graphs G1 and G2 on n-vertices and let us obtain G′

1 and
G′

2 by subdividing each edge with n new vertices. Now G′

1

and G′

2 have bounded expansion and they are isomorphic if
and only if G1 and G2 are.

Actually, we not only obtain a polynomial time isomor-
phism test, but also a polynomial time canonisation algo-
rithm. Our theorem generalizes and unifies the results of
Babai and Luks [18, 2] on bounded-degree graphs and of
Ponomarenko [22] on H-minor free graphs. Let us remark
that Ponomarenko’s result implies that there is a polynomial
time isomorphism test for all classes of graphs of bounded
genus, which has been proved earlier by Filotti and Mayer [8]
and Miller [21], and for all classes of graphs of bounded tree
width, which was also proved later (independently) by Bod-
laender [3]. Miller [20] gave a common generalization of the
bounded degree and bounded genus classes to classes that
he called k-contractible. These classes do not seem to have
a simple graph-theoretic characterization; they are defined
in terms of properties of the automorphism groups needed
for the algorithm. Excluding topological subgraphs, on the
other hand, is a natural graph theoretic restriction that gen-
eralizes both bounding the degree and excluding minors and
hence bounding the genus.

For the convenience of the reader, let us summarize how
the different results in the present paper depend on previous
results in the literature:

● The proof of the existence of the decomposition into
H-minor free and almost bounded-degree parts is self-
contained. The algorithm computing such a decom-
position needs the minor testing algorithm of [24] or
[16].

● The proof of the existence of the more refined decom-
position into almost-embeddable and almost bounded-
degree parts needs the graph structure theorem of Robert-
son and Seymour [25]. The algorithm computing such
a decomposition needs the algorithmic version of the
structure theorem [5]; to achieve f(H) ⋅ nO(1) run-
ning time, a more recent stronger algorithmic result
is needed [17].



● The algorithm for Partial Dominating Set needs
the more refined decomposition, hence it relies on [24,
17]. Additionally, it needs the fact proved in [10] that
almost-embeddable graphs have bounded local treewidth.

● The result on Graph Isomorphism needs the minor
testing algorithm of [24] or [16] to compute the treelike
decomposition. Additionally, the canonization algo-
rithms for bounded-degree graphs [2] and for H-minor
free graphs ([22] or [9]) are needed.

Note that none of the results rely on the topological sub-
graph testing algorithm of [12] or need any substantial result
from the monograph [9].

The paper is organized as follows. Sections 2–3 introduce
the notation used in the paper. Section 4 states the structure
theorem and shows how it can be proved by appropriate
local decomposition lemmas. Section 5 introduces the notion
of tangles, which is an important tool in the proofs of the
local decomposition lemmas in Section 6. Section 7 uses the
structure theorem in an algorithm for Partial Dominating
Set. Section 8 introduces treelike decomposition and proves
the Invariant Decomposition Theorem. Section 9 proves the
Lifting Lemma for canonizations, completing the proof of
Theorem 1.3.

2. PRELIMINARIES
Z and N denote the sets of integers and nonnegative inte-

gers, respectively. For m,n ∈ Z, we let [m,n] ∶= {` ∈ Z ∣m ≤

` ≤ n} and [n] ∶= [1, n]. The power set of a set S is denoted

by 2S , and the set of all k-element subsets of S by (
S
k
). For

a mapping f defined on S, we let f(S) ∶= {f(s) ∣ s ∈ S}. The
cardinality of a set S is denoted by ∣S∣.

Let G be a graph. The order of a graph G is ∣G∣ ∶= ∣V (G)∣.
The set of all neighbors of a vertex v ∈ V (G), called the
open neighborhood of v, is denoted by NG

(v). The closed
neighborhood of v is the set NG

[v] ∶= {v} ∪ NG
(v). The

closed and open neighborhood of a subset W ⊆ V (G) are
the sets NG

[W ] ∶= ⋃w∈W NG
[w] and NG

(W ) ∶= NG
[W ] ∖

W , respectively, and the closed and open neighborhood of
a subgraph H ⊆ G are the sets NG

[H] ∶= NG
[V (H)] and

NG
(H) ∶= NG

(V (H)), respectively. We omit the index G if
G is clear from the context, and we do the same for similar
notations introduced later. We let ∂G(W ) = ∣NG

(W )∣.
For every set V , we let K[V ] be the complete graph with

vertex set V , and for every n ∈ N, we let Kn ∶=K[[n]].
Let G be a graph. A graph H is a minor of G (denoted

by H ⪯ G) if H can be obtained from G by deleting vertices,
deleting edges, and contracting edges. Equivalently, we can
define H ⪯ G the following way. Two sets S,T ⊆ V (G) touch
if either S ∩ T = ∅ or there is an edge vw ∈ V (G) such that
v ∈ S and w ∈ T . It can be shown that H ⪯ G if and only if
there is a family (Iw)w∈V (H) of pairwise disjoint connected
subsets of V (G) such that for every u, v ∈ V (H) that are
adjacent in H, the sets Iu and Iv touch in G. We call this
family I an image of H in G and the sets Iw are the branch
sets of the image.

Theorem 2.1 ([24, 16]). There is an f(H) ⋅ ∣V (G)∣
3

time algorithm (for some computable f) that finds a H-
minor image in G, if exists.

A subdivision H ′ of a graph H is obtained by replacing
each edge of H by a path of length at least 1. We say that
H is a topological subgraph (or topological minor of G) and

denote it by H ⪯T G if a subdivision of H is a subgraph
of G. Equivalently, H is a topological subgraph of G if H
can be obtained from G by deleting edges, deleting vertices,
and dissolving degree 2 vertices (which means deleting the
vertex and making its two neighbors adjacent). For fixed H,
it can be decided in cubic time whether a graph G contains
a subdivision of H (although we do not need this result in
the current paper):

Theorem 2.2 ([12]). There is an f(H) ⋅ ∣V (G)∣
3 time

algorithm (for some computable f) that finds a subdivision
of H in G, if exists.

Let D be digraph. For every t ∈ V (D), we let ND
(t) ∶=

{u ∈ V (D) ∣ tu ∈ E(D)}. We call vertices of in-degree 0 roots
and vertices of out-degree 0 leaves of D. The height of an
acyclic digraph D is the length of the longest path in D.

It will be convenient for us to view trees as being directed,
unless we explicitly call them undirected. Hence for us, a
tree is an acyclic digraph T that has a unique node (the
root) such that for every node t there is a exactly one path
from r(T ) to t.

For two graphs A and B, the graph A ∪ B is defined by
V (A ∪ B) = V (A) ∪ V (B) and E(A ∪ B) = E(A) ∪ E(B).
Let G be a graph. A separation of G is a pair (A,B) of
subgraphs of G such that A∪B = G and E(A∩B) = ∅. The
order of a separation (A,B) is ∣V (A) ∩ V (B)∣.

3. TREE DECOMPOSITIONS
A tree decomposition of a graph is a pair (T,β), where

T is a rooted tree and β ∶ V (T ) → 2V (G), such that for all
nodes v ∈ V (G) the set {t ∈ V (G) ∣ v ∈ β(t)} is nonempty
and connected in the undirected tree underlying T , and for
all edges e ∈ E(G) there is a t ∈ V (T ) such that e ⊆ β(t).
Most readers will be familiar with this definition, but it will
be convenient for us to view tree decompositions from a
different perspective here.

If (T,β) is a tree decomposition of a graph G, then we

define mappings σ, γ,α ∶ V (T ) → 2V (G) by letting for all
t ∈ V (T )

σ(t) ∶= {
∅ if t is the root of T ,

β(t) ∩ β(s) if s is the parent of t in T ,
(3.1)

γ(t) ∶= ⋃
u is a descendant of t

β(u), (3.2)

α(t) ∶= γ(t) ∖ σ(t). (3.3)

We call β(t), σ(t), γ(t), α(t) the bag at t, separator at t, cone
at t, component at t, respectively. It is easy to verify that
the following conditions hold:

(TD.1) T is a tree.

(TD.2) For all t ∈ V (D) it holds that α(t) ∩ σ(t) = ∅ and
NG

(α(t)) ⊆ σ(t).

(TD.3) For all t ∈ V (D) and u ∈ ND
(t) it holds that α(u) ⊆

α(t) and γ(u) ⊆ γ(t).

(TD.4) For all t ∈ V (D) and all distinct u1, u2 ∈ ND
(t) it

holds that γ(u1) ∩ γ(u2) = σ(u1) ∩ σ(u2).

(TD.5) For the root r of T it holds that σ(r) = ∅ and
α(r) = V (G).



Conversely, consider a triple (T,σ,α), where T is a digraph

and σ,α ∶ V (T ) → 2V (G). We define γ, β ∶ V (T ) → 2V (G) by

γ(t) ∶= σ(t) ∪ α(t), (3.4)

β(t) ∶= γ(t) ∖ ⋃
u∈NT (t)

α(u) (3.5)

for all t ∈ V (T ). Then it is easy to prove that if (TD.1)–
(TD.5) are satisfied, then (T,β) is a tree decomposition (see
[9] for a proof). Thus we may also view triples (T,σ,α) sat-
isfying (TD.1)–(TD.5) as tree decompositions. We jump
back and forth between both versions of tree decomposi-
tions, whichever is more convenient. The treelike decompo-
sitions introduced in Section 8 need to be defined as triples
(T,σ,α), thus looking at tree decompositions also this way
in the first part of the paper makes the transition between
the two concepts smoother.

Let (T,β) be a tree decomposition of a graph G. The
width of (T,β) is max{∣β(t)∣−1 ∣ t ∈ V (T )}, and the adhesion
of (T,β) is max{∣σ(t)∣ ∣ t ∈ V (T )}. The tree width of a graph
is the minimum possible width of a tree decomposition of G.
However, in the current paper, rather than minimizing tree
width (i.e., minimizing the size of the bags), we are mostly
interested in decompositions where the graph induced by
each bag (plus some additional edges) is “nice” in a certain
sense. For every node t ∈ V (T ), the torso at t is the graph

τ(t) ∶= G[β(t)] ∪K[σ(t)] ∪ ⋃
u∈ND(t)

K[σ(u)]. (3.6)

That is, we take the graph induced by bag β(t), turn σ(t)
into a clique, and make vertices x, y adjacent if they ap-
pear together in the separator (or equivalently, the cone) of
some child u of t. For a class A of graphs, (T,β) is a tree
decomposition over A if all its torsos are in A.

A related notion is the torso of G with respect to a set
C ⊆ V (G), denoted by torso(G,C), which is defined as graph
on C where u, v ∈ V (G) are adjacent if there is a path P in
G with endpoints u and v such that the internal vertices of
P are disjoint from C. In other words,

torso(G,C) ∶= G[C] ∪ ⋃
X is a component of G ∖C

K[NG
(X)].

It is easy to see that τ(G,β(t)) ⊆ τ(t). Equality is not true
in general: G[α(u)] for some u ∈ ND

(t) is not necessarily
connected, thus it is not necessarily true that σ(u) isNG

(X)

for some component X of G ∖ β(t).

4. LOCAL AND GLOBAL STRUCTURE THE-
OREMS

The main structural result of the paper is a decomposition
theorem for graphs excluding a topological subgraph:

Theorem 4.1 (Global Structure Theorem). For ev-
ery k ∈ N, there exists constants a(k), b(k), c(k), d(k), e(k),
such that the following holds. Let H be a graph on k ver-
tices. Then for every graph G with H /⪯T G there is a tree
decomposition (T,β) of adhesion at most a(k) such that for
all t ∈ V (T ) one of the following three conditions is satisfied:

(i) ∣β(t)∣ ≤ b(k).
(ii) τ(t) has at most c(k) vertices of degree larger than

d(k).
(iii) Ke(k) /⪯ τ(t).

Furthermore, there is an algorithm that, given graphs G,H
of sizes n, k, respectively, in time f(k) ⋅nO(1) for some com-
putable function f , computes either such a decomposition
(T,β) or a subdivision of H in G.

The reader could find it convenient to refer to the constants
a, b, c, d, e as the bounds on the adhesion, bag size, number
of apices, maximum degree, and excluded clique. We remark
that all the constants are polynomially large. Note that (i)
is redundant: by choosing d(k) or e(k) sufficiently large, a
bag satisfying (i) trivially satisfies (ii) and (iii). We state
the result this way, because it shows the high-level structure
of the proof, which involves three decomposition results cor-
responding to the three cases.

The proof of the Global Structure Theorem 4.1 builds a
tree decomposition step by step, iteratively decomposing the
graph locally in each step. The Local Structure Theorem
describes the “local” structure of a graph, as seen from a
single node of a tree decomposition. We describe this local
structure in terms of star decompositions, to be defined next.
A star is a tree of height 1. We usually call the root of
a star its center and the leaves of a star its tips. A star
decomposition of a graph G is a tree decomposition (T,β)
where T is a star. Note that if (T,β) is a star decomposition,
then for every tip t of the star T it holds that β(t) = γ(t).

Theorem 4.2 (Local Structure Theorem). For ev-
ery k ∈ N, there exists constants a(k), b(k), c(k), d(k), e(k)

such that the following holds. There is an f(k) ⋅ ∣V (G)∣
O(1)

time algorithm that, given a graph G, a set S of size ≤ a(k),
and an integer k,

(1) either returns a subdivision of Kk in G,
(2) or computes a star decomposition ΣS = (TS , αS , σS) of

G ∪K[S] of adhesion ≤ a(k) such that S ⊆ βS(s) for
the center s, α(t) ⊂ α(s) for every tip t, and one of
the following three conditions is satisfied:

(a) ∣βS(s)∣ ≤ b(k).
(b) τS(s) does not contain a Ke(k)-minor.
(c) At most c(k) vertices of τS(s) have degree more

than d(k) in τ(s).

The condition that α(t) is a proper subset of α(s) makes
sure that we make progress and compute a tree decompo-
sition after a finite number of applications of Theorem 4.2.
Note the technical detail that ΣS in (2) is a decomposition
of G ∪ K[S] instead of G. As G ∪ K[S] has more edges
than G, this makes the statement slightly stronger (because
it makes harder to satisfy the requirements on τS(s)). The
proof of the Global Structure Theorem 4.1 needs this extra
condition, since the set S will connect the graph to the part
of the tree decomposition already computed. In (1), how-
ever, the Kk-subdivision is found in G (which is a slightly
stronger statement than finding it in G ∪K[S]).

The proof of the Global Structure Theorem 4.1 follows
from the Local Structure Theorem by a fairly simple in-
duction (see below). In Section 4.2, we show that Local
Structure Theorem 4.2 can be proved by putting together
three decomposition lemmas. We prove these lemmas in Sec-
tions 5–6. Let us remark the Global Structure Theorem can
be seen as an instance of a general theorem due to Robertson
and Seymour [23, (11.3)], explaining how to construct a tree
decomposition whose torsos have a“nice structure” in graphs
with a “nice local structure”, where the local structure is de-
scribed with respect to a tangle (see Section 5). Our proof



follows the ideas of Robertson and Seymour’s construction,
but as Robertson and Seymour’s theorem is not algorith-
mic, and since there would be a large notational overhead,
we see no benefit in appealing to Robertson and Seymour’s
theorem here and instead carry out our own version of the
construction, which is not very difficult anyway.

Proof (of the Global Structure Theorem 4.1). Let
a(k), b(k), c(k), d(k), e(k) as in the Local Structure The-
orem 4.2. Let G be a graph. We shall describe the con-
struction of a tree decomposition (T,β) of G satisfying all
conditions asserted in the lemma. The construction may
fail, but in that case it yields a subdivision of H in G.

We will built the tree T inductively starting from the root.
For every node t we will define the set NT

(t) of its children
and sets σ(t), α(t) such that ∣σ(t)∣ ≤ a(k) and NG

(α(t)) ⊆
σ(t). As usual, we define γ(t), β(t), and τ(t) as in (3.4),
(3.5), and (3.6). In each step, we will prove that τ(t) satisfies
one of (i), (ii), or (iii).

We start with a root r of T and let σ(r) ∶= ∅ and α(r) ∶=
V (G). For the inductive step, let t be a node for which
σ(t) and α(t) are defined, but ND

(t) is not yet defined.
We let Gt ∶= G[γ(t)]. Let us run the algorithm of Theo-
rem 4.2 on Gt (as G), σ(t) (as S), and k. If it returns a
subdivision of Kk in Gt, then we can clearly return a sub-
division of H in G and we are done. Otherwise, it returns
a star decomposition Σt ∶= (Tt, σt, αt) of G ∪K[σ(t)] hav-
ing adhesion at most a(k); let st be the center of Tt. We
let NT

(t) ∶= V (Tt) ∖ {st} be the set of tips of Tt, where
without loss of generality we assume that this set is disjoint
from the tree T constructed so far. For every u ∈ NT

(t) we
let σ(u) ∶= σt(u) and α(u) ∶= αt(u). Observe that we have
β(t) = γ(t) ∖ ⋃u∈NT (t) α(u) = βt(st). Furthermore, since Σt
is a decomposition of G∪K[σ(t)] and σ(t) induces a clique
in G ∪K[σ(t)], we have that τ(t) = τt(st). Thus one of the
three cases of Theorem 4.2 holds for the bag β(t) as well.

To see that (T,β) is a tree decomposition, it is easiest
to verify it satisfies (TD.2)–(TD.4): it follows from the fact
that the star decomposition Σt used in each step of the con-
struction does satisfy these conditions. Condition (TD.1) is
obvious and (TD.5) follows because we start the construc-
tion with a node t having α(t) = V (G) and σ(t) = ∅. Note
that the bound a(k) on the adhesion of Σt implies the same
bound on the adhesion of (T,β).

To see that the construction terminates, note that for all
t ∈ V (T ), Theorem 4.2 states that αt(u) ⊂ αt(st) for ev-
ery tip u of Tt. This means that that α(u) ⊂ α(t) holds
for every u ∈ NT

(t) and hence the height of the tree is at
most ∣V (G)∣. Moreover, α(u1) and α(u2) are disjoint for
two distinct children of node t and it follows that the to-
tal number of leaves can be bounded by ∣V (G)∣. Thus the
algorithm, excluding the calls to Theorem 4.2, runs in poly-
nomial time. The claim on the running time follows from
Theorem 4.2.

4.1 Almost Embeddable Graphs and a Refined
Structure Theorem

In this section, we combine our structure theorem with
Robertson and Seymour’s structure theorem for graphs with
excluded minors [25], which says that for graph H, all graphs
excludingH as a minor have a tree decomposition into torsos
that are almost embeddable into some surface.

We start by reviewing Robertson and Seymour’s structure
theorem. We need first the definition of (p, q, r, s)-almost

embeddable graphs (for the current paper, the exact defini-
tion will not be important, thus the reader can safely skip
the details). We assume that the reader is familiar with
the basics of surface topology and graph embeddings. A
path decomposition is a tree decomposition (P,β) where P
is a path. For every n ∈ N, by Pn we denote the path
with vertex set [n] and edges i(i + 1) for all i ∈ [n − 1].
A p-ring is a tuple (R,v1, . . . , vn), where R is a graph and
v1, . . . , vn ∈ V (R) such that there is a path decomposition
(Pn, β) of R of width p with vi ∈ β(i) for all i ∈ [n]. A
graph G is (p, q)-almost embedded in a surface S if there
are graphs G0,G1, . . . ,Gq and mutually disjoint closed disks
D1, . . . ,Dq ⊆ S such that:

(i) G = ⋃
q
i=0Gi.

(ii) G0 is embedded in S and has a nonempty intersection
with the interiors of the disks D1, . . . ,Dq.

(iii) The graphs G1, . . . ,Gq are mutually disjoint.
(iv) For all i ∈ [q] we have E(G0 ∩ Gi) = ∅, and there

are ni ∈ N and vi1, . . . , v
i
ni

∈ V (G) such that V (G0 ∩

Gi) = {vi1, . . . , v
i
ni

}, and the vertices vi1, . . . , v
i
ni

appear
in cyclic order on the boundary of the disk Di.

(v) For all i ∈ [q] the tuple (Gi, v
i
1, . . . , v

i
ni

) is a p-ring.

A graph G is (p, q, r, s)-almost embeddable if there is an apex
set X ⊆ V (G) of size ∣X ∣ ≤ s such that G∖X is isomorphic to
a graph that is (p, q)-almost embedded in a surface of Euler
genus r.

Theorem 4.3 ([25, 17]). For every graph H there are
constants p, q, r, s ∈ N such that every graph G with H /⪯ G
has a tree decomposition (T,β) such that for all t ∈ V (T )

the torso τ(t) is (p, q, r, s)-almost embeddable.
Furthermore, there is an algorithm that, given G and H,

in time f(∣H ∣) ⋅ n3 for some computable function f , either
finds a H-minor image in G, or computes such a tree de-
composition and moreover, computes an apex set Zt of size
at most s for every t ∈ V (T ).

As a corollary of this theorem and our structure theorem
we get:

Corollary 4.4. For every graph H there are constants
c, d, p, q, r, s ∈ N such that every graph G with H /⪯T G has a
tree decomposition (T,β) such that for all t ∈ V (T ),

(i) either τ(t) is (p, q, r, s)-almost embeddable,
(ii) or at most c vertices of τ(t) have degree greater than

d.

Furthermore, there is an algorithm that, given G and H, in
time f(∣H ∣) ⋅ nO(1) for some computable function f , either
finds a subdivision of H in G, or computes such a tree de-
composition, and moreover computes an apex set Zt of size
at most s for every bag of the first type.

4.2 The Three Local Decomposition Lemmas
We prove the Local Structure Theorem 4.2 by stacking

three decomposition lemmas on top of each other (see Fig-
ure 4.1). Each lemma provides either a star decomposition
corresponding to one of the three cases (i)–(iii) or an “ob-
struction”which can be feeded into the next lemma as input.

The first decomposition lemma either finds a star decom-
position where the center bag has bounded size or finds a
“highly connected” set in the following sense:



X

Lemma 4.6
Star decomposition with
bounded-size center

Lemma 4.9
Star decomposition with
Ke-minor free center

Lemma 4.10
Star decomposition with
almost bounded-degree center

Kk-subdivision

m-unbreakable set X

(i)

m-unbreakable set X
K`-minor m-attached to X

(ii)

(iii)

Figure 4.1: The three decomposition lemmas in the
proof of Local Structure Theorem 4.2.

Definition 4.5. Let G be a graph and X ⊆ V (G). A
separation (A,B) of G breaks X if ∣(V (A)∩X)∪V (A∩B)∣ <

∣X ∣ and ∣(V (B) ∩X) ∪ V (A ∩B)∣ < ∣X ∣.
The set X is m-unbreakable if there is no separation (A,B)

of G of order <m that breaks X.

There is a simple way of detecting if a setX ism-unbreakable
by considering all possible ways of breaking X. Note that
the running time of the following algorithm is exponential
in the size of the set, but we will use it only on unbreakable
sets of bounded size.

Lemma 4.6. There is an algorithm that, given a graph G
and a set X ⊆ V (G) and a m ∈ N, either computes a sepa-
ration of G of order < m that breaks X or correctly decides
that ∣X ∣ is m-unbreakable in time 3∣X∣nO(1).

It is not difficult to see that a large unbreakable set is an
obstruction for having small treewidth, that is, for having a
tree decomposition where every bag has small size. There-
fore, it is not surprising that the proof of the first local
decomposition lemma is very similar to algorithms finding
tree decompositions.

Lemma 4.7 (Bounded-size star decomposition). For
every m ∈ N, there is a constant b∗(m) such that the follow-

ing holds. There is an f(m)⋅∣V (G)∣
O(1) time algorithm that,

given a graph G, an integer m, a set X of size ≤ 3m−2, and
an integer k,

(1) either finds an m-unbreakable set X ′
⊇X of size 3m−2.

(2) or computes a star decomposition ΣX = (TX , αX , σX)

of G ∪K[X] having adhesion < 3m − 2 such that X ⊆

βX(s) and ∣βX(s)∣ ≤ b∗(m) for the center s of TX .

Proof. Let b∗(m) = 4m − 3. If ∣V (G)∣ < 3m − 2, then we
can return a star decomposition consisting of a single center
node s with α(s) = V (G) and σ(s) = ∅. Otherwise, let X ′

be an arbitrary superset of X having size 3m−2. Let us use
the algorithm of Lemma 4.6 to test if X ′ is m-unbreakable;
if so, then we can return X ′ and we are done. Otherwise,
there is a separation (A,B) of G having order < m such
that ∣(X ′

∩V (A)) ∪Q∣, ∣(X ′
∩V (B)) ∪Q∣ < ∣X ′

∣ = 3m− 2 for
Q = V (A) ∩ V (B). Let us construct a star decomposition
ΣX = (TX , αX , σX) with center s and a tips tA, tB . First, let
α(s) = V (G) and σ(s) = ∅. Let α(tA) = V (A)∖(Q∪X ′

) and
σ(tA) = ∣(X ′

∩ V (A)) ∪Q∣; it is clear that ∣σ(tA)∣ < 3m − 2.
Similarly, let α(tB) = V (B) ∖ (Q ∪X ′

) and σ(tB) = ∣(X ′
∩

V (B))∪Q∣. It is straightforward to verify that this is indeed
a star decomposition of G ∪K[X] with adhesion < 3m − 2.
Furthermore, ∣β(s)∣ = ∣Q ∪X ′

∣ ≤m − 1 + 3m − 2 = b∗(m).

The second local decomposition lemma takes an unbreak-
able set X of appropriate size, and either finds a star decom-
position where the torso of the center node excludes some
minor or finds a large clique minor. Furthermore, this clique
minor has the additional property that it is close to the un-
breakable set X in the following sense:

Definition 4.8. Let I be an H-minor image in G and
let X be a set of vertices. We say that I is m-attached to
X if there is no separation (A,B) of order < m such that
I(v) ⊆ V (A) ∖ V (B) for some v ∈ V (H) and ∣(V (B) ∩X) ∪

V (A ∩B)∣ ≥ ∣X ∣.

In particular, if X is an m-unbreakable set and I is m-
attached to X, then whenever I(v) ⊆ V (A)∖V (B) for some
v ∈ V (H) and separation (A,B) of order <m, then we know
that ∣(V (A) ∩X) ∪ V (A ∩ B)∣ ≥ ∣X ∣. Thus in every every
separation, I is on the same side as the larger part of X.

Lemma 4.9 (Excluded-minor star decomposition).
For every `,m ∈ N, there is a constant e∗(`,m) such that

the following holds. There is an f(`,m) ⋅ ∣V (G)∣
O(1) time

algorithm that, given a graph G, integers `, m, and an m-
unbreakable set X of size 3m − 2

(1) either finds a K`-minor image I in G that is m-attached
to X,

(2) or computes a star decomposition ΣX = (TX , αX , σX)

of G∪K[X] having adhesion < ∣X ∣ such that X ⊆ βX(s)
and τX(s) does not contain a Ke∗(`,m)-minor for the
center s of TX .

Furthermore, suppose that the algorithm computes ΣX on
input (G,X) and let (G′,X ′

) be a pair such that there is
an isomorphism f from G to G′ with f(X) = X ′. Then
the algorithm computes a star decomposition Σ′

X′ on input
(G′,X ′

) and there exists an isomorphism g from TX to TX′
such that for all t ∈ V (TX) we have σX′(g(t)) = f(σX(t))
and αX′(g(t)) = f(αX(t)).

Lemma 4.9 states an invariance condition saying that for iso-
morphic input the decomposition is isomorphic. This con-
dition is not required for the proof of the Global Structure
Theorem 4.1, but will be essential for the proof of the In-
variant Decomposition Theorem 8.3 in Section 8. Note that
Lemma 4.7 does not state such an invariance condition and
in fact there does not seem to be an obvious way of ensur-
ing invariance (for example, already the selection of X ′ in
the first step of the proof is completely arbitrary and hence
cannot be done in an invariant way). This is precisely the
reason why we need to use the more general treelike decom-
positions in Sections 8–9 if we want the construction to be
invariant.



The proof of Lemma 4.9 is deferred to Section 6.1. The
algorithm repeatedly finds K`-minor images and tests if they
are m-attached to S. If so, it returns it, otherwise there
is a separator that we can use to decrease the bag of the
center in such a way that this particular image is no longer
in the torso of the center. Note that when we exclude some
vertices from the bag, then new cliques can appear in the
torso. The main technical challenge is to ensure that no new
clique minor images are created when decreasing the size of
the bag.

The third and final decomposition lemma takes a clique
minor image I attached to an unbreakable set S and finds
either a star decomposition where the torso of the center has
“almost bounded degree” (that is, bounded degree with the
exception of a bounded number of vertices) or a subdivision
of a clique.

Lemma 4.10 (Bounded-degree Star Decomposition).
For every k ∈ N, there exist constants c∗(k), d∗(k), m∗

(k),

`∗(k) such that the following holds. There is an f(k)∣V (G)∣
O(1)

time algorithm that given a graph G, integer k, an m-unbreakable
set X of size 3m−2 (for m ∶=m∗

(k)) and an image I of K`

that is m-attached to X (for ` ∶= `∗(k)),

(1) either finds a subdivision of Kk in G,
(2) or computes a star decomposition ΣX = (TX , σX , αX)

of G∪K[X] having adhesion < ∣X ∣ such that X ⊆ β(s)
and at most c∗(k) vertices of τ(s) have degree greater
than d∗(k) in τ(s), where s is the center of TX .

Furthermore, suppose that the algorithm computes ΣX on
input (G,X) and let (G′,X ′

) be a pair such that there is
an isomorphism f from G to G′ with f(X) = X ′. Then
the algorithm computes a star decomposition Σ′

X′ on input
(G′,X ′

) and there exists an isomorphism g from TX to TX′
such that for all t ∈ V (TX) we have σX′(g(t)) = f(σX(t))
and αX′(g(t)) = f(αX(t)).

The proof of Lemma 4.10 is deferred to Section 6.2. The
main idea is that we are trying to remove every high-degree
vertex from the bag of the center using appropriate separa-
tions. If there are at least k high-degree vertices that can-
not be removed this way, then these vertices are close to the
clique minor image I, and we can use this fact to construct
a subdivision of a clique.

With the three local decomposition algorithms of Lem-
mas 4.7–4.10 at hand, we are ready to prove Local Structure
Theorem 4.2:

Proof Proof of Local Structure Theorem 4.2. Let
c(k) = c∗(k), d(k) = d∗(k), ` = `(k) = `∗(k), m = m(k) =

m∗
(k) using the functions c∗, d∗, `∗, m∗ in Lemma 4.10.

Let e(k) = e∗(`,m) for the function e∗ in Lemma 4.9. Let
b(k) = b∗(m) for the function b∗(k) in Lemma 4.7. Let
a(k) = 3m−3. Note that b∗(m) ≥ 3m−3 in Lemma 4.7: oth-
erwise, neither (1) nor (2) would be possible if X = V (G)

and ∣X ∣ = 3m − 3. Thus we can assume b(k) ≥ a(k).
If S = V (G), then we can return a star decomposition

consisting of a single center node s with α(s) = V (G) and
σ(s) = ∅ (here we use that b(k) ≥ a(k) ≥ ∣S∣). Let X ∶=

S ∪ {v} for an arbitrary vertex v /∈ S. Let us call the algo-
rithm of Lemma 4.7 on G, X, and m. If it returns a star
decomposition ΣX = (TX , αX , σX), then we return it and we
are done. Note that in this case v ∈X ⊆ βX(s) for the root s
of TX , thus v /∈ αX(t) for any tip t of TX , which means that
the requirement αX(t) ⊂ αX(s) indeed holds. Otherwise,

let X ′ be the m-unbreakable superset of X returned by the
algorithm. Let us call the algorithm of Lemma 4.9 with G,
`, m, and X ′. Again, if it returns a star decomposition, we
are done. Otherwise, it returns a K`-minor image I that is
m-attached to I. Let us call the algorithm of Lemma 4.10
with G, k, X ′, and I. It returns either a Kk-subdivision or
a star decomposition; we are done in both cases.

5. TANGLES
In the proofs of the local decomposition lemmas (Sec-

tion 6), we need to deal with separations that separate some
set from (the larger part of) an unbreakable set. Robert-
son and Seymour [23] defined the abstract notion of tangles,
which is a convenient tool for describing such separations.
While in principle our results could be described without
introducing tangles (in particular, we are not using any pre-
vious results about tangles), we feel that they provide a
convenient notation for our purposes, and they make our
results slightly more general.

Let m ∈ N∖{0}. A tangle of order m in a graph G is a set
T of separations of G of order < m such that the following
axioms are satisfied:

(TA.1) For every separation (A,B) of G of order < m, ei-
ther (A,B) ∈ T or (B,A) ∈ T.

(TA.2) For all (A1,B1), (A2,B2), (A3,B3) ∈ T it holds that
A1 ∪A2 ∪A3 ≠ G.

(TA.3) For all (A,B) ∈ T it holds that V (A) ≠ V (G).

Intuitively, one can think of each separation (A,B) in the
tangle T as having a “small side”A and “big side”B. Axiom
(TA.2) states that the “small side” is so small that not even
three of them can cover the whole graph.

In this paper, we only consider tangles of a special form.
These tangles are defined by unbreakable sets (in the sense
of Definition 4.5).

Lemma 5.1. Let X be an m-unbreakable set of size at
least (3m−2) in graph G. Let T contain every separation of
order <m such that ∣(X ∩V (B))∪V (A∩B)∣ ≥ ∣X ∣. Then T
is a tangle of order m in G (and we call it the tangle of order
m defined by the set X). Furthermore, for every separation
(A,B) ∈ T it holds that ∣V (A) ∩X ∣ ≤ ∣V (A ∩B)∣ <m.

The size of a tangle (even of small order) can be expo-
nential in the size of the graph. Observe that specifying the
vertex set V (A) ∩ V (B) is not sufficient for describing the
separation (A,B). For example, a star with n leaves have
at least 2n separations of order 1. Therefore, when stating
algorithmic results that take a graph and a tangle as input,
we have to state how the tangle is represented. To obtain
maximum generality of the results, we assume that the tan-
gle is given by an oracle. We define two type of oracles. The
first type simply answers if a separation (A,B) is a member
of the tangle. However, in applications we often need to find
a separation of small order in the tangle that separates two
given sets S and T . The min-cut oracle answers queries of
this type. Note that there are more than one natural way of
defining such oracles, in particular, we might want to allow
or forbid the separator V (A) ∩ V (B) to intersect S and/or
T . We define the min-cut oracle in a way that includes all
these possibilities: the query contains a set F of forbidden
vertices and we require the separator to be disjoint from F .



Definition 5.2. Let T be a tangle of order k in a graph
G.

(1) An oracle for T answers in constant time whether a
given separation (A,B) is in T.

(2) Given sets S,T,F ⊆ V (G) and an integer λ < k, a
min cut oracle for T returns in constant time either
a separation (A,B) ∈ T of order at most λ such that
S ⊆ V (A), T ⊆ V (B), and V (A) ∩ V (B) ∩ F = ∅, or
“no” if no such separation exists.

For tangles defined by unbreakable sets it is easy to im-
plement both type of oracles:

Lemma 5.3. Let X be an m-unbreakable set of size at
least 3m− 2 in a graph G and let T be the tangle of order m
defined by X.

(1) The oracle for T can be implemented in polynomial
time.

(2) The min cut oracle for T can be implemented in time

2∣X∣
⋅ ∣V (G)∣

O(1).

5.1 Boundaries and separations
In this section, we summarize some useful properties of

boundaries of sets and their relations to tangles. These facts
will be used extensively in Section 6.

Recall that ∂G(X) = ∣NG
(X)∣. The following lemma

states that the function ∂ satisfies the submodular inequality
and a variant of the posimodular inequality:

Lemma 5.4. Let G be a graph and X,Y ⊆ V (G).

(1) ∂(X) + ∂(Y ) ≥ ∂(X ∩ Y ) + ∂(X ∪ Y ).
(2) ∂(X) + ∂(Y ) ≥ ∂(X ∖NG

[Y ]) + ∂(Y ∖NG
[X]).

We often work with separations that separate a subset of
vertices from the rest of the graph:

Definition 5.5. Let G be a graph and X ⊆ V (G). Then
we define the separation SG(X) = (A,B) by A = G[NG

[X]],
V (B) = V (G) ∖X, E(B) = E(G) ∖E(A).

Note that the order of SG(X) is exactly ∂G(X).
The following observation, together with Lemma 5.4, will

allow us to use uncrossing arguments in Section 6:

Lemma 5.6. Let T be a tangle of order m in graph G and
let X,Y ⊆ V (G) be sets such that SG(X), SG(Y ) ∈ T.

(1) For every X ′
⊆ X, if SG(X ′

) is of order < m, then
SG(X ′

) ∈ T.
(2) If SG(X ∩ Y ) is of order <m, then SG(X ∩ Y ) ∈ T.
(3) If SG(X ∪ Y ) is of order <m, then SG(X ∪ Y ) ∈ T.

We say that a separation removes a set X ⊆ V (G) if X ⊆

V (A) ∖ V (B). Note that SG(W ) removes X if and only if
X ⊆W . It follows from Lemmas 5.4 and 5.6 that for every
set X, there is a unique “closest minimum cut” of the tangle
that removes X:

Lemma 5.7. Let T be a tangle of order m in a graph G.
Suppose that X ⊆ V (G) is a set such that there is a W ⊆

V (G) with X ⊆W and SG(W ) ∈ T. Then there is a unique
W (X) ⊆ V (G) such that

(1) X ⊆W (X),
(2) SG(W (X)) ∈ T,

(3) the order of SG(W (X)) is minimum possible, and
(4) among such sets, ∣W (X)∣ is minimum possible.

Furthermore, given a min cut oracle for T, this unique min-
imal set can be found in polynomial time.

Proof. Let m0 <m be the minimum possible order of a
separation SG(W ) ∈ T over all W containing X. To prove
the uniqueness of W (X), we show a stronger statement:
there is such a W (X) with the property that W (X) ⊆ W
for every W ⊇ X with SG(W ) ∈ T and ∂(W ) = m0. To
prove this statement, suppose that W1,W2 ⊇ X are sets
such that SG(W1), SG(W2) ∈ T both have order m0. By
Lemma 5.4(1),

2m0 = ∂(W1) + ∂(W2) ≥ ∂(W1 ∩W2) + ∂(W1 ∪W2).

Observe that W1 ∩W2 and W1 ∪W2 both contain X. If
∂(W1 ∪W2) <m0, then SG(W1 ∪W2) ∈ T by Lemma 5.6(3),
contradicting the minimality of the order of SG(W1) and
SG(W2). If ∂(W1 ∪W2) ≥ m0, then ∂(W1 ∩W2) ≤ m0. By
Lemma 5.6(2), SG(W1 ∩W2) ∈ T, and its order is not larger
than the order of SG(W1) and SG(W2). Thus the intersec-
tion of the two sets is also a set satisfying the requirements.
It follows that the common intersection of everyWi ⊇X such
that ∂(Wi) = m0 and SG(Wi) ∈ T is the required minimal
set W (I).

To find this unique set W (X), we let S ∶= X, initially
define T = ∅, and use the min cut oracle to check if there
is a separation (A,B) of order at most λ with X ⊆ V (A),
T ⊆ V (B), and V (A) ∩ V (B) disjoint from F ∶= X. Let
us fix the smallest λ for which the answer is yes: then the
min cut oracle returns a separation (A,B) ∈ T, such that
W ∶= V (A) ∖V (B) satisfies the first three properties above.
To ensure that the last property holds as well, we pick a
vertex v ∈ W , and call the min cut oracle to check if there
is a separation (A′,B′

) ∈ T of order λ such that X ⊆ V (A′
),

T∪{v} ⊆ V (B′
), and V (A′

)∩V (B′
) disjoint from X. If there

is such a separation, then we include v in T , and repeat this
process with the new separation (A′,B′

). As the size of T
strictly increases, eventually we arrive at a set W such that
including any vertex v ∈W into T increases the minimum cut
size to above λ. We have seen that this set W contains the
unique minimal set W (X) defined above. Furthermore, W =

W (X) has to hold: otherwise, including a vertex v ∈ W ∖

W (X) into T would not increase the minimum cut size.

The following observation is immediate:

Proposition 5.8. If G[X] is connected, then G[W (X)]

is connected.

6. PROOFS OF THE LOCAL DECOMPO-
SITION LEMMAS

This section completes the proof of Global Structure The-
orem 4.1 by proving Lemmas 4.9 and 4.10 (Sections 6.1 and
6.2). Note that the proofs in this section contain somewhat
more work than what is strictly necessary for the proof of
the Global Structure Theorem 4.1: the proof of the invari-
ance conditions in Lemmas 4.9 and 4.10 require extra argu-
ments. These invariance conditions are not needed for the
Global Structure Theorem, but they will be crucial for the
invariance of the treelike decompositions in Section 8 and
therefore for the results of Section 9 on isomorphism and
canonization.



We prove variants of Lemmas 4.9 and 4.10 stated in terms
of tangles instead of unbreakable sets (Lemmas 6.9 and 6.11,
respectively); the proofs of Lemmas 4.9 and 4.10 follows
easily from these variants. The statements involving tangles
need the following definitions:

Definition 6.1. Let T,T′ be tangles in graphs G,G′, re-
spectively. An isomorphism from (G,T) to (G′,T′) is an
isomorphism f from G to G′ such that for all (A,B) ∈ T we
have (f(A), f(B)) ∈ T′.

Definition 6.2. Let Σ = (T,β) be a star decomposition
of graph G and let T be a tangle of G. We say that Σ respects
T if for every tip t of T the separation (A,B) with A =

G[γ(t)] and V (B) = V (G)∖α(t) is in T. In particular, this
implies SG(α(t)) ∈ T and ∣σ(t)∣ is less than the order of T.

A key tool in our proofs is the following lemma, which
follows from [24, (5.3)]:

Lemma 6.3 ([24]). For every r ∈ N, there is a constant
t(r) = O(r2

) such that the following holds. Let G be a graph
and R ⊆ V (G) with ∣R∣ = r. Let t ≥ t(r) and let (Bi)i∈[t]
be an image of a Kt-minor in G. Suppose that there is no
separation (G1,G2) of G of order < ∣R∣ with R ⊆ V (G1) and
Bb∩V (G1) = ∅ for some b ∈ [t]. Then there is a K∣R∣-minor
image in G such that every branch set contains exactly one
vertex of R and such an image can be found in polynomial
time.

6.1 Star decomposition with clique-minor free
center

We prove Lemma 4.9 in this section. First we prove a
variant of the lemma stated in terms of tangles (Lemma 6.9)
and then deduce Lemma 4.9 it at the end of the section.

Recall that a separation (A,B) removes a set X if X ⊆

V (A) ∖ V (B). We say that a separation (A,B) removes
the H-minor image I = (Iw)w∈V (H) if it removes one of the
branch sets, that is, Iw ⊆ V (A) ∖ V (B) for some w ∈ V (H).
A tangle T in G removes an H-minor image I if I is removed
by some (A,B) ∈ T with order < ∣H ∣. The following lemma
is analogous to Lemma 5.7: for every clique minor, there is
a unique “closest minimum separation” that removes it.

Lemma 6.4. Let T be a tangle of order m in a graph G
and let e > 2m. For every image I of Ke in G removed by
T, there is a unique W (I) ⊆ V (G) such that

(1) SG(W (I)) removes I,
(2) SG(W (I)) ∈ T,
(3) the order of SG(W (I)) is minimum possible, and
(4) among such sets, ∣W (I)∣ is minimum possible.

Furthermore, G[W (I)] is connected and there is a polynomial-
time algorithm that, given G, m, I, and a min cut oracle for
T, either finds W (I) or concludes that T does not remove I.

Proof. As T removes I, there has to be at least one
separation (A,B) ∈ T that removes I. Thus the set W =

V (A) ∖ V (B) is one such set. To prove the uniqueness,
suppose that there are two distinct minimal sets X and Y .
By Lemma 5.4(1), either ∂(X ∩ Y ) ≤ ∂(X) or ∂(X ∪ Y ) <

∂(Y ).
Suppose first that ∂(X∩Y ) ≤ ∂(X) <m. By Lemma 5.6(2),

SG(X∩Y ) ∈ T. We claim that SG(X∩Y ) removes I. As both
SG(X) and SG(Y ) remove I, there are vertices x, y ∈ V (Ke)

such that V (Ix) ⊆X and V (Iy) ⊆ Y . Since ∂(X), ∂(Y ) <m

and e > 2m, there is a vertex z ∈ Ke such that V (Iz) is dis-
joint from NG

(X) ∪NG
(Y ). As Ke is a clique, a vertex of

V (Iz) has to be adjacent to V (Ix) ⊆X, which is only possi-
ble if this vertex is also in X (since it cannot be in NG

(X)).
It follows that V (Iz) is fully contained in X. A symmetrical
argument shows that V (Iz) ⊆ Y . Thus V (Iz) ⊆ X ∩ Y ,
i.e., SG(X ∩ Y ) removes I. Therefore, X ∩ Y ⊂ X and
∂(X ∩ Y ) ≤ ∂(X) contradicts the minimality of X.

Suppose now that ∂(X∪Y ) < ∂(Y ) <m. By Lemma 5.6(3),
SG(X∪Y ) ∈ T. Clearly, SG(X∪Y ) removes I (as any branch
set contained in X or Y is also contained in X ∪Y ). There-
fore, X ∪ Y contradicts the minimality of Y .

To check if an image I is removed by T, we use the al-
gorithm of Lemma 5.7 to compute the set W (Iv) for every
v ∈ V (Ke) (if such a set exists). If T removes I, then at
least one of these sets should exist. Furthermore, if T re-
moves I, then it should be clear that W (I) is equal to one
of these sets W (Iv): if W (I) contains Iv, then it cannot be
different from W (Iv) (as it would contradict the minimal-
ity and uniqueness of either W (I) or W (Iv)). As W (Iv) is
connected by Prop. 5.8, it follows that W (I) is connected
as well.

A simple uncrossing argument shows that the minimum
separations defined in Lemma 6.4 cannot properly intersect
each other:

Lemma 6.5. Let T be a tangle of order m in a graph G
and let e > 2m. Let Ix and Iy be two Ke-minor images
removed by T. Then either

(1) W (Ix) ⊆W (Iy),
(2) W (Ix) ⊇W (Iy), or
(3) W (Ix) and W (Iy) are disjoint and do not touch.

Proof. Let X ∶= W (Ix) and Y ∶= W (Iy) and suppose
that none of the three possibilities hold. Assume first that
Ix has a branch set fully contained in X ∩ Y ⊂ X. If ∂(X ∩

Y ) ≤ ∂(X) < m, then SG(X ∩ Y ) ∈ T by Lemma 5.6(2)
and SG(X ∩Y ) removes Ix, contradicting the minimality of
W (Ix). Thus we can assume that ∂(X ∩ Y ) > ∂(X). By
Lemma 5.4, it follows that ∂(X∪Y ) < ∂(Y ) <m. Therefore,
SG(X ∪ Y ) is in T by Lemma 5.6(3) and it clearly removes
Iy (since SG(Y ) already does), contradicting the minimality
of Y =W (Iy).

We have proved that Ix has no branch set fully contained
in X ∩ Y , and a symmetrical argument shows that Iy has
no such branch set either. By Lemma 5.4(2), either ∂(X) ≥

∂(X ∖N[Y ]) or ∂(Y ) ≥ ∂(Y ∖N[X]). Assume without loss
of generality the first case. Consider a branch set Ix1 of Ix

fully contained in X (such a set exists, as SG(X) removes
Ix) and a branch set Ix2 disjoint from NG

(X)∪NG
(Y ) (since

e > 2m, there has to be such a set). The branch set Ix2 has a
vertex adjacent to Ix1 ⊆X. Since Ix2 is disjoint from NG

(X),
this is only possible if Ix2 is fully contained in X. Moreover,
we assumed that Ix2 is disjoint fromNG

(Y ) and it is not fully
contained in X∩Y , thus Ix2 is fully contained in X∖NG

[Y ],
that is, the separation SG(X ∖ NG

[Y ]) removes Ix. Note
that X ∖NG

[Y ] is a proper subset of X, otherwise X and
Y are disjoint and do not touch. Lemma 5.6(1) implies that
SG(X ∖N[Y ]) ∈ T, and therefore X ∖N[Y ] ⊂X violates the
minimality of X =W (Ix).

Another useful property of the definition of minimum sep-
aration in Lemma 6.4 is that if SG(W (I)) = (A,B), then the
clique minor I allows us to connect vertices of V (A)∩V (B)



with each other using paths in A in an arbitrary way. We
use the following definition to state this property:

Definition 6.6. We say that a separation (A,B) of or-
der m is generic if there is a Km-minor image in A such that
each branch set contains exactly one vertex of V (A)∩V (B).
Such an image is called a witness.

Lemma 6.7. Let T be a tangle of order m in a graph G
and let e > t(m) +m for the function t of Lemma 6.3. For
every image I of Ke in G removed by T, the separation
SG(W (I)) is generic. Furthermore, given I and a min cut
oracle for T, a witness can be found in polynomial time.

Proof. Let SG(W (I)) = (A,B) and R = V (A) ∩ V (B).
By definition, (A,B) removes I, thus at least one branch set
of I is contained in V (A)∖V (B) and at most ∣R∣ <m branch
sets intersectR. Thus at least t(m) branch sets are fully con-
tained in V (A)∖V (B). Therefore, A contains aKt(m)-minor
image I ′. We verify that the conditions of Lemma 6.3 hold
for graph A and set R. Suppose that there is a separation
(G1,G2) of order < ∣R∣ with R ⊆ G1 and I ′w ⊆ V (G2)∖V (G1)

for some branch set I ′w of I ′ (which is also a branch set of I).
Let X ′

= V (G2) ∖V (G1) ⊂ V (A) ∖V (B) =W (I). It follows
that SG(X ′

) has order < ∣R∣ (which is the order of (A,B))
and is in T by Lemma 5.6(1). However, SG(X ′

) also removes
I, contradicting the minimality of W (I). We can conclude
that A and R satisfy the conditions of Lemma 6.3, and the
existence of the required K∣R∣-minor image follows.

It follows from Lemma 6.7 that if W (I) = (A,B), then
removing V (A) ∖ V (B) and replacing V (A) ∩ V (B) with
the clique K[V (A) ∩ V (B)] does not create any new clique
minor images inB (because the edges in the cliqueK[V (A)∩

V (B)] can be simulated by connections in A in the original
graph). Repeated application of this observation shows that
after removing all the clique minor images, we get a bag
whose torso does not contain clique minors of the given size.

Lemma 6.8. Let T be a tangle of order m in a graph G
and let e > t(m) +m for the function t of Lemma 6.3. Let
I1, . . . , Ip be Ke-minor images removed by T. Let W =

⋃
p
i=1W (Ii) and let G′

= torso(G,V (G) ∖W ). The graph G′

has a Ke-minor I ′ if and only if G has a Ke-minor image
I not removed by any SG(W (Ii)). Furthermore, given a
min cut oracle for T and such a Ke-minor image I, one can
compute a Ke-minor image I ′ in G′ in polynomial time and
vice versa.

Proof. We can assume that the sets W (I1
), . . . , W (Im)

are pairwise incomparable (because if W (Ii) ⊆W (Ij), then
omitting Ii from this collection does not change W ), thus
by Lemma 6.5, we can assume that these sets are pair-
wise disjoint and do not touch. This means that Ri =

NG
(W (Ii)) is a subset of V (G) ∖W and induces a clique

in G′. By Lemma 6.4, each G[W (Ii)] is connected. Thus
G′

= torso(G,V (G)∖W ) is exactly the union of G∖W with
a clique on each Ri.

Let I ′ be the image of a Ke-minor in G′. Note that this is
not necessarily a Ke-minor image in G∖W as G′ has edges
that G∖W do not have. However, we can use the subgraph
inside G[W (Ii)] to simulate these edges. By Lemma 6.7,
every SG(W (Ii)) is generic and we can obtain the corre-
sponding clique minor images. This means that for each Ri,
there is a set of r pairwise disjoint and touching connected

subgraphs in G[NG
[W (Ii)]]. Using these connected sets,

we can extend each I ′w of G′ into a connected set Iw of G
and obtain a Ke-minor image I in G.

For the reverse direction, let I be a Ke-minor image in
G not removed by any SG(W (Ii)). Let I ′ be defined by
I ′w = G′

[V (Iw)∖W ] for every w ∈ V (Ke). Note that V (I ′w) ≠
∅: this would be only possible if V (Iw) ⊆ W (Ii) for some
1 ≤ i ≤ p, which would imply that SG(W (Ii)) removes I. We
claim that I ′ is a Ke-minor image. The connectedness of I ′w
is easy to see: any path with internal vertices in W (Ii) can
be replaced by an edge in Ri (as Ri induces a clique in G′).
To see that I ′w and I ′u touch for every w,u ∈ V (Ke), consider
an edge e between Iw and Iu in G. If both endpoints of e
are in W (Ii) ∪Ri, then I ′w and I ′u both intersect Ri, hence
they touch. Otherwise, e is an edge of G∖W , implying that
it is also an edge of G′.

Now we state and prove a version of Lemma 4.9 in terms
of tangles:

Lemma 6.9. For every `,m ∈ N, there is a constant e′(`,m)

such that the following holds. There is an f(`,m)⋅∣V (G)∣
O(1)

time algorithm that, given a graph G, `, m, a min cut oracle
for a tangle T of order m, either

(1) finds a K`-minor image I not removed by T, or
(2) computes a T-respecting star decomposition ΣT = (TT, αT, σT)

with center s such that τT(s) does not contain a Ke′(`,m)-
minor.

Furthermore, if the algorithm returns ΣT for (G,T) and
T′ is another tangle of order m in a graph G′, and f is an
isomorphism from (G,T) to (G′,T′), then the algorithm re-
turns a star decomposition ΣT′ for (G′,T′) such that there is
an isomorphism g from TT to TT′ such that for all t ∈ V (TT)

we have σT′(g(t)) = f(σT(t)) and αT′(g(t)) = f(αT(t)).

Proof. Let e = e′(`,m) = max(`, t(m) +m + 1) for the
function t in Lemma 6.3. We show first that if T removes
every K`-minor image (and therefore every Ke-minor image
as e ≥ `), then there exists a star decomposition satisfying
the requirements. Suppose that T removes every K`-minor
image, implying that W (I) is defined for every Ke-minor
image I. Let I1, . . . , Ip be the list of all Ke-minor images
for which W (Ii) is inclusionwise maximal. By Lemma 6.5,
W (Ii) and W (Ij) are disjoint and do not touch for i ≠ j.
Let W = ⋃

p
i=1W (Ii). We construct a star decomposition

ΣT = (TT, σT, αT) with center s and p tips ti (1 ≤ i ≤ p).
We set αT(s) = V (G), σT(s) = ∅, αT(ti) = W (Ii), and
σT(ti) = N

G
(W (Ii)).

It easy easy to verify that ∆ is a tree decomposition:

Claim 1. ∆ satisfies properties (TD.1)–(TD.5).

The definition of W (Ii) implies that SG(W (Ii)) ∈ T for
every 1 ≤ i ≤ p. Therefore,

Claim 2. ∆ respects T.

Claim 3. G′
= τ(s) = torso(G,V (G)∖W ) does not contain

a Ke.

Proof. If G′ contains a Ke-minor, then Lemma 6.8 implies
that there is a Ke-minor image I in G not removed by any of
the separations SG(W (Ii)). However, this contradicts the
assumption that Ii, . . . , Ip is the list of all images for which
W (Ii) is inclusionwise maximal. ⌟



Algorithmically, we can find the set W defined above as
follows. We construct collections I(0)

⊂ I(1)
⊂ . . . of Ke-

minor images, each of which is removed by T. We start with
I(0)

= ∅. Given I(j), we construct I(j+1) as follows. Let
W (j)

= ⋃I∈I(j)W (I) and G(j)
= torso(G,V (G)∖W (j)

). We

test if G(j) has a Ke-minor (using the algorithm of Theo-
rem 2.1). By Lemma 6.8, if there is a Ke-minor model I ′

in G(j), then there is a corresponding Ke-minor model I(j)

of G which is not removed by SG(W (I)) for any I ∈ I(j).
Let us use the algorithm of Lemma 6.4 to compute the set
W (I(j)). If the algorithm returns that W (I(j)) is not de-

fined, that is, I(j) is not removed by T, then we can stop
and return I(j) (or more precisely, as e ≥ `, a restriction of

I(j) to a K`-minor) and we are done. Otherwise, let us ob-

tain I(j+1) from I(j) by inserting I(j). Let us observe that
W (I(j)) /⊆W (j): by Lemma 6.5, W (I(j)) ⊆W (j) is only pos-

sible if W (I(j)) ⊆ W (I) for some I ∈ I(j), but this means

that SG(W (I)) already removes I(j), a contradiction. It

follows that W (j)
⊂W (j+1). After including I(j) into I(j+1),

we repeat this procedure until we arrive to a j such that
G(j) has no Ke-minor.

As the size of W (j) strictly increases in each step, the
process described above stops in at most ∣V (G)∣ steps with

a G(j) that does not contain a Ke-minor.

Claim 4. W (j)
=W .

Proof. Suppose that W (j)
≠ W , i.e., there is an image I∗

such that W (I∗) /⊆ W (j). Since G(j) has no Ke-minor, by

Lemma 6.8, there is an I ∈ I(j) such that SG(W (I)) re-
moves I∗. As SG(W (I)) and SG(W (I∗)) both remove I∗,
the sets W (I) and W (I∗) both contain a branch set of I∗,
hence it is not possible that the two sets are disjoint and
do not touch. Therefore, by Lemma 6.5, one of the two
sets is contained in the other. From W (I∗) /⊆ W (j), we
know that W (I∗) ⊆ W (I) is not possible, hence we have
W (I) ⊂ W (I∗), implying that SG(W (I∗)) removes I as
well. Now ∂(W (I∗)) < ∂(W (I)) would contradict the mini-
mality of W (I) and ∂(W (I∗)) ≤ ∂(W (I)) would contradict
the minimality of W (I∗) (as ∣W (I)∣ < ∣W (I∗)∣). Thus we

have proved that W (j) obtained by this procedure is indeed
the set W defined at the beginning of the proof. ⌟

What remains to be proven is the invariance condition.
Suppose that T′ is another tangle of order m in a graph
G′. Let f be an isomorphism from (G,T) to (G′,T′). Let
I = (Iv)v∈V (K`)

be a Ke-minor image in G and let I ′ =
(f(Iv))v∈V (Ke) be the corresponding Ke-minor image in G′.
Let W (I) and W ′

(I ′) be the set given by Lemma 6.4 on I
and I ′, respectively.

Claim 5. W ′
(I ′) = f(W (I)).

Proof. The definition of the set W (I) depends only on the
branch sets of I, the tangle T and the graph-theoretical prop-
erties of G (size of the boundaries of certain sets etc.) and
all these properties are preserved by f . ⌟

Therefore, if {W (I1
), . . . ,W (Ip)} is the collection of in-

clusionwise maximal sets appearing in the definition of W
for (G,T), then exactly {f(W (I1

)), . . . , f(W (Ip))} is the
collection of sets appearing in the definition of W ′. If fol-
lows that for every ti, there is a g(ti) such that αT(ti) =

W (Ii) and αT′(g(ti)) = f(W (Ii)). Moreover, σT(ti) =

NG
(W (Ii)) and σT′(g(ti)) = N

G′
(f(W (Ii))) = f(NG

(W (Ii)))

follows, as required. Setting g(s) = s′ (where s′ is the cen-
ter of the decomposition of G′) completes the definition of
g.

Finally, we can prove Lemma 4.9 by invoking Lemma 6.9
on the tangle defined by the unbreakable set X:

Proof (of Lemma 4.9). Let e∗(`,m) = e′(`,m)+3m−2
for the function x′ in Lemma 6.9. Let T be the tangle of
order m defined by the m-unbreakable set X; Lemma 5.1
provides an implementation of the min-cut oracle for T. Let
us call the algorithm of Lemma 6.9 with G, T, `, and m. If
it returns a K`-minor image I not removed by T, then this
is equivalent to saying that I is m-attached to X. Thus we
can return I and we are done. Otherwise, the algorithm of
Lemma 6.9 returns a T-respecting star decomposition ΣT =

(TT, αT, σT) of G. We construct a star decomposition ΣX =

(TX , αX , σX) as follows. First, let TX = TT and for the
center s of TX , let αX(s) = V (G) and σX(s) = ∅. For every
tip t of TX , we let αX(t) = αT(t)∖X and σX(t) = σT(t)∪(X∩

αT(t)). It is straightforward to verify that ΣX is also a star
decomposition of G, and in fact it is star decomposition even
for the supergraph G ∪K[X] (since X ⊆ βX(s)). Note that
τT(s)∖X = τX(s)∖X (because the two bags differ only in the
vertices of X and all the extra edges of G∪K[X] are incident
to X). As τT(s) has no Ke′(`,m)-minor, this means that
τX(s) cannot have a clique minor of order e′(`,m) + ∣X ∣ =

e∗(`,m), as required. Furthermore, as ΣT is T-respecting, it
follows that ∣σT(t)∣ < m and SG(αT(t)) ∈ T for every tip t.
By Lemma 5.1, this also means that ∣αT(t)∩X ∣ ≤m− 1 and
therefore ∣σX(t)∣ ≤m− 1+m− 1 < ∣X ∣. Thus the adhesion of
ΣX is less than ∣X ∣, as required.1The invariance condition
follows easily from the invariance condition of Lemma 6.9:
if f is an isomorphism from G to G′ with f(X) = X ′ and
T and T′ are the tangles defined by the unbreakable sets X
and X ′, respectively, then f is an isomorphism from (G,T)
to (G′,T′).

6.2 Star decomposition with a bounded-degree
center

The proof of Lemma 4.10 has the same high-level strategy
as the proof of Lemma 4.9 in Section 6.1: we identify those
parts of the graph that we want to exclude from the bag
of the center (this time, the high-degree vertices) and we
use an uncrossing argument to show that all of them can be
removed more or less independently from each other. The
uncrossing argument is somewhat more involved due to the
technicality that a high-degree vertex can be part of the
separator removing some other high-degree vertex.

First we need the following lemma, which shows that all
but at most k high-degree vertices can be removed by sepa-
rations in the tangle, or we can find a Kk-subdivision.

1This is the point (and the analogous argument in the proof
of Lemma 4.10) where it becomes motived why we used the
tangle T defined by the unbreakable set X. If we have no
bound on ∣αT(t) ∩ X ∣, then moving X to the center can
increase the adhesion by up to ∣X ∣ = 3m − 2, which means
that the bound on the adhesion would be larger than ∣X ∣.
Therefore, the repeated application of this lemma in the
proof of Global Structure Theorem 4.1 would increase the
adhesion in each step. In all the arguments in the section,
we were careful enough to use only separations that are in
T, and therefore we have the bound that the component of
each child of t contains at most m − 1 vertices of X.



Lemma 6.10. For every k ∈ N, there is a constant `′(k)
such that the following holds. For a graph G, integer k ∈

N, tangle T of order at least k(k − 1), and an image I of
K`′(k) not removed by T, let Z contain a vertex v ∈ V (G)

if v has degree at least k and either W ({v}) is undefined or
∂(W ({v})) ≥ k(k−1). If ∣Z ∣ ≥ k, then given G, k, a min-cut
oracle for T, and I, a subdivision of Kk in G can be found
in polynomial time.

Proof. Let `′(k) = t(k(k − 1)) for the function t appear-
ing in Lemma 6.3. We show that if ∣Z ∣ ≥ k, then we can
find a subdivision of Kk in G. Let Z0 be a subset of Z of
size exactly k. Let G′ be the graph obtained from G by ex-
tending each vertex z ∈ Z0 into a clique Kz of k − 1 vertices:
for every z ∈ Z0, we introduce k − 2 new vertices that are
adjacent to each other, to vertex z, and to every neighbor
of z. The clique Kz contains z and these k − 2 new vertices.
Let R ∶= ⋃z∈Z0

Kz.
Let I1, . . . , I` be the branch sets in the K` minor image I.

Let us show first that the conditions of Lemma 6.3 hold for R
in G′. Suppose for contradiction that (A′,B′

) is a separation
of G′ of order less than ∣R∣ = k(k − 1) with R ⊆ V (A′

) and
Ib ⊆ V (B′

)∖V (A′
) for some b ∈ [`]. Let Q′

∶= V (A′
)∩V (B′

)

be the separator. Without loss of generality, we may assume
that for all z ∈ Z0, either Kz ∩ Q

′
= ∅ or Kz ⊆ Q′. Let

A ∶= A′
∖(R∖Z0) and B ∶= B′

∖(R∖Z0) (i.e., we remove from
Q′ the extra vertices that were introduced in the definition of
G′). Then (A,B) is a separation of G; let Q = V (A)∩V (B)

be the separator. Now it is clear that ∣Q∣ ≤ ∣Q′
∣ < k(k − 1).

Furthermore, there has to be a vertex z ∈ Z0 which is not
in Q: otherwise, Z0 ⊆ Q implies that the size of Q′ in G′

is at least k(k − 1). Therefore, (A,B) is a separation of
order < k(k − 1) with z ∈ V (A) ∖ V (B). This separation
is in T: otherwise, (B,A) ∈ T by (TA.1) (here we use that
the order of T is at least k(k − 1)) and Ib ⊆ V (B) means
that T removes I, contradicting our assumption on I. It
follows that (A,B) ∈ T is a separation of order < k(k − 1)
with z ∈ V (A)∖V (B), contradicting z ∈ Z and the definition
of Z. Thus we can conclude that there is no such separation
(G′

1,G
′

2) of G′, and the conditions of Lemma 6.3 hold for Z
and G′.

Lemma 6.3 gives us a Kk(k−1)-minor image, that is, for
every q ∈ R, a connected set Iq such that these sets are
pairwise disjoint and touch. Consider a partition of R into
(
k
2
) classes, each of size 2, such that for every pair z1, z2 ∈ Z0

of distinct vertices, there is a class of the partition containing
a vertex of ẑ1 ∈ Kz1 and a vertex of ẑ2 ∈ Kz2 . (As the size
of each Kz is exactly k− 1, such a partition is possible.) We
define a path P ′

{z1,z2}
⊆ Iẑ1 ∪ Iẑ2 connecting ẑ1 and ẑ2; let

P ′ be the collection of these (
k
2
) paths. For each such path

P ′

{z1,z2}
∈ P ′ of G′, there is a corresponding path P{z1,z2} in

G: whenever P ′

{z1,z2}
contains a vertex of some Kz, then we

replace it by z. Let P be the collection of these (
k
2
) paths in

G. As the paths P ′ are pairwise disjoint, the corresponding
paths in P can intersect only in Z0. Therefore, we have k
vertices Z0 and a collection of (k

2
) internally pairwise disjoint

paths that connect every pair of vertices in Z0. In other
words, we have formed a Kk topological minor image in G,
which we can return.

The following lemma is a version of Lemma 4.10 stated in
terms of tangles:

Lemma 6.11. For every integer k ∈ N, there are constants
d′(k),m′

(k), `′(k) such that the following holds. There is a

polynomial-time algorithm that, given a graph G, an integer
k, min cut oracle for a tangle T of order m′

(k), and an
image I of K`′(k) not removed by T, either

(1) finds a subdivision of Kk in G, or
(2) computes a T-respecting star decomposition ΣT = (TT, σT, αT)

of G with center s such that at most k vertices of τT(s)
have degree more than d′(k).

Furthermore, if the algorithm returns ΣT for (G,T) and
T′ is another tangle of order m in a graph G′, and f is an
isomorphism from (G,T) to (G′,T′), then the algorithm re-
turns a star decomposition ΣT′ for (G′,T′) such that there is
an isomorphism g from TT to TT′ such that for all t ∈ V (TT)

we have σT′(g(t)) = f(σT(t)) and αT′(g(t)) = f(αT(t)).

Proof. Let `′(k) be as in Lemma 6.10. We will define
later (in Claim 4) a constant a depending on k; let m′

(k) =
max{k(k − 1), a + 1}. Let Z contain a vertex v ∈ V (G) if v
has degree at least k and ∂(W ({v})) ≥ k(k − 1). If ∣Z ∣ ≥ k,
then we can use the algorithm of Lemma 6.10 to return a
subdivision of Kk in G, and we are done.

Otherwise, let L ⊆ V (G) be the set of vertices not in Z
having degree at least k. For every v ∈ L, let us use the
algorithm of Lemma 5.7 to compute the unique minimal set
Wv = W ({v}) (as v /∈ Z, such a set exists). By Prop. 5.8,
G[Wv] is connected.

Let W contain the inclusionwise-maximal sets in {Wv ∣

v ∈ L}; i.e., Wv ∈ W if and only if there is no u ∈ L with
Wv ⊂ Wu. Note that we define W such that it does not
contain duplicate sets.

Claim 1. Every b ∈ V (G) appears in O(k2
) members of W.

Proof. For every W ∈W, let us choose a representative v ∈ L
with W = Wv; let M ⊆ L be the set of selected representa-

tives. We define a directed graph
Ð→
H on M where Ð→vu ∈ E(

Ð→
H)

if and only if u ∈ NG
(Wv). Note that ∣NG

(Wv)∣ < k(k − 1)
implies that the outdegree of v is at most k(k − 1) − 1. This
further implies that the maximum clique size in the undi-

rected graph H underlying
Ð→
H is at most 2k(k − 1) − 1: the

average degree of every subgraph of H is at most 2k(k−1)−2.
We show that the representatives of the sets in W con-

taining b form a clique in H, thus by the argument in the
previous paragraph, there can be at most 2k(k − 1) − 1 sets
in W containing b. Consider two distinct vertices u, v ∈ M
with b ∈Wu and b ∈Wv. We claim that u and v are adjacent
in the undirected graph H. Otherwise, u /∈ NG

(Wv) and
v /∈ NG

(Wu). We consider the following cases:

Case 1: u ∈Wu ∩Wv. By Lemma 5.4(1), we have two pos-
sibilities:

(1) ∂(Wu ∪ Wv) < ∂(Wv). In this case Wu ∪ Wv

contradicts the minimality of Wv (note that by
Lemma 5.6(3), SG(Wu ∪Wv) ∈ T).

(2) ∂(Wu ∪Wv) ≥ ∂(Wv) and ∂(Wu ∩Wv) ≤ ∂(Wu).
In this case, Wu ∩Wv contradicts the minimality
of Wu (by Lemma 5.6(2), SG(Wu ∩Wv) ∈ T).

Case 2: v ∈Wu ∩Wv. Similar to case 1.
Case 3: u ∈ Wu ∖Wv and v ∈ Wv ∖Wu. Let W ′

u ∶= Wu ∖

NG
[Wv] and W ′

v ∶=Wv ∖N
G
[Wu]. Note that b ∈Wu∩

Wv implies that W ′

u ⊂Wu and W ′

v ⊂Wv. Furthermore,
the assumptions u ∈Wu ∖Wv and u /∈ NG

(Wv) imply
that u ∈ W ′

u, and we have v ∈ W ′

v in a similar way.
By Lemma 5.4(2), either ∂(W ′

u) ≤ ∂(Wu) or ∂(W ′

v) ≤
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Figure 6.1: Definition of the set B in Lemma 6.11.
The four solid circles represent the sets W1, W2, W3,
W4 contained in W. The dark gray area contains the
boundaries of these sets. Set B (light and dark gray
area) is defined to be the union of these boundaries
and the area outside these sets. The six regions C1,
. . . , C6 with dashed outline are the components of
G ∖B.

∂(Wv). If, say, ∂(W ′

u) ≤ ∂(Wu), then SG(W ′

u) ∈ T
follows by Lemma 5.6(1), contradicting the minimality
of Wu.

Therefore, the vertices u of M for which b ∈Wu form a clique
in H, thus there are less than 2k(k − 1) such vertices. ⌟

We define

B ∶= (V (G) ∖ ⋃
W ∈W

W ) ∪ ⋃
W ∈W

NG
(W )

(see Figure 6.1).

Claim 2. For every W ∈W, ∣NG
[W ] ∩B∣ = O(k6

).

Proof. Let us fix a W ∈ W. We bound first the number
of sets Y ∈ W such that NG

(Y ) intersects W . As G[Y ] is
connected and Y is not contained in W (by the definition
of W), Y has to contain a vertex b ∈ NG

(W ). By Claim 1,
there are at most O(k2

) sets in W containing a particular
b ∈ NG

(W ). Together with ∣NG
(W )∣ < k(k − 1), this gives

a total bound of O(k4
) on the number of sets Y ∈ W for

which NG
(Y ) intersects W . As ∣NG

(Y )∣ < k(k − 1) for
every Y ∈ W, this means that W contains at most O(k6

)

vertices of B. Additionally, NG
(W ) can contain at most

∣NG
(W )∣ < k(k − 1) vertices of B, and the claim follows. ⌟

Let C1, . . . , Cm be the connected components of G ∖B.
We construct a star decomposition ΣT = (TT, σT, αT) with
center s and p tips ti (1 ≤ i ≤ p). We set αT(s) = V (G),
σT(s) = ∅, αT(ti) = Ci, and σT(ti) = N

G
(Ci).

It easy easy to verify that ∆ is a tree decomposition:

Claim 3. ∆ satisfies properties (TD.1)–(TD.5).

The following claim implies a bound on the adhesion of
∆:

Claim 4. There is a constant a = O(k6
) such that ∣σT(ti)∣ ≤

a for every 1 ≤ i ≤ p.

Proof. The definition of B implies that for every t /∈ B,
there is a W ∈ W with t ∈ W . As NG

(W ) ⊆ B, we have

that αT(ti) ⊆ Wv and therefore σT(ti) ⊆ N
G
[Wv] ∩ B. By

Claim 2, ∣NG
[Wv] ∩B∣ = O(k6

), and we have the required
bound on ∣σT(t)∣. ⌟

Using the bound on the adhesion, it is easy to show that
∆ respects T:

Claim 5. SG(αT(ti)) ∈ T for every 1 ≤ i ≤ p.

Proof. Recall that αT(ti) is disjoint from B and therefore
it has to be fully contained in Wv for some v ∈M : vertices
outside every Wv are in B and NG

(Wv) ⊆ B. The order of
SG(αT(ti)) is exactly ∣σT(t)∣, which is at most a by Claim 4.
As the order of T is m′

(k) > a and αT(t) ⊆Wv, SG(Wv) ∈ T
hold, Lemma 5.6(1) implies that SG(αT(ti)) ∈ T holds as
well. ⌟

The following claim proves the bound on the maximum
degree:

Claim 6. There is a constant d′(k) = O(k7
) such that

every vertex v /∈ Z has degree at most d′(k) in τ(s),

Proof. Let us observe first that for every W ∈W, the graph
τ(s) has no edge between W ∩B and B ∖NG

[W ]. To see
this, recall that, for every 1 ≤ i ≤ p, σ(ti) = NG

(αT(ti)),
G[αT(t

′
)] is connected, and αT(ti)∩B = ∅. As NG

(W ) ⊆ B,
it follows that αT(ti) cannot have a neighbor both inside W
and outside NG

[W ]. Therefore, σ(ti) is either a subset
NG

[W ] or disjoint from W . This means that in the def-
inition of τ(s), there is no clique that introduces an edge
between a vertex in W and a vertex outside NG

[W ].
Consider a u ∈ B ∖Z.

Case 1: u ∈W for some W ∈W. By our observation above,
every neighbor of u in τ(t)∖Z is contained in NG

[W ].
Therefore, Claim 2 gives a bound of O(k6

) on the de-
gree of u in τ(t).

Case 2: u /∈W for anyW ∈W. As u /∈ Z, this is only possible
if the degree of u is at most k in G. Therefore, u is
adjacent to at most k components of G ∖ B. Each
new clique in τ(t) corresponds to the neighborhood of
such a component. Thus u is part of at most k cliques
introduced in the definition of τ(t). The size of each
clique can be bounded by the adhesion of ∆, which is
at most a by Claim 4. Therefore, k receives at most
k ⋅O(k6

) new edges. ⌟

What remains to be proven is the invariance condition.
Suppose that T′ is another tangle of order k in a graph G′.
Let f be an isomorphism from (G,T) to (G′,T′). Let B
and B′ be the sets computed by the algorithm on (G,T)
and (G′,T′), respectively.

Claim 7. B′
= f(B).

Proof. Let W and W ′ be the two collection of sets con-
structed by the algorithm on (G,T) and (G′,T′), respec-
tively. Let us observe that W ∈W if and only if f(W ) ∈W ′:
the definition of W depends only on the definition of the
sets Wv, which depends only on the tangle T and the graph-
theoretic properties of G, all of which are preserved by the
isomorphism f . Taking into account that the definition of
B depends only on the sets in W and their neighborhoods
in G, we can deduce B′

= f(B). ⌟

As B′
= f(B), for every component of G ∖ B, there is

a corresponding component of G′
∖ B′. Let C′

1, . . . , C′

p

be the components of G′, as enumerated by running the



algorithm on (G′,T′), and let s′, t′1, . . . , t′p be the nodes of
the constructed star decomposition. Let us define g(s) = s′

and let g(ti) = t
′

j such that f(Ci) = C
′

j .

Claim 8. For all t ∈ V (TT) we have σT′(g(t)) = f(σT(t))
and αT′(g(t)) = f(αT(t)).

Proof. The statement immediately follows from the fact
that αT(ti) = Ci and αT′(g(ti)) = f(Ci) by definition of G,

and hence σT(ti) = N
G
(Ci) and σT′(g(ti)) = N

G′
(f(Ci)) =

f(NG
(Ci)). ⌟

Finally, we can prove Lemma 4.10 by invoking Lemma 6.11
on the tangle defined by the unbreakable set X:

Proof (of Lemma 4.10). Let c∗(k) = k+3m−2, d∗(k) =
d′(k)+3m−2, `∗(k) = `′(k), m∗

(k) =m′
(k) for the functions

d′, `′, m′ in Lemma 6.11. Let T be the tangle of order m
defined by the m-unbreakable set X; Lemma 5.1 provides an
implementation of the min-cut oracle for T. Let us call the
algorithm of Lemma 6.11 withG, T, k, `, andm. If it returns
a subdivision of Kk in G, then we are done. Otherwise,
the algorithm of Lemma 6.11 returns a T-respecting star
decomposition ΣT = (TT, αT, σT) of G. We construct a star
decomposition ΣX = (TX , αX , σX) as follows. First, let TX =

TT and for the center s of TX , let αX(s) = V (G) and σX(s) =
∅. For every tip t of TX , we let αX(t) = αT(t) ∖ X and
σX(t) = σT(t) ∪ (X ∩ αT(t)). It is straightforward to verify
that ΣX is also a star decomposition of G, and in fact it is
star decomposition even for the supergraph G∪K[X] (since
X ⊆ βX(s)). As τT(s) ∖X = τX(s) ∖X, and τT(s) contains
at most k vertices of degree higher than d∗(k), we have that
τX(s) contains at most k + ∣X ∣ = c∗(k) vertices of degree
higher than d∗(k). The bound < ∣X ∣ on the adhesion and
the invariance requirement can be proved the same way as
in Lemma 4.9.

7. PARTIAL DOMINATING SET
The goal of this section is to prove that Partial Dom-

inating Set (find k vertices whose closed neighborhood

has maximum size) can be solved in time f(H,k) ⋅ nO(1)

on graphs excluding H as a topological subgraph. We in-
tend this result as a demonstration of the algorithmic use of
the Global Structure Theorem 4.1: it shows that by combin-
ing the techniques that work on almost-embeddable and on
bounded-degree graphs, we can solve problems on graphs ex-
cluding a topological subgraph. We would like to emphasize
that all the algorithmic techniques in this section are stan-
dard: it is the new structure theorem that allows us to use
these standard techniques on a larger class of graphs. We re-
mark that an f(k) ⋅nf(H) algorithm was known for Partial
Dominating Set on H-minor free graphs [1], but instead
of extending this algorithm, we give here a self-contained
presentation of the result on graphs excluding H as a topo-
logical subgraph.

We begin by defining a generalization of Partial Domi-
nating Set, which will be convenient for computations on
tree decompositions. We extend the problem by introduc-
ing a cost function κ ∶ V (G) → {0,1} and value function
ν ∶ V (G) → {0,1}; now the goal is to find a set Z ⊆ V (G)

with κ(Z) ≤ k such that ν(NG
[Z]) is maximizied. (As

usual, κ and ν are extended to sets by ν(Z) = ∑v∈Z ν(v)
and κ(Z) = ∑v∈Z κ(v).) That is, the vertices with κ(v) = 0

can be used for “free” and the domination of a vertex with
ν(v) = 0 does not increase the objective function.

Definition 7.1. Let G be a graph and S ⊆ V (G) a set of
vertices. The k-profile of G with respect to S is a function
π(z, κ, ν), which, for every integer 0 ≤ z ≤ k and functions
κ, ν ∶ V (G) → {0,1} that have value 1 on V (G) ∖ S, gives
the maximum of ν(NG

[Z]) taken over every Z ⊆ V (G) with
κ(Z) ≤ z.

That is, the k-profile with respect to S is described by (k +

1)⋅2∣S∣
⋅2∣S integers. Observe that if the k-profile with respect

to S is known, then it is easy to deterimine the k-profile with
respect to some S′ ⊆ S.

First we show that the k-profile can be computed in a
bottom-up manner on a tree decomposition if every bag is
small, that is, the decomposition has bounded width. Then
we use a standard layering argument to compute the k-
profile on almost-embeddable torsos by reducing it to the
bounded-treewidth case. For this reduction, we need the fact
that almost-embeddable graphs have bounded local treewidth:

Theorem 7.2 ([10]). For every p, q, r ∈ N, there is a
constant λ > 0 such that the following holds. Let G be a
minor of a (p, q, r,0)-almost embeddable graph, let x ∈ V (G),
and let Nd({x}) ⊆ V (G) be the set of vertices at distance at
most d from x. Then G[Nd({x})] has treewidth at most λ ⋅d
for every d ≥ 0.

Finally, we compute the k-profile on almost bounded-degree
torsos by using a standard random coloring technique.

Lemma 7.3. Let (T,σ,α) be a tree decomposition of a
graph G and t a node of T . Suppose that, for every child t′

of t, the k-profile of G[γ(t′)] with respect to σ(t′) is known.
Then the k-profile of G[γ(t)] with respect to σ(t) can be
computed

(1) in time f(s) ⋅ nO(1) if ∣β(t)∣ ≤ s and ∣NT
(t)∣ ≤ 2.

(2) in time f(w) ⋅ nO(1) if a tree decomposition of τ(t)
having width w is given.

(3) in time f(k, p, q, r, s, a) ⋅nO(1) if ∣σ(t)∣ ≤ a and a set P
of size at most s is given such that τ(t) ∖ P is almost
(p, q, r,0)-embeddable.

(4) in time f(k, c, d, a) ⋅ nO(1) if ∣σ(t)∣ ≤ a and all but at
most c vertices have degree at most d in τ(t).

Theorem 1.2 follows immediately by putting together Corol-
lary 4.4 and Lemma 7.3(3–4): in a bottom-up order, for ev-
ery node t of the decomposition given by Corollary 4.4, we
can compute the k-profile of G[γ(t)] with respect to σ(t),
which gives us the value of the optimum solution of Partial
Dominating Set.

Recall that a graph is d-degenerate if every subgraph has
a vertex of degree at most d. A classical result of Mader [19]
shows that every graph excluding H as a topological sub-
graph is dH -degenerate for some constant dH depending on
H, thus it is a natural question whether Theorem 1.2 can be
generalized to the more general class of d-degenerate graphs.
However, Partial Dominating Set is W[1]-hard parame-
terized by k and d on d-degenerate graphs. To see this, note
that Maximum Independent Set, parameterized by the
size k of the solution, is W[1]-hard even on regular graphs.
Let G be an r-regular graph (r ≥ 3) and let us subdivide
every edge by a new vertex. It is not difficult to see that G



has an independent set of size k if and only if the new graph
G′ has a set of k vertices whose closed neighborhood has size
(r + 1)k. As G′ is 2-degenerate, an f(k, d) ⋅nO(1) time algo-
rithm for Partial Dominating Set on d-degenerate graphs
would imply an f(k) ⋅ nO(1) time algorithm for Maximum
Independent Set. Thus the fixed-parameter tractability
of Partial Independent Set on graph excluding H as
a topological subgraph is not simply a consequence of the
sparsity/degeneracy of such graphs, but essentially depends
on the structural properties of this class of graphs.

8. COMPUTING INVARIANT TREELIKE DE-
COMPOSITIONS

In this section, we relax the notion of tree decomposition
to the more liberal notion of treelike decomposition. The
reason is that we want to make our decompositions invari-
ant under automorphisms of the underlying graph, and this
is not possible for tree decompositions. Treelike decompo-
sitions are based on the axiomatisation of tree decomposi-
tions by (TD.1)–(TD.5). From now on, a decomposition of
a graph is a triple ∆ = (D,σ,α), where D is a digraph and

σ,α ∶ V (D) ↦ 2V (G). For every t ∈ V (D), we define sets
γ(t), β(t) ⊆ V (G) and a graph τ(t) as in (3.4), (3.5), and
(3.6). The width and adhesion of a decomposition are de-
fined, as for tree decompositions, to be the maximum size of
the bags minus one and the maximum size of the separators,
respectively. Two nodes t, u ∈ V (D) are ∆-equivalent (we
write t � u) if σ(t) = σ(u) and α(t) = α(u). Note that t � u
implies γ(t) = γ(u), but not β(t) = β(u) or τ(t) = τ(u). We
will occasionally work with several decompositions at the
same time, and in such situations may use an index ∆, as
for example in σ∆

(t) or t �∆ u, to indicate which decomposi-
tion we are referring to. However, we usually prefer implicit
naming conventions such as the following: If we have a de-

composition ∆′
= (D′, σ′, α′), then we will denote γ∆′

(t) by

γ′(t), β∆′
(t) by β′(t), et cetera.

Definition 8.1. A treelike decomposition of a graph G
is a decomposition ∆ = (D,σ,α) of G that satisfies the fol-
lowing axioms:

(TL.1) D is acyclic.

(TL.2) For all t ∈ V (D) it holds that α(t) ∩ σ(t) = ∅ and
NG

(α(t)) ⊆ σ(t).

(TL.3) For all t ∈ V (D) and u ∈ ND
(t) it holds that α(u) ⊆

α(t) and γ(u) ⊆ γ(t).

(TL.4) For all t ∈ V (D) and u1, u2 ∈ N
D
(t), either u1 � u2

or γ(u1) ∩ γ(u2) = σ(u1) ∩ σ(u2).

(TL.5) For every connected component A of G there is a
t ∈ V (D) with σ(t) = ∅ and α(t) = V (A).

Note that (TD.2) coincides with (TL.2) and (TD.3) co-
incides with (TL.3). Moreover, (TD.1) implies (TL.1) and
(TD.4) implies (TL.4). For connected graphs G, (TD.5) co-
incides with (TL.5), and thus every tree decomposition of
a connected graph is a treelike decomposition. For discon-
nected graphs, this is not necessarily the case, but it can be
shown that from every treelike decomposition one can con-
struct a tree decomposition with the same torsos. (See [9]
for details.)

Figure 8.1(a) shows the cycle C5. Figure 8.1(b) shows a
tree decomposition (T,β) of C5 of width 2. Note that this

tree decomposition is not invariant under automorphisms of
C5, in the sense that there is an automorphism f of C5 for
which we cannot find an automorphism g of T such that for
all t ∈ V (T ) we have f(β(t)) = β(g(t)). It is easy to see
that there is no tree decomposition of C5 of width 2 that is
invariant under automorphisms.

Figure 8.1(b) shows a treelike decomposition (D′, σ′, α′)
of C5 of width 2. Actually, the sets displayed in the nodes
are the bags, but we can easily compute the separators and
components using (3.1) and (3.3). For instance, for the grey
node t with bag β′(t) = {1,3,5} we have σ′(t) = {1,3} and
α′(t) = {4,5}. For the sake of completeness, we observe that
γ′(t) = {1,3,4,5} and τ ′(t) =K[{1,3,5}].

Note that the “subdecomposition” induced by the four
grey nodes is precisely the tree decomposition shown in Fig-
ure 8.1(b). The treelike decomposition contains many other
tree decompositions of C5; actually, it contains all images
of the decomposition shown in Figure 8.1(b) under auto-
morphisms of C5. And indeed, the treelike decomposition is
invariant under automorphisms.

This example illustrates how treelike decompositions can
be made“invariant.” However, the automorphism invariance
of the example is not sufficient for our purposes, we need a
more general notion of invariance that involves decomposi-
tions of more than one graph.

Definition 8.2. A decomposition mapping for a class C
of graphs is a mapping ∆ that associates with each G ∈ C a
decomposition ∆G = (DG, σG, αG) of G.

∆ is invariant if for all isomorphic graphs G,G′
∈ C and

all isomorphisms f from G to G′ there is an isomorphism
g from DG to DG′ such that for all t ∈ V (DG) we have
σG′(g(t)) = f(σG(t)) and αG′(g(t)) = f(αG(t)).

We need some additional terminology about decomposition
mappings: We say that a decomposition mapping ∆ for a
class C is treelike if for all G ∈ C the decomposition ∆G

is treelike, and it has adhesion at most a if for all G ∈ C
the adhesion of ∆G is at most a. We say that a class
C admits polynomial time computable invariant treelike de-
compositions over A (of adhesion at most a) if there is a
polynomial time computable invariant treelike decomposi-
tion mapping for C over A (of adhesion a). Let us remark
that the decomposition schemes of [9] yield polynomial time
computable invariant decomposition mappings.

The main result of the section is the following:

Theorem 8.3 (Invariant Decomposition Theorem).
For every graph H there are constants a, b, c, d, e ∈ N and a
polynomial time computable invariant treelike decomposition
mapping ∆ of adhesion at most a for the class of graphs G
with H /⪯T G such that for every G with ∆G = (D,σ,α)
and every t ∈ V (D) one of the following three conditions is
satisfied:

(i) ∣β(s)∣ ≤ b
(ii) At most c vertices of τ(t) have degree greater than d.

(iii) Ke /⪯ τ(t).

Proof. We let k ∶= ∣H ∣. We choose c = c∗(k), d = d∗(k),
` = `∗(k), and m = m∗

(k) according to Lemma 4.10 and
e = e∗(`,m) according to Lemma 4.9. We let a ∶= 3m−3 and
b ∶= 4m − 3..

Let G be a graph with H /⪯T G. We shall define a decom-
position ∆G = (D,σ,α) of G of adhesion at most a such that
every node t satisfies one of (i)–(iii). Then we will argue that
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Figure 8.1: (a) The cycle C5 with (b) a tree decomposition and (c) an automorphism-invariant treelike
decomposition

the decomposition G ↦ ∆G is polynomial time computable
and invariant.

There will be three kinds of nodes in V (D): b-nodes
(“bounded nodes”), d-nodes (“bounded degree nodes”), and
e-nodes (“excluded minor nodes”). All nodes are triples
t = (At,Xt, Yt) satisfying the following conditions:

(A) At is a connected induced subgraph ofG with ∣NG
(At)∣ ≤

a. To simplify the notation, in the following we let
Ct ∶= G[NG

[At]].

(B) Xt ⊆ V (Ct) such that NG
(At) ⊂Xt and ∣Xt∣ = min{a+

1, ∣Ct∣}.
(C) Yt ⊆ V (Ct) such that ∣Yt∣ < m. (Actually, Yt will be

empty for d-nodes and e-nodes.)

Let us call such triples “nodes” and let U be the set of all
nodes (the actual nodes of D will form a subset of U). For
every node t ∈ U we let α(t) ∶= V (At), σ(At) ∶= N

G
(At),

and γ(t) ∶= V (Ct).

(D) A b-node is a node t ∈ U such that for every connected
component A of Ct∖Yt it holds that ∣(V (A)∩Xt)∪Yt∣ <
∣Xt∣.

Let Vb be the set of all b-nodes. Let Ub be the set of all nodes
t ∈ U for which there exists a Y ⊆ V (Ct) of size ∣Y ∣ <m such
that for every connected component of A of Ct ∖ Y it holds
that ∣(V (A) ∩Xt) ∪ Y ∣ < ∣Xt∣. Note that Vb ⊆ Ub and that
that for every t ∈ U ∖Ub the set Xt is m-unbreakable in Ct.

(E) An e-node is a node t ∈ U ∖Ub such that Yt = ∅ and the
algorithm of Lemma 4.9 on Ct, `, m, and Xt returns
star decomposition Σt ∶= ΣXt of Ct ∪K[Xt].

(F) A d-node is a node t ∈ U ∖Ub such that Yt = ∅ and the
algorithm of Lemma 4.9 on Ct, `, m, and Xt returns
an image I of K` in Ct that is m-attached to Xt. In
this case, the algorithm of Lemma 4.10 applied to Ct,

k, the set Xt, and the image I computes a star decom-
position Σt ∶= ΣXt of Ct ∪K[Xt] (since Kk /⪯T Ct by
assumption).

Let Vd and Ve be the sets of d-nodes and e-nodes, respec-
tively. Note that the three sets Vb, Vd, Ve are mutually dis-
joint. We let V (D) ∶= Vb ∪ Vd ∪ Ve.

Claim 1. Let A be a (nonempty) connected induced sub-
graph of G with ∣NG

(A)∣ ≤ a. Then there is a node t ∈ V (D)

such that At = A.

Proof. Let C ∶= G[NG
[A]], and choose an arbitrary X ⊆

V (C) such that NG
(A) ⊂ X and ∣X ∣ = min{a + 1, ∣C ∣}.

Clearly, such a set X exists, because A ≠ ∅ and ∣NG
(A)∣ ≤ a.

If there is a set Y ⊆ V (G) such that ∣Y ∣ <m and for every
connected component A′ of C ∖ Y it holds that ∣(V (A′

) ∩

X) ∪ Y ∣ < ∣X ∣, then (A,X,Y ) ∈ Vb.
Suppose there is no such set Y . Then (A,X,∅) /∈ Ub and

thus (A,X,∅) ∈ Ve ∪ Vd. ⌟

By (E) and (F), for all t ∈ Ve∪Vd we have a star decompo-
sition Σt =∶ (Tt, σt, αt). Let st be the center of Tt. To define
the edge relation E(D), for every node t ∈ V (D) we define
the set ND

(t) of its children in D.

(G) For t ∈ Vb, we let ND
(t) be the set of all u ∈ V (D) such

that Au is a connected component of Ct ∖ (Xt ∪ Yt).
(H) For t ∈ Vd∪Ve, we let ND

(t) be the set of all u ∈ V (D)

such that Au is a connected component of Ct ∖βt(st).

This completes the definition of the decomposition ∆G =

(D,σ,α).

Claim 2. ∆G is a treelike decomposition of G.

Proof. It follows immediately from the definitions of σ and
α that ∆G satisfies (TL.2).



To verify (TL.3), let tu ∈ E(D). We have Xt ⊆ βt(st)
(either by (G) or by the statements of Lemmas 4.9 and 4.10).
Therefore, by (G) and (H) we have

α(u) = V (Au) ⊆ V (Ct) ∖ βt(st)

⊆ V (Ct) ∖Xt ⊂ V (Ct) ∖N
G
(At) = α(t).

(8.1)

Moreover, if t ∈ Vb, then we have NCt(Au) ⊆ Xt ∪ Yt. Since
every vertex of Ct with a neighbor outside Ct is in NG

(At) ⊆
Xt and we have V (Au)∩Xt = ∅, this implies NG

(Au) ⊆Xt∪
Yt. Hence γ(u) = V (Au) ∪N

G
(Au) ⊆ V (Ct) = γ(t). If t ∈

Ve∪Vb then we have NCt(Au) ⊆ βt(st). Again, every vertex
of Ct with a neighbor outside Ct is in NG

(At) ⊆Xt ⊆ βt(st)
and V (Au) ∩ βt(st) = ∅. Hence γ(u) = V (Au) ∪N

G
(Au) ⊆

V (Ct) = γ(t).
Note that in (8.1) we proved that for all edges tu ∈ E(D)

the inclusion α(u) ⊂ α(t) is strict. This implies that D is
acyclic, that is, (TL.1).

To verify (TL.4), let t ∈ V (D) and u1, u2 ∈ ND
(t). For

i = 1,2, we let Ci ∶= Cui and Xi ∶=Xui and Ai ∶= A
t
ui

.

Case 1: t ∈ Vb.
Then by (G), both A1 and A2 are connected com-
ponents of Ct ∖ (Xt ∪ Yt). Hence either A1 = A2 or
A1∩A2 = ∅. If A1 = A2 then α(u1) = V (A1) = V (A2) =

α(u2) and σ(u1) = NG
(A1) = NG

(A2) = σ(u2) and
thus u1 � u2. Suppose that A1 ∩A2 = ∅. Note that we
also have V (A1) ∩N

G
(A2) ⊆ A1 ∩ (Xt ∪ Yt) = ∅ and,

symmetrically, V (A2) ∩ N
G
(A1) = ∅. This implies

γ(u1)∩γ(u2) = V (C1)∩V (C2) = N
G
(A1)∩N

G
(A2) =

σ(u1) ∩ σ(u2).
Case 2: t ∈ Ve ∪ Vd.

Then both A1 and A2 are connected components of
Ct ∖ βt(st), and we can argue as in Case 1.

To verify (TL.5), let A be a connected component of G.
Then NG

(A) = ∅, and by Claim 1 there is a t ∈ V (D) such
that Ct = A. For each such t, we have σ(t) = NG

(A) = ∅

and α(t) = V (A). ⌟

Claim 3. Let t ∈ V (D).

(1) If t ∈ Vb then β(t) =Xt ∪ Yt.
(2) If t ∈ Ve ∪ Vd then β(t) = βt(st) and τ(t) ⊆ τt(st).

Proof. Recall that β(t) = γ(t) ∖ ⋃u∈ND(t) α(u) = V (Ct) ∖
⋃u∈ND(t) V (Au).

To prove (1), suppose that t ∈ Vb. It follows from (G) that
for all u ∈ ND

(t) we have V (Au) ⊆ V (Ct)∖(Xt∪Yt). Hence
(Xt ∪ Yt) ⊆ β(t). To prove the converse inclusion, we shall
prove that for every connected component A of Ct∖(Xt∪Yt)
there is a u ∈ ND

(t) with Au = A. By (G) and Claim 1, it
suffices to prove that ∣NG

(A)∣ ≤ a. But this follows from the
definition of b-nodes in (D) (we used a similar argument in
the proof of Claim 1).

To prove (2), let t ∈ Ve ∪ Vd. By (H), for all u ∈ ND
(t)

we have V (Au) ⊆ V (Ct) ∖ βt(st). Hence βt(st) ⊆ β(t). For
the converse inclusion, let A be a connected component of
Ct ∖ βt(st). Then there is a tip x of Tt such that A is a
connected component of Ct[αt(x)] = G[αt(x)]. We have
NG

(A) ⊆ σt(x), and as the adhesion of Σt is < ∣Xt∣, we have
∣NG

(A)∣ ≤ ∣σt(x)∣ < ∣Xt∣ = a + 1. Thus by Claim 1 and (H),
there is a u ∈ ND

(t) with Au = A.
It remains to prove that τ(t) ⊆ τt(st). First, note that

for all u ∈ ND
(t) there is an x ∈ NTt(st) such that σ(u) ⊆

σt(x). Furthermore, Σt is a decomposition of Ct ∪K[Xt],
thus σ(t) ⊆ Xt is a clique in τt(st). Let us remark that
τt(st) ⊆ τ(t) is not necessarily true: Xt is a proper superset
of σ(t), thus Xt is a clique τt(st), but it is not necessarily a
clique in τ(t). ⌟

It follows from (A) that the adhesion of ∆G is at most a.
By Claim 3(1), every t ∈ Vb satisfies (i). By Claim 3(2) and
Lemmas 4.10 and 4.9, every t ∈ Vd satisfies (ii) and every
t ∈ Ve satisfies (iii).

It it easy to see that the decomposition mapping ∆ is
polynomial time computable. Indeed, note first that the
set U has size O(na+1+3m−2+m−1

) (here we use na+1 as an
upper bound for the number of connected induced subgraphs
A of G with NG

(A)∣ ≤ a) and that the set is polynomial
time computable. Remember that the parameters a,m et
cetera are all treated as constants depending only on H.
The subset Ub is also polynomial time computable, because
to decide whether t ∈ Ub we can go through all subsets Y ⊆

V (Ct) of size less than m and see if the condition is satisfied.
Now it follows from Lemmas 4.9 and 4.10 that the sets Ve
and Vd are polynomial time computable. Hence V (D) is
polynomial time computable. Since for nodes t ∈ Ve ∪ Vd
the star decomposition Σt is polynomial time computable
(again by Lemmas 4.9 and 4.10), the edge relation E(D) is
polynomial time computable as well. Since the mappings σ
and α are almost trivially polynomial time computable, this
shows that ∆ is polynomial time computable.

It remains to prove that ∆ is invariant. To prove this,
we take isomorphic graphs G,G′ with H /⪯ G,G′ and let f
be an isomorphism from G to G′. Let ∆G = (D,σ,α) and
∆G′ = (D′, σ′, α′). We define the sets U,Ub, Vb, Ve, Vd for G
as above and let U ′, U ′

b, V
′

b , V
′

e , V
′

d be the corresponding sets
for G′. We denote the constituents of a node t′ ∈ U ′ by

(A′

t′ ,X
′

t′ , Y
′

t′) and let C′

t′ ∶= G
′
[NG′

[A′

t]]. For t′ ∈ Ve∪Vd we

denote the star decomposition of C′

t′ (obtained as above) by
Σ′

t′ . The isomorphism f has a natural extension of sub-
sets of V (G), tuples of subsets, and similar objects de-
fined in terms of V (G). We denote this extension by f∗.
As f is an isomorphism, we obviously have f∗(U) = U ′,
f∗(Ub) = U ′

b, and f∗(Vb) = V ′

b . Moreover, for every t ∈ U
we have f∗(At) = A′

f∗(t), f
∗
(Ct) = C′

f∗(t), et cetera. It
follows from the invariance conditions of Lemmas 4.9 and
4.10 that f∗(Ve) = V

′

e and f∗(Vd) = V
′

d and that for every
t ∈ Ve∪Vd there is an isomorphism gt from Tt to T ′t such that
f∗(σt(x)) = σf∗(t)(gt(x)) and f∗(αt(x)) = αf∗(t)(gt(x)) for

all x ∈ V (Tt). But this implies that ND
(f∗(t)) = {f∗(u) ∣

u ∈ ND
(t)}. As f∗(Ct) = C

′

f∗(t) and f∗(Xt) = X
′

f∗(t) and

f∗(Yt) = Y ′

f∗(t), we also have ND
(f∗(t)) = {f∗(u) ∣ u ∈

ND
(t)} for all t ∈ Vb. Hence the restriction of f∗ to V (D)

is an isomorphism from D to D′. As f∗(At) = A
′

f∗(t) for all

t ∈ V (D), we have f(α(t)) = α′(f∗(t)) and thus f(σ(t)) =

f(NG
(α(t))) = NG′

(f(α(t))) = NG′
(α′(f∗(t))) = σ′(f∗(t)).

This proves that ∆ is invariant.

9. CANONIZATION
A canonisation mapping c for a class C of graphs is a map-

ping that associates with each graph G ∈ C a graph c(G) ≅ G
such that for all G,H ∈ C we have G ≅H ⇐⇒ c(G) = c(H).
That is, c(G) and c(H) are not only isomorphic, but they
are actually the same graph on the same set of vertices.
Thus the isomorphism of G and H can be tested simply by
comparing c(G) and c(H). A canonisation algorithm com-



putes a canonisation mapping. Without loss of generality
we may always assume a canonisation mapping c to map
graphs G to graphs c(G) with vertex set V (c(G)) = [n],
where n ∶= ∣G∣. We say that a class C of graphs admits
polynomial time canonisation if there is a polynomial time
algorithm that computes a canonisation mapping for C.

Fact 9.1 (Babai and Luks [2]). For every d ∈ N the
class of all graphs of maximum degree at most d admits poly-
nomial time canonisation.

Fact 9.2 (Ponomarenko [22]). For every graph H the
class of all graphs excluding H as a minor admits polynomial
time canonisation.

Our goal in this section is to prove a“Lifting Lemma”that
allows us to lift a canonisation from the torsos of a treelike
decomposition of a graph to the whole graph. To be able
to prove such a lemma, we need to work with more general
structures than graphs and a stronger notion of canonisa-
tion.

We often denote tuples (v1, . . . , vk) by v⃗. For v⃗ = (v1, . . . , vk),
by ṽ we denote the set {v1, . . . , vk}. A vocabulary is a finite
set of relation symbols, each of which has a prescribed arity
in N. (Note that we admit 0-ary relation symbols. For every
set S the set S0 just consists of the empty tuple.) Let λ be
a vocabulary. A weighted λ-structure A consists of a uni-
verse (or vertex set) V (A) and for each k-ary relation sym-

bol R ∈ λ a mapping RA ∶ V (A)
k
→ N. A (plain) λ-structure

is a weighted λ-structure A with range(RA) ⊆ {0,1} for all
R ∈ λ. We usually identify a function RA ∶ V (A)

k
→ {0,1}

with the relation R(A) ∶= {v⃗ ∈ V (A)
k
∣ RA(v⃗) = 1} and view

a plain structure as a finite set (the universe) together with a
collection of relations on this universe. For example, graphs
and digraphs may be viewed as plain {E}-structures, where
E is a binary relation symbol. Graphs with multiple edges
may be viewed as weighted {E}-structures.

Let λ,µ be vocabularies with λ ⊆ µ, and let A be a
weighted λ-structure and B a weighted µ-structure. Then
A is the λ-restriction of B if V (A) = V (B) and RA = RB for
all symbols R ∈ λ. Conversely, B is a µ-expansion of A if A
is the λ-restriction of B. For every W ⊆ V (A), we define the
induced substructure A[W ] to be the weighted λ-structure

with universe V (A[W ]) ∶= W , relations RA[W ]
∶= RA ↾Wk

for all k-ary R ∈ λ. We let A ∖W ∶= A[V (A) ∖W ]. If f is
a mapping with domain V (A), we let f(A) be the weighted
λ-structure with universe V (f(A)) ∶= f(V (A)) and map-

pings Rf(A) defined by Rf(A)
(f(ā)) ∶= RA(ā). If A and B

are weighted λ-structures such that for all k-ary R ∈ λ and
all v⃗ ∈ V (A)

k
∩ V (B)

k we have RA(v⃗) = RB(v⃗), then we
define the union A ∪B to be the weighted λ-structure with
V (A ∪B) ∶= V (A) ∪ V (B) and

RA∪B(a⃗) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

RA(a⃗) if a⃗ ∈ V (A)
k,

RB(a⃗) if a⃗ ∈ V (B)
k,

0 otherwise.

for all k-ary relation symbols R ∈ λ and a⃗ ∈ V (A ∪B)
k.

The Gaifman graph of a weighted λ-structure A is the
graph GA with vertex set V (GA) ∶= V (A) and edge set

E(GA) ∶= {vw ∈ (
V (A)

2
) ∣ ∃k-ary R ∈ λ, v⃗ ∈ V (A)

k with

RA(v⃗) > 0 and v,w ∈ ṽ}.

An isomorphism from a weighted λ-structureA to a weighted
λ-structure B is a bijective mapping f ∶ V (A) → V (B)

such that for all k-ary R ∈ λ and all v⃗ ∈ V (A)
k we have

RA(v⃗) = RB(f(v⃗)). Canonisation mappings and algorithms
for weighted structures are defined in the obvious way. We
say that a class C of graphs admits polynomial time strong
canonisation if for every vocabulary λ there is a polynomial
time computable canonisation mapping for the class of all
weighted λ-structures with Gaifman graph in C. The follow-
ing statements can be derived from Facts 9.1 and 9.2 by a
simple gadget construction.

Lemma 9.3. For all d ∈ N the class of all graphs of maxi-
mum degree at most d admits polynomial time strong canon-
isation.

Lemma 9.4. For every graph H, the class of graphs G
with H /⪯ G admits polynomial time strong canonisation.

Corollary 9.5. For all c, d ∈ N the class of all graphs G
such that at most c vertices of G have degree greater than d
admits polynomial time strong canonisation and k ∈ N.

The main result of the section is the following lemma:

Lemma 9.6 (Lifting Lemma). Let A,C be a classes of
graphs and a ∈ N. Suppose that A admits polynomial time
strong canonisation and that C admits polynomial time com-
putable invariant treelike decompositions over A of adhesion
a.

Then C admits polynomial time strong canonisation.

Before we prove the lemma, we define the lexicographical
order ≤

λ
lex on weighted λ-structures A with V (A) ⊆ N. Let

λ = {R1, . . . ,Rm}, whereRi is ki-ary. The order ≤λlex actually
not only depends on the set λ, but on the order in which the
relations are listed. Hence we fix this order. We first review
the lexicographical order on tuples and sets of integers:

● For tuples x⃗ = (x1, . . . , xk) ∈ Nk, y⃗ = (y1, . . . , y`) ∈ N`
we let x⃗ <lex y⃗ if and only if either there exists an
i ≤ min{k, `} such that xi < yi and xj = yj for 1 ≤ j < i
or k < ` and xi = yi for all i ≤ k.

● For sets X,Y ⊆ N we let X <lex Y if and only if there
exists an i ∈ Y ∖X such that for all j < i it holds that
j ∈X ⇐⇒ j ∈ Y .

Now let A,B be weighted λ-structures with V (A), V (B) ⊆

N. Then we let A <
λ
lex B if one of the following conditions is

satisfied:

● V (A) <lex V (B). Note that if both V (A) and V (B)

are initial segments of the positive integers then this
just means ∣A∣ < ∣B∣.

● V (A) = V (B) =∶ V and there is an i ∈ [m] and a
tuple a⃗ ∈ V ki such that RAj = RBj for 1 ≤ j < i, and

RAi (a⃗) < RBi (a⃗), and RAi (b⃗) = RBi (b⃗) for all b⃗ ∈ V ki

with b⃗ <lex a⃗.

We let A ≤
λ
lex B if A <

λ
lex B or A = B. Note that ≤

λ
lex is

indeed a linear order on the class of weighted λ-structures
whose universe is a set of natural numbers and that given
A,B, it can be decided in polynomial time whether A ≤

λ
lex B.

As another small piece of terminology, we say that an
enumeration of a finite set S is a tuple (x1, . . . , xk) such
that k = ∣S∣ and S = {x1, . . . , xk}.



Proof (of the Lifting Lemma 9.6). We shall describe
a polynomial time computable a canonisation mapping c for
the class of all weighted λ-structures with Gaifman graph in
C.

Let P1, . . . , Pa,Q1, . . . ,Qa /∈ λ be fresh relation symbols,
where Pi and Qi are i-ary for all i ∈ [a]. Let µ ∶= λ ∪
{P1, . . . , Pa,Q1, . . . ,Qa}. Let a be a polynomial time com-
putable canonisation mapping on the class of all weighted
µ-structures whose Gaifman graph is in A. Such a map-
ping a exists by the assumption that A admits polynomial
time strong canonisation. Let ∆ be a polynomial time com-
putable invariant treelike decomposition mapping for C over
A of adhesion at most a.

To explain our canonisation mapping c, let us fix a λ-
structure C with Gaifman graph GC ∈ C. Without loss of
generality we may assume that GC is connected. Let ∆GC =

(D,σ,α). For every t ∈ V (D) we let Ct ∶= C[γ(t)] and
st ∶= ∣σ(t)∣. Note that 0 ≤ st ≤ a. By induction on D,
starting from the leaves, for every node t ∈ V (D) and every
enumeration x⃗ of σ(t) we define a copy C∗

t,x⃗ of Ct and a
mapping gt,x⃗ ∶ σ(t) → V (C∗

t,x⃗) with the following properties:

(A) V (C∗

t,x⃗) is an initial segment of the positive integers.
(B) There is an isomorphism f from Ct to C∗

t,x⃗ such that
gt,x⃗ ⊆ f .

Let t ∈ V (D), and let x⃗ = (x1, . . . , xst) be an enumeration
of σ(t). Let u1, . . . , um be the children of t in D. For every
i ∈ [m], let Ci ∶= Cui and ni ∶= ∣α(ui)∣ and si ∶= sui . Note

that ∣Ci∣ = ni+si. For all i, j ∈ [m], let i � j ∶⇔ ui �
∆GC uj .

For every i ∈ [m] and every tuple y⃗ that enumerates σ(ui),
let C∗

i,y⃗ ∶= C
∗

ui,y⃗
and gi,y⃗ ∶= gui,y⃗. Then C∗

i,y⃗ and gi,y⃗ satisfy
(A) and (B).

Let Y be the set of all y⃗ ∈ β(t)≤a that enumerate σ(ui)
for some i ∈ [m]. For each y⃗ ∈ Y, let My⃗ be the set of all
i ∈ [m] with σ(ui) = ỹ. Let ⪯y⃗ be a linear order on My⃗ such
that for all i, j ∈My⃗:

(C) If C∗

i,y⃗ <
λ
lex C

∗

j,y⃗ then i ≺y⃗ j.
(D) If C∗

i,y⃗ = C
∗

j,y⃗ and gi,y⃗(y⃗) <lex gj,y⃗(y⃗) then i ≺y⃗ j.

Note that conditions (C) and (D) do not determine a linear
order on My⃗, since there may be distinct i, j ∈My⃗ such that
C∗

i,y⃗ = C
∗

j,y⃗ and gi,y⃗(y⃗) = gj,y⃗(y⃗). If this is the case, decide
arbitrarily whether i ≺y⃗ j or j ≺y⃗ i. No matter how we
decide, the resulting structure Ct,x⃗ and mapping gt,x⃗ will be
the same.

Note that for every �-equivalence class K, either K∩My⃗ =

∅ or K ⊆ My⃗. Let Ny⃗ be the system of representatives for
the �-equivalence classes in My⃗ that contains the ⪯y⃗-smallest
element of each class. Let i0 be the minimal element of Ny⃗.
We define D∗

y⃗ to be the structure obtained in the following
three steps:

(E) For each i ∈ Ny⃗, we take a copy C∗∗

i,y⃗ of C∗

i,y⃗ and shift
the universes of these copies in such a way that they
are disjoint intervals of nonnegative integers arranged
in the order given by ⪯y⃗.

(F) We take the union of all the C∗∗

i,y⃗. Then for each i ∈ Ny⃗
we identify the tuple gi,y⃗(y⃗) with the tuple gi0,y⃗(y⃗).

(G) We shrink the universe so that it becomes an initial
segment of the positive integers.

Then D∗

y⃗ is an isomorphic copy of the union Dy⃗ of all struc-
tures Ci,y⃗ for i ∈ Ny⃗. Let y⃗∗ ∶= gi0,y⃗(y⃗). Observe that D∗

y⃗

and y⃗∗ indeed do not depend on the order ⪯y⃗, as long as it
satisfies (C) and (D).

Let ρ be the unique mapping from Y to an initial segment
of the positive integers such that ρ(y⃗) ≤ ρ(z⃗) if and only if
one of the following two conditions is satisfied:

(H) D∗

y⃗ <
λ
lex D

∗

z⃗ .
(I) D∗

y⃗ =D
∗

z⃗ and y⃗∗ ≤lex z⃗
∗.

Then ρ(y⃗) = ρ(z⃗) if and only if D∗

y⃗ = D∗

z⃗ and y⃗∗ = z⃗∗. Let
r ∶= max{ρ(y⃗) ∣ y⃗ ∈ Y}.

We let At,x⃗ be the µ-expansion of C[β(t)] defined as fol-
lows:

(J) For all i ∈ [a] we define Pi(At,x⃗) by

P
At,x⃗

i (y⃗) ∶= {
1 if i = st and y⃗ = x⃗,

0 otherwise,

for all y⃗ ∈ β(t)i.
(K) For all i ∈ [a] we define Qi(At,x⃗) by

Q
At,x⃗

i (y⃗) ∶= {
ρ(y⃗) if y⃗ ∈ Y,
0 otherwise,

for all y⃗ ∈ β(t)i.

Observe that the Gaifman graph of At,x⃗ is τ(t), because the
sets x̃ = σ(t) and ỹ = σ(ui) for all y⃗ ∈ Y are cliques in τ(t).
Hence the canonisation mapping a is applicable to At,x⃗. Let
A∗

t,x⃗ ∶= a(At,x⃗).
We define the structure C∗

t,x⃗ as follows: We take the dis-
joint union of A∗

t,x⃗ with copies of the structures D∗

y⃗ for y⃗ ∈ Y.
These copies are chosen such that their universes are consec-
utive intervals of positive integers and such that D∗

y⃗ comes

before D∗

z⃗ if ρ(y⃗) < ρ(z⃗). Let C1 be the resulting structure.

Then for each tuple z⃗ ∈ V (A∗

t,x⃗) with q ∶= Q
A∗t,x⃗
∣z⃗∣

(z⃗) ∈ [1, r]

we choose a tuple y⃗ ∈ Y with ρ(y⃗) = q and identify the copy
of y⃗∗ in the copy of D∗

y⃗ in C1 with z⃗. Of course there may

be several z⃗ with Q
A∗t,x⃗
∣z⃗∣

(z⃗) = q, say, z⃗1 <lex z⃗2 <lex . . . <lex z⃗`.

Then there are y⃗1, . . . , y⃗` ∈ Y with ρ(y⃗j) = q. For all these,
the structures D∗

y⃗j
are isomorphic and their copies appear

consecutively in C1. We identify z⃗j with the copy of y⃗∗j in the
copy of D∗

y⃗j
. After doing all these identifications, we shrink

the universe of the structure so that it is an initial segment
of the positive integers. Let C2 be the resulting µ-structure,
and let C∗

t,x⃗ be the λ-restriction of C2. If st = 0 (and thus x⃗
is the empty tuple) we let gt,x⃗ be the empty mapping. Oth-
erwise, there is a unique tuple x⃗∗ = (x∗1, . . . , x

∗

st) ∈ Pst(A
∗

t,x⃗).
We define gt,x⃗ by letting gt,x⃗(xi) ∶= x

∗

i for all all i ∈ [st].
To define the canonical copy c(C) of C, we let M ⊆ V (D)

be the set of all nodes t with σ(t) = ∅ and γ(t) = V (C). Such
nodes exist by (TL.5), because GC is connected. We look at
the set M of all structures C∗

t for nodes t ∈ T . (Here we write
C∗

t instead of C∗

t,(), omitting the empty tuple enumerating

σ(t) = ∅.) By (B), all structures in M are isomorphic to C.

We let c(C) be the ≤
λ
lex-minimal structure in M.

It is important to note that our construction is“invariant”,
that is, completely determined by the structure C and the
decomposition ∆GC . The only freedom we have during the
construction is in the exact order of the children u1, . . . , um
of t, but we have already noted that conditions (C) and
(D) restrict the choices we can make in such a way that
they do no longer matter because the resulting structures
will be isomorphic. The invariance of ∆ implies that if f
is an isomorphism from C to a λ-structure C′ then, letting



∆G′
C
= (D′, σ′, α′), there is an isomorphism g from D to D′

such that for all t ∈ V (D) and all enumerations x⃗ of σ(t)
the restriction of f to γ(t) is an isomorphism from Ct,x⃗ to
Cg(t),f(x⃗). By the invariance of our construction, it follows

that C∗

t,x⃗ = C′∗

g(t),f(x⃗) and gt,x⃗(x⃗) = gg(t),f(x⃗)(f(x⃗)). This
implies that M = M′, where M′ is defined from C′ and
∆G′

C
in the same way as M is defined from C and ∆GC ,

and thus c(C) = c(C′
).

As the decomposition mapping ∆ is polynomial time com-
putable, the canonization mapping c is polynomial time com-
putable as well.

Now we are ready to prove the main algorithmic result of
the paper (which proves Theorem 1.3 in the introduction):

Theorem 9.7. For every graph H, the class of graphs ex-
cluding H as topological subgraph admits polynomial time
strong canonisation.

Proof. Choose the constants a, b, c, d, e as in the Invari-
ant Decomposition Theorem 8.3. Let A1 be the class of all
graphs G with ∣V (G)∣ ≤ b, and let A2 be the class of all
graphs G with Kx /⪯ G, and let A3 be the class of all graphs
G such that at most c vertices of G have degree higher than
d. The class A1 trivially admits polynomial time strong
canonisation. The class A2 admits polynomial time strong
canonisation by Lemma 9.4. The class A3 admits polyno-
mial time strong canonisation by Corollary 9.5. As A1 and
A3 are polynomial time decidable (A2 is as well, but we do
not need this), it follows that the class A ∶= A1 ∪A2 ∪A2

admits polynomial time strong canonisation as well. That
is, the canonization algorithm for A uses the algorithm for
A1 if ∣V (G)∣ ≤ b; otherwise it uses the algorithm for A3 if
there are at most c vertices having degree higher than d;
otherwise it uses the algorithm for A2.

By the Invariant Decomposition Theorem 8.3 the class
of H-topological subgraph free graphs admits polynomial
time invariant treelike decompositions over A of adhesion
a. Hence by the Lifting Lemma 9.6, the class of graphs
excludingH as topological subgraph admits polynomial time
strong canonisation.
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