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Abstract

A bramblein a graphG is a family of connected subgraphs®&fsuch that any two of these subgraphs
have a nonempty intersection or are joined by an edge. ofther of a bramble is the least number
of vertices required to cover every subgraph in the bram8kymour and Thomas [8] proved that the
maximum order of a bramble in a graph is precisely the tre¢hnadithe graph plus one. We prove that
every graph of tree width at lealshas a bramble of ordé®(k%/2/log?k) and size polynomial im and
k, and that for everk there is a grapks of tree widthQ(k) such that every bramble & of orderkl/2te
has size exponential im To prove the lower bound, we establish a close connectitwdam linear tree
width and vertex expansion. For the upper bound, we use theections between tree width, separators,
and concurrent flows.

1 Introduction

Tree width is a fundamental graph invariant with many agggiens in graph structure theory and graph
algorithms. Tree width has a dual characterisation in teyhfisambles [6, 8]. Abramblein a graphGis a
family of connected subgraphs @fsuch that any two of these subgraphs have a nonempty intiersec
are joined by an edge. Thederof a bramble is the least number of vertices required to calVeubgraphs

in the bramble. Seymour and Thomas [8] proved that a graptréasvidthk—that is, the minimum width
of a tree decomposition @ is k—if and only if the maximum order of a bramble Gfis k+ 1.

Such a dual characterisation of a graph invariant can beussful in algorithmic or complexity theo-
retic applications. A bramble of ordkr- 1 is a withess that the graph has tree width at lkaktowever, it
is not a good characterization of tree width in the coNP sérd®/o reasons: (1) The number of subgraphs
in the bramble is not necessarily polynomial in the size efdhaph and (2) it is NP-hard to determine the
order of a bramble. These problems are hardly surprising: MP-complete to decide whether the tree
width of a graph is at mo, thus it seems highly unlikely that tree width has a coNP ati@rization.
Therefore, we do not expect that these difficulties can Hg &woided.

Motivated by such considerations, in this note we addressgtiestion of how large brambles actually
need to be. It will be important in the following to distinghi between thsizeof a bramble, that is, the
number of subgraphs it consists of, and its order. It is dyfairaightforward consequence of the graph
minor theorem [7] that there is a functidnsuch that every graph of tree width at lek$tas a bramble of
orderk+ 1 and cardinalityf (k). We raise as an open question whethean be bounded from above by an
exponential function ok. Here we establish an exponential lower bound for this fonct. Actually, we
prove a stronger result that applies also for brambles witlerosomewhat smaller thdn+ 1: There is a
family (Gy)k>1 of graphs such that for evegy> 0 and ever, the tree width of5y is at leask, and every
bramble ofGy of order at IeasQ(kl/ZH) has size exponential iy, whereny is the number of vertices of
Gk. Conversely, we prove that every graph of tree wiitras a bramble of ord@(kl/z/ log? k) and size
polynomial inn andk.
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In order to avoid problem (2) described above, we introdusiegle lower bound on the order of the
bramble and investigate how close it is to the order. @@pthof a bramble is the maximum (taken over
all verticesv) number of subgraphs in the bramble that contains vestekearly, the order of a bramble
cannot be less than the ratio of the size and depth. We shawhibaatio isO(k'/2) in every bramble for
the graph$5x mentioned in the previous paragraph. On the other hand,ripalynomial-sized bramble
construction, not only the order @(k%/2/log?k), but this holds even for the ratio of the size and the
depth. In summary, every graph with tree width at lddsas a polynomial-size bramble that certifies in an
easily verifiable way that the tree width@(k%/?/log?k), thus avoiding both problems (1) and (2) above.
However, in general, brambles witnessing that the treetwigl® (k/2+¢) run into these problems.

To establish the lower bound on the bramble size, we needepgaaphs with tree width linear in
the number of vertices. In Section 2, we observe that graptis positive vertex expansion have this
property, hence bounded-degree expander graphs can bouteel lower bound. Furthermore, we prove
the following converse statement: If all graphs in a clégdsave tree width linear in the number of vertices,
then they contain subgraphs of linear size (again in the rumivertices) with vertex expansion bounded
from below by a constant. Therefore, large expansion is iy r@ason why the tree width of a graph can
be linear in the number of vertices.

For the upper bound, we use the balanced separator chiazatiter of tree width and an integrality gap
result for separators. We use a probabilistic construdtidarn a concurrent flow into a bramble. In [5],
a similar approach is used to find an appropriate embeddiagimaph with large tree width, and thereby
proving an almost tight lower bound on the time complexitiofary constraint satisfaction (CSP) in terms
of the tree width of the primal graph. In fact, our investigas of bramble size were partly motivated by
possible applications such as [5]. The negative resulte@ttrrent paper show that brambles cannot be
used directly in these applications.

2 Treewidth and vertex expansion

For every positive integer, the sef{1,...,n} is denoted byn).

The vertex set of a grapB is denoted by (G) and its edge set big(G). ForX C V(G), the induced
subgraph ofs with vertex seiX is denoted byG[X], and we le{G\ X = GV (G) \ X]. For aseF CE, by
G — F we denote the graplv,E\ F).

A tree decompositioof a graphG is a pair(T,B), whereT is a tree and is a mapping that associates
with every node € V(T) a setB; C V(G) such thatG = Uy (1) G[Bt], and for everw € V(G) the set
{teV(T)|veB(t)}is connectediff. The setd, fort € V(T), are called théagsof the decomposition.
Thewidth of the decomposition is mdiB;| — 1|t € V(T)}, and thetree widthof G, denoted by tWG), is
the minimum of the widths of all tree decompositionsf

Let G be a graph. For a set C V(G), we letS(X) (the spherearoundX) be the set of all vertices in
V(G) \ X that are adjacent to a vertexi For everya € [0,1], we define thevertex expansioof G with
parameteor as the number

IS
a(@)= O X
0<|X|<a-[V(G)]

if a-|V(G)| > 1and vx(G) =0 otherwise.
Proposition 1. Letn>1and0 < a < 1. Then for every n-vertex graph G we have
W(G) > [vx4(G)  (a/2) n]. (2.1)

Proof. Let (T, B) be a tree decomposition of widkh= tw(G). Without loss of generality we may assume
thatT is a rooted tree such that for each nodeV (T),

e eithert has two childremy,up, and we havé; = By, = By,,
e ort has one childi, and we hav¢B;AB,| = 1 (hereA denotes the symmetric difference),

e ortis aleaf.



Letr be the root ofT. For everyt € V(T), let T; denote the subtree df with roott. (More preciselyT;
is the induced subtree @f whose vertex set consists of all vertieesuch that occurs on the unique path
fromr tou.) LetG = J,Bu\ Bt, where the union ranges over alE V (Ty).

Without loss of generality we assume< 1, because itr = 1 then vx (G) = 0, and (2.1) is trivially
satisfied. We further assume tleatn > 2, because ifr - n < 2 then vx (G) is at most the minimum degree
of G, which is known to be bounded by the tree width.

Case 1:|C/| < (a/2)-n.
Observe first

la-n|] a-n-—1 1_«a
> =a—— Z a0
n n n— 2
where the last inequality holds becawsen > 2. Hence
n—|a-n| n 2
G) < = 1< —-1
VXa(G) < la-n] la-n] “a
SinceC; =V(G) \ By, this implies
a
k+1z|Br|:n—|Cr|z(1—E)-n (becauseéC,| < (a/2)-n)

2 a
=(=-1).-=.
(5-2)3

>vxa(G)-%-n.

Case2:(a/2) - n< |G| <a-n.
SinceS(C;) C By, we have

k+1> [Br| > [S(C)| > vXa(G) - [Cr| > VXa(G) -

N R
S

Case 3:/C/| > a-n.
Then there exists a vertex V(T) such thatCs| > a -nand|C| < a - nfor all childrent of s. Letsbe
such a vertex, and Iétbe the child ofs for which |G| is maximum. Then

a-n
— <[Gl=a-n (2.2)

To see this, we distinguish betwestaving one or two children. Note thatcannot be a leaf because
Cs # 0. If s has two childrert andt’, we haveBs = B; = By and henceCs = C; UCy, which implies
(2.2) becauséCi| > |Cv| and|Cs| > a - n. If t is the only child ofs, then we havéB; \ Bs| = 1 and hence
|G| =|Cs|—1>a-n—1>a-n/2because -n> 2. Arguing as in Case 2, we ha8C;) C B; and hence

k12 B 2 [SIC)] = ¥Xa(G) - [G] > ¥Xa(G) - 5 1.

Hence all three cases yield
K+1>vxq(G)-

N R
S

which implies (2.1). O

Proposition 2. Letn>1, 8 >0, and0 < a < 1/2. Let G be an n-vertex graph such that(G) > 8- n.
Then there exists a subgraph®&G with

(2) tw(H) > (B/2) -n and hencgv (H)| > (B/2)-n—1,
(2) vxa(H) > B/2.



Proof. Since vy is monotone decreasing with respect to the paraneetits suffices to prove the proposi-
tion fora = 1/2. We inductively construct a sequence of subgrahs H; O ... D Hy of G. LetHy =G.
Now suppose that we have construckgg. .., Hi. Letnj = [V (Hi)|. If vxy,5(Hi) > B/2, we letm =i and
stop the construction. Otherwise, there is aX&t V (H;) such thaiX| < n;/2 and|S(X)| < (8/2) - |X|.
Choose such a s&tand letH’ = H;j[X] andH” = H; \ X.

Observe that tfH;) < max{tw(H’),tw(H")} + |S(X)|: Given two tree decompositions bf andH”,
they can be joined together to a tree decompositidt; df each bag is extended with the ®K).

Iftw (H’) > tw(H;) — |S(X)|, we letH;;1 = H’. Otherwise, we have ti#1”) > tw(H;) — |S(X)|, and we
|et Hi+]_ - H”.

Note that in both cases we have(hly) — tw(Hi+1) < |[S(X)| < (B/2) - |X|. Moreover, lettingni;1 =
IV (Hi+1)| we have

n —nip1> [X].

This follows from|X| < nj/2 if Hj;; = H and is trivial if Hj; = H”. Thus if in the(i + 1)-th step of the
construction, the tree width of the graph is reducedk biyen the number of vertices is reduced by at least

(2/B) k
LetH = Hm. By the construction, we have v (H) > B/2. We claim that twH ) > tw(G)/2> (B/2) -

n. This follows from the fact that whenever the tree width idueed byk in a step of the construction,

the number of vertices is reduced [8/f) - k. Hence to reduce the tree width by more thafGy/2, we

would have to reduce the number of vertices by more than

B 2 B
which is impossible. O
The two propositions immediately imply the following resul

Theorem 3. For every classg of graphs and everg with 0 < a < 1/2, the following statements are
equivalent:

(1) There is a constar@ > 0 such thatw(G) > 3 -|V(G)| for every Ge %

(2) There are constantg, y» > 0 such that every graph @ ¢ has a subgraph H such th&¢ (H)| >
vi-[V(G)| andvxq(H) > .

O

A variant of Proposition 2, which can be proved using the sataas, is the following proposition. It
was suggested by S. Thomasseé:

Proposition 4. Let G be a graph anf® = \v ‘ and suppose that for all proper subgraphstHs it holds
that

Thenvx,(G) > B.

Proof. Letn= |V(G)|. Suppose for contradiction that¥x(G) < 3, and letX CV(G) such thatX| <n/2
and|S(X)|/|X] < B. Then twW(G) < max{tw(G[X]),tw(G\ X)} + |S(X)| by the same argument as in the
proof of Proposition 2.

Case 11tw(G) < tw(G[X]) + |S(X)].

Then

B-n=tw(G) < tw(G[X]) +[S(X)|

<B-X|+B-X] (because tG[X])/[X| < B and|S(X)|/|X| < B)
<B-n (becauseX| < n/2),



which is a contradiction.
Case 2:tw(G) <tw(G\ X) +|S(X)].
Then

B-n=tw(G) <tw(G\X)+|S(X)| < B-(n—|X|)+B-|X| = B-n,
again a contradiction. O

It is well known that there are families of graphs of boundedrée and positive vertex expansion;
examples are random regular graphs. We state the followithgput proof (see [4] for a proof):

Theorem 5. Let d> 3. Then for everg > 0 there is ana > 0 and a family(Gy)n>1 of d-regular graphs
such that
VXg(Gp) >d—1—¢ foralln>1.

Theline graph L(G) of G contains one edge for each vertex@&fand the vertices df(G) are adjacent
if and only if the corresponding two edges share an endpoi6t iLet us denote by the line graph of
the complete graph dkvertices (thud has(;) vertices). We show thaty has positive vertex expansion,
hence its tree width is linear in the number of vertices, ©k?). Line graphs of cliques form an essential
role in the embedding technique of [5] and implicitely in thger bound of Section 3.

Lemma6. For every k> 3, vxy/o(Ly) > 2v2— 2+ O(1/K).

Proof. Let viy 2}, V{13} ---» Vik-1k} b€ the('g) vertices ofL, wherevy;, i,, andvyj, j,; are connected if
and only if{i1,i2} N{j1,j2} # 0. LetX CV(Lk) be a set minimizingS(X)|/|X|. LetY C {1,2,...,k} be
Uv{i‘j}ex{i, j}. Observe thatif, j €Y, thenvy j, e XUSX)ifi €Y, je{1,....k}\Y, thenvy j; € S(X).
We consider two cases.

Case 1:Y| < k/v/2+ 1.

In this case
IS YI(k=1Y]) _ [Y[(k=]Y]) _ 2k 2k o5
X > o0 > N2 zm— >m—2_2\/§ 2+0(1/K).

Case 2:]Y| > k/v2+ 1. Since|X| < |V(Lk)|/2 =k(k—1)/4 and

<|Y|> L (V241 D(k/V241) kK- 1)
2 )~ 2 - 4

= |X],

there are at leagty) —k(k—1)/4>0 verticesvy; ;, € S(X) with i, j € Y. Together with thdY|(k—|Y|)
vertices ofS(X) of the the formvy; ;, withi €Y, j ¢ Y, we have that

1S1 (%) — k(k=1)/4+[¥|(k—|Y])
X| = k(k—1)/4 '

This expression is a concave function|¥f for a fixedk > 3, hence the minimum is attained either for
IY| =kor Y| = [k/v2+1]. If [Y| =k thenS(X) = V(Ly) \ X, hence|S(X)|/|X| > 1. Substituting
IY| = [k/v/2+ 1] into the bound above gives

SX)| _ K2/4—K2/4+K2/V2—K?/2+O(K)
X| = k?/4+0(K)

= 4(1/vV2—-1/2)+O(1/K) = 22— 2+ O(1/K).

Corollary 7. The tree width of Lis at least K- (v2— 1) /4+ O(K). O



3 Bramblesize

Let us state the main definitions concerning brambles mamadty. Let G be a graph. We say that
two subgraph#\,B C G touchif either V(A) NV (B) # 0 or there is an edge € E(G) that is incident
with a vertex ofA and a vertex oB. A setX C V(G) coversa subgraptB C G if XNV (B) # 0, andX
covers a familyZ of subgraphs of if it covers all graphB € 4. A brambleof G is a family # of
connected subgraphs &fany two of which touch. For example, for every connected lgi@pthe set of
all connected subgraphs with more tHsiiG)|/2 vertices is a bramble @&. Thesizeof % is simply| 4.
The order of Z is the leask such that there is a s&t with |X| = k that coversZ. Thedepthof £ is
maxey(c) [{B € % | ve B}|. Itis easy to see that the order of the bramble is at leastitie of the size
and the depth, since the depth is the maximum number of s#ta trertex can cover. Theamble number
of a graphG is the maximum of the orders of all brambles®f Seymour and Thomas [8] proved that the
bramble number of a graph is its tree width plus one.

The main result of the section is the following theorem, vatBbows that if we want to find a bramble
whose size is polynomial in the number of vertices, then tagimum order we can expect is roughly the
square root of the tree width:

Theorem 8.
(1) Every n-vertex graph G of tree width k has a bramble of p@l¢k'/2/log?k) and size Qk®/2-Inn).
(2) There is a family(Gk)k>1 of graphs such that:
e |[V(Gy)| = O(k) and|E(Gy)| = O(k) for every k> 1;
o tw(Gk) >k for every k> 1;

e for everye > 0 and k> 1, every bramble of of order at least k'2*¢ has size at leas2?*");
e in every bramble of @ the ratio of the size and the depth igk®'?).

The proof of the first part of Theorem 8 is based on the chaiaat®n of tree width by balanced
separators and uses a result of Feige et al. [2] on the liregraamming formulation of separation prob-
lems. A similar approach is used in [5] to find an embeddinggnagph with large tree width; some of the
arguments are repeated here for the convenience of therréadeparatorof a graphG is a partition of
the vertices into three classés,B,S) (S# 0) such that there is no edge betweeandB. A k-separator
is a separatofA, B, S) with |§ = k. Given a seW of vertices and a separatfh,B,S), we say thaSis a
balanced separatowith respect taW) if [WNC| < |W|/2 for every connected componéhbf G\ S. The
tree width of a graph is closely connected with the existeridmlance separators:

Lemma 9 ([6], [3, Section 11.2]).

(1) If G(V,E) has tree width greater thaBk, then there is a set W V of size exactlgk+ 1 having no
balanced k-separator.

(2) If G(V,E) has tree width at most k, then every®W has a balance¢k + 1)-separator.
Thesparsityof the separatofA, B, S) (with respect tdV) is defined as

) S
GW(A, B,S) = |(AUS) ﬂW| . |(BUS) ﬂW|.

We denote byaV (G) the minimum ofa"V (A, B, S) for every separatofA,B,S). It is easy to see that for
every connecte@® and nonemptyV, 1/|W|?> < a(G) < 1/|W|. For our applications, we need a ¥t
such that the sparsity is close to the maximum possible @./|W|). The following lemma shows that
the non-existance of a balanced separator can guarantegistence of such a set:

Lemma 10. If [W| = 2k+ 1 and W has no balanced k-separator in a graph G, ta#H(G) > 1/(4k+1).



Proof. Let (A, B, S) be a separator of sparsity’ (G); without loss generality, we can assume fiAa\W| >
IBAW]|, henceBNW| < k. If |§ > k, thenaWV(A,B,S) > (k+1)/(2k+1)2 > 1/(4k+1). If |§ > |(BU

S) NW|, thenaV (A B,S) > 1/|(AUS) NW/| > 1/(2k+ 1). Assume therefore thatBUS)NW| > |S| + 1.
Let S be a set ok— |S| > 0 arbitrary vertices ofV \ (SUB). We claim thatSUS is a balanced separator of
W. Suppose that there is a compon@mif G\ (SUS)) that contains more thdavertices oW. Component
C is either a subset o4 or B. However, it cannot be a subset®fsince|BNW| < k. On the other hand,
|(A\S)NW]|isatmostR+1—|(BUS)NW|—|S|<2k+1—(|]9+1)—(k—|9) <k O

Remarkll Lemma 10 does not remain true in this form for largér For example, leK be a clique of
size X+ 1, let us attaclk degree one vertices to a distinguished vertekK, and let us attach a degree one
vertex to every other vertex ¢§. LetW be the set of thesekdlegree one vertices. It is not difficult to see
thatW has no balanceklseparator. On the other hark= {x} is a separator with sparsity k(3k+ 1)),
hencea"V(G) = O(1/k?).

LetW = {ws,...,W } be a set of vertices. Boncurrent vertex flow of valugis a collection of\W/?
flows such that for every ordered pdir,v) € W x W, there is a flow of value betweenu andv, and
the total amount of flow going through each vertex is at mosf flow betweenu andv is a weighted
collection ofu—v paths. Au— v path contributes to the load of vertaxof vertexv, and of every vertex
betweeru andv on the path. In the degenerate case whenv, vertexu = v is the only vertex where the
flow betweeru andv goes through, that is, the flow contributes to the load of ¢mlyvertex.

The maximum concurrent vertex flow can be expressed as & lpregram the following way. For
u,veW, let 2, be the set of alli— v paths inG, and for eaclp € &, let variablep"” denote the amount
of flow that is sent fronu to v alongp. Consider the following linear program:

maximizeg
s. t.
py>e Yu,ve W
pE Zuv
; pv<i1 YweV (LP1)
(uV)EWXW pe Pyy:wep
p'>0 Yu,veV,pe Py

The dual of this linear program can be written with variablég }u vew and{s,}vev the following way:

minimize § s,
%
s. t.
ZSNZKUV Yu,ve W, pe Py (x)
WEP
(uv)eEWxW
>0 Yu,veW
sy>0 Yw eV

We show that if there is a separatéx; B, S) with sparsitya'V (A, B, S), then (LP2) has a solution with value
at mostaV (A, B,S). Sets, = aV(A B,S)/|S if v Sands, = 0 otherwise; the value of such a solution
is clearlyaV(A,B,S). For everyu,v € W, setly, = MiNpe 2, > wep Sy t0 ensure that inequalities (*) hold.
To see that (**) holds, notice first thdty, > aVV(A,B,S)/|S if uc AUS ve BUS, as everyu— v path
has to go through at least one vertexfFurthermore, ifu,v € Sandu # v, thenéy, > 2aV (A, B,S)/|S|
since in this case a— v paths meetSin at least two vertices. The expressigAUS) NW|-|(BUS) NW|
counts the number of ordered paftsv) satisfyingu € (AUS)NW andv € (BUS)NW, such that pairs



with u,v € SNW, u # v are counted twice. Therefore,

a"(ABS) _

fov (|(AUS) W] |(BUS) W) - g™ =1,

(u,v)EWxW

which means that inequality (**) is satisfied.

The other direction is not true: a solution of (LP2) with vabu does not imply that there is a separator
with sparsity at mostr. However, Feige et al. [2] proved that it is possible to findpagator whose sparsity
is greater than that by at mos©dlog|W|) factor:

Theorem 12 (Feigeet al. [2]). If (LP2) has a solution with valua, then there is a separator with sparsity
O(alog|W).

Now we are ready to prove the first part of Theorem 8. In the fonaouse the following form of the
Chernoff Bound to bound the probability of certain events:

Theorem 13 ([1]). Let X, Xy, ..., X, be independer@-1 random variables withPr[X; = 1] = p;. Denote
X=53m,X% andu =E[X]. Then

exp(—B%u/3)for0< B <1,

exp(—B2u/(2+p)) for g > 1.

Lemma 14. Let k> 2, and let G be a graph of tree width greater th@k Then G has a bramble of order
Q(vk/log?k) and size Qk¥2logn).

PIIX > (14 B)u] s{

Proof. SinceG has tree width greater thark,3by Lemma 9, there is a subs&} of size at most R+ 1
that has no balancddseparator. By Lemma 1@ (G) > 1/(4k+ 1) > 1/(5k). Therefore, Theorem 12
implies that the dual linear program has no solution withuedkss than A(co5klog(2k+ 1)), wherecy is
the constant hidden by the b@notation in Theorem 12. Letbe a constant such thaf (ky5klog(2k +
1)) > 1/(ckink) for k > 2 (here Irk denotes the natural logarithm kf. By linear programming duality,
there is a concurrent flow of value at least= 1/(cklnk) connecting the vertices &fp; let p*¥ be a
corresponding solution of (LP1).

LetW C Wy be a subset df vertices. For each pair of vertic@s, v) € W x W, we define a probability
distribution onZ,, by setting the probability op € &, to be

pUV < p_UV
Zp’e@uv(p')uv Ta

We construct a bramblg? containing|k®?2||Inn| sets. Set = |k¥?| ands:= |vkInk|. Let us
select uniformly and independenttiy random subsets§y,...,S C W, each of sizes. For eachS, let
us select uniformly at random a vertexe W\ §. For eachS, we construct a collectio®; of [Inn|
setsBi1,...,Bj inn) the following way. If§ = {ui1,...,Uis} €W, thenB; j is constructed by selecting
a random path from each a¥;y ,, Pzu,, ---» P7u, according to the probability distribution defined
above and taking the union of thespaths. CIearIyBiy'j is a connected set: each path contajns

We claim that with high probability, the setsi#i= U?zr%’i form a bramble. I§ andS: have nonempty
intersection, then the sel j andBy j; have nonempty intersection as well. The probability thaticam
subsetss andS, are disjoint is at most

(%) k—s k—s—1  k—2s+1 S\ & 1
® "k k-1 k_s+1 < (1) SeW(?)SeXp(A’mk)SF’

S,

if kis sufficiently large. There arg) < k%22 pairs{S,S/}, thus by the union bound, tf&'s pairwise
touch by probability at least2 1/k.

To bound the order of the bramhi8, we show that with high probability, each vertex is contdiire
at most 24kink - Inn sets of% (wherec is the universal constant defined at the beginning of thefproo
First, we show that the following event holds with high prbligy:



(E1) For every,y € W, there are at most 12kwvalues ofi such thatz, = x andy € S.

Fixing x, y, andi, let us bound the probability that= x andy € §. If x=Yy, then this event has probability
0; otherwise, its probability is exactiL/K) - (s/(k—1)). Thus

1 s 1 2vkink  2Ink
Pra=xyeS) =i =15k~ ke

Fixing x andy, the probability that this happens for more than I¥alues ofi (i.e., more than 6 times the
expected number of times) can be bounded using the Cheronafid(Theorem 13 witl3 = 5):

Pr(li:z =xyeS|>12Ink) < e Tk < k_13
There arek? pairsx,y € W thus by the union bound, event (E1) holds with probabilitieast 1— 1/k.

For a vertexv, andx,y € W, let % (v) be the total weight of th& —y paths going throughr in the
solution for (LP1), that isyy := 3 pe 7, vep P¥- Let us fix the sets, ..., § and the vertices, ..., z,
and assume that (E1) holds. [®t= {u;1,...,Uis}. AsB;j is the union of random paths froo#; y ., ...,
P3.u. the probability thaB; j containsvis at mosty7_, v, s (V) /a. Thus the expected number of sets in
2, that contairvis atmostInn| 37_; v s ,(v)/a. Summing for every X i < d and using the assumption
that (E1) holds, the expected number of sets that contaivesngiis at most

|Inn] ii Vas.(V)/a < 12Ink- [Inn] Z‘wa(v)/a < 12Ink- [Inn]/a < 12ckink- Inn.
i=1/=1 X,YE

If S, ..., & are fixed, the number of sets that contain a vertean be expressed as the sunddlinn|
independent 0-1 random variables. Hence we can apply the@ffi@ound (Theorem 13 witlf = 1) to
show that the probability that vertexs covered by too many sets is at most

1

Pr(|B € Z:ve B| > 24ckin?k-Inn) < exp(—4kIn?k-Inn) < =

if k is sufficiently large. Thus by the union bound, with high pbbiity every vertexv is contained in at
most 24kIn?k - Inn sets of%. Therefore, brambleZ can be covered only with at least

|k¥2] [Inn|/(24ckIn’k-Inn) = Q(vk/ log?k)
vertices, which gives the required lower bound on the order. O

Remarkl5. The size of the bramble in Lemma 14 depends not onlg,dmut onn as well. Therefore, this
construction does not answer the stronger form of the questhen we require a bound on the size that
depends only ok. Using completely different techniques, we were able tovpr version of Lemma 14
where the order is onl(k/3), but the size i©(k%/3) and hence independentraf

The second part of Theorem 8 is based on the observatiomthatinded-degree graphs, every bramble
with order significantly greater thap’n must have exponential size. There are bounded-degreesggraph
with tree width linear inn (e.g., graphs with positive vertex expansion); for suctpbsathe order of a
polynomial-size bramble is at mogtn.

Lemma 16. Let G be an n-vertex graph of maximum degree d, andAdie a bramble in G of order
greater than[c- n/2¢| for some ¢e > 0. Then

| 2| > exp(c-nf/(d+1)).

Proof. SupposeZ has a seB of cardinality at most- nl/z/(d +1). Let S contain every vertex oB
and every vertex adjacent to a vertexBn SetS covers4, sinceB touches every set i8. However,
the cardinality ofSis at mostc- n'/2, contradicting the assumption that the order#fis greater than
[c-n/2*€]. Thus we can assume that evé&y % has cardinality at least- n'/2/(d + 1).



Let¢ := [nY2€]. We choose verticeg, ..., v, independently uniformly at random. FBre % and
i € [£], we letX®? be the random variable that is 1Vfc B and 0 otherwise. Then

. vB)| _cn¥?/d+1) c-n Y2
Pr(XB = 1) = V(G| > - -G

! cnv2\ c-n1/2 c-nt
Pr(Z‘“) } (1m> Sexp(m") <eo(-rg)

¢
Pr({v,..., v} does not covegs) = Pr <EB cH: ZXiB = 0)
i=

¢
< P B_0
a Bg%? r(izlXI )

Since the order of? is greater thad, we know that the last probability must be 1. Hence

Hence

and thus

1<m-exp(—c-nf/(d+1)),
which impliesm > exp(c-nf/(d + 1)). O

Lemma 17. Let G be an n-vertex graph of maximum degree d, andddie a bramble in G. Then the
ratio of the depth and the size & is at most(d + 1)n%/2,

Proof. Suppose first tha® has a seB of cardinality at mosh'/2/(d + 1). As in the proof Lemma 186, this
implies that the order ofZ is at mosi'/2, which further implies that ratio of the size and depth inals
mostn'/2, Thus we can assume that ev@&y % has cardinality at least/?/(d + 1). It follows that the
depth of % is at least|%|n%/2/(d +1))/n= |%|/((d + 1)n¥/?), hence the ratio of the size and the depth
is at most(d + 1)n*/2, O

Proof of Theorem 8Part (1) follows from Lemma 14. Part (2) follows from Progamsi 1, Theorem 5,
Lemma 16, and Lemma 17. O
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