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Abstract

A bramblein a graphG is a family of connected subgraphs ofG such that any two of these subgraphs
have a nonempty intersection or are joined by an edge. Theorder of a bramble is the least number
of vertices required to cover every subgraph in the bramble.Seymour and Thomas [8] proved that the
maximum order of a bramble in a graph is precisely the tree width of the graph plus one. We prove that
every graph of tree width at leastk has a bramble of orderΩ(k1/2/ log2k) and size polynomial inn and
k, and that for everyk there is a graphG of tree widthΩ(k) such that every bramble ofG of orderk1/2+ε

has size exponential inn. To prove the lower bound, we establish a close connection between linear tree
width and vertex expansion. For the upper bound, we use the connections between tree width, separators,
and concurrent flows.

1 Introduction

Tree width is a fundamental graph invariant with many applications in graph structure theory and graph
algorithms. Tree width has a dual characterisation in termsof brambles [6, 8]. Abramblein a graphG is a
family of connected subgraphs ofG such that any two of these subgraphs have a nonempty intersection or
are joined by an edge. Theorderof a bramble is the least number of vertices required to coverall subgraphs
in the bramble. Seymour and Thomas [8] proved that a graph hastree widthk—that is, the minimum width
of a tree decomposition ofG is k—if and only if the maximum order of a bramble ofG is k+1.

Such a dual characterisation of a graph invariant can be veryuseful in algorithmic or complexity theo-
retic applications. A bramble of orderk+1 is a witness that the graph has tree width at leastk. However, it
is not a good characterization of tree width in the coNP sensefor two reasons: (1) The number of subgraphs
in the bramble is not necessarily polynomial in the size of the graph and (2) it is NP-hard to determine the
order of a bramble. These problems are hardly surprising: Itis NP-complete to decide whether the tree
width of a graph is at mostk, thus it seems highly unlikely that tree width has a coNP characterization.
Therefore, we do not expect that these difficulties can be fully avoided.

Motivated by such considerations, in this note we address the question of how large brambles actually
need to be. It will be important in the following to distinguish between thesizeof a bramble, that is, the
number of subgraphs it consists of, and its order. It is a fairly straightforward consequence of the graph
minor theorem [7] that there is a functionf such that every graph of tree width at leastk has a bramble of
orderk+1 and cardinalityf (k). We raise as an open question whetherf can be bounded from above by an
exponential function ofk. Here we establish an exponential lower bound for this function f . Actually, we
prove a stronger result that applies also for brambles with order somewhat smaller thank+ 1: There is a
family (Gk)k≥1 of graphs such that for everyε > 0 and everyk, the tree width ofGk is at leastk, and every
bramble ofGk of order at leastΩ(k1/2+ε) has size exponential innk, wherenk is the number of vertices of
Gk. Conversely, we prove that every graph of tree widthk has a bramble of orderΩ(k1/2/ log2k) and size
polynomial inn andk.
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National Research Fund (Grant Number OTKA 67651)

1



In order to avoid problem (2) described above, we introduce asimple lower bound on the order of the
bramble and investigate how close it is to the order. Thedepthof a bramble is the maximum (taken over
all verticesv) number of subgraphs in the bramble that contains vertexv; clearly, the order of a bramble
cannot be less than the ratio of the size and depth. We show that this ratio isO(k1/2) in every bramble for
the graphsGk mentioned in the previous paragraph. On the other hand, in our polynomial-sized bramble
construction, not only the order isΩ(k1/2/ log2k), but this holds even for the ratio of the size and the
depth. In summary, every graph with tree width at leastk has a polynomial-size bramble that certifies in an
easily verifiable way that the tree width isΩ(k1/2/ log2 k), thus avoiding both problems (1) and (2) above.
However, in general, brambles witnessing that the tree width is Ω(k1/2+ε) run into these problems.

To establish the lower bound on the bramble size, we need sparse graphs with tree width linear in
the number of vertices. In Section 2, we observe that graphs with positive vertex expansion have this
property, hence bounded-degree expander graphs can be usedfor the lower bound. Furthermore, we prove
the following converse statement: If all graphs in a classC have tree width linear in the number of vertices,
then they contain subgraphs of linear size (again in the number of vertices) with vertex expansion bounded
from below by a constant. Therefore, large expansion is the only reason why the tree width of a graph can
be linear in the number of vertices.

For the upper bound, we use the balanced separator characterization of tree width and an integrality gap
result for separators. We use a probabilistic constructionto turn a concurrent flow into a bramble. In [5],
a similar approach is used to find an appropriate embedding ina graph with large tree width, and thereby
proving an almost tight lower bound on the time complexity ofbinary constraint satisfaction (CSP) in terms
of the tree width of the primal graph. In fact, our investigations of bramble size were partly motivated by
possible applications such as [5]. The negative results of the current paper show that brambles cannot be
used directly in these applications.

2 Tree width and vertex expansion

For every positive integern, the set{1, . . . ,n} is denoted by[n].
The vertex set of a graphG is denoted byV(G) and its edge set byE(G). ForX ⊆V(G), the induced

subgraph ofG with vertex setX is denoted byG[X], and we letG\X = G[V(G)\X]. For a setF ⊆ E, by
G−F we denote the graph(V,E \F).

A tree decompositionof a graphG is a pair(T,B), whereT is a tree andB is a mapping that associates
with every nodet ∈ V(T) a setBt ⊆ V(G) such thatG =

⋃

t∈V(T) G[Bt ], and for everyv ∈ V(G) the set
{t ∈V(T) | v∈B(t)} is connected inT. The setsBt , for t ∈V(T), are called thebagsof the decomposition.
Thewidthof the decomposition is max{|Bt |−1 | t ∈V(T)}, and thetree widthof G, denoted by tw(G), is
the minimum of the widths of all tree decompositions ofG.

Let G be a graph. For a setX ⊆ V(G), we letS(X) (thespherearoundX) be the set of all vertices in
V(G)\X that are adjacent to a vertex inX. For everyα ∈ [0,1], we define thevertex expansionof G with
parameterα as the number

vxα(G) = min
X⊆V(G)

0<|X|≤α ·|V(G)|

|S(X)|
|X|

if α · |V(G)| ≥ 1 and vxα(G) = 0 otherwise.

Proposition 1. Let n≥ 1 and0≤ α ≤ 1. Then for every n-vertex graph G we have

tw(G) ≥ ⌊vxα(G) · (α/2) ·n⌋ . (2.1)

Proof. Let (T,B) be a tree decomposition of widthk = tw(G). Without loss of generality we may assume
thatT is a rooted tree such that for each nodet ∈V(T),

• eithert has two childrenu1,u2, and we haveBt = Bu1 = Bu2,

• or t has one childu, and we have|Bt△Bu| = 1 (here△ denotes the symmetric difference),

• or t is a leaf.
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Let r be the root ofT. For everyt ∈V(T), let Tt denote the subtree ofT with root t. (More precisely,Tt

is the induced subtree ofT whose vertex set consists of all verticesu such thatt occurs on the unique path
from r to u.) LetCt =

⋃

uBu\Bt , where the union ranges over allu∈V(Tt).
Without loss of generality we assumeα < 1, because ifα = 1 then vxα(G) = 0, and (2.1) is trivially

satisfied. We further assume thatα ·n≥ 2, because ifα ·n< 2 then vxα(G) is at most the minimum degree
of G, which is known to be bounded by the tree width.

Case 1:|Cr | ≤ (α/2) ·n.
Observe first

⌊α ·n⌋
n

>
α ·n−1

n
= α − 1

n
≥ α

2
,

where the last inequality holds becauseα ·n≥ 2. Hence

vxα(G) ≤ n−⌊α ·n⌋
⌊α ·n⌋ =

n
⌊α ·n⌋ −1 <

2
α
−1.

SinceCr = V(G)\Br , this implies

k+1≥ |Br | = n−|Cr | ≥
(

1− α
2

)

·n (because|Cr | ≤ (α/2) ·n)

=

(

2
α
−1

)

· α
2
·n

> vxα(G) · α
2
·n.

Case 2:(α/2) ·n < |Cr | ≤ α ·n.
SinceS(Cr) ⊆ Br , we have

k+1≥ |Br | ≥ |S(Cr)| ≥ vxα(G) · |Cr | > vxα(G) · α
2
·n.

Case 3:|Cr | > α ·n.
Then there exists a vertexs∈V(T) such that|Cs| > α ·n and|Ct | ≤ α ·n for all childrent of s. Let sbe

such a vertex, and lett be the child ofs for which |Ct | is maximum. Then

α ·n
2

< |Ct | ≤ α ·n. (2.2)

To see this, we distinguish betweens having one or two children. Note thats cannot be a leaf because
Cs 6= /0. If s has two childrent and t ′, we haveBs = Bt = Bt′ and henceCs = Ct ∪Ct′ , which implies
(2.2) because|Ct | ≥ |Ct′ | and|Cs| > α ·n. If t is the only child ofs, then we have|Bt \Bs| = 1 and hence
|Ct |= |Cs|−1 > α ·n−1≥ α ·n/2 becauseα ·n≥ 2. Arguing as in Case 2, we haveS(Ct) ⊆ Bt and hence

k+1≥ |Bt | ≥ |S(Ct)| ≥ vxα(G) · |Ct | > vxα(G) · α
2
·n.

Hence all three cases yield

k+1> vxα(G) · α
2
·n,

which implies (2.1).

Proposition 2. Let n≥ 1, β > 0, and0 < α ≤ 1/2. Let G be an n-vertex graph such thattw(G) ≥ β ·n.
Then there exists a subgraph H⊆ G with

(1) tw(H) ≥ (β/2) ·n and hence|V(H)| ≥ (β/2) ·n−1,

(2) vxα(H) ≥ β/2.
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Proof. Since vxα is monotone decreasing with respect to the parameterα, its suffices to prove the proposi-
tion for α = 1/2. We inductively construct a sequence of subgraphsH0 ⊇H1 ⊇ . . .⊇ Hm of G. LetH0 = G.
Now suppose that we have constructedH0, . . . ,Hi . Let ni = |V(Hi)|. If vx1/2(Hi) ≥ β/2, we letm= i and
stop the construction. Otherwise, there is a setX ⊆ V(Hi) such that|X| ≤ ni/2 and|S(X)| < (β/2) · |X|.
Choose such a setX and letH ′ = Hi [X] andH ′′ = Hi \X.

Observe that tw(Hi) ≤ max{tw(H ′), tw(H ′′)}+ |S(X)|: Given two tree decompositions ofH ′ andH ′′,
they can be joined together to a tree decomposition ofHi if each bag is extended with the setS(X).

If tw(H ′) ≥ tw(Hi)−|S(X)|, we letHi+1 = H ′. Otherwise, we have tw(H ′′) ≥ tw(Hi)−|S(X)|, and we
let Hi+1 = H ′′.

Note that in both cases we have tw(Hi)− tw(Hi+1) ≤ |S(X)| < (β/2) · |X|. Moreover, lettingni+1 =
|V(Hi+1)| we have

ni −ni+1 ≥ |X|.
This follows from|X| ≤ ni/2 if Hi+1 = H ′ and is trivial if Hi+1 = H ′′. Thus if in the(i +1)-th step of the
construction, the tree width of the graph is reduced byk then the number of vertices is reduced by at least
(2/β ) ·k.

Let H = Hm. By the construction, we have vx1/2(H)≥ β/2. We claim that tw(H)≥ tw(G)/2≥ (β/2) ·
n. This follows from the fact that whenever the tree width is reduced byk in a step of the construction,
the number of vertices is reduced by(2/β ) ·k. Hence to reduce the tree width by more than tw(G)/2, we
would have to reduce the number of vertices by more than

2
β
· tw(G)

2
≥ β ·n

β
= n,

which is impossible.

The two propositions immediately imply the following result:

Theorem 3. For every classC of graphs and everyα with 0 < α ≤ 1/2, the following statements are
equivalent:

(1) There is a constantβ > 0 such thattw(G) ≥ β · |V(G)| for every G∈ C .

(2) There are constantsγ1,γ2 > 0 such that every graph G∈ C has a subgraph H such that|V(H)| ≥
γ1 · |V(G)| andvxα(H) ≥ γ2.

A variant of Proposition 2, which can be proved using the sameideas, is the following proposition. It
was suggested by S. Thomassé:

Proposition 4. Let G be a graph andβ = tw(G)
|V(G)| , and suppose that for all proper subgraphs H⊂ G it holds

that
tw(H)

|V(H)| < β .

Thenvx1/2(G) ≥ β .

Proof. Let n= |V(G)|. Suppose for contradiction that vx1/2(G) < β , and letX ⊆V(G) such that|X| ≤ n/2
and|S(X)|/|X| < β . Then tw(G) ≤ max{tw(G[X]), tw(G\X)}+ |S(X)| by the same argument as in the
proof of Proposition 2.

Case 1:tw(G) ≤ tw(G[X])+ |S(X)|.
Then

β ·n = tw(G) ≤ tw(G[X])+ |S(X)|
< β · |X|+ β · |X| (because tw(G[X])/|X|< β and|S(X)|/|X|< β )

≤ β ·n (because|X| ≤ n/2),
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which is a contradiction.
Case 2:tw(G) ≤ tw(G\X)+ |S(X)|.
Then

β ·n = tw(G) ≤ tw(G\X)+ |S(X)|< β · (n−|X|)+ β · |X|= β ·n,

again a contradiction.

It is well known that there are families of graphs of bounded degree and positive vertex expansion;
examples are random regular graphs. We state the following without proof (see [4] for a proof):

Theorem 5. Let d≥ 3. Then for everyε > 0 there is anα > 0 and a family(Gn)n≥1 of d-regular graphs
such that

vxα(Gn) ≥ d−1− ε for all n ≥ 1.

Theline graph L(G) of G contains one edge for each vertex ofG, and the vertices ofL(G) are adjacent
if and only if the corresponding two edges share an endpoint in G. Let us denote byLk the line graph of
the complete graph onk vertices (thusLk has

(k
2

)

vertices). We show thatLk has positive vertex expansion,
hence its tree width is linear in the number of vertices, i.e., Θ(k2). Line graphs of cliques form an essential
role in the embedding technique of [5] and implicitely in theupper bound of Section 3.

Lemma 6. For every k≥ 3, vx1/2(Lk) ≥ 2
√

2−2+O(1/k).

Proof. Let v{1,2}, v{1,3} . . . , v{k−1,k} be the
(k

2

)

vertices ofLk, wherev{i1,i2} andv{ j1, j2} are connected if
and only if{i1, i2}∩{ j1, j2} 6= /0. LetX ⊆V(Lk) be a set minimizing|S(X)|/|X|. LetY ⊆ {1,2, . . . ,k} be
⋃

v{i, j}∈X{i, j}. Observe that ifi, j ∈Y, thenv{i, j} ∈ X∪S(X); if i ∈Y, j ∈ {1, . . . ,k}\Y, thenv{i, j} ∈ S(X).
We consider two cases.

Case 1:|Y| < k/
√

2+1.
In this case

|S(X)|
|X| ≥ |Y|(k−|Y|)

(|Y|
2

)
≥ |Y|(k−|Y|)

|Y|2/2
≥ 2k

|Y| −2 >
2k

k/
√

2+1
−2 = 2

√
2−2+O(1/k).

Case 2:|Y| ≥ k/
√

2+1. Since|X| ≤ |V(Lk)|/2 = k(k−1)/4 and

(|Y|
2

)

≥ (k/
√

2+1−1)(k/
√

2+1)

2
≥ k(k−1)

4
≥ |X|,

there are at least
(|Y|

2

)

−k(k−1)/4≥ 0 verticesv{i, j} ∈ S(X) with i, j ∈Y. Together with the|Y|(k−|Y|)
vertices ofS(X) of the the formv{i, j} with i ∈Y, j 6∈Y, we have that

|S(X)|
|X| ≥

(|Y|
2

)

−k(k−1)/4+ |Y|(k−|Y|)
k(k−1)/4

.

This expression is a concave function of|Y| for a fixedk ≥ 3, hence the minimum is attained either for
|Y| = k or |Y| = ⌈k/

√
2+ 1⌉. If |Y| = k, thenS(X) = V(Lk) \X, hence|S(X)|/|X| ≥ 1. Substituting

|Y| = ⌈k/
√

2+1⌉ into the bound above gives

|S(X)|
|X| ≥ k2/4−k2/4+k2/

√
2−k2/2+O(k)

k2/4+O(k)
= 4(1/

√
2−1/2)+O(1/k)= 2

√
2−2+O(1/k).

Corollary 7. The tree width of Lk is at least k2 · (
√

2−1)/4+O(k).
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3 Bramble size

Let us state the main definitions concerning brambles more formally. Let G be a graph. We say that
two subgraphsA,B ⊆ G touch if either V(A)∩V(B) 6= /0 or there is an edgee∈ E(G) that is incident
with a vertex ofA and a vertex ofB. A setX ⊆ V(G) coversa subgraphB⊆ G if X ∩V(B) 6= /0, andX
covers a familyB of subgraphs ofG if it covers all graphsB ∈ B. A brambleof G is a family B of
connected subgraphs ofG any two of which touch. For example, for every connected graph G, the set of
all connected subgraphs with more than|V(G)|/2 vertices is a bramble ofG. Thesizeof B is simply|B|.
The order of B is the leastk such that there is a setX with |X| = k that coversB. Thedepthof B is
maxv∈V(G) |{B∈ B | v∈ B}|. It is easy to see that the order of the bramble is at least the ratio of the size
and the depth, since the depth is the maximum number of sets that a vertex can cover. Thebramble number
of a graphG is the maximum of the orders of all brambles ofG. Seymour and Thomas [8] proved that the
bramble number of a graph is its tree width plus one.

The main result of the section is the following theorem, which shows that if we want to find a bramble
whose size is polynomial in the number of vertices, then the maximum order we can expect is roughly the
square root of the tree width:

Theorem 8.

(1) Every n-vertex graph G of tree width k has a bramble of order Ω(k1/2/ log2k) and size O(k3/2 · lnn).

(2) There is a family(Gk)k≥1 of graphs such that:

• |V(Gk)| = O(k) and|E(Gk)| = O(k) for every k≥ 1;

• tw(Gk) ≥ k for every k≥ 1;

• for everyε > 0 and k≥ 1, every bramble of Gk of order at least k1/2+ε has size at least2Ω(kε );

• in every bramble of Gk, the ratio of the size and the depth is O(k1/2).

The proof of the first part of Theorem 8 is based on the characterization of tree width by balanced
separators and uses a result of Feige et al. [2] on the linear programming formulation of separation prob-
lems. A similar approach is used in [5] to find an embedding in agraph with large tree width; some of the
arguments are repeated here for the convenience of the reader. A separatorof a graphG is a partition of
the vertices into three classes(A,B,S) (S 6= /0) such that there is no edge betweenA andB. A k-separator
is a separator(A,B,S) with |S| = k. Given a setW of vertices and a separator(A,B,S), we say thatS is a
balanced separator(with respect toW) if |W∩C| ≤ |W|/2 for every connected componentC of G\S. The
tree width of a graph is closely connected with the existenceof balance separators:

Lemma 9 ([6], [3, Section 11.2]).

(1) If G(V,E) has tree width greater than3k, then there is a set W⊆V of size exactly2k+1 having no
balanced k-separator.

(2) If G(V,E) has tree width at most k, then every W⊆V has a balanced(k+1)-separator.

Thesparsityof the separator(A,B,S) (with respect toW) is defined as

αW(A,B,S) =
|S|

|(A∪S)∩W| · |(B∪S)∩W| .

We denote byαW(G) the minimum ofαW(A,B,S) for every separator(A,B,S). It is easy to see that for
every connectedG and nonemptyW, 1/|W|2 ≤ αW(G) ≤ 1/|W|. For our applications, we need a setW
such that the sparsity is close to the maximum possible, i.e., Ω(1/|W|). The following lemma shows that
the non-existance of a balanced separator can guarantee theexistence of such a setW:

Lemma 10. If |W| = 2k+1 and W has no balanced k-separator in a graph G, thenαW(G) ≥ 1/(4k+1).
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Proof. Let (A,B,S) be a separator of sparsityαW(G); without loss generality, we can assume that|A∩W| ≥
|B∩W|, hence|B∩W| ≤ k. If |S| > k, thenαW(A,B,S) ≥ (k+1)/(2k+1)2 ≥ 1/(4k+1). If |S| ≥ |(B∪
S)∩W|, thenαW(A,B,S) ≥ 1/|(A∪S)∩W| ≥ 1/(2k+1). Assume therefore that|(B∪S)∩W| ≥ |S|+1.
Let S′ be a set ofk−|S| ≥ 0 arbitrary vertices ofW\ (S∪B). We claim thatS∪S′ is a balanced separator of
W. Suppose that there is a componentC of G\(S∪S′) that contains more thank vertices ofW. Component
C is either a subset ofA or B. However, it cannot be a subset ofB, since|B∩W| ≤ k. On the other hand,
|(A\S′)∩W| is at most 2k+1−|(B∪S)∩W|− |S′| ≤ 2k+1− (|S|+1)− (k−|S|)≤ k.

Remark11. Lemma 10 does not remain true in this form for largerW. For example, letK be a clique of
size 3k+1, let us attachk degree one vertices to a distinguished vertexx of K, and let us attach a degree one
vertex to every other vertex ofK. LetW be the set of these 4k degree one vertices. It is not difficult to see
thatW has no balancedk-separator. On the other hand,S= {x} is a separator with sparsity 1/(k(3k+1)),
henceαW(G) = O(1/k2).

Let W = {w1, . . . ,wr} be a set of vertices. Aconcurrent vertex flow of valueε is a collection of|W|2
flows such that for every ordered pair(u,v) ∈ W×W, there is a flow of valueε betweenu andv, and
the total amount of flow going through each vertex is at most 1.A flow betweenu andv is a weighted
collection ofu−v paths. Au−v path contributes to the load of vertexu, of vertexv, and of every vertex
betweenu andv on the path. In the degenerate case whenu = v, vertexu = v is the only vertex where the
flow betweenu andv goes through, that is, the flow contributes to the load of onlythis vertex.

The maximum concurrent vertex flow can be expressed as a linear program the following way. For
u,v∈W, letPuv be the set of allu−vpaths inG, and for eachp∈Puv, let variablepuv denote the amount
of flow that is sent fromu to v alongp. Consider the following linear program:

maximizeε
s. t.

∑
p∈Puv

puv ≥ ε ∀u,v∈W

∑
(u,v)∈W×W

∑
p∈Puv:w∈p

puv ≤ 1 ∀w∈V (LP1)

puv ≥ 0 ∀u,v∈V, p∈ Puv

The dual of this linear program can be written with variables{ℓuv}u,v∈W and{sv}v∈V the following way:

minimize ∑
v∈V

sv

s. t.

∑
w∈p

sw ≥ ℓuv ∀u,v∈W, p∈ Puv (∗)

∑
(u,v)∈W×W

ℓuv ≥ 1 (∗∗) (LP2)

ℓuv ≥ 0 ∀u,v∈W

sw ≥ 0 ∀w∈V

We show that if there is a separator(A,B,S) with sparsityαW(A,B,S), then (LP2) has a solution with value
at mostαW(A,B,S). Setsv = αW(A,B,S)/|S| if v∈ S andsv = 0 otherwise; the value of such a solution
is clearlyαW(A,B,S). For everyu,v∈W, setℓuv = minp∈Puv ∑w∈psv to ensure that inequalities (*) hold.
To see that (**) holds, notice first thatℓuv ≥ αW(A,B,S)/|S| if u ∈ A∪S, v ∈ B∪S, as everyu− v path
has to go through at least one vertex ofS. Furthermore, ifu,v∈ Sandu 6= v, thenℓuv ≥ 2αW(A,B,S)/|S|
since in this case au−v paths meetsS in at least two vertices. The expression|(A∪S)∩W| · |(B∪S)∩W|
counts the number of ordered pairs(u,v) satisfyingu ∈ (A∪S)∩W andv ∈ (B∪S)∩W, such that pairs
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with u,v∈ S∩W, u 6= v are counted twice. Therefore,

∑
(u,v)∈W×W

ℓuv ≥ (|(A∪S)∩W| · |(B∪S)∩W|) · αW(A,B,S)

|S| = 1,

which means that inequality (**) is satisfied.
The other direction is not true: a solution of (LP2) with valueα does not imply that there is a separator

with sparsity at mostα. However, Feige et al. [2] proved that it is possible to find a separator whose sparsity
is greater than that by at most aO(log|W|) factor:

Theorem 12 (Feige et al. [2]). If (LP2) has a solution with valueα, then there is a separator with sparsity
O(α log|W|).

Now we are ready to prove the first part of Theorem 8. In the proof we use the following form of the
Chernoff Bound to bound the probability of certain events:

Theorem 13 ([1]). Let X1, X2, . . . , Xn be independent0-1 random variables withPr[Xi = 1] = pi . Denote
X = ∑n

i=1Xi andµ = E[X]. Then

Pr[X ≥ (1+ β )µ ]≤
{

exp(−β 2µ/3) for 0 < β ≤ 1,
exp(−β 2µ/(2+ β )) for β > 1.

Lemma 14. Let k≥ 2, and let G be a graph of tree width greater than3k. Then G has a bramble of order
Ω(

√
k/ log2k) and size O(k3/2 logn).

Proof. SinceG has tree width greater than 3k, by Lemma 9, there is a subsetW0 of size at most 2k+ 1
that has no balancedk-separator. By Lemma 10,αW0(G) ≥ 1/(4k+1)≥ 1/(5k). Therefore, Theorem 12
implies that the dual linear program has no solution with value less than 1/(c05k log(2k+1)), wherec0 is
the constant hidden by the bigO notation in Theorem 12. Letc be a constant such that 1/(c05k log(2k+
1)) ≥ 1/(cklnk) for k ≥ 2 (here lnk denotes the natural logarithm ofk). By linear programming duality,
there is a concurrent flow of value at leastα := 1/(cklnk) connecting the vertices ofW0; let puv be a
corresponding solution of (LP1).

LetW ⊆W0 be a subset ofk vertices. For each pair of vertices(u,v) ∈W×W, we define a probability
distribution onPuv by setting the probability ofp∈ Puv to be

puv

∑p′∈Puv(p′)uv ≤ puv

α
.

We construct a brambleB containing⌊k3/2⌋⌊lnn⌋ sets. Setd = ⌊k3/2⌋ ands := ⌊
√

k lnk⌋. Let us
select uniformly and independentlyd random subsetsS1, . . . ,Sd ⊆ W, each of sizes. For eachSi , let
us select uniformly at random a vertexzi ∈ W \Si . For eachSi , we construct a collectionBi of ⌊lnn⌋
setsBi,1, . . . ,Bi,⌊lnn⌋ the following way. IfSi = {ui,1, . . . ,ui,s} ⊆ W, thenBi, j is constructed by selecting
a random path from each ofPziui,1, Pziui,2, . . . , Pziui,s according to the probability distribution defined
above and taking the union of thesespaths. Clearly,Bi, j is a connected set: each path containszi .

We claim that with high probability, the sets inB =∪d
i=1Bi form a bramble. IfSi andSi′ have nonempty

intersection, then the setsBi, j andBi′, j ′ have nonempty intersection as well. The probability that random
subsetsSi andSi′ are disjoint is at most

(k−s
s

)

(k
s

) =
k−s

k
· k−s−1

k−1
· · · · · k−2s+1

k−s+1
≤
(

1− s
k

)s
≤ exp

(

−s2

k

)

≤ exp(−4lnk) ≤ 1
k4 ,

if k is sufficiently large. There are
(d

2

)

≤ ⌊k3/2⌋2 pairs{Si,Si′}, thus by the union bound, theSi ’s pairwise
touch by probability at least 1−1/k.

To bound the order of the brambleB, we show that with high probability, each vertex is contained in
at most 24ckln2k · lnn sets ofB (wherec is the universal constant defined at the beginning of the proof).
First, we show that the following event holds with high probability:
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(E1) For everyx,y∈W, there are at most 12 lnk values ofi such thatzi = x andy∈ Si.

Fixing x, y, andi, let us bound the probability thatzi = x andy∈ Si . If x= y, then this event has probability
0; otherwise, its probability is exactly(1/k) · (s/(k−1)). Thus

Pr
(

zi = x,y∈ Si
)

≤ 1
k
· s
k−1

≤ 1
k
· 2

√
klnk
k

=
2lnk

k3/2
.

Fixing x andy, the probability that this happens for more than 12lnk values ofi (i.e., more than 6 times the
expected number of times) can be bounded using the Chernoff Bound (Theorem 13 withβ = 5):

Pr
(

|i : zi = x,y∈ Si | ≥ 12lnk
)

≤ e−
50
7 lnk ≤ 1

k3 .

There arek2 pairsx,y∈W thus by the union bound, event (E1) holds with probability atleast 1−1/k.
For a vertexv, andx,y ∈ W, let γx,y(v) be the total weight of thex− y paths going throughv in the

solution for (LP1), that is,γx,y := ∑p∈Pxy:v∈p pxy. Let us fix the setsS1, . . . , Sd and the verticesz1, . . . , zd,
and assume that (E1) holds. LetSi = {ui,1, . . . ,ui,s}. As Bi, j is the union of random paths fromPzi ,ui,1, . . . ,
Pzi ,ui,s, the probability thatBi, j containsv is at most∑s

ℓ=1γzi ,si,ℓ(v)/α. Thus the expected number of sets in
Bi that containv is at most⌊lnn⌋∑s

ℓ=1 γzi ,si,ℓ(v)/α. Summing for every 1≤ i ≤ d and using the assumption
that (E1) holds, the expected number of sets that contain a givenv is at most

⌊lnn⌋
d

∑
i=1

s

∑
ℓ=1

γzi ,si,ℓ(v)/α ≤ 12lnk · ⌊lnn⌋ ∑
x,y∈W

γx,y(v)/α ≤ 12lnk · ⌊lnn⌋/α ≤ 12ckln2k · lnn.

If S1, . . . , Sd are fixed, the number of sets that contain a vertexv can be expressed as the sum ofd⌊lnn⌋
independent 0-1 random variables. Hence we can apply the Chernoff Bound (Theorem 13 withβ = 1) to
show that the probability that vertexv is covered by too many sets is at most

Pr
(

|B∈ B : v∈ B| ≥ 24ckln2k · lnn
)

≤ exp
(

−4k ln2k · lnn
)

≤ 1
n2 ,

if k is sufficiently large. Thus by the union bound, with high probability every vertexv is contained in at
most 24ckln2k · lnn sets ofB. Therefore, brambleB can be covered only with at least

⌊k3/2⌋⌊lnn⌋/(24ckln2k · lnn) = Ω(
√

k/ log2k)

vertices, which gives the required lower bound on the order.

Remark15. The size of the bramble in Lemma 14 depends not only onk, but onn as well. Therefore, this
construction does not answer the stronger form of the question when we require a bound on the size that
depends only onk. Using completely different techniques, we were able to prove a version of Lemma 14
where the order is onlyΩ(k1/3), but the size isO(k2/3) and hence independent ofn.

The second part of Theorem 8 is based on the observation that in bounded-degreegraphs, every bramble
with order significantly greater than

√
n must have exponential size. There are bounded-degree graphs

with tree width linear inn (e.g., graphs with positive vertex expansion); for such graphs the order of a
polynomial-size bramble is at most

√
n.

Lemma 16. Let G be an n-vertex graph of maximum degree d, and letB be a bramble in G of order
greater than

⌈

c ·n1/2+ε⌉ for some c,ε > 0. Then

|B| ≥ exp(c ·nε/(d+1)) .

Proof. SupposeB has a setB of cardinality at mostc · n1/2/(d + 1). Let S contain every vertex ofB
and every vertex adjacent to a vertex inB. SetS coversB, sinceB touches every set inB. However,
the cardinality ofS is at mostc · n1/2, contradicting the assumption that the order ofB is greater than
⌈

c ·n1/2+ε⌉. Thus we can assume that everyB∈ B has cardinality at leastc ·n1/2/(d+1).
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Let ℓ :=
⌈

n1/2+ε⌉. We choose verticesv1, . . . , vℓ independently uniformly at random. ForB∈ B and
i ∈ [ℓ], we letXB

i be the random variable that is 1 ifvi ∈ B and 0 otherwise. Then

Pr(XB
i = 1) =

|V(B)|
|V(G)| ≥

c ·n1/2/(d+1)

n
=

c ·n−1/2

(d+1)
.

Hence

Pr

(

ℓ

∑
i=1

XB
i = 0

)

=

(

1− c ·n−1/2

(d+1)

)ℓ

≤ exp

(

−c ·n−1/2

(d+1)
· ℓ
)

≤ exp

(

− c ·nε

(d+1)

)

and thus

Pr
(

{v1, . . . ,vℓ} does not coverB
)

= Pr

(

∃B∈ B :
ℓ

∑
i=1

XB
i = 0

)

≤ ∑
B∈B

Pr

(

ℓ

∑
i=1

XB
i = 0

)

≤ m·exp

(

− c ·nε

(d+1)

)

Since the order ofB is greater thanℓ, we know that the last probability must be 1. Hence

1≤ m·exp(−c ·nε/(d+1)) ,

which impliesm≥ exp(c ·nε/(d+1)).

Lemma 17. Let G be an n-vertex graph of maximum degree d, and letB be a bramble in G. Then the
ratio of the depth and the size ofB is at most(d+1)n1/2.

Proof. Suppose first thatB has a setB of cardinality at mostn1/2/(d+1). As in the proof Lemma 16, this
implies that the order ofB is at mostn1/2, which further implies that ratio of the size and depth is also at
mostn1/2. Thus we can assume that everyB∈ B has cardinality at leastn1/2/(d+1). It follows that the
depth ofB is at least(|B|n1/2/(d+1))/n = |B|/((d +1)n1/2), hence the ratio of the size and the depth
is at most(d+1)n1/2.

Proof of Theorem 8.Part (1) follows from Lemma 14. Part (2) follows from Proposition 1, Theorem 5,
Lemma 16, and Lemma 17.
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