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Abstract
We prove that computing a geometric minimum-dilation graph on a given set of points

in the plane, using not more than a given number of edges, is an NP-hard problem, no
matter if edge crossings are allowed or forbidden. We also show that the problem remains
NP-hard even when a minimum-dilation tour or path is sought; not even an FPTAS exists
in this case.

Keywords: dilation, geometric network, plane graph, tour, path, spanning ratio, stretch
factor, NP-hardness

1 Introduction

One of the fundamental problems in many application areas is the following: Given a set
of locations, P , construct a network G that provides good connections between them at low
cost.

This problem comes in various types, depending on the measures of cost and connection
quality. Also, the setting of the problem can be different. In the graph-theoretic case, the
locations in P are vertices of a given graph G0, and the desired network G must be a subgraph
of G0. In the geometric case, the locations are points in d−dimensional space, and the
required network is a geometric graph G = (P,E) whose edges are straight line segments in
Rd. Formally, the second is a special case of the first, because any geometric graph over P can
be considered as subgraph of the complete graph G0(P ) that results from connecting every
two points of P by a straight edge. Moreover, the geometric case is potentially easier to solve
because properties of Euclidean geometry can be exploited.

In this paper we are studying the geometric case. Our cost model is the number of edges
of the network. Connection quality is measured by dilation in the following way. For any two
points, a, b ∈ P , let |ab| denote their Euclidean distance, and let dG(a, b) be the weight or
length of a shortest path from a to b in G, where the length of a path is given by the sum of
the Euclidean lengths of its edges. Then

δG(a, b) :=
dG(a, b)
|ab|
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denotes the dilation of a, b in G, and

δ(G) = max
a,b∈P, a6=b

δG(a, b)

is the vertex-to-vertex dilation or simply dilation of G. This value is also known as the stretch
factor or the spanning ratio of G (it should not be confused with the geometric dilation
that takes all points of the network into account, vertices and interior edge points alike).
Disconnected graphs have infinite dilation.

The existence of low cost, low dilation geometric networks is guaranteed by the theory of
spanners; see Eppstein [7], Smid [17], or Narasimhan and Smid [16] for surveys. For example,
one can construct in time O(n log n) a network of dilation ≤ 1 + ε that connects n points in
Rd using only O(n) edges, if ε and dimension d are fixed. However, these spanners need not
be optimal with respect to dilation or cost.

In the graph-theoretic case the complexity of finding optimal spanners has received a lot of
attention. Building on previous work by Cai [3], Brandes and Handke [2] proved the following
fact for weighted graphs. For each fixed rational number δ ≥ 4, it is an NP-complete problem
to decide if a given graph H contains a planar subgraph G, whose weight does not exceed a
given bound W , such that for any two vertices v, w of H the relation dH(v, w) ≤ δ · dG(v, w)
holds, where the length of a path is given by the sum of its edge weights. Cai [3] and
Cai and Corneil [4] have studied the problem of finding tree spanners of dilation ≤ δ in
weighted graphs. They proved that the decision problem is NP-complete for any δ ≥ 4,
but polynomially solvable for δ = 2, while the case δ = 3 seems to be open. Fekete and
Kremer [10] have considered the same problem for unweighted planar graphs. They proved
that it is NP-hard to find the minimum dilation δ for which a tree spanner exists. But,
surprisingly, the existence of a tree spanner of dilation 3 can be decided in polynomial time.

None of the results on the graph-theoretic case carries over to the geometric case, leav-
ing wide open the complexity of computing optimal geometric spanning networks, even in
dimension 2.

In 2005, Eppstein and Wortman [8] showed how to compute, in expected time O(n log n),
a star of minimum dilation for n points. Then, since 2006, four hardness results were inde-
pendently obtained and made public, in the following order:

(1) Gudmundsson and Smid [12] proved that it is NP-hard to find a δ-spanner with ≤ m
edges in a given geometric graph, for given bounds of δ and m.

(2) Klein and Kutz [14] showed that the following problem is NP-hard: Given a finite set
P of n points in the plane and a dilation bound δ, does there exist a (plane) geometric
graph over P with b5920

5919 · n− 7628
5919c many edges and dilation ≤ δ?

(3) Cheong, Haverkort, and Lee [5] proved that it is NP-hard to decide if the minimum
(plane) dilation tree of a finite point set in the plane has a dilation ≤ δ.

(4) Giannopoulos, Knauer, and Marx [11] showed that it is NP-hard to decide if there exists
a closed tour (or an open path) of dilation at most δ that connects a given finite point
set in the plane. They also proved that this problem admits no FPTAS, unless P=NP.

None of these problems is known to be in NP.
Results (2) and (3) both imply that it is NP-hard to decide if a given finite point set

in the plane admits a geometric spanner of ≤ m edges and dilation ≤ δ. This, in turn,
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implies result (1). Results (2), (3), and (4) are logically independent. Also, the proofs work
in different ways. While (1) is shown by reduction from 3SAT, (2) and (3) reduce from
Partition, but use different constructions. Fact (4) is based on HamiltonianCircuit for
grid graphs.

Each result is interesting in its own right. Result (4), because tours and paths are rather
simple structures. Fact (3) on trees is in sharp contradistinction to the complexity of con-
structing minimum spanning trees; in addition, it solves an open problem of D. Eppstein’s
survey chapter [7].

Result (2) shows that hardness remains if a few more edges are allowed. This is interesting
because Aronov et al. [1] have shown that a small number of extra edges matter a lot in
lowering the dilation. In fact, each tree containing the vertices of a regular n−gon has a
dilation of Ω(n), as was shown by Ebbers-Baumann et al. [6] and in [1], but with n − 1 + k
edges, where 0 ≤ k < n, a dilation of only O(n/(k + 1)) can be achieved, which is optimal.
Results (2) and (3) also hold for plane graphs, that is, for geometric graphs without edge
crossings.

In view of the recent result by Mulzer and Rote [15] on the minimum weight triangulation,
it would be interesting to know if is it also NP-hard to construct the minimum dilation
triangulation of a given point set in the plane. While this is certainly suggested by the above
results (1)–(4), it is not implied. It remains to be seen if one the proof techniques of (1)–(4)
can be generalized to cover triangulations, too.

This paper presents the extended versions of the results (2)1 and (4).
More precisely, we assume that we are given a set P of n points in the plane and an upper

dilation bound δ ≥ 1. By a graph over P we mean a geometric graph G = (P,E) with a
set E of straight edges. A Hamiltonian circuit over P is a closed tour that visits each vertex
exactly once. A Hamiltonian path is a circuit minus one edge.

We show that the following decision problems are NP-hard. Moreover, none of the prob-
lems DilationTour and DilationPath admits an FPTAS.

1. GraphCompletion: Given a geometric graph G = (P,E), is it possible to add ≤
2
11 |E| − 4

11 edges such that the dilation of the resulting graph is at most 7?

2. DilationGraph: Is there a geometric graph G = (P,E) of dilation δ(G) ≤ 7 with
|E| ≤ b5920

5919 · n− 7628
5919c?

3. PlaneDilationGraph: Is there a plane geometric graph with the same properties?

4. DilationTour : Is there a Hamiltonian circuit G on P of dilation δ(G) ≤ δ?
5. DilationPath : Is there a Hamiltonian path G on P of dilation δ(G) ≤ δ?

Since edges can always be added without increasing the dilation, Facts 2 and 3 imply
NP-hardness of the following problem: Given a finite point set P and upper bounds δ and e,
is there a (plane) geometric graph over P of dilation ≤ δ and ≤ e many edges?

1In the conference version [14] of (2) it was also shown that the minimum dilation tree can contain edge
crossings, solving an open problem from Eppstein [7]. However, a smaller example was later given in [5], so
that we do not include our construction here.
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2 Minimum-dilation graphs

In this section we are proving that both DilationGraph and PlaneDilationGraph are
NP-hard problems.

As a preparation we first provide, in Subsection 2.1, a result on problem GraphCom-
pletion. It is NP-hard to decide if the dilation of a given geometric graph G = (P,E) can
be decreased below a given bound by inserting at most 2

11 |E| − 4
11 new edges. This result

complements a positive finding by Farshi et al. [9] that a single edge, whose insertion reduces
the dilation as much as possible, can be found in time O(n4) time, and (2 + ε)−approximated
in time O(nm+ n2(log n+ ε−6)).

2.1 Adding edges to a geometric graph

First we introduce the main idea of our construction.
Assume we are given the three line segments au and vc of length 4 each, and bd of length 9,

as shown in Figure 1. Suppose we were allowed to add two more edges, with four new vertices,
in such a way that the resulting graph has the smallest possible dilation. If we used one of
the the two extra edges to connect au to vc, and the other for connecting au and to bd, the
shortest path distance between c and d would be at least

d(c, d) ≥ |cv|+ |vu|+ |ud| ≥ 5 +
√

26 > 10,

so that a dilation > 10 would result. It is more efficient to connect bd to au and to vc, and
the unique best way to do this is by using the vertical edges xx′ and yy′ depicted in Figure 1.
This yields a dilation of 7, attained by each of the vertex pairs (a, b), (u, v), and (c, d). Now

3

3

3
1 1

1 1
a

b

u v c

d

x

x′

y

y′

Figure 1: Only by adding edges xx′ and yy′ can a dilation of 7 be achieved.

let us modify this configuration in the following way. We enlarge the gap between u and
v by moving each of these points by a distance of η ≤ 1/24 outwards; see Figure 2. This

3

3

3

1

1− η 1− η

a

b

u v c

d

x

x′

y

y′x′′ y′′

√
1 + (10η)2

10η10η

H

Figure 2: In network H one of the two top-down edges can be slanted while the dilation
remains ≤ 7.
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modification gives us some freedom for placing the connecting edges. We keep the upper
vertices x, y on au and vc fixed. But for each of the lower endpoints we consider two options.
In addition to the original vertex x′, we place a new vertex x′′ on edge bd, at a distance of
10η to the left of x′. Similarly, we introduce a new vertex y′′ at a distance 10η to the right
of y′.

Now let’s see what happens if we add the edge xx′, as before, but use yy′′ instead of yy′.
Clearly, the new path length between c, d equals

d(c, d) = 7− (1 + 10η −
√

1 + (10η2)) ≤ 7− 10η + (10η)2. (1)

Because of |cd| = 1, the same upper bound holds for the dilation δ(c, d). While the dilation
between a, b remains equal to 7, we obtain

δ(u, v) =
7− 2η + 10η +

√
1 + (10η)2 − 1

1 + 2η
(2)

≤ 7 + 10η
1 + 2η

(3)

=
7 + 10η
7 + 14η

7 (4)

≤ 7; (5)

observe that (3) holds because η ≤ 1/24 implies
√

1 + (10η)2 − 1 ≤ 2η.
What would happen if both slanted edges xx′′ and yy′′ were used? Then the dilation

between u, v would be

δ(u, v) =
7− 2η + 2 · 10η + 2

√
1 + (10η)2 − 2

1 + 2η
(6)

> 7, (7)

by straightforward calculation. So far, we have shown the following.

Lemma 1 If the network H depicted in Figure 2 is of dilation ≤ 7, then only one of its two
top-down edges can be slanted. A slanted edge saves 1 + 10η −√1 + (10η)2 in path length
between the terminal vertices (a, b resp. c, d) on its respective side.

Now we are prepared to prove the following preliminary result.

Theorem 2 Given a geometric graph G = (P,E), it is NP-hard to decide if one can obtain
a dilation ≤ 7 by adding to G up to ≤ 2

11 |E| − 4
11 new edges without introducing new vertices.

The same is true for plane geometric graphs, where the new edges must not introduce edge
crossings.

Proof: We use reduction from the Partition problem:

Given a set S of s positive integers with
∑

r∈S r = 2·R, for some integer R, decide whether
there exists a subset T1 ⊆ S such that

∑
r∈T1

r = R =
∑

r∈T2
r, where T2 = S \ T1.

The idea is to use one network Hi for each integer ri ∈ S. For the numbers ri in the
prospective subset T1 of S, the left top-down edge of Hi will be slanted, while the right edge
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will be slanted if rj ∈ T2. The savings in path length obtained from a slanted edge of Hi

should correspond to ri in size; thus, we let

ηi := 10−(λ+1) · ri
be the parameter used in the construction of Hi. Here, λ ≥ 10 is a global parameter satisfying

2 s · r2max < 10λ (8)

for the largest number rmax in S. This choice guarantees in particular that the condition
ηi ≤ 1/24 is always fulfilled (if s ≥ 3).

In order to add up the savings on the right and on the left hand side, respectively, we
connect the networks Hi, 1 ≤ i ≤ s, as shown in Figure 3 for s = 4. Two adjacent networks

H1

H2

H3

H4

3

3

1h h

3

10η1

10η2

a1 c1

b4 d4

t1

t′1

t2

t′2

G

Figure 3: Graph G contains one network Hi for each integer ri ∈ S, without the dotted edges.

are joined by vertical edges of length 3. From the terminal vertices a1, c1 of the topmost
network H1, and bs, ds of the bottommost network Hs, edges of length h extend outwards.
Parameter h is defined by

h := 9(s− 1) +
1
2

10−λR− 1
2

10−2λ s r2max (9)

for a reason that will become clear in (14) below. Observe that the negative term is of smaller
absolute value than the preceding positive term.

Now graph G is defined to consist of the solid edges shown in Figure 3.2

Assume that instance S of the partition problem has a solution S = T1 ∪ T2. Then the
sum over all ri in Tj equals R, for j = 1 and j = 2. We add two edges to each Hi in G in the
way described before, that is, for ri ∈ T1 the left top-down edge of Hi is slanted while the
right one is vertical, and vice versa for ri ∈ T2.

2This figure is not quite true to scale. The horizontal edges adjacent to the four outermost vertices are
more than twice as long as the height of the graph, by definition of h.
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By Lemma 1, the path through the resulting graph, G∗, between its leftmost vertices t1
and t′1 is of length

dG∗(t1, t′1) = 2h+ 7s+ 3(s− 1)−
∑
ri∈T1

(
1 + 10ηi −

√
1 + (10ηi)2

)
(10)

≤ 2h+ 10s− 3−
∑
ri∈T1

(
10ηi − (10ηi)2

)
(11)

= 2h+ 10s− 3−
∑
ri∈T1

10−λri +
∑
ri∈T1

10−2λr2i (12)

≤ 2h+ 10s− 3− 10−λ R+ 10−2λ s r2max (13)
= 7 · (4s− 3) (14)
= 7 · |t1t′1|. (15)

Here, (14) follows from the definition of h in (9), and s+ 3(s− 1) = 4s− 3 is the Euclidean
distance between t1 and t′1. Consequently, we obtain

δG∗(t1, t′1) ≤ 7 and, symmetrically, δG∗(t2, t′2) ≤ 7.

The vertices within each network Hi have dilation ≤ 7, by the analysis leading to (5). All
other pairs of vertices of G∗ have dilation far less than 7. Thus, we have shown the following.

Lemma 3 If partition instance S is solvable then we can add 2s edges to graph G = (V,E)
such that the dilation of the resulting graph does not exceed 7.

Conversely, let us assume that we have obtained a dilation ≤ 7 by adding 2s edges to G.
Then each Hi must have received two top-down edges—or its dilation would exceed 7. Thus,
all 2s edges are accounted for. By Lemma 1, only one, of the two edges Hi has received, can
be slanted. As before, let T1 denote the set of all ri ∈ S where the left edge of Hi is slanted.
We want to prove that T1 and T2 := S \ T1 are a solution of partition instance S. Let us
assume that this is not the case. Then,∑

ri∈Tj

ri ≤ R − 1 (16)

must hold for j = 1 or j = 2; let’s suppose it holds for j = 1. This implies

dG∗(t1, t′1) = 2h+ 7s+ 3(s− 1)−
∑
ri∈T1

(
1 + 10ηi −

√
1 + (10ηi)2

)
(17)

≥ 2h+ 10s− 3−
∑
ri∈T1

10ηi (18)

= 2h+ 10s− 3−
∑
ri∈T1

10−λri (19)

≥ 2h+ 10s− 3− 10−λ R+ 10−λ (20)
> 7 · (4s− 3) (21)
= 7 · |t1t′1|. (22)

Here, (20) follows from (16), and (21) is due to the definition of h in (9) and the inequality
10λ > sr2max, which follows from (8). Thus, we obtain δG∗(t1, t′1) > 7, a contradiction.

This proves the following converse of Lemma 3.
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Lemma 4 If the dilation of graph G can be reduced to a value ≤ 7 by adding 2s edges to G,
then partition instance S is solvable.

It remains to ensure that the graph G depicted in Figure 3 can be constructed by a
Turing machine in time polynomial in the bit length of partition instance S, which is in
Ω(s + logR). Clearly, graph G is of combinatorial complexity O(s). All vertices of G have
rational coordinates whose numerators are powers of ten. Due to (8), parameter λ is in
O(log s + logR). Thus, the bit length of the parameters ηi and h, that occur in the vertex
coordinates, lies in O(log s + logR), too. Consequently, the vertices of G have numerators
and denominators consisting of O(log s+ logR) many bits.

Finally, we observe that graph G depicted in Figure 3 has e := 9s+ 2(s− 1) + 4 = 11s+ 2
edges, to which 2s = 2

11e− 4
11 edges have been added.

This concludes the proof of Theorem 2.

2.2 Adding edges to a set of points

Now we prove NP-hardness of the problems DilationGraph and PlaneDilationGraph.
Again, we are presented with an instance S of the Partition problem that involves s positive
integers; but this time we have to construct a point set P , rather than a graph, such that
there exists a low-dilation graph with few edges over P if, and only if, instance S is solvable.

We are going to employ the same construction as in Subsection 2.1, and we shall use again
the numbers ηi and λ as defined in (8). Our point set P is shown in Figure 4. It consists of
sampling points taken from the edges of the graph depicted in Figure 3.

The spacing of the sample points is as follows. In general, two neighboring sample points
are a distance of 10−2 apart. But there are three exceptions to this rule.

• In each substructure Hi, 1 ≤ i ≤ s, the white point on the left hand side is at distance
10ηi to its right black neighbor. Symmetrically, the white point on the right hand side
has distance 10ηi to its left black neighbor. Still, the two black neighbors of each white
point are at distance 10−2 from each other.

• The vertical point sequences leave gaps of width 10−1 at their upper and lower endpoints.

• Let [t1, a1) denote the horizontal outward group of points including t1 but excluding
a1. It contains exactly 913(s − 1) + 1 points, which are a distance of ψ ≈ 10−2 apart;
the precise value of ψ will be defined below. The rightmost point of this group is at
distance 1/3 to its right neighbor, a1. Analogous statements hold for [t′1, b4), (c1, t2],
and (d4, t

′
2].

Lemma 5 For a partition instance S of s integers, point set P consists of 5919s − 4210
points.

Proof: There are 913(s− 1) + 1 points on each of the four horizontal outward groups. Each
structure Hi contains 3 segments of total length 17 that are sampled at density 10−2, which
results in 1703 points, plus the two extra points painted white in Figure 4. Consecutive Hi

are connected by two vertical rows of length 3−2 ·10−1 each, sampled at density 10−2. Thus,
we obtain

|P | = 4 · 913(s− 1) + 4 + s · 1705 + (s− 1) · 2 · 281 = 5919s− 4210. (23)
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3
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1
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10η1
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t′1

t2

t′2

10−1

h

10η1

a1 c1

b4 d4

ψ

1/3

1/3

10−2

Figure 4: A sample P of the graph shown in Figure 3.

Now we proceed by proving the analogue of Lemma 3.

Lemma 6 If partition instance S is solvable then there exists a plane graph of dilation ≤ 7
over vertex set P that contains 5920s− 4212 many edges.

Proof: Suppose that S = T1 ∪ T2 is a solution of the given partition instance. Let graph G
over P be defined as follows. First, we introduce

4 · 913(s− 1) + s · 1702 + (s− 1) · 2 · 280 = 5914s− 4212

edges of length 10−2 that connect neighboring points in each of the horizontal and vertical
groups of sample points; we shall refer to these edges as being “short”. Then the 4 outward
groups are connected, by an edge of length 1/3 each, to the points a1, c1, bs, and ds, respec-
tively; see Figure 4. As before, each Hi receives two top-down edges, exactly one of which is
slanted. The left edge of Hi is slanted if ri ∈ T1 holds, and the right edge, if ri ∈ T2. Finally,
we employ (s− 1) · 2 · 2 edges to connect the vertical point groups to their adjacent horizontal
groups of the structures Hi. Altogether, we have used 5920s− 4212 many edges.

The latter connections are delicate. In order to minimize the overall path length between
t1, t

′
1 and t2, t′2, we use shortcuts, as shown in Figure 5, instead of straight edges between the

points w and b. But the shorter we cut, the larger gets the dilation between w and b ! It is
not hard to verify, using, e. g., Maple, that the biggest saving

κ :=
46
100
−
√( 23

100
)2 +

( 23
100

)2 =
23
50
− 23

100

√
2 (24)
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23/100

13/100

w

b

1/10

√
2 · 23/100

Hi

Figure 5: Using shortcuts to connect vertical to horizontal point groups.

respecting δ(w, b) ≤ 7 can be obtained by using the diagonal that connects the 13th point
below w to the 23rd point to the right of b. Then,

δ(w, b) =
18
5

+
23
10

√
2 ≈ 6.8526.

Now let q be a rational approximation of κ satisfying

|κ− q| < 10−(2λ+1) (25)

We define the distance ψ between neighboring points of the four horizontal outward groups
by

ψ :=
(9 + q)(s− 1) + 1

210−λR− 1
3 − 1

4

(
10−λ + 10−2λsr2max

)
913(s− 1)

; (26)

observe that ψ ≈ 10−2 holds since 9 + q ≈ 9.13 and because the other terms in the numerator
of ψ are bounded in size. The definition of ψ implies for the length h := |t1a1| of each
horizontal outward group

h = (9 + q)(s− 1) +
1
2

10−λR− 1
4
(
10−λ + 10−2λsr2max

)
(27)

because we have to add the 1/3 gap. This completes the definition of graph G. Clearly, G is
crossing-free.

It remains to show that δ(G) ≤ 7 holds. We start with the dilation values that are crucial
for our construction, δG(t1, t′1) and δG(t2, t′2). Taking the shortcuts κ into account we obtain
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dG(t1, t′1) = 2h+ 7s+ 3(s− 1)− 2κ(s− 1)−
∑
ri∈T1

(
1 + 10ηi −

√
1 + (10ηi)2

)
(28)

≤ 2h+ (10− 2κ)(s− 1) + 7− 10−λR+ 10−2λ s r2max (29)

= (28 + 2(q − κ))(s− 1) + 7− 1
2

10−λ +
1
2

10−2λ s r2max (30)

< 28(s− 1) + 7 + 2 · 10−(2λ+1)(s− 1)− 1
2

10−λ +
1
2

10−2λ s r2max (31)

< 28(s− 1) + 7 +
1
10

10−λ − 1
2

10−λ +
1
4

10−λ (32)

< 28(s− 1) + 7 (33)
= 7 · (4s− 3) (34)
= 7 · |t1t′1|. (35)

Here, (29) is analogous to (10)–(13), and (30) follows from (27). Formula (31) is implied
by (25), and (32) is a consequence of (8), which implies 2(s−1) < 10λ and 10−2λ s r2max <

1
210λ.

Similarly, dG(t2, t′2) < 7 · |t2t′2| holds.
Now we turn to the other vertex pairs of G. Clearly, two vertices from horizontal outward

groups can have a dilation only smaller than δG(t1, t′1) resp. δG(t2, t′2).
If both vertices are located in the same substructure Hi then δG(p, q) ≤ 7 holds by

construction, because only the vertex pairs (a, b), (u, v), and (c, d) shown in Figure 1 are local
dilation maxima. If one vertex belongs to Hi and the other to Hi+k, where k ≥ 1, then their
Euclidean distance is at least 3k whereas the shortest connecting path in G has length at most
10k + 3.5 (attained by a topmost and a bottommost point in the middle of each structure);
see Figure 6. So, the dilation stays far below 7. A similar argument applies if both vertices
belong to vertical point groups.

1
3

3

3

1

1.51

p

q

Hi

Hi+k

Figure 6: The shortest path in G between p and q is no longer than 10k + 3.5.

Now assume that one vertex is situated in Hi, whereas the other one lies in a vertical point
group. Among the vertices shown in Figure 5, the maximum dilation, attained by (b, w), is
< 6.86. If we consider, instead of vertex b of Hi, the vertex a of Hi above b (see Figure 1),
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we obtain
δG(w, a) =

( 13
100

+
23
100

√
2 + (7− 23

100
)
) 1

( 1
10 + 1)

≈ 6.6.

All other vertex pairs of this type have a smaller dilation in G. For example, the dilation
between vertex w and the bottommost vertex of the next vertical group above Hi is only
≈ 6.32.

It remains to study the case where one vertex, p, belongs to a horizontal outward group,
and the other, q, to a vertical group; see Figure 7. Suppose that p lies at distance y to the left

H1

H2

H3

H4

a1

1/3

q

p

z

y

r

b1

x1

Figure 7: The dilation between p and q is maximized for p = r and q = b1. Only the left part
of graph G is shown.

of the rightmost vertex r of the horizontal group, and that q lies on a vertical group leading
downwards from Hk, at distance z. Then,

δG(p, q) ≤ f(y, z) =
y + 1

3 + 10k − 3 + z√
(y + 1

3)2 + (4k − 3 + z)2
.

In the definition of function f we ignore the shortcuts and assume that the top-down edges in
the Hi are vertical—which only increases the path length. Function f takes on its maximum
value 6.597 for k = 1 at y = z = 0, that is, for p = r and q = b1.3

This completes the proof of Lemma 6.

3As point r moves from a1 to the left, the dilation δ(r, b1) first increases to a value > 7, but then decreases
again. We left the gap of 1/3 between a1 and r just to make sure that δ(r, b1) < 7 holds.
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Now we prove the analogue claim to Lemma 4. Let S denote a partition instance of size s,
and let P be the point set depicted in Figure 4.

Lemma 7 Suppose there exists a geometric graph G = (P,E) over P such that δ(G) ≤ 7
and |E| ≤ 5920s − 4212. Then partition instance S is solvable. Moreover, there exists a
crossing-free graph with these properties.

Proof: Among all graphs G = (P,E) satisfying δ(G) ≤ 7 and |E| ≤ 5920s − 4212, consider
those that, (i), pareto-minimize the dilations δG(t1, t′1) and δG(t2, t′2). In the set of all graphs
satisfying (i), let G be one of minimum weight, (ii).

First, we argue that G equals the graph we have constructed in the proof of Lemma 6—
up to the fine positions of the two top-down edges in each Hi. To this end, the following
observation is helpful. For two points p, p′, let F (p, p′) denote the ellipse with foci p and p′

whose boundary points z satisfy |pz|+ |zp′| = 7|pp′|.

Lemma 8 Let p, p′ denote two points of P . Then the shortest path connecting p, p′ in G is
contained in F (p, p′). Moreover, if F (p, p′) ∩ P consists only of points situated on the line
through p, p′, but not between p and p′, then (p, p′) is an edge of E.

Proof: Assume that (p, p′) 6∈ E. Each vertex v of the shortest path π, that connects p and
p′ in G, must be contained in F (p, p′), because of

7 ≥ δ(G) ≥ δG(p, p′) =
|π|
|pp′| ≥

|pv|+ |vp′|
|pp′| .

Now assume that all of these vertices are situated on the line L through p, p′ in–say–left-to-
right order (v1, v2, . . . , vr), in such a way that no vi lies between p and p′. If we replace the
edges of π in G with the segments vivi+1, 1 ≤ i ≤ r − 1, the resulting graph over P has the
same number of edges, but a smaller weight than G. Moreover, the dilation of any vertex
pair is at most as large as in G, because the long edges of π can be obtained as concatenation
of shorter, co-linear edges vivi+1. This implies that the dilation values δ(t1, t′1) and δ(t2, t′2),
that were minimal before, remain unchanged, so that the resulting graph still satisfies (i).
But its weight has been reduced—a contradiction to (ii).

For two neighboring points p, p′ of a horizontal or vertical point group of P , the assump-
tions of Lemma 8 are fulfilled because the diameter of F (p, p′) equals 7|pp′| ≤ 7 ·10−2 < 10−1,
so that no point of another group is contained in the ellipse. Consequently, all neighboring
pairs are connected by an edge of G; as calculated in the proof of Lemma 6, as many as
5914s− 4212 edges of G are now accounted for.

The first statement of Lemma 8 also implies the following facts.

HO) Each of the four horizontal outward groups must be linked, by (at least) one edge each,
to the chain of structures Hi.

VE) Each vertical group must be linked, by (at least) two edges each, to its adjacent struc-
tures Hi, Hi+1.

This leaves us with (at most) 2s edges. We claim that each structure Hi must receive
two of them, and that they must be positioned as depicted in Figure 2. Figure 8 shows the
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3

3

3

1

1− η 1− η

a

b

u v c

d

x

x′

y

y′x′′ y′′

√
1 + (10η)2

10η
H

10−2

e

Figure 8: In a network H of dilation ≤ 7, the two top-down edges must have their upper
endpoints at x, y, and their lower endpoints at x′, x′′ and y′, y′′, correspondingly.

discretized version of a structure H. With the solid edges xx′ and yy′′ we would have dilations
δ(a, b) = 7, δ(c, d) < 7, and δ(u, v) < 7. Instead of edge xx′, let us now consider an edge e
whose upper endpoint lies k points to the left of x. Since the length of e exceeds the length
of the old edge xx′ by at least √

1 + 10−4 − 1 ≥ 2
5

10−4, (36)

the lower endpoint of e can be at most k−1 points to the right of x′, or δ(a, b) would become
bigger than 7. So, the path length between u and v increases by at least 10−2 plus 4 · 10−5.
Since η is by some powers of ten smaller than these numbers, the dilation between u and
v would be pushed above 7, unless edge yy′ is also repositioned in such a way that d(u, v)
shrinks by at least 2 · 10−2. But then d(c, d) grows by the same amount, causing δ(c, d) to
exceed 7. Similar arguments show that the upper endpoint of edge xx′ cannot be moved to
the right. The same holds on the right hand side of H. Consequently, each Hi must receive
two top-down edges whose upper endpoints are in the intended positions. It is easy to see
that there are exactly two choices for their lower endpoints, x′, x′′ and y′, y′′. Now, Lemma 1
implies that only one top-down edge can be slanted.

Having established where the edges of G are located, we take a closer look to the way the
four outward groups and the 2(s− 1) vertical groups are connected. By statement HO from
above, exactly one edge connects the horizontal group of point r shown in Figure 7 to the
rest of the graph. If this edge is co-linear with the horizontal group containing point a1 then
it must be the edge ra1, because G is of minimum weight; here the same argument as in the
proof of Lemma 8 applies.

If not, the shortest path from r to a1 would pass through x1, causing δ(r, a1) to be larger
than (3 + 3)/(1/3) = 18.

Now let us consider a one-edge connection between a vertical group and the adjacent
structure Hi; refer to Figure 5. A shortcut saving more than κ on path length dG(t1, t′1)
would cause δG(w, b) to be greater than 7. A shortcut saving less could be adjusted to save
exactly κ. This would decrease dG(t1, t′1) without increasing δ(G), which is impossible by the
minimality property (i) of G. So, G contains exactly the shortcuts depicted in Figure 5.

At this point, we have seen that G equals the crossing-free graph we have constructed in
the proof of Lemma 6—up to the fine positioning of the two top-down edges in each Hi. We
claim that the positions of these edge correspond to a solution of partition instance S. As
in (16), let T1 denote the set of all numbers ri ∈ S where the left edge of Hi is slanted. For
the sake of a contradiction, let us assume that∑

ri∈T1

ri ≤ R − 1 (37)
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holds. Then,

dG(t1, t′1) = 2h+ 7s+ 3(s− 1)− 2κ(s− 1)−
∑
ri∈T1

(
1 + 10ηi −

√
1 + (10ηi)2

)
(38)

≥ 2h+ (10− 2κ)(s− 1) + 7− 10−λR+ 10−λ (39)

= (28 + 2(q − κ))(s− 1) + 7 +
1
2

10−λ − 1
2

10−2λ s r2max (40)

≥ 28(s− 1) + 7− 2 · 10−(2λ+1)(s− 1) +
1
2

10−λ − 1
2

10−2λ s r2max (41)

≥ 28(s− 1) + 7− 1
10

10−λ +
1
2

10−λ − 1
4

10−λ (42)

> 28(s− 1) + 7 (43)
= 7 · (4s− 3) (44)
= 7 · |t1t′1|, (45)

which gives the desired contradiction. We observe that (39) follows from (37), as in (17)–
(20). Estimate (40) is a consequence of the definition of h in (27), and (41) is implied by (25).
Finally, (42) is obtained in the same way as (32).

This completes the proof of Lemma 7.

Now we can prove our main result. As in the introduction, let

e(n) :=
⌊5920

5919
· n− 7628

5919

⌋
.

Theorem 9 The decision problems DilationGraph and PlaneDilationGraph are NP-
hard. More precisely, given a set P of n points in the plane, it is NP-hard to decide if there
exists a (plane) geometric graph G = (P,E) such that δ(G) ≤ 7 and |E| = e(n).

Proof: We start with a Partition instance S of s numbers, and construct the set P of
n := 5919s − 4210 points addressed in Lemma 5. This can be done by a Turing machine
in time polynomial in the input size of S; in addition to the arguments given at the end of
Subsection 2.1 we point out that the rational approximation q of κ, the only irrational number
involved, can be constructed in time O(λ), by Newton’s method; see (24) and (25).

Thanks to Lemma 6 and Lemma 7, S admits a partition if, and only if, there exists a
(plane) graph over P with 5920s− 4212 edges, whose dilation is at most 7. Now we observe
that the number of edges can also be written as

5920s− 4212 = n+ s− 2 = n +
n+ 4210

5919
− 2 =

5920
5919

n− 7628
5919

,

which completes the proof.

3 Minimum-dilation tour (and path)

In this section we prove that both DilationTour and DilationPath are NP-hard.
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Figure 9: A grid graph G, its smallest enclosing rectangle R, and the point-sets (‘handles’) S and T .

3.1 Reduction

For a point a ∈ R2, we denote by a(1) and a(2) its x- and y-coordinate, respectively.
Let G∞ be the infinite graph whose vertex set contains all points of the plane with integer

coordinates and in which two vertices are connected if and only if the Euclidean distance
between them is equal to 1. A grid graph is a finite, node-induced subgraph of G∞. Note
that a grid graph is completely specified by its vertex set. Let HamiltonianCircuit be
the problem of deciding whether a given grid graph has a Hamiltonian circuit. It is well-
known that HamiltonianCircuit is NP-hard [13]. We reduce HamiltonianCircuit to
DilationTour. As an initial step, we adjust the input instances of HamiltonianCircuit
as follows.

Let G be a grid graph with vertex set V and |V | = n. Using V , we construct a point set
W that will be used later in the reduction. We assume that G has no 0- or 1-degree vertices
and that it is connected since otherwise there is no Hamiltonian circuit in G. Both properties
can be checked in polynomial time. Consider the smallest enclosing rectangle R of G, see
Fig. 9. Since G is finite and connected, and |V | = n, rectangle R has finite dimensions and
its height is at most n. Let v ∈ V be the vertex that is closest to the lower-left corner of R
and lies on the left vertical edge of R. Then v must be a degree-2 vertex and have a neighbor
on the same edge of R; let u be this vertex. Clearly, vertex u is above v. We append two
point-sets S and T , called handles, to G as shown in Fig. 9. Handle S consists of a point s0
at horizontal distance 1 from u and a vertical sequence of n + 1 points s1, . . . , sn+1 with a
gap of distance 1 between consecutive points. Set T is defined similarly. We have

S = {s0 = (u(1)− 1, u(2))} ∪ {si = (u(1)− 2, u(2) + i− 1) | i = 1, . . . , n+ 1}

and

T = {t0 = (v(1)− 1, v(2))} ∪ {ti = (v(1)− 2, v(2)− i+ 1) | i = 1, . . . , n+ 1}.

Let W = V ∪ S ∪ T . We have that |W | = 3n + 4. Copies of W will be included later in
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P . Consider the points s, t ∈W with s = sn+1 and t = tn+1. We have that |st| = 2n+ 1. We
start with a simple lemma.

Lemma 10 There exists a Hamiltonian s-t path on W with length 3n+ 3 if an only if there
exists a Hamiltonian circuit in G.

Proof: Assume that there exists a Hamiltonian s-t path on W with length 3n+ 3. Since W
contains 3n+ 4 points, any such path must contain only edges with length 1. Every point si
with i = 2, . . . , n is at distance one only from two points, namely, si+1 and si−1. Hence, the
s-t path must contain the edges si+1si and sisi−1. Similarly, the path must contain the edges
ti+1ti and titi−1 for i = 2, . . . , n. The edge s1t1 cannot be in the path, since, otherwise, the
path cannot visit all points in W . Thus, s1 and t1 have to connect to s0 and t0 respectively.
Similarly, s0t0 cannot be in the path, and so, the edges s0u and t0v must be in the path.
The remaining of the s-t path must have a length of 3n+ 3− 2(n+ 2) = n− 1 and visit the
remaining n − 2 vertices of V starting from u and ending at v. This implies that there is a
u-v Hamiltonian path HG in G. Since u and v are neighbors in G, edge uv and the u-v path
HG form a Hamiltonian circuit in G.

Conversely, assume that there is a Hamiltonian circuit in G. Since v has degree two, any
such circuit contains uv. Thus, there is a u-v Hamiltonian path on V with length n− 1. We
append to the latter path the edges s0u, s1s0, t0v, t1t0, and si+1si, sisi−1, ti+1ti, titi−1 for
i = 2, . . . , n. This forms a Hamiltonian s-t path on W with length 3n+ 3.

Next, using W we construct a point set P such that, for some δ to be defined later, a
Hamiltonian circuit on P with dilation at most δ exists if and only if G has a Hamiltonian
circuit.

First, we choose points on a rectangle R′ of width α and height β, with

α = (2n2 + 1)n6 + 2n2n3 and β = 2n6 + 3n3.

Let a, b, c, and d be the upper-right, upper-left, bottom-left, and bottom-right corner points
of R′ respectively. Consider a straight-line segment of length n6. We choose a set B of points
on the segment at regular intervals such that the distance between any two consecutive points
is n/2. We have that |B| = 2n5 + 1. We use B as a building block: starting from a and
going on the rectangle in anti-clockwise direction, we place copies of B, simply referred to as
blocks, at regular intervals such that the distance between two blocks is n3; see Fig. 10 (to
avoid cluttering, the edges of the rectangle are not shown). Let K,L,M, and N be the sets
of points on the right, upper, left, and lower sides of the rectangle respectively (we define
the corner points to be in L and N). Sets K and M are unions of two vertical blocks each,
while L and N are unions of 2n2 + 1 horizontal ones. The right-most and left-most point of
a horizontal block are called the right and left end-points of the block. Similarly, the lower
and upper-most point of a vertical block are called the lower and upper end-points of the
block. Let K = K1 ∪K2, where K1,K2 is the upper and lower block respectively, as shown
in Fig. 10. Also, let e be the lower end-point of K1 and f be the upper end-point of K2. In
the gap between K1 and K2, we place point set W such that s and t lie on the right side of
the R′ and V ⊂W is to the right of R′. Additionally, we require that

|es| = |ft| = (n3 − |st|)/2 = (n3 − 2n− 1)/2.
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Figure 10: Constructing point set P .

Since the height of the minimum enclosing rectangle R of V is at most n, the distance between
any point of a block and any point of W is at least (n3 − 2n− 1)/2 as well. A reflected copy
of W , denoted by W ′, is placed between the two blocks (subsets) of M in a similar way.

Let
P = K ∪ L ∪M ∪N ∪W ∪W ′.

We have that |P | = (2n2 + 1)(2n5 + 1) + 2(2n5 + 1) = O(n7).
Let p and q be the ‘middle’ points of L and N respectively, that is,

p = (a+ b)/2 and q = (c+ d)/2.

Also, let

δ =
α+ β − (2n+ 1) + 3n+ 3

β
=
α+ β + n+ 2

β
= 1 +

α

β
+

n+ 2
(2n3 + 3)n3

(46)

= 1 +
(2n2 + 1)n6 + 2n2n3

2n6 + 3n3
+ h(n)

= 1 + n2 +
n3 − n2

2n3 + 3
+ h(n)

= 1 + n2 + g(n) + h(n), (47)

with

g(n) =
n3 − n2

2n3 + 3
and h(n) =

n+ 2
(2n3 + 3)n3

.

Note that g(n), h(n) < 1 for every n ≥ 1.
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Figure 11: The Hamiltonian circuit HP and example positions of points p′ and q′.

Lemma 11 If there is a Hamiltonian s-t path on W with length 3n + 3, then there is a
Hamiltonian circuit on P with dilation at most δ.

Proof: Let HW be a Hamiltonian s-t path on W with length 3n + 3 (Lemma 10). We
construct a Hamiltonian circuit HP on P by simply connecting the points in K,L,M,N
in the ‘canonical’ way along the sides of rectangle R′, as shown in Fig. 11. First, every two
consecutive points in each block are connected by an edge. Second, in L,N , the left end-point
of each block is connected to the right end-point of its immediate neighbor block. Finally,
the upper end-point of K1 and the lower end-point of K2 are connected to points a and d
respectively, while e connects to s and f connects to t; the blocks of M are connected to b, c,
and the point set W ′ in a similar way. We prove that δ(Hp) ≤ δ. Note that any path from p
to q in HP must go through either W or W ′. By the symmetry of the construction of HP ,
we have that

dHP
(p, q) = |pa|+ |ad|+ |dq| − |ef |+ |es|+ |ft|+ dHW

(s, t)
= α+ β − |st|+ dHW

(s, t)
= α+ β − (2n+ 1) + 3n+ 3 = α+ β + n+ 2. (48)

Note that the total length of HP is equal to 2dHP
(p, q).

Using (48) and from the derivation of δ in (46) we have that

δHP
(p, q) =

dHP
(p, q)
|pq| =

α+ β + n+ 2
β

= δ.

We now prove that for any other pair of points p′, q′ ∈ P , δHP
(p′, q′) ≤ δ. We distinguish the

following cases, see Fig. 11:
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(i) p′, q′ lie on opposite sides of R′, or p′ ∈ W and q′ ∈ M (symmetrically, p′ ∈ K and
q′ ∈ W ′), or p′ ∈ W ′ and q′ ∈ W . In this case we have that |p′q′| ≥ |pq|. Since dHP

(p, q) is
exactly half of the total length of HP , this is the maximum distance between any two points,
that is dHP

(p′, q′) ≤ dHP
(p, q). Thus, δHP

(p′, q′) = dHP
(p′, q′)/|p′q′| ≤ dHP

(p, q)/|pq| = δ.

(ii) Either p′, q′ ∈W or p′, q′ ∈W ′. In this case, we have that dHP
(p′, q′) ≤ dHW

(s, t) = 3n+3
and |p′q′| ≥ 1, hence δHP

(p′, q′) ≤ 3n+ 3 ≤ δ, for any n ≥ 4.

(iii) None of the previous two cases apply. We consider two subcases. First, none of p′, q′

is in W ∪W ′. Then the shortest path from p′ to q′ in HP goes on the boundary of R′ with
a possible detour either in W or in W ′. Assume that such a detour goes through W . (The
case where it goes through W ′ is symmetric.) Since we are not in case (i), the path touches
at most one horizontal and at most one vertical side of R′. Thus,

dHP
(p′, q′) < |p′(1)− q′(1)|+ |p′(2)− q′(2)|+ dHW

(s, t) < 2|p′q′|+ 3n+ 3.

Second, one of p′, q′ is in W ∪W ′. Without loss of generality, assume that p′ ∈ W . Then,
either q′ ∈ L ∪K1 or q′ ∈ N ∪K2. Consider again the shortest path from p′ to q′ in HP : it
goes from p′ to either s or t and from there to q′. Assume it goes through s, i.e. s is the last
point of W on this path. Then, by construction, s is closer to q′ than p′ is, i.e. |sq′| ≤ |p′q′|.
As before, the path from s to q′ touches at most one horizontal and at most one vertical side
of R′. Thus,

dHP
(s, q′) < |s(1)− q′(1)|+ |s(2)− q′(2)| < 2|s′q′| ≤ 2|p′q′|.

In total we have

dHP
(p′, q′) = dHP

(p′, s) + dHP
(s, q′) < dHW

(s, t) + 2|p′q′| = 3n+ 3 + 2|p′q′|.

Since we are not in case (ii), |p′q′| ≥ n/2. Therefore, for both subcases we have

δHP
(p′, q′) =

dHP
(p′, q′)
|p′q′| <

2|p′q′|+ 3n+ 3
|p′q′| ≤ 2 +

3n+ 3
n/2

< n2 < δ,

for any n ≥ 4.

Conversely, we now prove the following.

Lemma 12 If there is a Hamiltonian circuit on P with dilation at most δ, then there is a
Hamiltonian s-t path on W with length 3n+ 3.

Proof: Let HP be a Hamiltonian circuit on P with δ(HP ) ≤ δ. We prove that HP must
contain a path from p to q that is ‘locally optimal’ in the sense that firstly, it connects p to
s and t to q in the ‘canonical’ way on the sides of R′ (as it was described in the proof of
Lemma 11), and secondly, it connects s to t via a Hamiltonian path on W with length 3n+3.
In particular, we show that δ is small enough to ensure that the following requirements are
met:

(i) Once inside a block, HP visits all the points of the block before leaving it. To see this,
consider a block B such that Hp has more than one visits in B, i.e., B induces more than one
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Figure 12: Examples of case (iii) in the proof of Lemma 12.

components of Hp. In that case there has to be a vertex pk of B such that pk and its neighbor
pk+1 belong to different visits. This means that the path on HP from pk to pk+1 contains at
least one edge leaving B and at least one edge entering B. Recall that the distance between
any two blocks is at least n3 and that the distance between any block and W or W ′ is at least
|es| = (n3 − 2n− 1)/2. We have that dHP

(pk+1, pk) ≥ 2 · (n3 − 2n− 1)/2 and

δHP
(pk+1, pk) =

dHP
(pk+1, pk)
|pk+1pk| ≥ (n3 − 2n− 1)

n/2
= 2n2 − 4− 2

n

> 2n2 − 6 > n2 + 2 > δ,

for any n ≥ 3.

(ii) Once inside W (or W ′), HP visits all the points of W (or W ′) before leaving it. This
can be seen by using arguments similar to the ones in case (i). We show that if the distance
between two points p′, q′ in W is 1, then p′ and q′ belong to the same visit of W . Clearly,
this implies that there is only one visit. If p′ and q′ belong to different visits, then (arguing
as in the previous case) dHP

(p′, q′) > 2|es| = 2(n3 − 2n− 1) and

δHP
(p′, q′) =

dHP
(p′, q′)
|p′q′| > 2(n3 − 2n− 1) > n2 + 2 > δ,

for any n ≥ 3.

(iii) Any two blocks that are consecutive along the sides of R′ must be ‘connected’ by an edge
in HP , as long as W or W ′ does not lie between the two blocks. To see this, consider a block
B and a neighbor of it, B′, and let p′ and q′ be the endpoints of B and B′ respectively, with
|p′q′| = n3. Assume that HP contains no edge connecting a point of B to a point of B′; see
Fig 12. Then, any path from p′ to q′ in HP must visit some other block B′′ different from B
and B′, or visit one of W and W ′. In the first case, we have dHP

(p′, q′) > n6: if two blocks
are not consecutive, then their distance is greater than n6 (this is true even if the two blocks
are on different sides of R′), hence B′′ is at distance greater than n6 from at least one of B
and B′. For the second case, observe that W ( W ′) is at distance greater than n6 from at
least one of B and B′ (since we have excluded the case when the two blocks are K1 and K2,
or M1 and M2). Thus, δHP

(p′, q′) > n6/n3 = n3 > n2 + 2 > δ, for any n ≥ 2.

(iv) Blocks K1,K2 must be connected to W by an edge in HP ; this holds also for the blocks
in M and W ′. Similarly to the case (iii), assume, for example, that HP contains no edge
‘connecting’ K1 and and W . Then, any path from e to s in HP must visit some other block
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as well. By case (i), once in the latter block, HP has to visit all its points before exiting.
Hence, dHP

(e, s) > n6 and

δHP
(e, s) =

dHP
(e, s)
|es| >

n6

(n3 − 2n− 1)
> n3 > δ,

for any n ≥ 2.

The above requirements assert that HP does not contain ‘long’ edges (jumps) between
any two points of P that belong to different blocks or between a point of a block and a point
of W or W ′. Note that, since all points of a block lie on the same straight-line segment,
the minimum-length Hamiltonian path on a block traverses the points of the block in the
‘canonical’ way, i.e. it has length n6; any detour increases this length by at least n. Also, as
already noted before, s and t are the points of W that are closest to e and f respectively.
Requirement (ii) also asserts that the part of HP inside W (W ′) forms a Hamiltonian s-t path
on W (W ′); let ` be its length. Consider now the pair p, q. By combining all the above, we
have that

dHP
(p, q) ≥ |pa|+ |ae|+ |es|+ `+ |tf |+ |fd|+ |dq| = α+ β − (2n+ 1) + `. (49)

Since δ(HP ) ≤ δ, we have that δHP
(p, q) ≤ δ as well. From the derivation of δ in (46),

and since |pq| = β, this implies that

dHP
(p, q) ≤ α+ β + n+ 2. (50)

From (49) and (50), we have that ` ≤ 3n+ 3. However, any Hamiltonian path on W has
length at least 3n+ 3, and the lemma follows.

Note that all points in P have rational coordinates with numerators and denominators
bounded by a polynomial in n. Also, the construction of P takes O(|P |) = O(n7) time.
By combining Lemmata 10, 11, and 12, we have the following:

Theorem 13 The decision problem DilationTour is NP-hard.

As it is easy to see, this theorem holds also for the decision problem DilationPath by
considering a point set P that contains the ‘middle’ points p and q, the points that lie on R′

to the right side of p and q, and the points in W . The block containing p now has length
n6/2 and only one neighboring block (along the side of R′), which has length n6; the same
is true for the block containing q. In this case, the analogue of Lemma 11 can be proved
similarly by connecting the points of P with the canonical path from p to q on the sides of
R′ and through W . As for the analogue of Lemma 12, note that a Hamiltonian path on P
with dilation at most δ meets the requirements (i)–(iv): the arguments for this are the same
as before since the minimum distance between any two blocks or between a block and W or
between two non-consecutive blocks does not change.

Corollary 14 The decision problem DilationPath is NP-hard.
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3.2 Non-approximability results

The proof of Theorem 13 is based on a reduction from the Hamiltonian Circuit problem in
a grid graph G. As already mentioned above, any Hamiltonian path on W has length at least
3n+3 and, from Lemma 10, this value is achieved if and only if there is a Hamiltonian circuit
in G. On the other hand, if there is no Hamiltonian circuit in G, then any Hamiltonian path
on W has length at least (3n+ 3)− 1 +

√
2: in this case there are two non-adjacent vertices

visited consecutively by the path, and non-adjacent vertices have distance at least
√

2. This
observation implies that the problem of computing a minimum-dilation tour (or path) admits
no FPTAS.

Theorem 15 The minimum-dilation tour (and path) problem does not admit an FPTAS.

Proof: Assume that that there is an FPTAS, i.e., there is an algorithm that, for every ε > 0,
computes in time O((1/ε · n)O(1)) a Hamiltonian circuit HP with dilation δapx satisfying
δapx ≤ (1+ε)δopt, where δopt is the dilation of an optimal tour. Consider any ε < (

√
2−1)/(βδ),

where β, δ are as in the proof of Theorem 13.
Note that δapx ≤ (1 + ε)δ implies that

δapx < δ +
√

2− 1
β

=
α+ β − (2n+ 1) + 3n+ 3 + (

√
2− 1)

β
.

Consider the ‘middle’ points p, q. Since |pq| = β, we have that dHP
(p, q) < α + β − (2n +

1) + 3n + 3 + (
√

2 − 1). It is easy to check that term
√

2 − 1 is small enough to leave no
other alternative to HP but the form imposed by the cases (i), (ii), (iii), and (iv) in the proof
of Theorem 13. Moreover HP must visit W through its the points s and t: if any other
point in W is visited first instead, dHP

(p, q) will increase by at least 2. Hence, HP contains
a Hamiltonian path on W of length 3n+ 3.

On the other hand, if δapx > (1+ε)δ, then δopt > δ. But, for any Hamiltonian circuit H on
P we have that δ(H) ≥ δopt > δ, which, by Lemma 11, implies that there is no Hamiltonian
path of length 3n+ 3 on W .

For the minimum-dilation path problem, we can use the same observation as for Corol-
lary 14.

4 Concluding remarks

We have proved that computing a geometric minimum-dilation graph on a given set of points
in the plane, using not more than a given number of edges, is an NP-hard problem, no matter
if edge crossings are allowed or forbidden. We have also proved that computing a minimum-
dilation (Euclidean) tour or path on a given set of points in the plane is NP-hard as well,
and that both problems do not admit an FPTAS. Does any of these problems have a PTAS?
Note that no constant-factor, polynomial-time approximation algorithms are even known.

In view of the recent result by Mulzer and Rote [15] on the minimum weight triangulation,
is it also NP-hard to construct the minimum dilation triangulation of a given point set?
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