
Eulerian disjoint paths problem in grid graphs is

NP-complete∗

Dániel Marx†

12th December 2003

Abstract

We show that the edge disjoint paths problem is NP-complete in directed

or undirected rectangular grids, even if the union G + H of the supply and the

demand graph is Eulerian.

Keywords: disjoint paths, grids, NP-completeness

1 Introduction

Disjoint paths problems arise naturally in practical applications such as network rout-
ing and VLSI-design. The problem is also interesting from the theoretic point of view:
there are several beautiful good characterization theorems for some restricted cases.
The restriction to planar graphs, and in particular to planar grid graphs is both of
practical and theoretical interest. Here we prove theNP-completeness of a planar case
of the problem, settling an open question of Vygen [6]. This complements the good
characterization theorem of Okamura and Seymour.
In the disjoint paths problem we are given a graph G and a set of source–destination

pairs (s1, t1), (s2, t2), . . . , (sk, tk) called the terminals, and we have to find k disjoint
paths P1, . . . , Pk such that path Pi connects vertex si to vertex ti. There are four
basic variants of the problem: the graph can be directed or undirected, and we can
require edge disjoint or vertex disjoint paths. The problem is often described in terms
of a supply graph and a demand graph, as follows:

Disjoint Paths

Input: The supply graph G and the demand graph H on the same set of
vertices.

Task: Find a path Pe in G for each e ∈ E(H) such that these paths are
pairwise disjoint and path Pe together with edge e forms a circuit.

The graphs G and H can have parallel edges but no loops. For vertex disjoint paths
we allow their endpoints to be the same. In the directed version of the problem both

∗Research is supported by grants OTKA 44733, 42559 and 42706 of the Hungarian National Science

Fund
†Department of Computer Science and Information Theory, Budapest University of Technology

and Economics, H-1521 Budapest, Hungary. dmarx@cs.bme.hu

1

G and H are directed. With a slight abuse of terminology, we say in the directed case
that a demand −→uv ∈ H starts in v and ends in u (since the directed path satisfying
this demand starts in v and ends in u). Moreover, given a solution of the disjoint
paths problem, we identify a demand with the path satisfying it. That is, we say that
“demand α uses supply edge e” instead of “the path satisfying demand α uses edge e”.
An undirected graph is called Eulerian if every vertex has even degree, and a directed
graph is Eulerian if the indegree equals the outdegree at every vertex.
The disjoint paths problem and its variants were intensively studied, for an overview

see [2, 6]. In particular, all four variants of the problem (directed/undirected, edge
disjoint/vertex disjoint) are NP-complete, even when G is planar. In this paper we
consider only the (directed and undirected) edge disjoint paths problem in the grid,
thus henceforth disjoint means edge disjoint.
If there exist disjoint paths in G(V,E) with the given endpoints, then every cut

(V ′, V \ V ′) has to contain at least as many edges from G as from H, otherwise there
would be more demands crossing this cut than edges connecting V ′ and V \ V ′. We
say that the cut criterion holds for G and H if this is true for every cut (V ′, V \ V ′).
In general, the cut criterion is only a necessary condition, but in an important special
case it is also sufficient:

Theorem 1 (Okamura and Seymour, 1981, [5]). Assume that G is planar, undi-
rected, G+H is Eulerian, and every edge of H lies on the outer face of G. The edge
disjoint paths problem has a solution if and only if the cut criterion is satisfied.

A graph is a grid graph if it is a finite subgraph of the rectangular grid. A directed
grid graph is a grid graph with the horizontal edges directed to the right and the
vertical edges directed to the bottom. Clearly, every directed grid graph is acyclic. A
rectangle is a grid graph with n ×m nodes such that vi,j (1 ≤ i ≤ n, 1 ≤ j ≤ m) is
connected to vi′,j′ if and only if |i− i′| = 1 and j = j′, or i = i′ and |j − j′| = 1. The
study of grid and rectangle graphs is motivated by applications in VLSI-layout.
The special case of Theorem 1 when G is a rectangle is investigated in [1]. The

requirement that the edges of H lie on the outer face of G cannot be dropped even
in this restricted case: Figure 1 shows an example where G +H is Eulerian, the cut
criterion holds, but the terminals cannot be connected by edge disjoint paths (it is
left to the reader to verify these claims). In Section 2, we prove that the edge disjoint
paths problem is NP-complete on rectangles even if G+H is Eulerian. This answers
an open question of Vygen [6]. Moreover, this also implies that (unless coNP = NP)
a generalization of Theorem 1 cannot give a good characterization to the case when
we drop the requirement that the terminals have to lie on the outer face.
There are several good characterization theorems in the literature [2, 6] for the

case when G is planar, G+H is Eulerian, and some additional constraint holds (as in
Theorem 1). Previously noNP-completeness result was known for G planar and G+H

Eulerian. To the best of our knowledge, the only negative result for G +H Eulerian
is the theorem of Vygen [7] stating that the disjoint paths problem is NP-complete if
G+H is Eulerian, and G is an undirected (nonplanar) graph or a DAG.
In the directed case, Vygen proved that the edge disjoint paths problem is NP-

complete even if the supply graph G is planar and acyclic [7] or even if G is a directed
rectangle [6], and asked whether the problem remainsNP-complete with the additional
constraint that the graph G+H is Eulerian. We settle this question by proving that
the problem, similarly to the undirected version, is indeed NP-complete.

2

PSfrag replacements

t2, t3

t4, t5

s6

t6

s1, s2, s3 t1, s4, s5

Figure 1: Example showing that Theorem 1 does not hold when the terminals do not
have to lie on the outer face.

2 The reduction

In this section we prove that the edge disjoint paths problem on directed and undirected
rectangle graphs remains NP-complete even in the restricted case when G + H is
Eulerian. First we prove that the problem is NP-complete on directed grid graphs
with G+H Eulerian. Using standard techniques, this result is extended to rectangle
graphs and undirected graphs.
The following observation will be useful:

Lemma 2. In the directed disjoint paths problem, if G + H is Eulerian and G is
acyclic, then every solution uses all the edges of G.

Proof. Assume that a solution is given. Take a demand edge of H and delete from
G +H the directed circuit formed by the demand edge and its path in the solution.
Continue this until the remaining graph contains no demand edges, then it is a sub-
graph of G. Since we deleted only directed circuits, it remains Eulerian, but the only
Eulerian subgraph of the acyclic graph G is the empty graph with no edges, thus the
solution used all the edges.

Proving the NP-completeness of a planar problem is usually done in one of two
ways: either the reduction is from a planar problem (such as planar SAT, planar
independent set etc.) or the reduction constructs a planar instance by locally replacing
crossings with copies of some crossover gadget (as in [3] for planar graph coloring).
Our reduction is none of these two types: there are crossings, but the global structure
of the construction ensures that the crossings “behave nicely”. This resembles the way
[7] proves the NP-completeness of the disjoint paths problem on planar DAGs.

Theorem 3. The edge disjoint paths problem is NP-complete on directed grid graphs,
even if G+H is Eulerian.

Proof. The proof is by polynomial reduction from a restricted case of 1-in-3 SAT,
where a formula is given in conjunctive normal form, and our task is to find a variable
assignment such that in every clause of the formula, exactly one of the three literals is
true. In monotone 1-in-3 SAT every literal is positive (not negated), and in the cubic
version of the problem every variable occurs exactly three times. In [4] it is shown
that monotone, cubic 1-in-3 SAT is NP-complete.
Let n be the number of variables in the given monotone, cubic 1-in-3 SAT formula,

this obviously equals the number of clauses. It can be assumed that every clause
contains three different literals. The reduction is of the component design type: we

3

PSfrag replacements

p1

pn−1

pn

p0

x1

Cn

C1

xn

x2

3rd

2nd

1st

3rd

2nd

1st

3
r
d

3rd

3
r
d

2
n
d

2nd

2
n
d

1
s
t

1st

1
s
t

2nd

3rd

1st

Figure 2: Overview of the reduction. The variable setting gadgets are on the left,
three paths leave each of them to the right and to the bottom. These paths lead to
the satisfaction testing gadgets below.

construct variable setting gadgets and satisfaction testing gadgets, and connect them
in such a way that the disjoint paths problem has a solution if and only if the given
formula is satisfiable (in 1-in-3 sense). The constructed graph G is a grid graph, and
the construction ensures that G+H is Eulerian in the resulting instance.
First we present how the gadgets are connected, the structure of the gadgets itself

will be described later. Going diagonally from top left to bottom right, place a sequence
of n copies of the variable setting gadget. The component corresponding to xn is in the
top left corner. Continue this sequence by n copies of the satisfaction testing gadget
(see Figure 2). Denote by pt the lower right vertex of the component corresponding
to the tth clause, and let p0 be the top left vertex of the component of the first clause.
Three paths leave each variable gadget to the right and three to the bottom, they will
be called the right exits and the lower exits of the gadget. The exits are numbered, the
topmost right exit is the first right exit, and the leftmost lower exit is the first lower
exit. Similarly, the satisfaction testing gadgets have three upper entries (the first is
the leftmost) and three left entries (the first is the topmost). Assume that the literals
in a clause are sorted, the variable of the first literal has the smallest index, i.e., as in
the clause (x1 ∨ x2 ∨ x7). The occurrences of a variable are numbered in such a way
that the first occurrence of the variable is in the clause with the largest index.
The components are connected as follows. If the ith occurrence (i = 1, 2, 3) of

variable xs is the jth literal (j = 1, 2, 3) in clause Ct, then connect the ith right exit of
the component of xs to the jth upper entry of the component of Ct, and similarly with
lower exits and left entries. Each connection is a path in the grid consisting of several
directed edges. The connections are done by first going to the right (below) and then
to below (right), there is only one turn in each connection. There will be exactly 6n
demands: if variable xs appears in clause Ct, then there are two demands that start

4

PSfrag replacements

Ct

pt

pt−1

c′3

b′3

a′3

a′2

b′2
c′2

a′1

b′1

c′1

c3b3a3

a2

b2

c2

a1

b1

c1xc

xb

xa

Figure 3: The paths entering a given satisfaction testing component.

from the component of xs and end in the component of Ct. (The exact location of the
start and end vertices of the demands will be defined later.)
The connections described above can cross each other at a vertex, there may be

several such crossings in the resulting grid graph. Given a solution of the disjoint
paths problem, we call a vertex a bad crossing, if the demand entering this vertex from
the left leaves to the bottom, and the demand entering from above leaves to the right.
(Note that by Lemma 2, exactly two demands go through a crossing). We show by
induction that a solution in this graph cannot contain a bad crossing. Clearly, there
are no crossings to the left and above of the vertex p0. Assume that there are no bad
crossings to the left and above of the vertex pt−1. Figure 3 shows the paths entering
the component of clause Ct, the dashed lines show other possible paths that may cross
these six paths. By the way the literals are ordered in the clause, the six paths entering
a clause component do not cross each other (recall that the component of xn is in the
upper left corner). Furthermore, because of the way the occurrences of a variable are
ordered, the paths leaving a variable component do not cross each other either.
By the induction hypotheses, the same demand goes through vertices c1 and c2,

through vertices b1 and b2, through vertices a1 and a2, through vertices c′1 and c′2,
and so on. For example, the demand going through c1 can leave the path c1c2 only if
there is a bad crossing on c1c2, but there are no bad crossings to the left and above
of pt−1. There are two demands that starts in the component of xc and have Ct as
destination. They cannot leave xc both to the right: only one of them can reach Ct

through the path from c2 to c3, and there is no other way of reaching Ct without a
bad crossing to the left of pt−1. Similarly, the two demands cannot leave both to the
bottom. Thus exactly one of the demands going to Ct leaves to the right and the other
to the bottom, furthermore, these demands leave xc through c1 and c′1. By a similar
argument, this also holds for the components of xb and xa. Clearly, the demand going

5

PSfrag replacements

B

α3, β1

Y, α2, β3

X,α1, β2

A

B

B

Z,α3, β1

Y, α2, β3

X,α1, β2

A A

Z

Figure 4: The variable setting gadget.

through c1 and c2 can reach Ct only through c3, thus there are no bad crossings on
the path from c2 to c3. The demand going through b2 can reach Ct only through b3 or
c3, but since c3 is already used, only b3 remains. Finally, the demand going through
a2 has to enter Ct in a3. Therefore there are no bad crossings above Ct, and a similar
argument shows that there are no bad crossings to the left of Ct. Thus there are no
bad crossings to the left and above of pt, which completes the induction.
Now we describe the gadgets used in the reduction. The variable setting gadget

(Figure 4) has three output edges to the right, and three output edges to the bottom.
On the right of the figure a simplified version of the gadget is shown, which is not a
grid graph, just a planar DAG. The structure of the real gadget is the same, but in
order to make it a grid graph some of the edges have to be twisted and the high-degree
vertices A and B have to be split. We will show how the simplified version works, it
is easy to show that the same holds for the real gadget.
Demands α1, β2 start in X, demands α2, β3 start in Y , and demands α3, β1 start in

Z. The destination of demands αi and βi are in the clause component corresponding
to the clause of the ith occurrence of the variable. We have seen that in every solution
either αi leaves the gadget to the right and βi leaves to the bottom, or the opposite.
However, more is true: either all of α1, α2, α3 leave to the right (through B) and
β1, β2, β3 leave to the bottom (through A), or the other way. To see this, first assume

that α1 uses
−−→
XA, then β2 uses

−−→
XB. This implies that α2 cannot go through B, thus

α2 uses
−→
Y A and β3 uses

−−→
Y B. Demand α3 cannot go through B, hence it uses

−→
ZA and

β1 uses
−−→
ZB. Thus α1, α2, α3 go through A, and β1, β2, β3 go through B, what we had

to show. By a similar argument, if α1 uses
−−→
XB, we get that all three demands αi go

through B. Therefore in every solution of the disjoint paths problem, the component
of xs has two possible states: either the demands αi leave to the bottom (we call this
state ’true’) or they leave to the right (’false’). Recall that if the demands αi leave to
the bottom, then they reach their respective clause components from the left, while if
they leave to the right, then they reach the clause components from the top.
The satisfaction testing gadget and its simplified equivalent is shown on Figure 5.

The three paths that enter K correspond to the three paths that enter the gadget from
the left, while the paths entering L correspond to those entering from the top. The
gadget contains the endpoints of six demands corresponding to the three variables.
Demands γj and δj start in the variable component corresponding to the jth literal of
the clause. More precisely, if the jth literal of clause Ct is the ith occurrence of variable

6

PSfrag replacements

Q

Q, γ1, γ2, γ3

δ1, δ2, δ3

P

γ3γ2γ1

δ3δ1 δ2

K L

L

K

P

P

Figure 5: The satisfaction testing gadget.

xs, then demand αi starting in gadget xs is the same as demand γj terminating in
gadget Ct, and βi is the same as δj .
Vertex P is the endpoint of the three demands δ1, δ2, δ3, and vertex Q is the

endpoint of the demands γ1, γ2, γ3. We have seen that in every solution, exactly one
of γj and δj leaves the variable component to the right, the other one leaves to the
bottom, hence exactly one of them enters the clause component from the top, the other
one enters from the left. Furthermore, there is exactly one j such that γj enters from
the left and δj enters from the top, for the remaining two j ′ 6= j, demand γj′ enters
from the top and demand δj′ enters from the left. To see this, notice that from K only
one demand can reach Q and only two demands can reach P . Thus the satisfaction
testing gadget effectively forces that exactly one of the three variable gadgets is in the
state ’true’.
It can be easily verified that G+H is Eulerian in the constructed instance. Given

a solution to the disjoint paths problem, we can find a satisfying assignment of the
formula: assign to the variable xs ’true’ or ’false’ depending on the state of the gadget
corresponding to xs. By the construction, every clause will be satisfied (in 1-in-3 sense).
On the other hand, given a satisfying variable assignment, we can find a solution to
the disjoint paths problem: the values of the variables determine how the demands
leave the variable setting gadgets and this can be extended to the whole graph.

It is noted in [6] that the disjoint paths problem is not easier in rectangle graphs
than in general grid graphs: if we add a new edge −→uv to G and a new demand from u to
v, then the new demand can reach v in the grid only using the new edge. Thus we can
add new edges and demands until we get a full rectangle graph without changing the
solvability of the instance. Clearly, G +H remains Eulerian after adding the supply
edge −→uv to G, and the demand edge −→vu to H.

Corollary 4. The edge disjoint paths problem is NP-complete on directed rectangle
graphs, even if G+H is Eulerian.

A reduction from the directed case to the undirected one was described by Vygen:

7

Lemma 5 ([7]). If (G,H) is an instance of the directed edge disjoint paths problem,
where G is acyclic, G + H is Eulerian, and the undirected graphs G′, H ′ result from
neglecting the orientation of G,H, then every solution of (G,H) is also the solution
of (G′, H ′) and vice versa.

Combining Corollary 4 and Lemma 5, we obtain the following corollary, settling
another open question from [6]:

Corollary 6. The undirected edge disjoint paths problem is NP-complete on rectangle
graphs, even if G+H is Eulerian.

Acknowledgments

I’m grateful to Katalin Friedl for her help in preparing the paper. The useful comments
of Judit Csima are also acknowledged.

References

[1] A. Frank. Disjoint paths in a rectilinear grid. Combinatorica, 2(4):361–371, 1982.

[2] A. Frank. Packing paths, circuits, and cuts—a survey. In Paths, flows, and VLSI-
layout (Bonn, 1988), pages 47–100. Springer, Berlin, 1990.

[3] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theoret. Comput. Sci., 1(3):237–267, 1976.

[4] C. Moore and J. M. Robson. Hard tiling problems with simple tiles. Discrete
Comput. Geom., 26(4):573–590, 2001.

[5] H. Okamura and P. D. Seymour. Multicommodity flows in planar graphs. J.
Combin. Theory Ser. B, 31(1):75–81, 1981.

[6] J. Vygen. Disjoint paths. Technical Report 94816, Research Institute for Discrete
Mathemathics, University of Bonn, 1994.

[7] J. Vygen. NP-completeness of some edge-disjoint paths problems. Discrete Appl.
Math., 61(1):83–90, 1995.

8

