
Exponential Time Complexity
of the Permanent and the Tutte Polynomial∗

Holger Dell†
University of Wisconsin–Madison, USA

holger@cs.wisc.edu

Thore Husfeldt
IT University of Copenhagen, Denmark

Lund University, Sweden
thore@itu.dk

Dániel Marx‡
Computer and Automation Research

Institute, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary

dmarx@cs.bme.hu

Nina Taslaman
IT University of Copenhagen, Denmark

nsta@itu.dk

Martin Wahlén
Lund University, Sweden

Uppsala University, Sweden
mva@df.lth.se

May, 2012

Abstract

We show conditional lower bounds for well-studied #P-hard problems:

◦ The number of satisfying assignments of a 2-CNF formula with n variables
cannot be computed in time exp(o(n)), and the same is true for computing the
number of all independent sets in an n-vertex graph.

◦ The permanent of an n × n matrix with entries 0 and 1 cannot be computed
in time exp(o(n)).

◦ The Tutte polynomial of an n-vertex multigraph cannot be computed in time
exp(o(n)) at most evaluation points (x, y) in the case of multigraphs, and it
cannot be computed in time exp(o(n/ poly log n)) in the case of simple graphs.

Our lower bounds are relative to (variants of) the Exponential Time Hypothesis
(ETH), which says that the satisfiability of n-variable 3-CNF formulas cannot be
decided in time exp(o(n)). We relax this hypothesis by introducing its counting
version #ETH, namely that the satisfying assignments cannot be counted in time
exp(o(n)). In order to use #ETH for our lower bounds, we transfer the sparsification
lemma for d-CNF formulas to the counting setting.

∗The journal version of this paper appears in the ACM Transactions on Algorithms [DHM+12]. Pre-
liminary versions appeared in the proceedings of ICALP 2010 [DHW10] and IPEC 2010 [HT10].

†Research partially supported by the Alexander von Humboldt Foundation and NSF grant 1017597.
‡Research supported by ERC Starting Grant PARAMTIGHT (280152).

1

1. Introduction

The permanent of a matrix and the Tutte polynomial of a graph are central topics in the
study of counting algorithms. Originally defined in the combinatorics literature, they
unify and abstract many enumeration problems, including immediate questions about
graphs such as computing the number of perfect matchings, spanning trees, forests,
colourings, certain flows and orientations, but also less obvious connections to other
fields, such as link polynomials from knot theory, reliability polynomials from network
theory, and (maybe most importantly) the Ising and Potts models from statistical physics.
From its definition (repeated in (1) below), the permanent of an n × n-matrix can

be computed in O(n!n) time, and the Tutte polynomial (2) can be evaluated in time
exponential in the number of edges. Both problems are famously #P-hard, which rules
out the existence of polynomial-time algorithms under standard complexity-theoretic
assumptions, but that does not mean that we have to resign ourselves to brute-force
evaluation of the definition. In fact, Ryser’s famous formula [Rys63] computes the per-
manent with only exp(O(n)) arithmetic operations, and more recently, an algorithm with
running time exp(O(n)) for n-vertex graphs has also been found [BHK+08] for the Tutte
polynomial. Curiously, both of these algorithms are based on the inclusion–exclusion
principle. In the present paper, we show that these algorithms are not likely to be signif-
icantly improved, by providing conditional lower bounds of exp(Ω(n)) for both problems.
It is clear that #P-hardness is not the right conceptual framework for such claims,

as it is unable to distinguish between different types of super-polynomial time complex-
ities. For example, the Tutte polynomial for planar graphs remains #P-hard, but can
be computed in time exp(O(

√
n)) [SIT95]. Therefore, we work under Impagliazzo and

Paturi’s Exponential Time Hypothesis (ETH), viz. the complexity theoretic assumption
that some hard problem, namely the satisfiability of 3-CNF formulas in n variables, can-
not be solved in time exp(o(n)) [IP01]. More specifically, we introduce #ETH, a counting
analogue of ETH which models the hypothesis that counting the satisfying assignments
cannot be done in time exp(o(n)).

Computing the permanent

The permanent of an n× n matrix A is defined as

perA =
∑
π∈Sn

∏
1≤i≤n

Aiπ(i) , (1)

where Sn is the set of permutations of {1, . . . , n}. This is redolent of the determinant from
linear algebra, detA =

∑
π sign(π)

∏
iAiπ(i), the only difference is an easily computable

sign for every summand. However small this difference in the definition may seem, the
determinant and the permanent are believed to be of a vastly different computational
caliber. Both definitions involve a summation with n! terms and both problems have
much faster algorithms that are textbook material: The determinant can be computed
in polynomial time using Gaussian elimination and the permanent can be computed in

2

O(2nn) operations using Ryser’s formula. Yet, the determinant seems to be exponentially
easier to compute than the permanent.
Valiant’s celebrated #P-hardness result for the permanent [Val79] shows that no

polynomial-time algorithm à la “Gaussian elimination for the permanent” can exist un-
less P = NP, and indeed unless P = P#P. Several unconditional lower bounds for the
permanent in restricted models of computation are also known. Jerrum and Snir [JS82]
have shown that monotone arithmetic circuits need n(2n−1 − 1) multiplications to com-
pute the permanent, a bound they can match with a variant of Laplace’s determinant
expansion. Raz [Raz09] has shown that multi-linear arithmetic formulas for the perma-
nent require size exp(Ω(log2 n)). Ryser’s formula belongs to this class of formulas, but
is much larger than the lower bound; no smaller construction is known. Intriguingly,
the same lower bound holds for the determinant, where it is matched by a formula of
size exp(O(log2 n)) due to Berkowitz [Ber84]. One of the consequences of the present
paper is that Ryser’s formula is in some sense optimal under #ETH. In particular, no
uniformly constructible, subexponential size formula such as Berkowitz’s can exist for
the permanent unless #ETH fails.
A related topic is the expression of perA in terms of det f(A), where f(A) is a matrix

of constants and entries from A and is typically much larger than A. This question has
fascinated many mathematicians for a long time, see Agrawal’s survey [Agr06]; the best
known bound on the dimension of f(A) is exp(O(n)) and it is conjectured that all such
constructions require exponential size. In particular, it is an important open problem if
a permanent of size n can be expressed as a determinant of size exp(O(log2 n)). We show
that under #ETH, if such a matrix f(A) exists, computing f must take time exp(Ω(n)).

Computing the Tutte polynomial

The Tutte polynomial, a bivariate polynomial associated with a given graph G = (V,E)
with n vertices and m edges, is defined as

T (G;x, y) =
∑
A⊆E

(x− 1)k(A)−k(E)(y − 1)k(A)+|A|−|V | , (2)

where k(A) denotes the number of connected components of the subgraph (V,A).
Despite their unified definition (2), the various computational problems given by

T (G;x, y) for different points (x, y) differ widely in computational complexity, as well
as in the methods used to find algorithms and lower bounds. For example, T (G; 1, 1)
equals the number of spanning trees in G, which happens to admit a polynomial-time
algorithm, curiously again based on Gaussian elimination. On the other hand, the best
known algorithm for computing T (G; 2, 1), the number of forests, runs in exp(O(n)) time.
Computation of the Tutte polynomial has fascinated researchers in computer science

and other fields for many decades. For example, the algorithms of Onsager and Fischer
from the 1940s and 1960s for computing the so-called partition function for the planar
Ising model are viewed as major successes of statistical physics and theoretical chemistry;
this corresponds to computing T (G;x, y) along the hyperbola (x − 1)(y − 1) = 2 for
planar G. Many serious attempts were made to extend these results to other hyperbolas

3

or graph classes, but “after a quarter of a century and absolutely no progress,” Feynman
in 1972 observed that “the exact solution for three dimensions has not yet been found.”1

The failure of theoretical physics to “solve the Potts model” and sundry other questions
implicit in the computational complexity of the Tutte polynomial were explained only
with Valiant’s #P-hardness programme. After a number of papers, culminating in the
work of Jaeger, Vertigan, and Welsh [JVW90], the polynomial-time complexity of exactly
computing the Tutte polynomial at points (x, y) is now completely understood: it is
#P-hard everywhere except at those points (x, y) where a polynomial-time algorithm is
known; these points consist of the hyperbola (x− 1)(y− 1) = 1 as well as the four points
(1, 1), (−1,−1), (0,−1), (−1, 0).
In the present paper, we show an exp(Ω(n)) lower bound to match the exp(O(n))

algorithm from [BHK+08], which holds under #ETH everywhere except for |y| = 1.
In particular, this establishes a gap to the planar case, which admits an exp(O(

√
n))

algorithm [SIT95]. Our hardness results apply (though not everywhere, and sometimes
with a weaker bound) even if the graphs are sparse and simple. These classes are of
particular interest because most of the graphs arising from applications in statistical
mechanics arise from bond structures, which are sparse and simple.
It has been known since the 1970s [Law76] that graph 3-colouring can be solved in

time exp(O(n)), and this is matched by an exp(Ω(n)) lower bound under ETH [IPZ01].
Since graph 3-colouring corresponds to evaluating T at (−2, 0), the exponential time
complexity for T (G;−2, 0) was thereby already understood. In particular, computing
T (G;x, y) for input G and (x, y) requires vertex-exponential time, an observation that
is already made in [GHN06] without explicit reference to ETH.
The literature for computing the Tutte polynomial is very rich, and we make no attempt

to survey it here. A recent paper of Goldberg and Jerrum [GJ08], which shows that the
Tutte polynomial is hard to even approximate for large parts of the Tutte plane, contains
an overview. A list of graph classes for which subexponential time algorithms are known
can be found in [BHK+08].

Complexity assumptions

The standard complexity assumption P 6= NP is not sufficient for our purposes: it is
consistent with current knowledge that P 6= NP holds and yet NP-hard problems such as
3-Sat have subexponential time algorithms. What we need is a complexity assumption
stating that certain problems can be solved only in exponential time.
The exponential time hypothesis (ETH) by Impagliazzo and Paturi [IP01] is that

satisfiability of 3-CNF formulas cannot be computed substantially faster than by trying
all possible assignments. Formally, this reads as follows:

(ETH)
There is a constant c > 0 such that no deterministic algorithm can
decide 3-Sat in time exp(c · n).

A different way of formulating ETH is to say that there is no algorithm deciding 3-Sat

1The Feynman quote and many other quotes describing the frustration and puzzlement of physicists
around that time can be found in the copious footnotes of [Ist00].

4

in time exp(o(n)). The latter statement is clearly implied by the above statement, and
it will be more convenient for discussion to use this form and state results this way.
In two of our lower bounds, Theorem 1.2 and Theorem 1.3(iii), we need a slightly

stronger assumption that rules out the possibility of randomized algorithms as well:

(rETH)
There is a constant c > 0 such that no randomized algorithm can decide
3-Sat in time exp(c · n) with error probability at most 1/3.

The reason why we need rETH in these two proofs is that we are reducing from the
promise problem Unique 3-Sat, which is 3-Sat with the promise that the given 3-
CNF formula has at most one satisfying assignment. Calabro, Impagliazzo, Kabanets,
et al. [CIK+03] established a lower bound on Unique 3-Sat assuming rETH, thus
our results are also relative to this complexity assumption. By reducing from Unique
3-Sat, we avoid the use of interpolation, which typically weakens the lower bound by
polylogarithmic factors in the exponent.
Intuitively, counting the number of solutions is much harder than deciding the existence

of a solution: in the latter case, we only need to find a single solution, while in the former
case we have to somehow reason about the set of all possible solutions. A formal evidence
is that many natural counting problems are #P-hard and therefore not only as hard as all
problems in NP but as hard as all the problems in the polynomial-time hierarchy [Tod91].
If counting problems seem to be so much harder, then it is natural to ask if their hardness
can be demonstrated by a weaker complexity assumption than what is needed for the
decision problems. We show that our lower bounds, with the exception of Theorem 1.2
and Theorem 1.3(iii), can be obtained using the weaker complexity assumption stating
that counting the number of solutions to a 3-CNF formula requires exponential time (i.e.,
a counting variant of ETH).

Name #3-Sat

Input 3-CNF formula ϕ with n variables and m clauses.

Output The number of satisfying assignments to ϕ.

The best known algorithm for this problem runs in time O(1.6423n) [Kut07].

(#ETH)
There is a constant c > 0 such that no deterministic algorithm can
compute #3-Sat in time exp(c · n).

ETH trivially implies #ETH whereas the other direction is not known.
By introducing the sparsification lemma, Impagliazzo, Paturi, and Zane [IPZ01] show

that ETH is a robust notion in the sense that the clause width 3 and the parameter n
(number of variables) in its definition can be replaced by d ≥ 3 andm (number of clauses),
respectively, to get an equivalent hypothesis, albeit the constant c may change in doing
so. As most of the reductions are sensitive to the number of clauses, this stronger form
of ETH is essential for proving tight lower bounds for concrete problems. In order to be
able to use #ETH in such reductions, we transfer the sparsification lemma to #d-Sat
and get a similar kind of robustness for #ETH.

Theorem 1.1. Let d ≥ 3 be an integer. Then #ETH holds if and only if there is a constant
c > 0 such that no deterministic algorithm can solve #d-Sat in time exp(c ·m).

5

The proof of this theorem is spelled out in Appendix A. The relationship between #ETH
and the parameterized complexity of counting problems is explained in Appendix B.

Results: Counting Independent Sets

In light of Theorem 1.1, it is natural to consider the exponential time complexity of
#2-Sat. Restricted to antimonotone 2-CNF formulas, this corresponds to counting all
independent sets in a given graph, which cannot be done in time exp(o(n/ log3 n)) under
#ETH [Hof10]. The loss of the poly log-factor in the exponent is due to the interpolation
inherent in the hardness reduction. We avoid interpolation using the isolation lemma
for d-CNF formulas by Calabro, Impagliazzo, Kabanets, et al. [CIK+03], and we get
an asymptotically tight lower bound. The drawback is that our lower bound only holds
under the randomized version of ETH instead of #ETH.

Theorem 1.2. Under rETH, there is no randomized algorithm that computes the number
of all independent sets in time exp(o(m)), where m is the number of edges. Under
the same assumption, there is no randomized algorithm for #2-Sat that runs in time
exp(o(m)), where m is the number of clauses.

We discuss the isolation technique and prove this theorem in §2.

Results: The Permanent

For a set S of rationals we define the following problems:

Name PermS

Input Square matrix A with entries from S.

Output The value of perA.

We write Perm for PermN. If B is a bipartite graph with Aij edges from the ith vertex
in the left half to the jth vertex in the right half (1 ≤ i, j ≤ n), then per(A) equals the
number of perfect matchings of B. Thus Perm and Perm0,1 can be viewed as counting
the perfect matchings in bipartite multigraphs and bipartite simple graphs, respectively.
We express our lower bounds in terms ofm, the number of non-zero entries of A. Without
loss of generality, n ≤ m, so the same bounds hold for the parameter n as well.

Theorem 1.3.

(i) Perm−1,0,1 and Perm cannot be computed in time exp(o(m)) under #ETH.

(ii) Perm0,1 cannot be computed in time exp(o(m/ log n)) under #ETH.

(iii) Perm0,1 cannot be computed in time exp(o(m)) under rETH.

The proof of this theorem is in §3. For (i), we follow a standard reduction by Valiant
[Val79; Pap94] but use a simple equality gadget derived from [BD07] instead of Valiant’s
XOR-gadget, and we use interpolation to get rid of the negative weights. To establish (ii)

6

we simulate edge weights w > 1 by gadgets of size logarithmic in w, which increases the
number of vertices and edges by a logarithmic factor. For (iii) we use the isolation lemma
and the reduction from part (i), and we simulate the edge weights −1 without interpo-
lation by replacing them with 2 and doing computation modulo 3. Observe that (iii)
is an asymptotically tight lower bound while (ii) is not, but it also uses the stronger
complexity assumption rETH instead of #ETH.

Results: The Tutte Polynomial

The computational problem Tutte(x, y) is defined for each pair (x, y) of rationals.

Name Tutte(x, y).

Input Undirected multigraph G with n vertices.

Output The value of T (G;x, y).

In general, parallel edges and loops are allowed; we write Tutte0,1(x, y) for the special
case where the input graph is simple.
Our main result is that, under #ETH, Tutte(x, y) cannot be computed in time

exp(o(n)) for specific points (x, y). However, the size of the bound, and the graph classes
for which it holds, varies. We summarise our results in the theorem below, see also
Figure 1. For quick reference, we state the propositions in which the individual results
are proved and the techniques used in each case.

Theorem 1.4. Let (x, y) ∈ Q2. Under #ETH,

(i)
Tutte(x, y) cannot be computed in time exp(o(n))
if (x− 1)(y − 1) 6= 1 and y 6∈ {0,±1},

(Stretching and thickening ; Proposition 5.1 in §5)

(ii)
Tutte0,1(x, y) cannot be computed in time exp(o(n))
if y = 0 and x 6∈ {0,±1},

(Linial’s reduction ; Proposition C.6 in Appendix C)

(iii)
Tutte0,1(x, y) cannot be computed in time exp(o(m/ log2m))
if x = 1 and y 6= 1,

(Inflation with Bounce graphs ; Proposition 6.11 in §6)

(iv)
Tutte0,1(x, y) cannot be computed in time exp(o(m/ log3m))
if (x− 1)(y − 1) 6∈ {0, 1} and (x, y) 6∈ {(−1,−1), (−1, 0), (0,−1)}.

(Inflation with Theta graphs ; Proposition 6.4 in §6)

Above, the results (iii) and (iv) are stated in terms of the parameter m, the number of
edges of the given graph, but the same results also hold for the parameter n, the number
of vertices, because n ≤ m in connected graphs. The formulation with respect to m gives
a stronger hardness result under #ETH since m can potentially be much larger than n.
This is in the same spirit as the sparsification lemma of Impagliazzo, Paturi, and Zane

7

x−1 0 1

y

−1

0

1

x−1 0 1

y

−1

0

1

no exp(o(n))

no exp(o(n/ log2 n))

no exp(o(n/ log3 n))

no nO(1)

nO(1)

Figure 1: Exponential time complexity under #ETH of the Tutte plane for multigraphs (left)
and simple graphs (right) in terms of n, the number of vertices. The white line
y = 1 on the map is uncharted territory, and we only have the #P-hardness. The
black hyperbola (x − 1)(y − 1) = 1 and the four points close to the origin are in P.
Everywhere else, in the shaded regions, we prove a lower bound exponential in n, or
within a polylogarithmic factor of it.

[IPZ01] and Theorem 1.1. Using this stronger formulation, Theorem 1.4 can be used as
a starting point for further hardness reductions under #ETH.
In an attempt to prove Theorem 1.4, we may first turn to the literature, which contains

a cornucopia of constructions for proving hardness of the Tutte polynomial in various
models. In these arguments, a central role is played by graph transformations called
thickenings and stretches. A k-thickening replaces every edge by a bundle of k edges

, and a k-stretch replaces every edge by a path of k edges . This is used
to “move” an evaluation from one point to another. For example, if H is the 2-stretch
of G then T (H; 2, 2) ∼ T (G; 4, 4

3). Thus, every algorithm for (2, 2) works also at (4, 4
3),

connecting the complexity of the two points. These reductions are very well-developed
in the literature, and are used in models that are immune to polynomial-size changes in
the input parameters, such as #P-hardness and approximation complexity. However, we
cannot always afford such constructions in our setting, otherwise our bounds would be
of the form exp(Ω(n1/r)) for some constant r depending on the blowup in the proof. In
particular, the parameter n is destroyed already by a 2-stretch in a nonsparse graph.
The proofs are in §4–§6. Where we can, we sample from established methods, care-

fully avoiding or modifying those that are not parameter-preserving. At other times we
require more subtle techniques, e.g., the constructions in §6, which use graph products
with graphs of polylogarithmic size instead of thickenings and stretches. Like many re-
cent papers, we use Sokal’s multivariate version of the Tutte polynomial, which vastly
simplifies many of the technical details.

Consequences

The permanent and Tutte polynomial are equivalent to, or generalisations of, various
other graph problems, so our lower bounds under rETH and #ETH hold for these prob-
lems as well. In particular, the following graph polynomials (for example, as a list of their

8

coefficients) cannot be computed in time exp(o(m)) for a given simple graph: the Ising
partition function, the q-state Potts partition function (q 6= 0, 1, 2), the reliability poly-
nomial, the chromatic polynomial, and the flow polynomial. Moreover, our results show
that the following counting problems on multigraphs cannot be solved in time exp(o(n)):
perfect matchings, # cycle covers in digraphs, # connected spanning subgraphs, all-
terminal graph reliability with given edge failure probability p > 0, # nowhere-zero
k-flows (k 6= 0,±1), and # acyclic orientations.
The lower bound for counting the number of perfect matchings holds even in bipartite

graphs, where an O(1.414n) algorithm is given by Ryser’s formula. Such algorithms are
also known for general graphs [BH08], the current best bound is O(1.619n) [Koi09].
For simple graphs, we have exp(Ω(m)) lower bounds for # perfect matchings and

cycle covers in digraphs.

2. Counting Independent Sets

In this section, we establish Theorem 1.2, the hardness of counting independent sets and
of #2-Sat. For the proof, we make use of the randomized ETH-hardness of the following
problem.

Name Unique 3-Sat.

Input 3-CNF formula ϕ with m clauses and at most one satisfying assignment.

Decide Is ϕ satisfiable?

Calabro et al. [CIK+03] prove an isolation lemma for d-CNF formulas to show that
solving this problem in subexponential time implies that the (randomized) exponential
time hypothesis fails.

Theorem 2.1 (Corollary 2 of Calabro et al. [CIK+03]).
rETH implies that Unique 3-Sat cannot be computed in time exp(o(m)).

We are now in the position to prove Theorem 1.2.

Theorem 1.2 (restated). Under rETH, there is no randomized algorithm that computes
the number of all independent sets in time exp(o(m)), where m is the number of edges.
Under the same assumption, there is no randomized algorithm for #2-Sat that runs in
time exp(o(m)), where m is the number of clauses.

Proof. Let ϕ be an instance of Unique 3-Sat with m clauses. We construct a graph G
with O(m) edges that has an odd number of independent sets if and only if ϕ is satisfiable.
For each variable x, we introduce vertices x and x, and the edge (xx). This makes sure
that any independent set of G chooses at most one of {x, x}, so we can interpret the
independent set as a partial assignment to the variables of ϕ. For each clause c =
(`1 ∨ `2 ∨ `3) of ϕ, we introduce a clique in G that consists of seven vertices c1, . . . , c7.
These vertices correspond to the seven partial assignments that assign truth values to
the literals `1, `2, and `3 in such a way that c is satisfied. Any independent set of G

9

contains at most one ci for each clause c. To ensure that the independent set chooses
the variables and partial assignments of the clauses consistently, we add an edge for
every ci and every variable x occurring in the clause c: If the partial assignment that
corresponds to ci sets x to true, we add (cix) to G; otherwise, we add (cix) to G. To
finalize the construction, we introduce guard vertices gx and gc for every variable x and
every clause c, along with the edges (gxx), (gxx), and (gcci) for i = 1, . . . , 7.
We now prove that G has the required properties. First, any independent set contains

at most n literal vertices and at most m clause vertices. Good independent sets are
those that contain exactly n literal and m clause vertices (and no guard vertex). Good
independent sets correspond to the satisfying assignments of ϕ in a natural way. We now
show that the number of bad independent sets is even. For this, let S be a bad indepen-
dent set, that is, S is disjoint from {x, x} for some x or it is disjoint from {c1, . . . , c7} for
some clause c. By construction, the neighborhood of either gx or gc is disjoint from S.
Let g be the lexicographically first guard vertex whose neighborhood is disjoint from S.
Both the sets S \ {g} and S ∪ {g} are bad independent sets and S is one of these sets.
Formally, we can therefore define a function that maps these sets onto each other. This
function is a well-defined involution on the set of bad independent sets, and it does not
have any fixed points. Therefore, the number of bad independent sets is even, and the
parity of the number of independent sets of G is equal to the parity of the number of
satisfying assignments of ϕ.
The above reduction shows that an exp(o(m))-time algorithm for counting independent

sets modulo 2 implies an exp(o(m))-time algorithm for Unique 3-Sat. By Theorem 2.1,
this implies that rETH fails.
To establish the hardness of #2-Sat, we reduce from counting independent sets. Let G

be a graph. For each vertex v, we introduce a variable v, and each edge (uv) becomes a
clause (u ∨ v). The satisfying assignments of the so constructed 2-CNF formula are in
one-to-one correspondence with the independent sets of G. �

3. The Permanent

This section contains the proof of Theorem 1.3. With [0, n] = {0, 1, . . . , n} we establish
the reduction chain #3-Sat 4 Perm−1,0,1 4 Perm[0,n] 4 Perm0,1 while taking care of
the instance sizes.

Theorem 1.3 (restated).

(i) Perm−1,0,1 and Perm cannot be computed in time exp(o(m)) under #ETH.

(ii) Perm0,1 cannot be computed in time exp(o(m/ log n)) under #ETH.

(iii) Perm0,1 cannot be computed in time exp(o(m)) under rETH.

Proof. To establish (i), we reduce #3-Sat in polynomial time to Perm−1,0,1 such that
3-CNF formulas ϕ with m clauses are mapped to graphs G with O(m) edges. For
technical reasons, we preprocess ϕ such that every variable x occurs equally often as a

10

x x̄

¯̀
2

¯̀
3

¯̀
1

u

v

u′

v′

−1

Figure 2: Left: A selector gadget for variable x. Depending on which of the two cycles is
chosen, we assume x to be set to true or false. Middle: A clause gadget for the
clause `1 ∨ `2 ∨ `3. The gadget allows all possible configurations for the outer
edges, except for the case that all three are chosen (which would correspond
to `1 = `2 = `3 = 0). Right: An equality gadget that replaces two edges uv
and u′v′. The top loop carries a weight of −1. It can be checked that the
gadget contributes a weight of −1 if all four outer edges are taken, +2 if none
of them is taken, and 0 otherwise.

positive literal and as a negative literal x̄ (e.g., by adding trivial clauses of the form
(x ∨ x̄ ∨ x̄) to ϕ). We construct G with O(m) edges and weights w : E → {±1} such
that #Sat(ϕ) can be derived from perG in polynomial time. For weighted graphs, the
permanent is

perG =
∑
C⊆E

w(C) , where w(C) =
∏
e∈C

w(e) .

The sum above is over all cycle covers C of G, that is, subgraphs (V,C) with an in- and
outdegree of 1 at every vertex.
In Figure 2, the gadgets of the construction are depicted. For every variable x that

occurs in ϕ, we add a selector gadget to G. For every clause c = `1 ∨ `2 ∨ `3 of ϕ, we add
a clause gadget to G. Finally, we connect the edge labelled by a literal ` in the selector
gadget with all occurrences of ` in the clause gadgets, using equality gadgets. That is,
we use a fresh copy of the equality gadget for each occurence of a literal. For the first
occurence of the literal, we replace the corresponding edge in the selector gadget with a
path of length two and identify this path with the path from u to v in the corresponding
copy of the equality gadget. Furthermore, we replace the corresponding edge in the clause
gadget with a path of length two and identify this path with the path from u′ to v′. For
subsequent occurences of the literal, we subdivide one of the edges on the corresponding
path of the selector even further and use a new equality gadget as before. This concludes
the construction of G.
The number of edges of the resulting graph G is linear in the number of clauses. The

correctness of the reduction follows along the lines of [Pap94] and [BD07]. The satisfying
assignments stand in bijection to cycle covers of weight (−1)i2j where i (resp. j) is the
number of occurrences of literals set to false (resp. true) by the assignment, and all other
cycle covers sum up to 0. Since we preprocessed ϕ such that i = j holds and i is constant
over all assignments, we obtain perG = (−2)i ·#Sat(ϕ).

11

u v

u

v

a0 a1 a2 ak−1 ak

2 2 2

Figure 3: Left: This gadget simulates in unweighted graphs edges uv of weight 2. Right:
This gadget simulates edges uv of weight a =

∑k
i=0 ai2

i with ai ∈ {0, 1}.

For the second part of (i), we reduce Perm−1,0,1 in polynomial time to Perm[0,n] by
interpolation: On input G, we conceptually replace all occurrences of the weight −1 by
a variable x and call this new graph Gx. We can assume that only loops have weight x
in Gx because the output graph G from the previous reduction has weight −1 only on
loops. Then p(x) = perGx is a polynomial of degree d ≤ n.

If we replace x by a value a ∈ [0, n], then Ga is a weighted graph with as many edges
as G. As a consequence, we can use the oracle to compute perGa for a = 0, . . . , d and
then interpolate, to get the coefficients of the polynomial p(x). At last, we return the
value p(−1) = perG. This completes the reduction, which queries the oracle d+1 graphs
that have at most m edges each.
For (ii), we have to get rid of weights larger than 1. Let Ga be one query of the last

reduction. Again we assume that a ≤ n and that weights 6= 1 are only allowed at loop
edges. We replace every edge of weight a by the gadget that is drawn in Figure 3, and call
this new unweighted graph G′. It can be checked easily that the gadget indeed simulates
a weight of a (parallel paths correspond to addition, serial edges to multiplication),
i.e., perG′ = perGa. Unfortunately, the reduction increases the number of edges by a
superconstant factor: The number of edges of G′ is m(G′) ≤ (m + n log a) ≤ O(m +
n log n). But since m(G′)/ logm(G′) ≤ O(m), the reduction implies that (ii).
For (iii), we assume that rETH holds. Theorem 2.1 gives that Unique 3-Sat cannot

be computed in time exp(o(m)). Now we apply the first reduction of (i) to a formula ϕ
which is promised to have at most one satisfying assignment. Then the number perG =
(−2)i · #Sat(ϕ) is either 0 or (−2)i. In G, we replace each edge of weight −1 by a
gadget of weight 2 ≡ −1 mod 3 and similarly get that (perG mod 3) is (0 mod 3) = 0
or (4i mod 3) = 1. Hence we can distinguish the case in which ϕ is unsatisfiable from
the case in which ϕ has exactly one satisfying assignment. �

4. Hyperbolas in the Tutte plane

Consider a hyperbola in the Tutte plane described by (x−1)(y−1) = q, where q is some
fixed rational number. Our first goal is to show that it is hard to compute the coefficients
of the (univariate) restriction of the Tutte polynomial to any such hyperbola. It is useful

12

to view the Tutte polynomial in the Fortuin–Kasteleyn formulation [FK72; Sok05]:

Z(G; q, w) =
∑
A⊆E

qk(A)w|A| . (3)

Here, k(A) is the number of connected components in the subgraph (V,A). The connec-
tion to the Tutte polynomial is given by

T (G;x, y) = (x− 1)−k(E)(y − 1)−|V |Z(G; q, w) ,

where q = (x− 1)(y − 1) and w = y − 1 ,
(4)

see [Sok05, eq. (2.26)].

The Ising Hyperbola

The Ising partition function is the Tutte polynomial from (3) when q is fixed to 2. We
now show that computing the coefficients of this univariate polynomial is hard under
#ETH.

Proposition 4.1. If #ETH holds, the coefficients of the polynomial w 7→ Z(G; 2, w) for a
given simple graph G cannot be computed in time exp(o(m)).

Proof. The reduction is from #MaxCut and well-known, see, e.g., [JS93, Theorem 15].

Name #MaxCut

Input Simple undirected graph G.

Output The number of maximum cuts.

A maximum cut is a set C ⊆ V (G) that maximizes the number |E(C,C)| of edges of G
that cross the cut. By the Fortuin–Kasteleyn identity [Sok05, Theorem 2.3], one can
express Z(G; 2, w) for G = (V,E) as∑

σ : V 7→±1

∏
uv∈E

(
1 + w · [σ(u) = σ(v)]) .

Here the Iverson bracket [P] is 1 if P is true and is 0 if P is false. The sets σ−1(1) and
σ−1(−1) define a cut in G, so we can write the above expression as∑

U⊆V

∏
uv∈E

[u∈U]=[v∈U]

(1 + w) =
∑

C⊆V (G)

(1 + w)m−|E(C,C)| ,

Now, the coefficient of (1 + w)m−c in Z(G; 2, w) is the number of cuts in G of size c. In
particular, after some interpolation, we can compute the number of maximum cuts in G
from the coefficients of w 7→ Z(G; 2, w). But as we observe in Appendix C, #MaxCut
cannot be computed in time exp(o(m)) under #ETH. �

13

The Multivariate Tutte Polynomial

For other q, in particular nonintegers, it is simpler to work with amultivariate formulation
of the Tutte polynomial due to Fortuin and Kasteleyn [FK72]. We use the definition
by Sokal [Sok05]: Let G = (V,E) be an undirected graph whose edge weights are given
by a function w : E → Q. Then

Z(G; q,w) =
∑
A⊆E

qk(A)
∏
e∈A

w(e) . (5)

If w is single-valued, in the sense that w(e) = w for all e ∈ E, we recover Z(G; q, w).
The conceptual strength of the multivariate perspective is that it turns the Tutte

polynomial’s second variable y, suitably transformed, into an edge weight of the graph.
In particular, the multivariate formulation allows the graph to have different weights on
different edges, which turns out to be a dramatic technical simplification even when, as
in the present work, we are ultimately interested in the single-valued case.
Sokal’s polynomial vanishes at q = 0, so we sometimes use the polynomial

Z0(G; q,w) =
∑
A⊆E

qk(A)−k(E)
∏
e∈A

w(e) ,

which gives something non-trivial for q = 0 and is otherwise a proxy for Z:

Z(G; q,w) = qk(E)Z0(G; q,w) . (6)

Three-terminal minimum cut

For q 6∈ {1, 2}, we first establish that, with two different edge weights, one of them
negative, the multivariate Tutte polynomial computes the number of 3-terminal minimum
cuts:

Name #3-Terminal MinCut

Input Simple undirected graph G = (V,E) with three distinguished vertices (“ter-
minals”) t1, t2, t3 ∈ V .

Output The number of edge subsets A ⊆ E of minimal size that separate t1 from
t2, t2 from t3, and t3 from t1.

We establish the hardness of this problem under #ETH in Appendix C. The connec-
tion of this problem with the Tutte polynomial has been used already by Goldberg and
Jerrum [GJ07; GJ08], with different reductions, to prove hardness of approximation.

The graphs we consider here are connected and have rather simple weight functions.
The edges are partitioned into two sets E ∪̇ T and, for some fixed rational w, the weight
function is given by

w(e) =

{
−1, if e ∈ T ,
w, if e ∈ E.

(7)

14

For such a graph, we have

Z0(G; q,w) =
∑

A⊆E∪T
qk(A)−1w|A∩E|(−1)|A∩T |. (8)

For fixed G and q, this is a polynomial in w of degree at most m.

Lemma 4.2. Let q be a rational number with q 6∈ {1, 2}. The coefficients of the polynomial
w 7→ Z0(G; q,w), with w as in (7), for a given simple graph G cannot be computed in
time exp(o(m)) under #ETH. Moreover, this is true even if |T | = 3.

Proof. In Appendix C, we argue that a standard reduction from #MaxCut already
implies that the problem #3-Terminal MinCut cannot be computed in time exp(o(m))
under #ETH. We reduce this problem to the problem of evaluating the coefficients of Z0

at q 6∈ {1, 2}. Suppose G′ = (V,E, t1, t2, t3) is an instance of #3-Terminal MinCut
with n = |V | and m = |E|. We can assume that G′ is simple and connected. We
modify G′ by adding a triangle between the terminals, obtaining the graph G = (V,E∪T)
where T = {t1t2, t2t3, t1t3}; note that n(G) = n, m(G) = m+ 3, and |T | = 3.
We focus our attention on the family A of edge subsets A ⊆ E for which t1, t2, and t3

each belong to a distinct component in the graph (V,A). In other words, A belongs to A
if and only if E −A is a 3-terminal cut in G′. Then we can split the sum in (8) into

Z0(G; q,w) =
∑
B⊆T

(∑
A∈A

qk(A∪B)−1w|A|(−1)|B| +
∑
A/∈A

qk(A∪B)−1w|A|(−1)|B|

)
. (9)

We first show that the second term of (9) vanishes. Consider an edge subset A 6∈ A
and assume without loss of generality that it connects the terminals t1 and t2. Consider
B ⊆ T , and let B′ = B ⊕ {t1t2}, so that B′ is the same as B except for t1t2. Then the
contributions of A ∪ B and A ∪ B′ cancel: First, k(A ∪ B) equals k(A ∪ B′) because t1
and t2 are connected through A already, so the presence or absence of the edge t1t2 makes
no difference. Second, (−1)|B| equals −(−1)|B

′|.
We proceed to simplify the first term of (9). The edges in B only ever connect vertices

in T , and for A ∈ A , each of these lies in a separate component of (V,A), so

k(A ∪B) =

{
k(A)− |B| , if |B| = 0, 1, 2,

k(A)− 2 , if |B| = 3.

Calculating the contribution of B for each size |B|, we arrive at∑
B⊆T

∑
A∈A

qk(A∪B)−1w|A|(−1)|B| =
∑
A∈A

qk(A)−1(q0 − 3q−1 + 3q−2 − q−2)w|A| ,

and after some simplifications we can write (9) as

Z0(G; q,w) = Q ·
∑
A∈A

qk(A)−3w|A| , where Q = (q − 1)(q − 2) . (10)

15

Note that, by assumption on q, we have Q 6= 0.
Let us write

∑m
i=0 diw

i = Q−1Z0(G; q,w), i.e., di is the coefficient of the monomial wi

in the sum above. More specifically,

Q · di =
∑

A∈A : |A|=i

qk(A)−3 .

The edge subsets A ∈ A are exactly the complements of the 3-terminal cuts in G′.
Now consider the family C of minimal 3-terminal cuts, all of size c. The sets E−A in C
are exactly the sets A of size m− c in A , and by minimality, k(A) = 3. Thus,

Q · dm−c =
∑

A∈A : |A|=m−c

q3−3 = |C |.

Thus, if we could compute the coefficients d0, . . . , dm of w 7→ Q−1Z0(G; q,w), then we
could determine the smallest c so that dm−c 6= 0 and return dm−c = |C |/Q, the number
of 3-terminal mincuts. �

General Hyperbolas

We use Lemma 4.2 to show that the coefficients of the univariate Tutte polynomial
from (3) are hard to compute for any fixed q 6∈ {1, 2}. For this, we need to get rid of
negative weights and reduce to a single-valued weight function. Goldberg and Jerrum
[GJ08] achieve this using stretching and thickening, which we want to avoid. Since the
number of edges with a negative weight is small (in fact, 3), we can use another tool:
deletion–contraction.

A deletion–contraction identity expresses a function of the graph G in terms of two
graphs G− e and G/e, where G− e arises from G by deleting the edge e (7→) and
G/e arises from G by contracting the edge e (7→) that is, deleting it and identifying
its endpoints (so any remaining edges between these two endpoints become loops).
It is known [Sok05, eq. (4.6)] that

Z(G; q,w) = Z(G− e; q,w) + w(e)Z(G/e; q,w).

An edge e is a bridge of G if deleting e from G increases the number of connected
components. The above gives a deletion–contraction identity for Z0 as well:

Z0(G; q,w) =

{
qZ0(G− e; q,w) + w(e)Z0(G/e; q,w) if e is a bridge,
Z0(G− e; q,w) + w(e)Z0(G/e; q,w) otherwise.

(11)

Proposition 4.3. Let q be a rational number with q /∈ {1, 2}. The coefficients of the
polynomial v 7→ Z0(G; q, v) for a given simple graph G cannot be computed in time
exp(o(m)) under #ETH.

By (6), this proposition also holds for Z instead of Z0 when q 6∈ {0, 1, 2}.

16

Proof. Let G = (V,E) be a graph as in the previous lemma, with three edges T =
{e1, e2, e3} of weight −1. The given reduction actually uses the restriction that G′ =
(V,E \T) is connected, so we can assume that this is the case. Thus, none of the T -edges
is a bridge, so three applications of (11) to delete and contract these edges, gives

Z0(G; q,w) =
∑

C⊆{1,2,3}

(−1)|C|Z0(GC ; q,w), (12)

where for each C ⊆ {1, 2, 3}, the graph GC is constructed from G by removing e1, e2, e3 as
follows: If i ∈ C then ei is contracted, otherwise it is deleted. In any case, the edges of T
have disappeared and remaining edges of GC are in one-to-one correspondence with the
edges in E; especially, they all have the same weight w, so Z0(GC ; q,w) = Z0(GC ; q, w).
The resulting GC are not necessarily simple, because the contracted edges from T may

have been part of a triangle and may have produced a loop. (In fact, investigating the
details of the previous lemma, we can see that this is indeed the case.) Thus we construct
the simple graph G′C from GC by subdividing every edge into a 3-path. This operation,
known as a 3-stretch, is known to largely preserve the value of Z and Z0 (see [Sok04] for
the former and [GJ08] for the latter). In particular,

Z0(GC ; q, w) = f(q, w′)m · Z0(G′C ; q, w′) ,

where for q 6= 0

1 +
q

w
=
(

1 +
q

w′

)3
and f(q, w′) = q−1 · ((q + w′)3 − w′3) ,

and for q = 0
w = w′/3 and f(q, w′) = 1/(3w′2) .

In summary, to compute the coefficients of the polynomial w 7→ Z0(G; q,w), we need
to compute the 8 polynomials v 7→ Z0(GC ; q, v), one for each GC . We use the above
equation and the assumed oracle for simple graphs to do this. We note that every G′C is
simple and has at most n+m vertices and at most 2m edges. �

5. Individual Points for Multigraphs

If we allow graphs to have multiple edges, we can use thickening and interpolation, one
of the original strategies of Jaeger, Vertigan, and Welsh [JVW90], for relocating the
hardness result for hyperbolas from Proposition 4.1 and Proposition 4.3 to individual
points in the Tutte plane. For most points, this gives us tight bounds in terms of n, the
number of vertices, but not for points with y ∈ {0,±1}, where thickening fails completely.
We recall the thickening identities for the Tutte polynomial. The k-thickening of G

is the graph Gk in which all edges have been replaced by k parallel edges. One can
show [Sok05, (4.21)] that, with wk = (1 + w)k − 1,

Z(G; q, wk) = Z(Gk; q, w) . (13)

17

It is easy to transfer this result to the Tutte polynomial T using (4), yielding special
cases of Brylawski’s well-known graph transformation rules.
We use interpolation and obtain Theorem 1.4(i) for y 6= 0 from the following.

Proposition 5.1. Let (q, w) ∈ Q2 with w 6∈ {0,−1,−2} and q 6= 1.
Z(G; q, w) for a given graph G (not necessarily simple) cannot be computed in time

exp(o(n)) under #ETH.

Proof. We observe that the values wk = (1 +w)k − 1 are all distinct for k = 0, 1, . . . ,m.
Thus, the k-thickeningsGk ofG give rise tom+1 different weight shifts, the evaluations of
which, Z(G; q, wk), can be obtained from Z(Gk; q, w) using (13). Thus, with oracle access
to G′ 7→ Z(G′; q, w), we can compute the coefficients of the polynomial v 7→ Z(G; q, v)
in polynomial time for any given G. By Proposition 4.1 and Proposition 4.3, this cannot
be done in time exp(o(n)) under #ETH. Since the number of vertices is n in each Gk,
computing G′ 7→ Z(G′; q, w) cannot be done in time exp(o(n)) under #ETH. �

The proof of Theorem 1.4(ii) uses Linial’s well-known reduction for the chromatic poly-
nomial [Lin86] , and is deferred to Proposition C.6 in Appendix C.

6. Individual Points for Simple Graphs

In this section we show that most points (x, y) of the Tutte plane are as hard as the
entire hyperbola on which they lie, even for sparse, simple graphs. The drawback of
our method is that we lose a polylogarithmic factor in the exponent of the lower bound.
The results are particularly interesting for the points on the line y = −1, for which we
know no other good exponential lower bounds under #ETH, even in more general graph
classes. We remark that the points (−1,−1), (0,−1), and (1

2 ,−1) on this line are known
to admit a polynomial-time algorithm, and indeed our hardness result does not apply
here.

Graph inflations

We use the graph theoretic version of Brylawski’s tensor product for matroids [Bry11].
We found the following terminology more intuitive in our setting.

Definition 6.1 (Graph inflation). Let H be an undirected graph with two distinguished
vertices called terminals. For any undirected graph G = (V,E), an H-inflation of G,
denoted G⊗H, is obtained by replacing every edge xy ∈ E by (a fresh copy of) H,
identifying x with one of the terminals of H and y with the other.

If H is not symmetric with respect to its two terminals, then the graph G⊗H need not
be unique since there are in general two non-isomorphic ways two replace an edge xy
by H. For us this difference does not matter since the resulting Tutte polynomials
turn out to be the same; in fact, in any graph one can remove a maximal biconnected
component and reinsert it in the other direction without changing the Tutte polynomial,

18

an operation that is called the Whitney twist [Whi33]. Thus we choose G⊗H arbitrarily
among the graphs that satisfy the condition in the definition above. Graph inflation is
not commutative and Sokal uses the notation ~GH .
If H is a simple path of k edges, G⊗H gives the usual k-stretch of G, and a bundle

of k parallel edges results in a k-thickening. What makes graph inflations so useful in
the study of Tutte polynomials is that the Tutte polynomial of G⊗H can be expressed
in terms of the Tutte polynomials of G and H, so that Z(G⊗H; q, w) ∼ Z(G; q, w′) for
some “shifted” weight w′.
For fixed rational points (q, w), we want to use interpolation to prove the hardness

of computing Z(G; q, w) for a given graph G. The basic idea is to find a suitable class
of graphs {Hi}, such that we can compute the coefficients of the univariate polynomial
v 7→ Z(G; q, v) for given G and q by interpolation from sufficiently many evaluations of
Z(G; q, wi) ∼ Z(G ⊗ Hi; q, w). For this, we need that the number of different weight
shifts {wi} provided by the graph class {Hi} is at least |E(G)| + 1, one more than the
degree of the polynomial.

Generalised Theta Graphs

For a set S = {s1, . . . , sk} of positive integers, the generalised Theta graph ΘS consists of
two vertices x and y joined by k internally disjoint paths of s1, . . . , sk edges, respectively.
For example,

Θ{2,3,5} is x y .

For such graphs ΘS , we study the behaviour of the Theta inflation G⊗ΘS .
The Tutte polynomial of Theta graphs has already been studied by Sokal in the context

of complex roots of the chromatic polynomial. The necessary formulas for Z(G ⊗ ΘS)
can be derived from [Sok04, prop 2.2, prop 2.3]. We present them here for the special
case where all edge weights are the same.

Lemma 6.2 (Sokal). Let q and w be rational numbers with w 6= 0 and q 6∈ {0,−2w}.
Then, for all graphs G and finite sets S of positive integers,

Z(G⊗ΘS ; q, w) = q−|E|·|S| ·
∏
s∈S

(
(q + w)s − ws

)|E| · Z(G; q, wS) , (14)

where
wS = −1 +

∏
s∈S

(
1 +

q

(1 + q/w)s − 1

)
. (15)

This lemma can be derived from Sokal’s series and parallel reduction rules for Z using
a straightforward calculation. Since all edge weights are the same, the result can also
be established from the classical Tutte polynomial via the series and parallel reduction
rules in [JVW90], but the calculation would be slightly more laborious.
We now show that the class of Theta graphs provides a rich enough spectrum of

weight shifts to allow for interpolation. In the following lemma, we use the definition
of wS from (15).

19

Lemma 6.3. Let q and w be rational numbers with w 6= 0 and q 6∈ {0, 1,−w,−2w}. For
all integers m ≥ 1, there exist sets S0, . . . , Sm of positive integers such that

(i)
∑

s∈Si
s ≤ O(log3m) for all i, and

(ii) wSi 6= wSj for all i 6= j.

Furthermore, the sets Si can be computed in time polynomial in m.

Proof. Let b = |1 + q/w| and f(s) = 1 + q/(bs − 1) for s > 0. Our choice of parameters
ensures that b > 0 and b 6= 1, so f is a well-defined, continuous, and strictly monotone
function from R+ → R. Furthermore, wS = −1 +

∏
s∈S f(s) for all finite sets S of

positive even integers. Now let s0 ≥ 2 be an even integer such that f(s) is nonzero and
has the same sign as f(s0) for all s ≥ s0. For i = 0, . . . ,m, let b` · · · b0 denote the binary
expansion of i where ` = blogmc. Let ∆ > 6 be a gap parameter that is a large and even
integer chosen later, but only depends on q and w. We define

Si =
{
s0 + ∆dlogme · (2j + bj) : 0 ≤ j ≤ `

}
.

The salient feature of this construction is that all sets Si are different, of equal small
cardinality, contain only positive even integers, and are from a range where f does not
change sign. Most important for our analysis is that the elements of the Si are spaced
apart significantly, i.e.,

for i, j and any s ∈ Si and t ∈ Sj , either s = t or |s− t| ≥ ∆ logm. (P)

From |Si| = blogmc + 1 and the fact that all numbers in the sets are bounded by
O(log2m), we immediately get (i).

To establish (ii), let 0 ≤ i < j ≤ m. We want to show that wSi 6= wSj . Let us define
S = Si \Sj and T = Sj \Si. From (15), we see by multiplying with (wSi∩Sj + 1) on both
sides that wS + 1 = wT + 1 is equivalent to wSi = wSj since wSi∩Sj 6= −1.
It remains to show that

∏
s∈S f(s) 6=

∏
t∈T f(t). Equivalently,∏

s∈S

(
bs + q − 1

)∏
t∈T

(
bt − 1

)
−
∏
t∈T

(
bt + q − 1

)∏
s∈S

(
bs − 1

)
6= 0 (16)

We will multiply out the products in (16). Using the notation ‖X‖ =
∑

x∈X x, we
rewrite ∏

s∈S

(
bs + q − 1

)∏
t∈T

(
bt − 1

)
=

∑
X⊆S∪T

(−1)|T\X|(q − 1)|S\X|b‖X‖ .

Here we use the convention that for X ⊆ S ∪ T , the term bs is taken in the first factor if
s ∈ X ∩ S, and bt is taken in the second factor if t ∈ X ∩ T . Doing this for both terms
of (16) and collecting terms we arrive at the equivalent claim∑

X⊆S∪T
g(X) 6= 0 , (17)

20

where
g(X) =

(
(−1)|T\X|(q − 1)|S\X| − (−1)|S\X|(q − 1)|T\X|

)
· b‖X‖ . (18)

Let s1 be the smallest element of S∪T and without loss of generality assume that s1 ∈ S
(otherwise exchange S and T). Now from (18) and |S| = |T |, it follows that

g
(
S ∪ T

)
= g(∅) = 0

g
(
(S ∪ T) \ {s1}

)
= q · b‖S∪T‖−s1

g
(
{s1}

)
= (−q) · (1− q)|S|−1 · bs1 .

Since q 6= 0, the largest exponent of b with nonzero coefficient in (18) is ‖S ∪ T‖ − s1

and all other exponents are at least ∆ logm smaller than that. Similarly since q 6∈ {0, 1},
the smallest exponent of b with nonzero coefficient is s1 and all other exponents are at
least ∆ logm larger.

We let X0 be the index in (17) that maximizes the value |g(X0)|. By the above
considerations, we have X0 = S ∪ T \ {s1} for b > 1 and X0 = {s1} for b < 1. The total
contribution of the remaining terms is h =

∑
X 6=X0

g(X). We prove (17) by showing
|h| < |g(X0)|. From the triangle inequality and the fact that S ∪ T has at most 4m2

subsets X, we get

|h| ≤ 4m2 · max
X 6=X0

|g(X)| ≤ 4m2 · 2|q − 1|1+logm · b‖X0‖±∆ logm

where the sign in ±∆ logm depends on whether b is larger or smaller than 1. If b > 1,
the sign is negative. In this case, notice that ∆ = ∆(q, w) can be chosen such that
4m2 · 2|q − 1|1+logm < |q| · b∆ logm for all m ≥ 2. If b < 1, we can similarly choose ∆ as
to satisfy 4m2 · 2|q − 1|1+logm < |q| · |1− q||S|−1 · b−∆ logm. Thus, in both cases we have
|h| < |g(X0)|, which establishes (ii). �

Points on the Hyperbolas

The following proposition establishes Theorem 1.4(iv), which states that Z is hard to
evaluate at most points (q, w) with q 6∈ {0, 1}.

Proposition 6.4. Let (q, w) ∈ Q2 \ {(4,−2), (2,−1), (2,−2)} with q /∈ {0, 1} and w 6= 0.
If #ETH holds, then Z(G; q, w) for a given simple graph G cannot be computed in time
exp(o(m/ log3m)).

By (4), the points (4,−2), (2,−1), and (2,−2) in the (q, w)-plane correspond to the
polynomial-time computable points (−1,−1), (−1, 0), and (0,−1) in the (x, y)-plane.

Proof. We reduce from the problem of computing the coefficients of the polynomial v 7→
Z(G; q, v), which cannot be done in time exp(o(m)) for q 6∈ {0, 1} by Proposition 4.1 and
Proposition 4.3 (assuming #ETH). We interpolate as in the proof of Proposition 5.1,
but instead of thickenings we use Theta inflations to keep the number of edges relatively
small.

21

First we consider the degenerate case in which q = −w or q = −2w. For a positive
integer constant k, let G′ be the k-thickening of G. This transformation shifts the weight
to w′ with

w′ = (1 + w)k − 1 ,

which allows us to compute Z(G; q, w′) from Z(G′; q, w) using (13). In the case q = −w,
we have 1 +w = 1− q, which cannot be 1 or 0, but which can also not be −1 since then
(q, w) = (2,−2). Similarly, in the case q = −2w, we have 1 +w = 1− q/2, which cannot
be 1. It can also not be 0 since then (q, w) = (2,−1), neither can it be −1 since then
(q, w) = (4,−2). Thus, in any case, (1 +w) 6∈ {0,±1}. This means that we can choose k
large enough so that q 6∈ {−w′,−2w′}. This remains true if we let G′′ be the 2-stretch
to G′, which shifts the weight to w′′ with

1 +
q

w′′
=
(

1 +
q

w′

)2
,

so that Z(G; q, w′′) can be computed from Z(G′′; q, w) (see [Sok04]). We choose k so that
q 6∈ {−w′′,−2w′′}. The graph G′′ after this transformation is simple and the number of
edges is only increased by a constant factor of 2k.

By the above, we can assume w.l.o.g. that q 6∈ {−w,−2w}. We observe that the
conditions w 6= 0 and q 6∈ {0, 1,−w,−2w} of Lemma 6.3 now hold, and thus we can
compute m+1 sets S0, S1, . . . , Sm with all distinct weight shifts w0, . . . , wm under Theta
inflations.
For a given graph G, let Gi = G⊗ΘSi . Using Lemma 6.2, we can compute the values

Z(G; q;wi) from Z(Gi; q, w). Moreover, as is clear from (5), the function v 7→ Z(G; q, v)
is a polynomial of degree at mostm, so we can use interpolation to recover its coefficients.
We remark that the Gi are simple graphs with at most O(m log3m) edges, so the claim
follows. �

Wump Graphs

The line x = 1 in the Tutte plane, the reliability line, is not covered by the above since
here q = 0 holds. On this line, the Tutte polynomial specializes (up to a closed-form
multiplicative factor) to the reliability polynomial R(G; p) (with p = 1/y), an object
studied in algebraic graph theory [GR01, Section 15.8]. Given a connected graph G
and a probability p, R(G; p) is the probability that G stays connected if every edge
independently fails with probability p. For example R(; 1

3) = Pr() + 5Pr() =
(2

3)5 + 5 · 1
3 · (

2
3)4 = 112

243 . Note that R(G; 1) = 0 for all connected graphs, so p = 1 is
easy to evaluate, which we know is also the case (though for less trivial reasons) for the
corresponding limit point (1, 1) in the Tutte plane.

Along the reliability line, weight shift identities take a different form. We use deletion–
contraction identities to derive the following rules. They are simple multi-weighted gen-
eralizations of [GJ08, Section 4.3].

22

Lemma 6.5. Let G be a graph with edge weights given by w : E(G)→ Q.
If ϕ(G) is obtained from G by replacing a single edge e ∈ E with a simple path of k

edges P = {e1, ..., ek} with w(ei) = wi, then

Z0(ϕ(G); 0,w) = CP · Z0(G; 0,w[e 7→ w′]) ,

where
1

w′
=

1

w1
+ · · ·+ 1

wk
and CP =

1

w′

k∏
i=1

wi .

Here w[e 7→ w′] denotes the function w′ : E(G)→ Q that is identical to w except at the
point e where it is w′(e) = w′.

Lemma 6.6. If ϕ(G) is obtained from G by replacing a single edge e ∈ E with a bundle
of parallel edges B = {e1, . . . , ek} with w(ei) = wi, then

Z0(ϕ(G); 0,w) = Z0(G; 0,w[e 7→ w′]) ,

where

w′ = −1 +
k∏
i=1

(1 + wi) .

Corollary 6.7. If ϕ(G) is obtained from G by replacing a single edge e ∈ E with a simple
path of k edges of constant weight w, then

Z0(ϕ(G); 0,w) = kwk−1 · Z0(G; 0,w[e 7→ w/k]) , (19)

and if it is obtained from G by replacing e ∈ E with a bundle of k parallel edges of
constant weight w, then

Z0(ϕ(G); 0,w) = Z0(G; 0,w[e 7→ (1 + w)k − 1]) . (20)

These rules are transitive [GJ08, Lemma 1], and so can be freely combined for more
intricate weight shifts. We define a class of graph inflations, Wump inflations, and use
the above to show that they give rise to distinct weight shifts along the reliability line
of the Tutte polynomial. Wump inflations are mildly inspired by l-byte numbers, in the
sense that each has associated to it a sequence of length l, such that the lexicographic
order of these sequences determines the size of the corresponding (shifted) weights.

Definition 6.8 (Wump graph). For positive integers i (height) and s (width), an (i, s)-
hump is the graph obtained by identifying all the left and all the right endpoints of i
simple paths of length s each. Given a sequence S = 〈s1, s2, . . . , sl〉 of l positive integers,
the Wump graph WS is the graph obtained by concatenating l humps at their endpoints,
where the i-th hump is an (i, si)-hump, i.e., its height is i and its width is si.

(4, 2)-hump S = 〈3, 2, 3, 2〉

The number l is the length of the Wump graph WS.

23

Inflating a graph by a Wump graph shifts the weights on the reliability line as follows.

Lemma 6.9. For any graph G with m edges, any sequence S = 〈s1, s2, . . . , sl〉 of positive
integers, and any non-zero rational number w, we have

Z0(G⊗WS ; 0, w) = CmS · Z0(G; 0, wS) ,

where

1

wS
=

l∑
i=1

1

(1 + w/si)i − 1
and CS =

1

wS
·

l∏
i=1

w(si−1)i
(
(w + si)

i − sii
)
. (21)

Proof. We start with G⊗WS and consider the effect that replacing one of the m canoni-
cal copies of WS with a single edge e has. We show that, with ϕ denoting this operation,

Z0(G⊗WS ; 0, w) = CS · Z0(ϕ(G⊗WS); 0,w[e 7→ wS]) , (22)

where wS has the above form, and w has the old value w on all unaffected edges. The
lemma then follows by successively applying ϕ to each canonical copy of WS in G⊗WS .
The first step towards transforming a Wump graph (say,) into a single

edge, consists of contracting the paths of the humps to a single edge each. For the i-th
hump, this is just the inverse of an si-stretching applied to each of the i paths. By (19)
of Corollary 6.7, this “unstretching” gives a factor (siw

si−1)i to the polynomial, and
each edge in the resulting (i, 1)-hump receives a weight of w/si in the modified graph.
Repeating this process for every hump simplifies the Wump graph into a Wump graph
of length l that is generated by a sequence of 1s (). Let φ(G⊗WS) denote the
graph in which one Wump graph has been simplified. By transitivity, we have the weight
shift

Z0(G⊗WS ; 0, w) =

(
l∏

i=1

(siw
si−1)i

)
· Z0(φ(G⊗WS); 0,w′) ,

where w′ takes the value w/si on every edge of the ith hump of the simplified Wump
graph, and the old value w outside the simplified Wump graph. Next, we successively
replace each of its (i, 1)-humps by a single edge to get a simple path () of
length l. This transformation is just an “unthickening” of each (i, 1)-hump, and from (20)
of Corollary 6.7 we know that it does not produce any new factors for the polynomial,
but the weight of the ith edge in this path becomes

wi = (1 + w/si)
i − 1 .

Finally, we compress the path into a single edge e. Then the claim in (22) follows by a
single application of Lemma 6.5. �

We now show that Wump inflations provide a rich enough class of weight shifts. The
ranges of w for which we prove this is general enough to allow for interpolation on the
whole reliability line, and we make no attempt at extending the ranges. In the following
lemma, we use the definition of wS from (21).

24

Lemma 6.10. Let w be a rational number with w ∈ (−1, 0) or w ∈ (9,∞). For all integers
m ≥ 1, there exist sequences S0, . . . , Sm of positive integers such that

(i) |E(WSi)| ≤ O(log2m) for all i, and

(ii) wSi 6= wSj for all i 6= j.

Furthermore, the sequences Si can be computed in time polynomial in m.

Proof. We consider the set of sequences S = 〈s1, . . . , sl〉 of length l = r log(m+ 1), with
si ∈ {2, 3} for all i which are positive integer multiples of r, and si = 2 for all other i.
Here r is a positive integer and will be chosen later, only depending on w. Since r is a
constant, this construction satisfies (i).
Now consider any two distinct sequences S = 〈si〉 and T = 〈ti〉. To show (ii), we

consider the difference
∆ =

1

wS
− 1

wT
,

and show that ∆ 6= 0.
Using Lemma 6.9 we get a sum expression for ∆.

∆ =

l∑
i=1

1

(1 + w/si)i − 1
−

l∑
i=1

1

(1 + w/ti)i − 1

=

l∑
i=1

g
(
(1 + w/si)

i
)
−

l∑
i=1

g
(
(1 + w/ti)

i
)
,

(23)

where g is the function g(x) = 1
x−1 . This function is negative and strictly decreasing on

(0, 1) and positive and strictly decreasing on (1,∞). It is convenient to choose a, b ∈
{(1 + w/3), (1 + w/2)} so that a < b. By the monotonicity of g, we have g(ai) > g(bi)
for all positive i.

Case 1: w > 9. Here we have a = (1 +w/3) and b = (1 +w/2). We set r = 1 and let k
be the smallest index for which the sequences differ, i.e., sk 6= tk. We assume w.l.o.g.
that sk = 3 and tk = 2, otherwise we exchange the roles of S and T . In (23), terms of
the sum for i < k cancel. The terms corresponding to i = k are g(ak) − g(bk) > 0. We
apply the monotonicty of g to the terms for i > k, which allows us to lower bound ∆ as
follows.

∆ ≥ g(ak) +

l∑
i=k+1

g(bi)− g(bk)−
l∑

i=k+1

g(ai) = f(a)− f(b) ,

where

f(x) = g(xk)−
l∑

i=k+1

g(xi) =
1

xk − 1
−

l∑
i=k+1

1

xi − 1
. (24)

We now claim that f is strictly decreasing in (4,∞). This implies ∆ > 0 since w > 9
guarantees a, b > 4, and we get ∆ ≥ f(a)− f(b) > 0. To prove the claim, we show that

25

the derivative of f is negative on (4,∞). This is a routine calculation, but we include it
here for completeness. We have

f ′(x) = − kxk−1

(xk − 1)2
+

l∑
i=k+1

ixi−1

(xi − 1)2
. (25)

The terms of the sum here, let us call them Ti(x), satisfy

Ti(x) > 2 · Ti+1(x)

for all i and all x > 4. To see this, note that the inequality is equivalent to

2

(
1 +

1

i

)
x <

(
x+

x− 1

xi − 1

)2

.

This statement is true for all reals x > 4 and all positive integers i since then we have
that LHS ≤ 4x < x2 ≤ RHS. Thus, for x > 4, we have

f ′(x) <
kxk−1

(xk − 1)2

(
−1 +

l∑
i=k+1

1

2i−k

)
< 0 .

Case 2: w ∈ (−1, 0). Here we have a = (1 + w/2) and b = (1 + w/3). We choose r
to be a positive integer that satisfies br < 1

4 . Let rk be the smallest index for which the
sequences differ, i.e., srk 6= trk. We assume w.l.o.g. that srk = 3 and trk = 2, otherwise
we exchange the roles of S and T . In (23), terms of the sum for i < rk cancel, and so
do terms for those i’s which are not integer multiples of r. The terms corresponding to
i = rk are g(brk) − g(ark) < 0. We apply the monotonicty of g to the remaining terms
for i > rk, which allows us to upper bound ∆ as follows.

∆ ≤ g(brk) +

l/r∑
i=k+1

g(ari)− g(ark)−
l/r∑

i=k+1

g(bri)

For x ∈ (0, 1), we can expand g(x) into the geometric series

g(x) =
1

x− 1
= −

∞∑
j=0

xj .

Applying this representation to our estimate for ∆ and rearranging terms, we arrive at

∆ ≤
∞∑
j=0

(arj)k − (brj)k +

l/r∑
i=k+1

(
(brj)i − (arj)i

) =
∞∑
j=0

(
F (arj)− F (brj)

)
,

where F is the function

F (y) = yk −
l/r∑

i=k+1

yi .

26

We claim that F is strictly increasing on (0, 1
4). This, together with the fact that r is

chosen such that arj , brj ∈ (0, 1
4) for all positive integers j, implies ∆ < 0, because then

F (arj) − F (brj) < 0 for j ≥ 1, and for j = 0 the term is 0. To prove the claim we
show that the derivative of F is positive on (0, 1

4). Again, we give the details here for
completeness. We have

F ′(y) = kyk−1 −
l/r∑

i=k+1

iyi−1 ,

and obtain F ′(y) > 0 from the following calculation, using the fact that y ∈ (0, 1
4).

(kyk−1)−1 ·
l/r∑

i=k+1

iyi−1 =

l/r∑
i=k+1

i

k
yi−k =

l/r−k∑
i=1

(
1 +

i

k

)
yi

≤
l/r−k∑
i=1

(1 + i) yi ≤
∞∑
i=1

yi +

∞∑
i=1

iyi

=
1

1− y
− 1 +

y

(1− y)2
≤ 4

3
− 1 +

4

9
< 1 . �

Points on the Reliability Line

We prove Theorem 1.4(iii).

Proposition 6.11. Let w 6= 0 be a rational number. If #ETH holds, then Z0(G; 0, w) for
a given simple graph G cannot be computed in time exp(o(m/ log2m)).

Proof. If w < 0, we can pick a positive integer k big enough such that

w′ := w/k > −1 .

This weight shift corresponds to the k-stretch of G (Corollary 6.7). On the other hand,
if w > 0, we can pick a positive integer k such that

w′ := (w/2 + 1)k − 1 > 9 .

This is the weight shift that corresponds to the 2-stretch of the k-thickening of G (Corol-
lary 6.7). In any case we can compute Z(G;w′, q) from Z(G′;w, q). The graph remains
simple after any of these transformations, and the number of edges is only increased by
a constant factor of at most 2k.
By the above, we can assume w.l.o.g. that w ∈ (−1, 0) or w > 9. We use Lemma 6.10 to

construct m+ 1 Wump graphs WS whose corresponding weight shifts wS are all distinct
by property (ii) of Lemma 6.10. By Lemma 6.9, we can compute the values Z0(G; 0, wS)
from Z0(G⊗WS ; 0, w), i.e., we get evaluations of v 7→ Z0(G; 0, v) atm+1 distinct points.
Since the degree of this polynomial is m, we obtain its coefficients by interpolation. By
Proposition 4.3, these coefficients cannot be computed in time exp(o(m)) under #ETH.
By Lemma 6.10(i), each G⊗WS has at most O(m log2m) edges, which implies that
Z0(G; 0, w) for given G cannot be computed in time exp(o(m/ log2m)) as claimed. �

27

7. Conclusion and Further Work

Our results for the Tutte polynomial leave open the line y = 1 except for the point (1, 1),
even in the case of multigraphs. That line corresponds to counting the number of forest
weighted by the number of edges, i.e., T (G; 1 + 1/w, 1) ∼ F (G;w) =

∑
forests F w

|F |.
Thickening and Theta inflation, with the analysis in the proof of Lemma 6.9, suffice
to show that every point is as hard as computing the coefficients of F (G;w), without
increasing the number of vertices for multigraphs and with an increase in the number of
edges by a factor of O(log2m) in the case of simple graphs. However, we do not know
whether computing those coefficients requires exponential time under #ETH. And of
course, it would be nice to improve our conditional lower bounds exp(Ω(n/ poly log n))
to match the corresponding upper bounds exp(O(n)).

Acknowledgements

The authors are grateful to Andreas Björklund, Leslie Ann Goldberg, and Dieter van
Melkebeek for valuable comments.
Wump graphs are named for a fictional creature notable for its number of humps,

which appears in the American children’s book “One Fish Two Fish Red Fish Blue Fish”
by Dr. Seuss; the name was suggested by Prasad Tetali.

References

[Agr06] Manindra Agrawal, “Determinant versus permanent,” in Proceedings of the
25th International Congress of Mathematicians, ICM 2006, vol. 3, 2006,
pp. 985–997.

[BD07] Markus Bläser and Holger Dell, “Complexity of the cover polynomial,” in
Proceedings of the 34th International Colloquium on Automata, Languages
and Programming, ICALP 2007, ser. Lecture Notes in Computer Science,
vol. 4596, Springer, 2007, pp. 801–812. doi: 10.1007/978-3-540-73420-
8_69.

[Ber84] Stuart J. Berkowitz, “On computing the determinant in small parallel time
using a small number of processors,” Information Processing Letters, vol.
18, no. 3, pp. 147–150, 1984. doi: 10.1016/0020-0190(84)90018-8.

[BH08] Andreas Björklund and Thore Husfeldt, “Exact algorithms for exact sat-
isfiability and number of perfect matchings,” Algorithmica, vol. 52, no. 2,
pp. 226–249, 2008. doi: 10.1007/s00453-007-9149-8.

[BHK+08] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto,
“Computing the Tutte polynomial in vertex-exponential time,” in Proceed-
ings of the 47th annual IEEE Symposium on Foundations of Computer
Science, FOCS 2008, 2008, pp. 677–686. doi: 10.1109/FOCS.2008.40.

28

http://dx.doi.org/10.1007/978-3-540-73420-8_69
http://dx.doi.org/10.1007/978-3-540-73420-8_69
http://dx.doi.org/10.1016/0020-0190(84)90018-8
http://dx.doi.org/10.1007/s00453-007-9149-8
http://dx.doi.org/10.1109/FOCS.2008.40

[Bry11] Thomas Brylawski, “The Tutte polynomial part I: General theory,” in
Matroid Theory and its Applications, ser. Centro Internazionale Matem-
atico Estivo Summer Schools, vol. 83, Springer, 2011, pp. 125–275. doi:
10.1007/978-3-642-11110-5_3.

[CIK+03] Chris Calabro, Russell Impagliazzo, Valentine Kabanets, and Ramamohan
Paturi, “The complexity of unique k-SAT: An isolation lemma for k-CNFs,”
in Proceedings of the 18th IEEE Conference on Computational Complexity,
CCC 2003, 2003, p. 135. doi: 10.1109/CCC.2003.1214416.

[CJ01] Liming Cai and David W. Juedes, “Subexponential parameterized algo-
rithms collapse the W-hierarchy,” in Proceedings of the 28th Internatio-
nal Colloquium on Automata, Languages and Programming, ICALP 2001,
2001, pp. 273–284.

[DECF+03] Rodney G. Downey, Vladimir Estivill-Castro, Michael R. Fellows, Elena
Prieto, and Frances A. Rosamund, “Cutting up is hard to do: the param-
eterised complexity of k-cut and related problems,” Electronic Notes in
Theoretical Computer Science, vol. 78, pp. 209–222, 2003. doi: 10.1016/S
1571-0661(04)81014-4.

[DHM+12] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin
Wahlén, “Exponential time complexity of the permanent and the Tutte
polynomial,” Transactions on Algorithms, 2012+, to appear.

[DHW10] Holger Dell, Thore Husfeldt, and Martin Wahlén, “Exponential time com-
plexity of the permanent and the Tutte polynomial,” in Proceedings of the
37th International Colloquium on Automata, Languages and Programming,
ICALP 2010, ser. Lecture Notes in Computer Science, vol. 6198, Springer,
2010, pp. 426–437. doi: 10.1007/978-3-642-14165-2_37.

[DJP+94] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D.
Seymour, and Mihalis Yannakakis, “The complexity of multiterminal cuts,”
SIAM Journal on Computing, vol. 23, no. 4, pp. 864–894, 1994. doi: 10.1
137/S0097539792225297.

[FG04] Jörg Flum and Martin Grohe, “The parameterized complexity of counting
problems,” SIAM Journal on Computing, no. 4, pp. 892–922, 2004. doi:
10.1137/S0097539703427203.

[FG06] ——, Parameterized Complexity Theory. Springer, 2006, isbn: 978-3-540-
29952-3.

[FK72] Cees M. Fortuin and Pieter W. Kasteleyn, “On the random-cluster model:
I. Introduction and relation to other models,” Physica, vol. 57, no. 4,
pp. 536–564, 1972, issn: 0031-8914. doi: 10.1016/0031- 8914(72)900
45-6.

[GHN06] Omer Giménez, Petr Hliněný, and Marc Noy, “Computing the Tutte poly-
nomial on graphs of bounded clique-width,” SIAM Journal on Discrete
Mathematics, vol. 20, pp. 932–946, 2006. doi: 10.1007/11604686_6.

29

http://dx.doi.org/10.1007/978-3-642-11110-5_3
http://dx.doi.org/10.1109/CCC.2003.1214416
http://dx.doi.org/10.1016/S1571-0661(04)81014-4
http://dx.doi.org/10.1016/S1571-0661(04)81014-4
http://dx.doi.org/10.1007/978-3-642-14165-2_37
http://dx.doi.org/10.1137/S0097539792225297
http://dx.doi.org/10.1137/S0097539792225297
http://dx.doi.org/10.1137/S0097539703427203
http://dx.doi.org/10.1016/0031-8914(72)90045-6
http://dx.doi.org/10.1016/0031-8914(72)90045-6
http://dx.doi.org/10.1007/11604686_6

[GJ07] Leslie Ann Goldberg and Mark Jerrum, “The complexity of ferromagnetic
Ising with local fields,” Combinatorics, Probability and Computing, vol. 16,
no. 1, pp. 43–61, 2007. doi: 10.1017/S096354830600767X.

[GJ08] ——, “Inapproximability of the Tutte polynomial,” Information and Com-
putation, vol. 206, no. 7, pp. 908–929, 2008. doi: 10.1016/j.ic.2008.0
4.003.

[GJS76] Michael R. Garey, David S. Johnson, and Larry Stockmeyer, “Some sim-
plified NP-complete graph problems,” Theoretical Computer Science, vol.
1, no. 3, pp. 237–267, 1976. doi: 10.1016/0304-3975(76)90059-1.

[GR01] Chris Godsil and Gordon Royle, Algebraic Graph Theory, ser. Graduate
Texts in Mathematics. Springer, Apr. 2001, isbn: 0387952209.

[Hof10] Christian Hoffmann, “Exponential time complexity of weighted counting
of independent sets,” in Proceedings of the 5th International Symposium
on Parameterized and Exact Complexity, IPEC 2010, ser. Lecture Notes
in Computer Science, vol. 6478, Springer, 2010, pp. 180–191. doi: 10.100
7/978-3-642-17493-3_18.

[HT10] Thore Husfeldt and Nina Taslaman, “The exponential time complexity of
computing the probability that a graph is connected,” in Proceedings of
the 5th International Symposium on Parameterized and Exact Complexity,
IPEC 2010, ser. Lecture Notes in Computer Science, vol. 6478, Springer,
2010, pp. 192–203. doi: 10.1007/978-3-642-17493-3_19.

[IP01] Russel Impagliazzo and Ramamohan Paturi, “On the complexity of k-
SAT,” Journal of Computer and System Sciences, vol. 62, no. 2, pp. 367–
375, 2001. doi: 10.1006/jcss.2000.1727.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane, “Which prob-
lems have strongly exponential complexity?,” Journal of Computer and
System Sciences, vol. 63, no. 4, pp. 512–530, 2001. doi: 10.1006/jcss.20
01.1774.

[Ist00] Sorin Istrail, “Statistical mechanics, three-dimensionality and NP-com-
pleteness. I. Universality of intractability for the partition function of the
Ising model across non-planar lattices,” in Proceedings of the 32nd annual
ACM Symposium on Theory of Computing, STOC 2000, 2000, pp. 87–96.
doi: 10.1145/335305.335316.

[JS82] Mark Jerrum and Marc Snir, “Some exact complexity results for straight-
line computations over semirings,” Journal of the ACM, vol. 29, no. 3,
pp. 874–897, 1982. doi: 10.1145/322326.322341.

[JS93] Mark Jerrum and Alistair Sinclair, “Polynomial-time approximation algo-
rithms for the Ising model,” SIAM Journal on Computing, vol. 22, no. 5,
pp. 1087–1116, 1993. doi: 10.1137/0222066.

30

http://dx.doi.org/10.1017/S096354830600767X
http://dx.doi.org/10.1016/j.ic.2008.04.003
http://dx.doi.org/10.1016/j.ic.2008.04.003
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1007/978-3-642-17493-3_18
http://dx.doi.org/10.1007/978-3-642-17493-3_18
http://dx.doi.org/10.1007/978-3-642-17493-3_19
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1145/335305.335316
http://dx.doi.org/10.1145/322326.322341
http://dx.doi.org/10.1137/0222066

[JVW90] François Jaeger, Dirk L. Vertigan, and Dominic J.A. Welsh, “On the com-
putational complexity of the Jones and Tutte polynomials,” Mathematical
proceedings of the Cambridge Philosophical Society, vol. 108, no. 1, pp. 35–
53, 1990. doi: 10.1017/S0305004100068936.

[Koi09] Mikko Koivisto, “Partitioning into sets of bounded cardinality,” in Proceed-
ings of the 4th International Workshop on Parameterized and Exact Com-
plexity, IWPEC 2009, ser. Lecture Notes in Computer Science, vol. 5917,
Springer, 2009, pp. 258–263. doi: 10.1007/978-3-642-11269-0_21.

[Kut07] Konstantin Kutzkov, “New upper bound for the #3-sat problem,” Infor-
mation Processing Letters, vol. 105, no. 1, pp. 1–5, 2007. doi: 10.101
6/j.ipl.2007.06.017.

[Law76] Eugene L. Lawler, “A note on the complexity of the chromatic number
problem,” Information Processing Letters, vol. 5, no. 3, pp. 66–67, 1976.
doi: 10.1016/0020-0190(76)90065-X.

[Lin86] Nathan Linial, “Hard enumeration problems in geometry and combina-
torics,” SIAM Journal on Algebraic and Discrete Methods, vol. 7, no. 2,
pp. 331–335, 1986. doi: 10.1137/0607036.

[Pap94] Christos H. Papadimitriou, Computational Complexity. Addison-Wesley,
1994, isbn: 978-0-201-53082-7.

[Raz09] Ran Raz, “Multi-linear formulas for permanent and determinant are of
super-polynomial size,” Journal of the ACM, vol. 56, no. 2, pp. 1–17, 2009.
doi: 10.1145/1502793.1502797.

[Rys63] Herbert J. Ryser, “Combinatorial mathematics,” Number 14 in Carus Math.
Monographs. Mathematical Association of America, 1963.

[SIT95] Kyoko Sekine, Hiroshi Imai, and Seiichiro Tani, “Computing the Tutte
polynomial of a graph of moderate size,” in Proceedings of the 6th Inter-
national Symposium on Algorithms and Computation, ISAAC 1995, ser.
Lecture Notes in Computer Science, Springer, 1995, pp. 224–233. doi:
10.1007/BFb0015427.

[Sok04] Alan D. Sokal, “Chromatic roots are dense in the whole complex plane,”
Combinatorics, Probability and Computing, vol. 13, no. 2, pp. 221–261,
2004. doi: 10.1017/S0963548303006023.

[Sok05] ——, “The multivariate Tutte polynomial (alias Potts model) for graphs
and matroids,” in Surveys in Combinatorics, ser. London Mathematical
Society Lecture Note Series, vol. 327, 2005, pp. 173–226.

[Tod91] Seinosuke Toda, “PP is as hard as the polynomial-time hierarchy,” 5,
vol. 20, 1991, pp. 865–877. doi: 10.1137/0220053.

[Val79] Leslie G. Valiant, “The complexity of computing the permanent,” Theoret-
ical Computer Science, vol. 8, no. 2, pp. 189–201, 1979. doi: 10.1016/030
4-3975(79)90044-6.

31

http://dx.doi.org/10.1017/S0305004100068936
http://dx.doi.org/10.1007/978-3-642-11269-0_21
http://dx.doi.org/10.1016/j.ipl.2007.06.017
http://dx.doi.org/10.1016/j.ipl.2007.06.017
http://dx.doi.org/10.1016/0020-0190(76)90065-X
http://dx.doi.org/10.1137/0607036
http://dx.doi.org/10.1145/1502793.1502797
http://dx.doi.org/10.1007/BFb0015427
http://dx.doi.org/10.1017/S0963548303006023
http://dx.doi.org/10.1137/0220053
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1016/0304-3975(79)90044-6

[Whi33] Hassler Whitney, “2-isomorphic graphs,” American Journal of Mathemat-
ics, vol. 55, no. 1, pp. 245–254, 1933. [Online]. Available: http://www.jst
or.org/stable/2371127.

32

http://www.jstor.org/stable/2371127
http://www.jstor.org/stable/2371127

A. The Sparsification Lemma

Sparsification is the process of reducing the density of graphs, formulas, or other combi-
natorial objects, while some properties of the objects like the answer to a computational
problem are preserved.
The objective of sparsification is twofold. From an algorithmic perspective, efficient

sparsification procedures can be used as a preprocessing step to make input instances
sparse and thus possibly simpler and smaller, such that only the core information about
the input remains. In the literature, such applications of sparsification procedures are
called kernelizations. From a complexity-theoretic point of view, sparsification is a tool
to identify those instances of a problem that are computationally the hardest. If an
NP-hard problem admits efficient sparsification, the hardest instances are sparse.
In the context of the exponential time hypothesis, the sparsification lemma provides a

way to show that the hardest instances of d-Sat are sparse and thus the parameter n can
be replaced with m in the statement of the exponential time hypothesis. The following
is the sparsification lemma as formulated in [FG06, Lemma 16.17].

Lemma A.1 (Sparsification Lemma). Let d ≥ 2. There exists a computable function f :
N2 → N such that for every k ∈ N and every d-CNF formula γ with n variables, we can
find a formula

β =
∨
i∈[t]

γi

such that:

(1) β is equivalent to γ (ie., they have the same satisfying assignments),

(2) t ≤ 2n/k, and

(3) the γi are d-CNF formulas in which each variable occurs at most f(d, k) times.

Furthermore, β can be computed from γ and k in time t · poly(n).

We sketch below a small modification in the proof of the sparsification lemma that allows
us to replace (1) with the condition

(1’) sat(γ) =
⋃̇
i sat(γi) ,

where sat(ϕ) is the set of assignments that satisfy the formula ϕ. That is, not only is β
equivalent to γ, it even holds that every satisfying assignment of β satisfies exactly one γi.
In particular, (1’) implies #Sat(γ) =

∑
i#Sat(γi), which means that the sparsification

lemma can be used for the counting version of 3-Sat.

Proof (sketch). We adapt the terminology of [FG06, Proof of Lemma 16.17] and we follow
their construction precisely, except for a small change in the sparsification algorithm.
When the algorithm decides to branch for a CNF-formula γ and a flower α = {δ1, . . . , δp},
the original algorithm would branch on the two formulas

γαheart = γ \ {δ1, . . . , δp} ∪ {δ} ,
γαpetals = γ \ {δ1, . . . , δp} ∪ {δ1 \ δ, . . . , δp \ δ} .

33

We modify the branching on the petals to read

γαpetals = γ \ {δ1, . . . , δp} ∪ {δ1 \ δ, . . . , δp \ δ} ∪
{
{¬l} : l ∈ δ

}
.

This way, the satisfying assignments become disjoint: In each branching step, we guess
whether the heart contains a literal set to true, or whether all literals in the heart are
set to false and each petal contains a literals set to true.
Now we have that, for all CNF-formulas γ, all assignments σ to the variables of γ, and

all flowers α of γ,

(i) σ satisfies γ if and only if σ satisfies γαheart ∨ γαpetals, and

(ii) σ does not satisfy γαheart or σ does not satisfy γαpetals.

By induction, we see that at the end of the algorithm,

(i) σ satisfies γ if and only if σ satisfies some γi, and

(ii) σ satisfies at most one γi.

This implies that sat(γ) =
⋃̇
i∈[t] sat(γi).

Notice that our new construction adds at most n clauses of size 1 to the formulas γi
compared to the old one. Furthermore, our construction does not make t any larger
because the REDUCE-step removes all clauses that properly contain {¬l} and thus
these unit clauses never appear in a flower. �

Proof (of Theorem 1.1). For all integers d ≥ 3 and k ≥ 1, the sparsification lemma
gives an oracle reduction from #d-Sat to #d-Sat that, on input a formula γ with n
variables, only queries formulas with m′ = O(n) clauses, such that the reduction runs in
time exp(O(n/k)). Now, if for every c > 0 there is an algorithm for #d-Sat that runs in
time exp(cm), we can combine this algorithm and the above oracle reduction to obtain
an algorithm for #d-Sat that runs in time exp(O(n/k)+c ·m′) = exp(O(n/k)+c ·O(n)).
Since this holds for all small c > 0 and large k, we have for every c′ > 0 an algorithm for
#d-Sat running in time exp(c′ ·n). This proves that for all d ≥ 3, #d-Sat can be solved
in variable-subexponential time if and only if it can be solved in clause-subexponential
time.
It remains to show that #d-Sat reduces to #3-Sat. We transform an instance ϕ

of #d-Sat into an instance ϕ′ of #3-Sat that has the same number of satisfying as-
signments. The formula ϕ′ is constructed as in the standard width-reduction for d-CNF
formulas, i.e., by introducing a constant number of new variables for every clause of ϕ.
Thus, since the number of clauses of ϕ′ is O(m), any clause-subexponential algorithm
for #3-Sat implies a clause-subexponential algorithm for #d-Sat. �

B. Parameterized Complexity

Our hypothesis #ETH relates to parameterized complexity, which is a branch of com-
putational complexity that considers problems in terms of two parameters n and k. Of

34

special interest in that field are problems that have algorithm whose running times are
of the form f(k) poly(n) for some computable function f . Such problems are called fixed
parameter tractable, or FPT.
Flum and Grohe [FG04] introduce the class #W[1] of parameterized counting problems.

This class is characterized by complete problems such as computing the number of cliques
of size k or computing the number of simple paths of length k in an n-vertex graph.
Implicitly, Flum and Grohe [FG04] show that these problems are not fixed-parameter
tractable under #ETH.

Theorem B.1 (Flum and Grohe). If #ETH holds, then #W[1] 6= FPT.

The latter is only an implication and, as in the case of decision problems, we do not
know whether the two claims are equivalent. For a claim that is equivalent to #ETH,
we can follow a construction due to Downey, Estivill-Castro, Fellows, et al. [DECF+03].
Consider the following problem:

Name #Mini-3-Sat

Input Integers k and n; a 3-CNF formula ϕ with at most k log n clauses.

Output The number of satisfying assignments of ϕ.

Without explicit reference to ETH, Downey, Estivill-Castro, Fellows, et al. [DECF+03]
(based on ideas of Cai and Juedes [CJ01]) prove that the decision version of this problem
is equivalent to ETH. By a straightforward modification of their reduction, one can
establish the following equivalence.

Theorem B.2 (Downey et al.). #ETH holds if and only if #Mini-3-Sat /∈ FPT.

C. Hardness of 3-Colouring and 3-Terminal MinCut

The purpose of this section is to show that the standard reductions from 3-Sat to 3-
Colouring, NAE-3-Sat, MaxCut, and 3-Terminal MinCut computationally pre-
serve the number of solutions and increase the number of clauses or edges of the instances
by at most a constant factor. This implies that the corresponding counting problems
cannot be computed in clause-subexponential or edge-subexponential time unless #ETH
fails.

Theorem C.1. The problems #NAE-3-Sat, #MaxCut, #3-Terminal MinCut, and
#3-Colouring cannot be deterministically computed in time exp(o(m)) unless #ETH
fails.

In the following, we formally define the problems, sketch the standard NP-hardness re-
ductions, and provide their analyses as needed to prove Theorem C.1. For the purposes
of this section, polynomial-time reductions between counting problems are oracle reduc-
tions that make at most one query. The reductions we sketch need not be parsimonious,
that is, they map instances of one problems to instances of another problem (which they

35

query), but the number of solutions need not be exactly equal. In fact, there is no parsi-
monious reduction from #3-Sat or #NAE-3-Sat to #MaxCut since every graph has
at least one maximum cut while not every formula is satisfiable. Similarly, reductions
from #3-Sat to #3-Terminal MinCut cannot be parsimonious.

Not-all-equal-Sat

We show that counting the number of all not-all-equal assignments is hard even for the
promise problem in which we only have inputs with at least one such assignment. A truth
assignment is a not-all-equal assignment if all constraints {a, b, c} ∈ ϕ contain a true and
a false truth value. Formally, we use the following promise version of #NAE-3-Sat.

Name #NAE-3-Sat+

Input 3-CNF formula ϕ with at least one not-all-equal assignment.

Output The number of not-all-equal assignments.

Lemma C.2. There is a polynomial-time reduction from #3-Sat to #NAE-3-Sat+ that
maps formulas with m clauses to formulas with O(m) clauses.

Proof. Let ψ be a 3-CNF formula with n variables and m clauses. To fulfil the promise,
we first plant a satisfying assignment using a popular homework assignment. We obtain
a 3-CNF formula ϕ with O(m) variables and clauses such that #Sat(ϕ) = #Sat(ψ)+1.

To construct the instance ϕ′ to NAE-3-Sat, we introduce a new variable x for every
trivariate clause (a ∨ b ∨ c) of ϕ, and we replace that clause with

(x ∨ a) ∧ (x ∨ b) ∧ (x ∨ a ∨ b) ∧ (x ∨ c) .

These clauses force x to have the same value as a∨ b in any satisfying assignment. It can
be checked that these clauses are satisfied exactly if the original clause was satisfied and
moreover that the trivariate clause is never all-false or all-true. In total, we increased the
number of clauses four-fold without changing the number of satisfying assignments.
Finally, introduce a single fresh variable z and add this variable (positively) to every

mono- and bivariate clause. It is well-known that this modification turns ϕ′ into an
instance ϕ′′ of NAE-3-Sat [Pap94, Theorem 9.3]: The not-all-equal assignments of ϕ′′

are exactly the satisfying assignments of ϕ′ (if z is set to false) or their complements (if z
is set to true).
The reduction computes ϕ′′ from ψ in polynomial time, ϕ′′ has at most O(m) clauses,

and we have #NAE-3-Sat(ϕ′′) = 2 · (#Sat(ψ) + 1). �

Maximum Cut

A cut is a set C ⊆ V (G) and its size is the number |E(C,C)| of edges of G that cross
the cut. A maximum cut is a cut C ⊆ V (G) of maximum size.

Name #MaxCut

Input Simple undirected graph G.

36

Output The number of maximum cuts.

Jerrum and Sinclair [JS93, Lemma 13] modify a reduction of Garey, Johnson, and Stock-
meyer [GJS76, Theorem 1.1 and Theorem 1.2] to show #P-hardness of this problem.
The reduction increases the number of edges quadratically, so we cannot use it. Instead,
we use the reduction in [Pap94, Theorem 9.5] and compose it with a 3-stretch to make
the graph simple. The reduction is from #NAE-3-Sat+ to #MaxCut.

Lemma C.3. There is a polynomial-time reduction from #NAE-3-Sat+ to #MaxCut
that maps formulas with m clauses to graphs with O(m) edges.

Proof. We use the same reduction as [Pap94, Theorem 9.5] and we repeat the details here
for completeness. Given an instance ϕ of NAE-3-Sat with n variables andm constraints,
we construct a graph G as follows: For every variable xi, we add adjacent vertices xi
and ¬xi. For every constraint {a, b, c} of ϕ, we further add a triangle between the three
involved literals, which possibly leads to multiedges. This multigraph G has 2n vertices
and 3m+ n edges.
With k = 2m+n, we claim that the number of cuts of size k is equal to the number of

not-all-equal assignments of ϕ. First notice that there are no cuts of size larger than k:
every constraint triangle either contributes zero or two edges to any cut C, so every cut
has at most 2m edges from constraint triangles of G. Except for triangle edges, there
are exactly n further edges in the graph, so the cut cannot be larger than 2m + n = k.
Also note that if any xj and ¬xj are on the same side of a cut, then the size of that cut
cannot exceed k − 1. Hence every cut C of size exactly k separates all pairs xi and ¬xi
and can be seen as a truth assignment to the variables of ϕ. Furthermore, since C
has size exactly k, it cuts every constraint triangle, so it corresponds to a not-all-equal
truth assignment of ϕ. For the other direction, any cut constructed from a not-all-equal
assignment separates all xi and ¬xi, and cuts every triangle, so the size of such cuts is k.
In particular, since we reduced from an instance ϕ that has at least one not-all-equal
assignment, the maximum cuts of G have size k. We obtain a parsimonious polynomial-
time reduction from #NAE-3-Sat+ to #MaxCut on multigraphs that increases the
parameters n and m at most by a constant factor.
We now reduce #MaxCut for multigraphs to simple graphs. Let G be a multigraph

with m edges and with a maximum cut of size k. Let G′ be the 3-stretch of G, that is,
every edge is replaced by a path with three edges. This graph has 3m edges, and we claim
that #MaxCut(G′) = 3m−k ·#MaxCut(G), which suffices to prove the reduction.
To prove the claim, let C be a maxcut of G. We think of C as a colouring C : V (G)→
{0, 1} such that the number of bichromatic edges is maximized. The colouring C can be
extended in 3m−k ways to a maximum cut of G′ as follows. We consider an edge {u, v}
of G that got stretched into a 3-path u, a, b, v.

1. If C(u) = C(v), then there are exactly three ways to colour a and b such that
the number of bichromatic edges on the path u, a, b, v is two. Furthermore, no
extension can yield more than two bichromatic edges.

2. If C(u) 6= C(v), then there is exactly one way in which colouring can be extended
to a and b such that the number of bichromatic edges on the path u, a, b, v is three.

37

Since C has k bichromatic edges andm−k monochromatic edges in G, it can be extended
in 3m−k ways to yield a colouring of G′ with 2(m− k) + 3k = 2m+ k = k′ bichromatic
edges. On the other hand, any other extension than the above, as well as any extension
of cuts C of size smaller than k lead to cuts of G′ that have size smaller than k′. �

Minimum cut between three terminals

For convenience, we restate the definition of #3-Terminal MinCut from §4.

Name #3-Terminal MinCut

Input Simple undirected graph G = (V,E) with three distinguished vertices (“ter-
minals”) t1, t2, t3 ∈ V .

Output The number of cuts of minimal size that separate t1 from t2, t2 from t3, and
t3 from t1.

Lemma C.4. There is a polynomial-time reduction from the #MaxCut problem to #3-
Terminal MinCut that maps graphs with m edges to graphs with O(m) edges.

Proof. We follow the reduction of Dahlhaus et al. [DJP+94, Theorem 3]. So let G =
(V,E) be a simple graph with n vertices and m edges. It is made explicit in [DJP+94]
that the construction builds a graph F with n′ = 3 + n+ 4m = O(m) vertices. For the
number of edges, every uv ∈ E results in a gadget graph C with 18 edges, so the number
of edges in F is 18m = O(m). The construction is such that the number of minimum
3-terminal cuts of F equals the number of maximum cuts of G. �

Three-colouring

Name #3-Colouring

Input Simple undirected graph G.

Output The number of proper vertex-colourings with three colours.

Impagliazzo, Paturi, and Zane [IPZ01] already observed the hardness of 3-Colouring
under ETH. This can be extended to the counting version as follows.

Lemma C.5.There is a polynomial-time reduction from the #NAE-3-Sat problem to
#3-Colouring that maps formulas with m clauses to graphs with O(m) edges.

Proof. We follow the proof of [Pap94, Theorem 9.8]. The graphG that is constructed from
an NAE-3-Sat-instance ϕ with n variables and m clauses has n′ = 1 + 2n+ 3m vertices
and m′ = 3n + 6m edges. Furthermore, every not-all-equal assignment to the variables
of ϕ gives rise to exactly 3 · 2m proper 3-colourings of G: There are 3 possible colours
for a and a variable assignment then uniquely colours the 2n vertices that correspond to
literals (take the smaller of the remaining colours to mean false and the larger to mean
true; since complements of not-all-equal assignments are also not-all-equal assignments,
this choice prevents overcounting). Now the colouring can be extended to each clause
gadget in exactly two ways. Hence the number of proper 3-colourings of G is equal to
3 · 2m ·#NAE-3-Sat(ϕ). �

38

Proof (of Theorem C.1). Assume one of the problems can be solved in time exp(cm) for
every c > 0. Then #3-Sat can be solved by first applying the applicable reductions of
the preceding lemmas and then invoking the assumed algorithm. This gives for every
c > 0 an algorithm for #3-Sat that runs in time exp(O(cm)), which implies that #ETH
fails. �

C.1. Hardness of Colouring and Other Individual Points on the Chromatic Line

Theorem 1.4(ii) cannot be handled by the proof of Proposition 5.1 because thickenings
do not produce enough points for interpolation. Instead, we use a reduction for the
chromatic line that was discovered by Linial [Lin86].
The chromatic polynomial χ(G; q) of G is the polynomial in q with the property that,

for all c ∈ N, the value χ(G; c) is the number of proper c-colourings of the vertices of G.
We write χ(q) for the function G 7→ χ(G; q). The Tutte polynomial specializes to the
chromatic polynomial for y = 0:

χ(G; q) = (−1)n(G)−k(G)qk(G)T (G; 1− q, 0) . (26)

The following two propositions establish Theorem 1.4(ii).

Proposition C.6. Let x ∈ {−2,−3, . . .}.
If #ETH holds, then Tutte0,1(x, 0) cannot be computed in time exp(o(m)).

Proof. Set q = 1 − x. Since q 6= 0, it follows from (26) that evaluating Tutte(x, 0)
is equivalent to evaluating the chromatic polynomial χ(q) at point q. In particular,
χ(3) is the number of 3-colourings. By Theorem C.1, if #ETH is true, χ(3) cannot be
computed in time exp(o(m)) even for simple graphs. For i ∈ {1, 2, . . .} and all real r,
Linial’s identity is

χ(G+Ki; r) = r(r − 1) . . . (r − i+ 1) · χ(G; r − i) , (27)

where G+ Ki is the simple graph consisting of G and a clique Ki on i vertices, each of
which is adjacent to every vertex of G.
For q ∈ {4, 5, . . .}, we can set i = q − 3 and directly compute χ(G; 3) = χ(G; q − i) =

χ(G + Ki; q)/[q(q − 1) · · · 4]. Since m(G + Ki) = m(G) + i · n(G) +
(
i
2

)
≤ O(m(G)), it

follows that χ(q) cannot be computed in time exp(o(m)) under #ETH, even for simple
graphs. �

Proposition C.7. Let x /∈ Q \ {1, 0,−1,−2,−3, . . .}.
If #ETH holds, then Tutte0,1(x, 0) cannot be computed in time exp(o(n)).

Proof. Set q = 1−x. We show that Tutte0,1(x, 0) cannot be computed in time exp (o(n))
under #ETH. Indeed, with access to χ(q), we can compute χ(G; q−i) for all i = 0, . . . , n,
noting that all prefactors in (27) nonzero. From these n + 1 values, we interpolate to
get the coefficients of the polynomial r 7→ χ(G; r), which in turn allows us evaluate
χ(G; 3). In this case, the size of the oracle queries depends nonlinearly on the size of G,

39

in particular m(G + Kn) ∼ n2. However, the number of vertices is n(G + Ki) ≤ 2n ≤
O(m(G)). Thus, since χ(3) cannot be computed in time exp(o(n)) under #ETH, this
also holds for χ(q), even for simple graphs. �

The only points on the x-axis not covered here are x ∈ {1, 0,−1}. Two of these admit
polynomial-time algorithms, so we expect no hardness result. By Theorem 1.4(iii), the
Tutte polynomial at the point (1, 0) cannot be evaluated in time exp(o(m/ log2m)) under
#ETH.

40

	Introduction
	Counting Independent Sets
	The Permanent
	Hyperbolas in the Tutte plane
	Individual Points for Multigraphs
	Individual Points for Simple Graphs
	Conclusion and Further Work
	The Sparsification Lemma
	Parameterized Complexity
	Hardness of 3-Colouring and 3-Terminal MinCut
	Hardness of Colouring and Other Individual Points on the Chromatic Line

