The Square Root Phenomenon in Planar Graphs Survey and New Results

Dániel Marx

Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

Dagstuhl Seminar 16221: Algorithms for Optimization Problems in Planar Graphs

> Schloss Dagstuhl, Germany June 1, 2016

Main message

NP-hard problems become easier on planar graphs and geometric objects, and usually exactly by a square root factor.

Planar graphs

Geometric objects

Better exponential algorithms

Most NP-hard problems (e.g., 3-COLORING, INDEPENDENT SET, HAMILTONIAN CYCLE, STEINER TREE, etc.) remain NP-hard on planar graphs,¹ so what do we mean by "easier"?

¹Notable exception: MAX CUT is in P for planar graphs.

Better exponential algorithms

Most NP-hard problems (e.g., 3-COLORING, INDEPENDENT SET, HAMILTONIAN CYCLE, STEINER TREE, etc.) remain NP-hard on planar graphs,¹ so what do we mean by "easier"?

The running time is still exponential, but significantly smaller:

$$2^{O(n)} \Rightarrow 2^{O(\sqrt{n})}$$

$$n^{O(k)} \Rightarrow n^{O(\sqrt{k})}$$

$$2^{O(k)} \cdot n^{O(1)} \Rightarrow 2^{O(\sqrt{k})} \cdot n^{O(1)}$$

¹Notable exception: MAX CUT is in P for planar graphs.

Overview

Chapter 1:

Subexponential algorithms using treewidth.

Chapter 2: Grid minors and bidimensionality.

Chapter 3: Beyond bidimensionality: Finding bounded-treewidth solutions. Chapter 1: Subexponential algorithms using treewidth

Treewidth is a measure of "how treelike the graph is."

We need only the following basic facts:

Treewidth

- If a graph G has treewidth k, then many classical NP-hard problems can be solved in time $2^{O(k)} \cdot n^{O(1)}$ or $2^{O(k \log k)} \cdot n^{O(1)}$ on G.
- 2 A planar graph on *n* vertices has treewidth $O(\sqrt{n})$.

Treewidth — a measure of "tree-likeness"

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

If u and v are neighbors, then there is a bag containing both of them.

2 For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

Treewidth — a measure of "tree-likeness"

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

A subtree communicates with the outside world only via the root of the subtree.

Finding tree decompositions

Various algorithms for finding optimal or approximate tree decompositions if treewidth is w:

- optimal decomposition in time 2^{O(w³)} · n [Bodlaender 1996].
- 4-approximate decomposition in time 2^{O(w)} · n² [Robertson and Seymour].
- 5-approximate decomposition in time 2^{O(w)} · n [Bodlaender et al. 2013].
- $O(\sqrt{\log w})$ -approximation in polynomial time [Feige, Hajiaghayi, Lee 2008].

As we are mostly interested in algorithms with running time $2^{O(w)} \cdot n^{O(1)}$, we may assume that we have a decomposition.

$\operatorname{3-COLORING}$ and tree decompositions

Theorem

Given a tree decomposition of width w, 3-COLORING can be solved in time $3^w \cdot w^{O(1)} \cdot n$.

 B_x : vertices appearing in node x.

 V_x : vertices appearing in the subtree rooted at x.

For every node x and coloring $c : B_x \rightarrow \{1, 2, 3\}$, we compute the Boolean value E[x, c], which is true if and only if c can be extended to a proper 3-coloring of V_x .

Claim:

We can determine E[x, c] if all the values are known for the children of x.

Subexponential algorithm for $\operatorname{3-COLORING}$

Theorem [textbook dynamic programming]

3-COLORING can be solved in time $2^{O(w)} \cdot n^{O(1)}$ on graphs of treewidth w.

+

Theorem [Robertson and Seymour]

A planar graph on *n* vertices has treewidth $O(\sqrt{n})$.

Subexponential algorithm for $\operatorname{3-COLORING}$

Theorem [textbook dynamic programming]

3-COLORING can be solved in time $2^{O(w)} \cdot n^{O(1)}$ on graphs of treewidth w.

Lower bounds

Corollary

3-COLORING can be solved in time $2^{O(\sqrt{n})}$ on planar graphs.

Two natural questions:

- Can we achieve this running time on general graphs?
- Can we achieve even better running time (e.g., 2^{O(³√n)}) on planar graphs?

Lower bounds

Corollary

3-COLORING can be solved in time $2^{O(\sqrt{n})}$ on planar graphs.

Two natural questions:

- Can we achieve this running time on general graphs?
- Can we achieve even better running time (e.g., 2^{O(³√n)}) on planar graphs?

 $P \neq NP$ is not a sufficiently strong hypothesis: it is compatible with 3SAT being solvable in time $2^{O(n^{1/1000})}$ or even in time $n^{O(\log n)}$. We need a stronger hypothesis!

Exponential Time Hypothesis (ETH)

Hypothesis introduced by Impagliazzo, Paturi, and Zane:

Exponential Time Hypothesis (ETH) [consequence of] There is no $2^{o(n)}$ -time algorithm for *n*-variable 3SAT.

Note: current best algorithm is 1.30704ⁿ [Hertli 2011].

Note: an *n*-variable 3SAT formula can have $m = \Omega(n^3)$ clauses.

Exponential Time Hypothesis (ETH)

Hypothesis introduced by Impagliazzo, Paturi, and Zane:

Exponential Time Hypothesis (ETH) [consequence of] There is no $2^{o(n)}$ -time algorithm for *n*-variable 3SAT.

Note: current best algorithm is 1.30704ⁿ [Hertli 2011].

Note: an *n*-variable 3SAT formula can have $m = \Omega(n^3)$ clauses.

Are there algorithms that are subexponential in the size n + m of the 3SAT formula?

Sparsification Lemma [Impagliazzo, Paturi, Zane 2001]

There is a $2^{o(n)}$ -time algorithm for *n*-variable 3SAT. There is a $2^{o(n+m)}$ -time algorithm for *n*-variable *m*-clause 3SAT.

ETH + Sparsification Lemma

There is no $2^{o(n+m)}$ -time algorithm for *n*-variable *m*-clause 3SAT.

The textbook reduction from 3SAT to 3-COLORING:

Corollary

Assuming ETH, there is no $2^{o(n)}$ algorithm for 3-COLORING on an *n*-vertex graph *G*.

ETH + Sparsification Lemma

There is no $2^{o(n+m)}$ -time algorithm for *n*-variable *m*-clause 3SAT.

The textbook reduction from 3SAT to 3-COLORING:

Corollary

Assuming ETH, there is no $2^{o(n)}$ algorithm for 3-COLORING on an *n*-vertex graph *G*.

Transfering bounds

There are polynomial-time reductions from, say, 3-COLORING to many other problems such that the reduction increases the number of vertices by at most a constant factor.

Consequence: Assuming ETH, there is no $2^{o(n)}$ time algorithm on *n*-vertex graphs for

- INDEPENDENT SET
- CLIQUE
- Dominating Set
- VERTEX COVER
- HAMILTONIAN PATH
- Feedback Vertex Set
- . . .

What about 3-COLORING on planar graphs?

The textbook reduction from 3-COLORING to PLANAR

 $\operatorname{3-Coloring}$ uses a "crossover gadget" with 4 external connectors:

- In every 3-coloring of the gadget, opposite external connectors have the same color.
- Every coloring of the external connectors where the opposite vertices have the same color can be extended to all the gadget.
- If two edges cross, replace them with a crossover gadget.

What about 3-COLORING on planar graphs?

The textbook reduction from 3-COLORING to PLANAR

 $\operatorname{3-Coloring}$ uses a "crossover gadget" with 4 external connectors:

- In every 3-coloring of the gadget, opposite external connectors have the same color.
- Every coloring of the external connectors where the opposite vertices have the same color can be extended to all the gadget.
- If two edges cross, replace them with a crossover gadget.

What about 3-COLORING on planar graphs?

The textbook reduction from 3-Coloring to Planar

 $\operatorname{3-Coloring}$ uses a "crossover gadget" with 4 external connectors:

- In every 3-coloring of the gadget, opposite external connectors have the same color.
- Every coloring of the external connectors where the opposite vertices have the same color can be extended to all the gadget.
- If two edges cross, replace them with a crossover gadget.

- The reduction from 3-COLORING to PLANAR 3-COLORING introduces *O*(1) new edges/vertices for each crossing.
- A graph with *m* edges can be drawn with $O(m^2)$ crossings.

$$\begin{array}{c|c} 3\text{SAT formula } \phi \\ n \text{ variables} \\ m \text{ clauses} \end{array} \Rightarrow \begin{array}{c} \text{Graph } G \\ O(m) \text{ vertices} \\ O(m) \text{ edges} \end{array} \Rightarrow \begin{array}{c} \text{Planar graph } G' \\ O(m^2) \text{ vertices} \\ O(m^2) \text{ edges} \end{array}$$

Corollary

Assuming ETH, there is no $2^{o(\sqrt{n})}$ algorithm for 3-COLORING on an *n*-vertex planar graph *G*.

(Essentially observed by [Cai and Juedes 2001])

Summary of Chapter 1

Streamlined way of obtaining tight upper and lower bounds for planar problems.

• Upper bound:

Standard bounded-treewidth algorithm + treewidth bound on planar graphs give $2^{O(\sqrt{n})}$ time subexponential algorithms.

• Lower bound:

Textbook NP-hardness proof with quadratic blow up + ETH rule out $2^{o(\sqrt{n})}$ algorithms.

Works for Hamiltonian Cycle, Vertex Cover, Independent Set, Feedback Vertex Set, Dominating Set, Steiner Tree, ...

Chapter 2: Grid minors and bidimensionality

More refined analysis of the running time: we express the running time as a function of input size n and a parameter k.

Definition

A problem is **fixed-parameter tractable (FPT)** parameterized by k if it can be solved in time $f(k) \cdot n^{O(1)}$ for some computable function f.

Examples of FPT problems:

- Finding a vertex cover of size *k*.
- Finding a feedback vertex set of size k.
- Finding a path of length *k*.
- Finding *k* vertex-disjoint triangles.

• . . .

Note: these four problems have $2^{O(k)} \cdot n^{O(1)}$ time algorithms, which is best possible on general graphs.

W[1]-hardness

Negative evidence similar to NP-completeness. If a problem is W[1]-hard, then the problem is not FPT unless FPT=W[1].

Some W[1]-hard problems:

- Finding a clique/independent set of size k.
- Finding a dominating set of size *k*.
- Finding *k* pairwise disjoint sets.

• . . .

For these problems, the exponent of n has to depend on k (the running time is typically $n^{O(k)}$).

Subexponential parameterized algorithms

What kind of upper/lower bounds we have for f(k)?

- For most problems, we cannot expect a 2^{o(k)} · n^{O(1)} time algorithm on general graphs. (As this would imply a 2^{o(n)} algorithm.)
- For most problems, we cannot expect a 2^{o(√k)} · n^{O(1)} time algorithm on planar graphs. (As this would imply a 2^{o(√n)} algorithm.)

Subexponential parameterized algorithms

What kind of upper/lower bounds we have for f(k)?

- For most problems, we cannot expect a 2^{o(k)} · n^{O(1)} time algorithm on general graphs.
 (As this would imply a 2^{o(n)} algorithm.)
- For most problems, we cannot expect a 2^{o(√k)} · n^{O(1)} time algorithm on planar graphs.
 (As this would imply a 2^{o(√n)} algorithm.)
- However, 2^{O(\sqrt{k})} · n^{O(1)} algorithms do exist for several problems on planar graphs, even for some W[1]-hard problems.
- Quick proofs via grid minors and bidimensionality. [Demaine, Fomin, Hajiaghayi, Thilikos 2004]

Next: subexponential parameterized algorithm for k-PATH.

Minors

Definition

Graph *H* is a minor of *G* ($H \le G$) if *H* can be obtained from *G* by deleting edges, deleting vertices, and contracting edges.

Note: length of the longest path in H is at most the length of the longest path in G.

Planar Excluded Grid Theorem

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a $k \times k$ grid minor.

Note: for general graphs, treewidth at least k^{100} or so guarantees a $k \times k$ grid minor [Chekuri and Chuzhoy 2013]!

Bidimensionality for k-PATH

Observation: If the treewidth of a planar graph *G* is at least $5\sqrt{k}$ \Rightarrow It has a $\sqrt{k} \times \sqrt{k}$ grid minor (Planar Excluded Grid Theorem) \rightarrow The grid has a path of length at least *k*.

 \Rightarrow The grid has a path of length at least k.

 \Rightarrow G has a path of length at least k.

Bidimensionality for k-PATH

Observation: If the treewidth of a planar graph *G* is at least $5\sqrt{k}$ \Rightarrow It has a $\sqrt{k} \times \sqrt{k}$ grid minor (Planar Excluded Grid Theorem) \Rightarrow The grid has a path of length at least *k*. \Rightarrow *G* has a path of length at least *k*.

We use this observation to find a path of length at least k on planar graphs:

- If treewidth w of G is at least $5\sqrt{k}$: we answer "there is a path of length at least k."
- If treewidth w of G is less than $5\sqrt{k}$, then we can solve the problem in time $2^{O(w)} \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}$.

Bidimensionality for k-PATH

Observation: If the treewidth of a planar graph *G* is at least $5\sqrt{k}$ \Rightarrow It has a $\sqrt{k} \times \sqrt{k}$ grid minor (Planar Excluded Grid Theorem) \Rightarrow The grid has a path of length at least *k*. \Rightarrow *G* has a path of length at least *k*.

We use this observation to find a path of length at least k on planar graphs:

- Set $w := 5\sqrt{k}$.
- Find an O(1)-approximate tree decomposition.
 - If treewidth is at least w: we can answer "there is a path of length at least k."
 - If we get a tree decomposition of width O(w), then we can solve the problem in time
 2^{O(w)} · n^{O(1)} = 2^{O(\sqrt{k})} · n^{O(1)}

Bidimensionality

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Bidimensionality

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Bidimensionality

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.
Summary of Chapter 2

Tight bounds for minor-bidimensional planar problems.

• Upper bound:

Standard bounded-treewidth algorithm + planar excluded grid theorem give $2^{O(\sqrt{k})} \cdot n^{O(1)}$ time FPT algorithms.

• Lower bound:

Textbook NP-hardness proof with quadratic blow up + ETH rule out $2^{o(\sqrt{n})}$ time algorithms \Rightarrow no $2^{o(\sqrt{k})} \cdot n^{O(1)}$ time algorithm.

Variant of theory works for contraction-bidimensional problems, e.g., INDEPENDENT SET, DOMINATING SET.

Bidimensionality works nice for some problems, but fails completely even for embarrassingly simple generalizations.

- Works for k-PATH, but not for s t paths.
- Works for cycles of length at least k, but not for cycles of length exactly k.
- Weighted versions, colored versions, counting versions, etc.

Bidimensionality on its own does not give subexponential parameterized algorithms for these problems!

Perhaps the most basic problem:

SUBGRAPH ISOMORPHISM Given a graphs H and G, decide if G has a subgraph isomorphic to H.

Perhaps the most basic problem:

```
SUBGRAPH ISOMORPHISM
Given a graphs H and G, decide if G has a subgraph isomorphic
to H.
```

Theorem [Eppstein 1999]

SUBGRAPH ISOMORPHISM for planar graphs can be solved in time $2^{O(k \log k)} \cdot n$ for k := |V(H)|.

Perhaps the most basic problem:

SUBGRAPH ISOMORPHISM Given a graphs H and G, decide if G has a subgraph isomorphic to H.

Question already asked in the last seminar:

Does the square root phenomenon appear for SUBGRAPH ISOMORPHISM on planar graphs?

Perhaps the most basic problem:

SUBGRAPH ISOMORPHISM Given a graphs H and G, decide if G has a subgraph isomorphic to H.

Question already asked in the last seminar:

Does the square root phenomenon appear for SUBGRAPH ISOMORPHISM on planar graphs?

• Assuming ETH, there is no $2^{o(k/\log k)} n^{O(1)}$ time algorithm for general patterns.

[Hans Bodlaender's talk Thu 9:30]

 There is a 2^{O(√kpolylogk)}n^{O(1)} time (randomized) algorithm for connected, bounded degree patterns.

[Marcin Pilipczuk's talk Thu 9:00]

Chapter 3: Finding bounded-treewidth solutions

So far, we have exploited that the **input** has bounded treewidth and used standard algorithms.

Chapter 3: Finding bounded-treewidth solutions

So far, we have exploited that the **input** has bounded treewidth and used standard algorithms.

Change of viewpoint:

In many cases, we have to exploit instead that the **solution** has bounded treewidth.

Given a set of n points in the plane, find a triangulation of minimum length.

Given a set of n points in the plane, find a triangulation of minimum length.

Given a set of n points in the plane, find a triangulation of minimum length.

Given a set of n points in the plane, find a triangulation of minimum length.

Brute force solution: $2^{O(n)}$ time.

Given a set of n points in the plane, find a triangulation of minimum length.

Theorem [Lingas 1998], [Knauer 2006]

Minimum Weight Triangulation can be solved in time $2^{O(\sqrt{n} \log n)}$.

Theorem [Lingas 1998], [Knauer 2006]

Minimum Weight Triangulation can be solved in time $2^{O(\sqrt{n} \log n)}$.

Main idea: guess a separator of size $O(\sqrt{n})$ of the solution and recurse.

Theorem [Lingas 1998], [Knauer 2006]

Minimum Weight Triangulation can be solved in time $2^{O(\sqrt{n} \log n)}$.

Main idea: guess a separator of size $O(\sqrt{n})$ of the solution and recurse.

Theorem [Lingas 1998], [Knauer 2006]

Minimum Weight Triangulation can be solved in time $2^{O(\sqrt{n} \log n)}$.

Main idea: guess a separator of size $O(\sqrt{n})$ of the solution and recurse.

Lower bound

Theorem [Mulzer and Rote 2006]

Minimum Weight Triangulation is NP-hard.

(solving a long-standing open problem of [Garey and Johnson 1979])

Lower bound

Theorem [Mulzer and Rote 2006]

Minimum Weight Triangulation is NP-hard.

(solving a long-standing open problem of [Garey and Johnson 1979])

Not for the fainthearted...

Lower bound

Theorem [Mulzer and Rote 2006]

Minimum Weight Triangulation is NP-hard.

(solving a long-standing open problem of [Garey and Johnson 1979])

It can be checked that the proof also implies:

Theorem [Mulzer and Rote 2006]

Assuming ETH, Minimum Weight Triangulation cannot be solved in time $2^{o(\sqrt{n})}$.

Main paradigm

Exploit that the **solution** has treewidth $O(\sqrt{n})$ and has separators of size $O(\sqrt{n})$.

Counting problems

Counting is harder than decision:

- Counting version of easy problems: not clear if they remain easy.
- Counting version of hard problems: not clear if we can keep the same running time.

Counting problems

Counting is harder than decision:

- Counting version of easy problems: not clear if they remain easy.
- Counting version of hard problems: not clear if we can keep the same running time.

Working on counting problems is fun:

- You can revisit fundamental, "well-understood" problems.
- Requires a new set of lower bound techniques.
- Requires new algorithmic techniques.

Bidimensionality and counting

Does not work for counting k-paths in a planar graph:

- If treewidth w is $O(\sqrt{k})$: can be solved in time $2^{O(w)}n^{O(1)} = 2^{O(\sqrt{k})}n^{O(1)}$ using dynamic programming.
- If treewidth *w* is larger than c√k: answer is positive, but how much exactly?

Bidimensionality and counting

Does not work for counting k-paths in a planar graph:

- If treewidth w is $O(\sqrt{k})$: can be solved in time $2^{O(w)}n^{O(1)} = 2^{O(\sqrt{k})}n^{O(1)}$ using dynamic programming.
- If treewidth *w* is larger than c√k: answer is positive, but how much exactly?

Works for counting vertex covers of size k in a planar graph:

- If treewidth w is $O(\sqrt{k})$: can be solved in time $2^{O(w)}n^{O(1)} = 2^{O(\sqrt{k})}n^{O(1)}$ using dynamic programming.
- If treewidth w is larger than $c\sqrt{k}$: answer is 0.

Counting *k*-matching

Counting matchings can be significantly harder than **finding** a matching!

- Counting perfect matchings is #P-hard [Valiant 1979].
- Counting matchings of size k is #W[1]-hard [Curticapean 2013], [Curticapean and M. 2014].
- Counting matchings of size *k* is FPT in planar graphs. [Frick 2004]

Open question: Is there a $2^{O(\sqrt{k})} \cdot n^{O(1)}$ algorithm for counting *k* matchings in planar graphs?

Counting *k*-matching

Counting matchings can be significantly harder than **finding** a matching!

- Counting perfect matchings in planar graphs is polynomial-time solvable.
 [Kasteleyn 1961], [Temperley and Fischer 1961].
- Corollary: we can count matchings covering n k vertices in time $n^{O(k)}$
- ... but (assuming ETH) there is no f(k)n^{o(k/log k)} time algorithm [Curticapean and Xia 2015].

Natural idea:

Guess size- $O(\sqrt{n})$ separator of the triangulation, solve the two subproblems, multiply the number of solutions in the two subproblems.

Natural idea:

Guess size- $O(\sqrt{n})$ separator of the triangulation, solve the two subproblems, multiply the number of solutions in the two subproblems.

Natural idea:

Guess size- $O(\sqrt{n})$ separator of the triangulation, solve the two subproblems, multiply the number of solutions in the two subproblems.

Natural idea:

Guess size- $O(\sqrt{n})$ separator of the triangulation, solve the two subproblems, multiply the number of solutions in the two subproblems.

Does not work:

More than one separator could be valid for a triangulation \Rightarrow we can significantly overcount the number of triangulations.

Theorem [M. and Miltzow 2016]

The number of triangulations can be counted in time $2^{O(\sqrt{n} \log n)}$.

Main idea: Use canonical separators and enforce that they are canonical in the triangulation.

Theorem [M. and Miltzow 2016]

The number of triangulations can be counted in time $2^{O(\sqrt{n} \log n)}$.

Main idea: Use canonical separators and enforce that they are canonical in the triangulation.

Use the first layer of size $\leq \sqrt{n}$.

Theorem [M. and Miltzow 2016]

The number of triangulations can be counted in time $2^{O(\sqrt{n} \log n)}$.

Main idea: Use canonical separators and enforce that they are canonical in the triangulation.

Use the first layer of size $\leq \sqrt{n}$.

What do we know about a lower bound?

Seems challenging: we need a *counting complexity* lower bound for a *delicate geometric problem*.

Related lower bounds:

- Finding a restricted triangulation (only a given list of pairs of points can be connected) is NP-hard, and there is no 2^{o(√n)} time algorithm, assuming ETH.
 [Lloyd 1977], [Schulz 2006].
- Minimum Weight Triangulation is NP-hard. [Mulzer and Rote 2006]

W[1]-hard problems

- W[1]-hard problems probably have no $f(k)n^{O(1)}$ algorithms.
- Many of them can be solved in $n^{O(k)}$ time.
- For many of them, there is no f(k)n^{o(k)} time algorithm on general graphs (assuming ETH).
- For those problems that remain W[1]-hard on planar graphs, can we improve the running time to n^{o(k)}?
Scattered Set

SCATTERED SET

Given a graph G and integers k and d, find a set of S of k vertices that are at distance at least d from each other.

- For d = 2, we get INDEPENDENT SET.
- For fixed d > 2, bidimensionality gives $2^{O(\sqrt{k})} \cdot n^{O(1)}$ algorithms.
- What happens if *d* is part of the input?

Scattered Set

Scattered Set

Given a graph G and integers k and d, find a set of S of k vertices that are at distance at least d from each other.

- For d = 2, we get INDEPENDENT SET.
- For fixed d > 2, bidimensionality gives $2^{O(\sqrt{k})} \cdot n^{O(1)}$ algorithms.
- What happens if *d* is part of the input?

Theorem [M. and Pilipczuk 2015]

SCATTERED SET on planar graphs (with *d* in the input)

• can be solved in time $n^{O(\sqrt{k})}$.

[Michał Pilipczuk's talk Wed 11:00]

• cannot be solved in time $f(k)n^{o(\sqrt{k})}$ (assuming ETH).

[following slides]

W[1]-hardness

Definition

A parameterized reduction from problem A to B maps an instance (x, k) of A to instance (x', k') of B such that

- $(x,k) \in A \iff (x',k') \in B$,
- $k' \leq g(k)$ for some computable function g.
- (x', k') can be computed in time $f(k) \cdot |x|^{O(1)}$.

Easy: If there is a parameterized reduction from problem A to problem B and B is FPT, then A is FPT as well.

Definition

A problem P is W[1]-hard if there is a parameterized reduction from k-CLIQUE to P.

W[1]-hardness

Definition

A parameterized reduction from problem A to B maps an instance (x, k) of A to instance (x', k') of B such that

- $(x,k) \in A \iff (x',k') \in B$,
- $k' \leq g(k)$ for some computable function g.
- (x', k') can be computed in time $f(k) \cdot |x|^{O(1)}$.

Easy: If there is a parameterized reduction from problem A to problem B and B is FPT, then A is FPT as well.

Definition

A problem P is W[1]-hard if there is a parameterized reduction from k-CLIQUE to P.

Tight bounds

Theorem [Chen et al. 2004]

Assuming ETH, there is no $f(k) \cdot n^{o(k)}$ algorithm for k-CLIQUE for any computable function f.

Transfering to other problems:

Bottom line:

To rule out $f(k) \cdot n^{o(\sqrt{k})}$ algorithms, we need a parameterized reduction that blows up the parameter at most quadratically.

Grid Tiling

GRID TILING

- Input: A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- Find: A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - Vertical neighbors agree in the 1st coordinate.
 - Horizontal neighbors agree in the 2nd coordinate.

(1,1) (3,1) (2,4)	(5,1) (1,4) (5,2)	(1,1) (2,4) (2,2)	
(2,4)	(3,1)	(3,3)	
(1,4)	(1,2)	(2,3)	
(2,3) (3,3)	(1,1) (1,3)	(2,3) (5,3)	
k = 3, D = 5			

Grid Tiling

GRID TILING

- Input: A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- Find: A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - Vertical neighbors agree in the 1st coordinate.
 - Horizontal neighbors agree in the 2nd coordinate.

(1,1) (3,1) (2,4)	(5,1) (1,4) (5,2)	(1,1) (2,4) (2,2)		
(2,4)	(3,1)	(2,2)		
(1,4)	(1,2)	(2,3)		
(2,3) (3,3)	(1,3)	(5,3)		
k = 3, D = 5				

Grid Tiling

GRID TILING

- Input: A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- Find: A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - Vertical neighbors agree in the 1st coordinate.
 - Horizontal neighbors agree in the 2nd coordinate.

Simple proof:

Fact

There is a parameterized reduction from k-CLIQUE to $k \times k$ GRID TILING.

Reduction from *k*-CLIQUE

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

Each diagonal cell defines a value $v_i \dots$

Reduction from *k*-CLIQUE

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

... which appears on a "cross"

Reduction from *k*-CLIQUE

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

 v_i and v_j are adjacent for every $1 \le i < j \le k$.

Reduction from *k*-CLIQUE

Definition of the sets:

- For i = j: $(x, y) \in S_{i,j} \iff x = y$
- For $i \neq j$: $(x, y) \in S_{i,j} \iff x$ and y are adjacent.

 v_i and v_j are adjacent for every $1 \le i < j \le k$.

$\operatorname{GRID}\,\operatorname{TILING}$ and planar problems

Theorem

 $k \times k$ GRID TILING is W[1]-hard and, assuming ETH, cannot be solved in time $f(k)n^{o(k)}$ for any function f.

This lower bound is the key for proving hardness results for planar graphs.

Examples:

- MULTIWAY CUT on planar graphs with k terminals
- INDEPENDENT SET for unit disks
- STRONGLY CONNECTED STEINER SUBGRAPH on planar graphs
- SCATTERED SET on planar graphs

Grid Tiling with \leq

Grid Tiling with \leq

- Input: A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- *Find:* A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - 1st coordinate of $s_{i,j} \leq 1$ st coordinate of $s_{i+1,j}$.
 - 2nd coordinate of $s_{i,j} \leq 2$ nd coordinate of $s_{i,j+1}$.

(5,1) (1,2) (3,3)	<mark>(4,3)</mark> (3,2)	(2,3) (2,5)	
(2,1) (5,5) (3,5)	<mark>(4,2)</mark> (5,3)	(5,1) (3,2)	
(5,1) (2,2) (5,3)	(2,1) (4,2)	(3,1) (3,2) (3,3)	
k = 3, D = 5			

Grid Tiling with \leq

Grid Tiling with \leq

- Input: A $k \times k$ matrix and a set of pairs $S_{i,j} \subseteq [D] \times [D]$ for each cell.
- *Find:* A pair $s_{i,j} \in S_{i,j}$ for each cell such that
 - 1st coordinate of $s_{i,j} \leq 1$ st coordinate of $s_{i+1,j}$.
 - 2nd coordinate of $s_{i,j} \leq 2$ nd coordinate of $s_{i,j+1}$.

Variant of the previous proof:

Theorem

There is a parameterized reduction from $k \times k$ -GRID TILING to $O(k) \times O(k)$ GRID TILING WITH \leq .

Very useful starting point for geometric (and also some planar) problems!

GRID TILING WITH $\leq \Rightarrow$ SCATTERED SET

required distance: at least *n* black edges + 4 red edges Solution to $k \times k$ grid tiling \Rightarrow scattered set of size k^2

STEINER TREE

STEINER TREE

Given an edge-weighted graph G and set $T \subseteq V(G)$ of terminals, find a minimum weight tree in G containing every vertex of T.

Theorem [Dreyfus and Wagner 1971]

STEINER TREE with k terminals can be solved in time $3^k \cdot n^{O(1)}$.

STEINER TREE

STEINER TREE

Given an edge-weighted graph G and set $T \subseteq V(G)$ of terminals, find a minimum weight tree in G containing every vertex of T.

Theorem [Björklund et al. 2007]

STEINER TREE with k terminals can be solved in time $2^k \cdot n^{O(1)}$.

STEINER TREE

Steiner Tree

Given an edge-weighted graph G and set $T \subseteq V(G)$ of terminals, find a minimum weight tree in G containing every vertex of T.

Open question: Can we solve STEINER TREE on planar graphs with *k* terminals in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$?

Variants of STEINER TREE

STEINER FOREST

Create connections satisying every request

Variants of STEINER TREE

DIRECTED STEINER NETWORK

Theorem [Feldman and Ruhl 2006]

DIRECTED STEINER NETWORK with k requests can be solved in time $n^{O(k)}$.

Corollary: STRONGLY CONNECTED STEINER SUBGRAPH with k terminals can be solved in time $n^{O(k)}$.

Proof is based on a "pebble game": O(k) pebbles need to reach their destinations using certain allowed moves, tracing the solution.

DIRECTED STEINER NETWORK

A new combinatorial result:

Theorem [Feldmann and M. 2016]

Every minimum cost solution of DIRECTED STEINER NETWORK with k requests has cutwidth and treewidth O(k).

DIRECTED STEINER NETWORK

A new combinatorial result:

Theorem [Feldmann and M. 2016]

Every minimum cost solution of DIRECTED STEINER NETWORK with k requests has cutwidth and treewidth O(k).

A new algorithmic result:

Theorem [Feldmann and M. 2016]

If a DIRECTED STEINER NETWORK instance with k requests has a minimum cost solution with treewidth w, then it can be solved in time $f(k, w) \cdot n^{O(w)}$.

Corollary: A new proof that DSN and SCSS can be solved in time $f(k)n^{O(k)}$.

Planar Steiner Problems

Square root phenomenon for SCSS:

Theorem [Chitnis, Hajiaghayi, M. 2014]

STRONGLY CONNECTED STEINER SUBGRAPH with k terminals can be solved in time $f(k)n^{O(\sqrt{k})}$ on planar graphs.

Proof by a complicated generalization of the Feldman-Ruhl pebble game.

Planar Steiner Problems

Square root phenomenon for SCSS:

Theorem [Chitnis, Hajiaghayi, M. 2014]

STRONGLY CONNECTED STEINER SUBGRAPH with k terminals can be solved in time $f(k)n^{O(\sqrt{k})}$ on planar graphs.

Proof by a complicated generalization of the Feldman-Ruhl pebble game.

Lower bound:

Theorem [Chitnis, Hajiaghayi, M. 2014]

Assuming ETH, STRONGLY CONNECTED STEINER SUBGRAPH with k terminals cannot be solved in time $f(k)n^{o(\sqrt{k})}$ on planar graphs.

Proof by reduction from GRID TILING.

Lower bound for planar SCSS

Planar STRONGLY CONNECTED STEINER SUBGRAPH

A new combinatorial result:

Theorem [Feldmann and M. 2016]

Every minimum cost solution of SCSS with k terminals has "distance O(k) from treewidth 2."

Corollary

Every minimum cost solution of SCSS with k terminals has treewidth $O(\sqrt{k})$ on planar graphs.

Planar STRONGLY CONNECTED STEINER SUBGRAPH

Corollary

Every minimum cost solution of SCSS with k terminals has treewidth $O(\sqrt{k})$ on planar graphs.

We have seen:

Theorem [Feldmann and M. 2016]

If a DIRECTED STEINER NETWORK instance with k requests has a minimum cost solution with treewidth w, then it can be solved in time $f(k, w) \cdot n^{O(w)}$.

Corollary: A new proof that SCSS can be solved in time $f(k)n^{O(\sqrt{k})}$ on planar graphs.

No square root phenomenon for DSN:

Theorem [Chitnis, Hajiaghayi, M. 2014]

DIRECTED STEINER NETWORK with k requests is W[1]-hard on planar graphs and (assuming ETH) cannot be solved in time $f(k)n^{o(k)}$.

Planar DIRECTED STEINER NETWORK

Summary of Chapter 3

Parameterized problems where bidimensionality does not work.

• Upper bounds:

Algorithms exploiting that some representation of the solution has bounded treewidth. Treewidth bound is problem-specific:

- Minimum Weight Triangulation/Counting triangulations: *n*-vertex triangulation has treewidth $O(\sqrt{n})$.
- STRONGLY CONNECTED STEINER SUBGRAPH on planar graphs: optimum solution can be made treewidth-2 with O(k) deletions \Rightarrow treewidth is $O(\sqrt{k})$.

Lower bounds:

To rule out $f(k) \cdot n^{o(\sqrt{k})}$ time algorithms for W[1]-hard problems, we have to prove hardness by reduction from GRID TILING.

Conclusions

• A robust understanding of why certain problems can be solved in time $2^{O(\sqrt{n})}$ etc. on planar graphs and why the square root is best possible.

Conclusions

- A robust understanding of why certain problems can be solved in time $2^{O(\sqrt{n})}$ etc. on planar graphs and why the square root is best possible.
- Going beyond the basic toolbox requires new problem-specific algorithmic techniques and hardness proofs with tricky gadget constructions.

Conclusions

- A robust understanding of why certain problems can be solved in time $2^{O(\sqrt{n})}$ etc. on planar graphs and why the square root is best possible.
- Going beyond the basic toolbox requires new problem-specific algorithmic techniques and hardness proofs with tricky gadget constructions.
- The lower bound technology on planar graphs cannot give a lower bound without a square root factor. Does this mean that there are matching algorithms for other problems as well?
 - $2^{O(\sqrt{k})} \cdot n^{O(1)}$ time algorithm for STEINER TREE with k terminals in a planar graph?
 - $2^{O(\sqrt{k})} \cdot n^{O(1)}$ time algorithms for counting *k*-matchings in planar graphs?
 - ...