
A

On Problems as Hard as CNF-SAT1

Marek Cygan, University of Warsaw, Poland. cygan@mimuw.edu.pl.
Holger Dell, Saarland University and Cluster of Excellence (MMCI), Germany.
hdell@mmci.uni-saarland.de.
Daniel Lokshtanov, University of Bergen, Norway. daniello@ii.uib.no.
Dániel Marx, Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA
SZTAKI), Budapest, Hungary. dmarx@cs.bme.hu.
Jesper Nederlof, Technische Universiteie Eindhoven, The Netherlands. j.nederlof@tue.nl.
Yoshio Okamoto, University of Electro-Communications, Japan. okamotoy@uec.ac.jp.
Ramamohan Paturi, University of California, San Diego, USA. paturi@cs.ucsd.edu.
Saket Saurabh, Institute of Mathematical Sciences, India. saket@imsc.res.in.
Magnus Wahlström, Royal Holloway, University of London, UK. Magnus.Wahlstrom@rhul.ac.uk.

The field of exact exponential time algorithms for NP-hard problems has thrived over the last decade.

While exhaustive search remains asymptotically the fastest known algorithm for some basic problems, non-

trivial exponential time algorithms have been found for a myriad of problems, including Graph Coloring,
Hamiltonian Path, Dominating Set and 3-CNF-SAT. In some instances, improving these algorithms

further seems to be out of reach. The CNF-SAT problem is the canonical example of a problem for which

the trivial exhaustive search algorithm runs in time O(2n), where n is the number of variables in the input
formula. While there exist non-trivial algorithms for CNF-SAT that run in time o(2n), no algorithm was able

to improve the growth rate 2 to a smaller constant, and hence it is natural to conjecture that 2 is the optimal

growth rate. The strong exponential time hypothesis (SETH) by Impagliazzo and Paturi [JCSS 2001] goes a
little bit further and asserts that, for every ε < 1, there is a (large) integer k such that k-CNF-SAT cannot

be computed in time 2εn.
In this paper, we show that, for every ε < 1, the problems HITTING SET, SET SPLITTING, and NAE-SAT

cannot be computed in time O(2εn) unless SETH fails. Here n is the number of elements or variables in

the input. For these problems, we actually get an equivalence to SETH in a certain sense. We conjec-
ture that SETH implies a similar statement for SET COVER, and prove that, under this assumption, the

fastest known algorithms for STEINER TREE, CONNECTED VERTEX COVER, SET PARTITIONING, and the

pseudo-polynomial time algorithm for SUBSET SUM cannot be significantly improved. Finally, we justify
our assumption about the hardness of SET COVER by showing that the parity of the number of solutions

to SET COVER cannot be computed in time O(2εn) for any ε < 1 unless SETH fails.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems—Computations on discrete structures

1An extended abstract of this paper appeared in the proceedings of CCC 2012.
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1. INTRODUCTION
Every problem in NP can be solved in time 2poly(m) by brute force, that is, by enumer-
ating all candidates for an NP-witness, which is guaranteed to have length polyno-
mial in the input size m. While we do not believe that polynomial time algorithms for
NP-complete problems exist, many NP-complete problems have exponential time al-
gorithms that are dramatically faster than the naı̈ve brute force algorithm. For some
classical problems, such as SUBSET SUM or HAMILTONIAN CYCLE, such algorithms
were known [Held and Karp 1962; Bellman 1962] even before the concept of NP-
completeness was discovered. Over the last decade, a subfield of algorithms devoted
to developing faster exponential time algorithms for NP-hard problems has emerged.
A myriad of problems have been shown to be solvable much faster than by naı̈ve brute
force, and a variety of algorithm design techniques for exponential time algorithms
has been developed.

What the field of exponential time algorithms sorely lacks is a complexity-theoretic
framework for showing running time lower bounds. Some problems, such as INDE-
PENDENT SET and DOMINATING SET have seen a chain of improvements [Fomin et al.
2009; van Rooij et al. 2009; Robson 1986; Kneis et al. 2009], each new improvement be-
ing smaller than the previous. For these problems, the running time of the discovered
algorithms seems to converge towards O(Cn) for some unknown constant C, where n
denotes the number of vertices of the input graphs. For other problems, such as GRAPH
COLORING or STEINER TREE, non-trivial algorithms have been found, but improving
the growth rate C of the running time any further seems to be out of reach [Björklund
et al. 2009; Nederlof 2009]. The purpose of this paper is to develop tools that allow us
to explain why we are stuck for these problems. Ideally, for any problem whose best
known algorithm runs in time O(Cn), we want to prove that the existence of O(cn)-
time algorithms for any constant c < C would have implausible complexity-theoretic
consequences.

Previous Work. Impagliazzo and Paturi’s Exponential Time Hypothesis (ETH) ad-
dresses the question whether NP-hard problems can have algorithms that run in
“subexponential time” [Impagliazzo and Paturi 2001]. More precisely, the hypothesis
asserts that 3-CNF-SAT cannot be computed in time 2o(n), where n is the number
of variables in the input formula. ETH is considered to be a plausible complexity-
theoretic assumption, and subexponential time algorithms have been ruled out un-
der ETH for many decision problems [Impagliazzo et al. 2001], parameterized prob-
lems [Chen et al. 2005; Lokshtanov et al. 2011], approximation problems [Marx 2007],
and counting problems [Dell et al. 2012]. However, ETH does not seem to be sufficient
for pinning down what exactly the best possible growth rate is. For this reason, we
base our results on a stronger hypothesis.

The fastest known algorithms for CNF-SAT have running times of the form
2n−o(n)poly(m) [Schuler 2005; Williams 2011], which does not improve upon the growth
rate 2 of the naı̈ve brute force algorithm that runs in time 2npoly(m). Hence a natu-
ral candidate for a stronger hypothesis is that CNF-SAT cannot be computed in time
2εnpoly(m) for any ε < 1. However, we do not know whether our lower bounds on the
growth rate of specific problems can be based on this hypothesis. The main techni-
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cal obstacle is that we have no analogue of the sparsification lemma, which applies
to k-CNF formulas and makes ETH a robust hypothesis [Impagliazzo et al. 2001]. In
fact, very recent results indicate that such a sparsification may be impossible for gen-
eral CNF formulas [Santhanam and Srinivasan 2011]. For this reason, we consider
the Strong Exponential Time Hypothesis (SETH) of Impagliazzo and Paturi [Impagli-
azzo and Paturi 2001; Impagliazzo et al. 2001; Calabro et al. 2009]. This hypothesis
asserts that, for every ε < 1, there is a (large) integer k such that k-CNF-SAT cannot
be computed by any bounded-error randomized algorithm in time O(2εn). In particular,
SETH implies the hypothesis for CNF-SAT above, but we do not know whether they
are equivalent. Since SETH is a statement about k-CNF formulas for constant k = k(ε),
we can apply the sparsification lemma for every fixed k, which allows us to use SETH
as a starting point in our reductions.

Our results. Our first theorem is that SETH is equivalent to lower bounds on the
time complexity of a number of standard NP-complete problems.

THEOREM 1.1. Each of the following statements is equivalent to SETH.

(1) For all ε < 1, there exists k such that k-CNF-SAT, the satisfiability problem for
n-variable k-CNF formulas, cannot be solved in time O(2εn).

(2) For all ε < 1, there exists k such that k-HITTING SET, the hitting set problem for set
systems over [n] with sets of size at most k, cannot be solved in time O(2εn).

(3) For all ε < 1, there exists k such that k-SET SPLITTING, the set splitting problem for
set systems over [n] with sets of size at most k, cannot be solved in time O(2εn).

(4) For all ε < 1, there exists k such that k-NAE-SAT, the not-all-equal satisfiability
problem for n-variable k-CNF formulas, cannot be solved in time O(2εn).

(5) For all ε < 1, there exists c such that c-VSP-CIRCUIT-SAT, the satisfiability prob-
lem for n-variable series-parallel circuits of size at most cn, cannot be solved in
time O(2εn).

For all of the above problems, the naı̈ve brute force algorithm runs in time O(2n).
While there may not be a consensus that SETH is a “plausible” complexity-theoretic
assumption, our theorem does indicate that finding an algorithm for CNF-SAT whose
growth rate is smaller than 2 is as difficult as finding such an algorithm for any of the
above problems. Since our results are established via suitable reductions, this can be
seen as a completeness result under these reductions. Moreover, we actually prove that
the optimal growth rates for all of the problems above are equal as k tends to infinity.
This gives an additional motivation to study the Strong Exponential Time Hypothesis.

An immediate consequence of Theorem 1.1 is that, if SETH holds, then CNF-SAT,
HITTING SET, SET SPLITTING, NAE-SAT, and the satisfiability problem of series-
parallel circuits do not have bounded-error randomized algorithms that run in time
2εnpoly(m) for any ε < 1. All of these problems are search problems, where the objec-
tive is to find a particular object in a search space of size 2n. Of course, we would also
like to show tight connections between SETH and the optimal growth rates of prob-
lems that do have non-trivial exact algorithms. Our prototypical such problem is SET
COVER: Given a set system with n elements and m sets, we want to select a given
number t of sets that cover all elements. Exhaustively trying all possible ways to cover
the elements takes time at most 2mpoly(m). However, m could be much larger than n,
and it is natural to ask for the best running time that one can achieve in terms of n. It
turns out that a simple dynamic programming algorithm [Fomin et al. 2004] can solve
SET COVER in time 2npoly(m). The natural question is whether the growth rate of
this simple algorithm can be improved. While we are not able to resolve this question,
we connect the existence of an improved algorithm for SET COVER to the existence of
faster algorithms for several problems. Specifically, we show the following theorem.
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THEOREM 1.2. Assume that, for all ε < 1, there exists k such that k-SET COVER,
the set cover problem for set systems over [n] with m sets of size at most k, cannot be
solved in time 2εnpoly(m). Then, for all ε < 1, we have the following.

(1) STEINER TREE cannot be solved in time 2εtpoly(n), where n is the number of vertices
and t is the size of a solution,

(2) CONNECTED VERTEX COVER cannot be solved in time 2εtpoly(n), where n is the
number of vertices and t is the size of a solution,

(3) SET PARTITIONING cannot be solved in time 2εnpoly(m), where n is the size of the
universe and m is the number of hyperedges, and

(4) SUBSET SUM cannot be solved in time tεpoly(n), where n is the size of the universe
and t is a target integer.

All problems mentioned in this theorem have non-trivial algorithms whose running
times are as above with ε = 1 [Björklund et al. 2007; Nederlof 2009; Cygan et al. 2011;
Fomin et al. 2004; Cormen et al. 2009]. Under the assumption in the theorem, we
therefore obtain tight lower bounds on the growth rate of exact algorithms for STEINER
TREE, CONNECTED VERTEX COVER, SET PARTITIONING, and SUBSET SUM. The best
currently known algorithms for these problems share two interesting common fea-
tures. First, they are all dynamic programming algorithms. Thus, Theorem 1.2 hints
at SET COVER being a “canonical” dynamic programming problem. Second, the algo-
rithms can all be modified to compute the number of solutions modulo two in the same
running time. In fact, the currently fastest algorithm [Cygan et al. 2011] for CON-
NECTED VERTEX COVER works by reducing the problem to computing the number of
solutions modulo two.

While Theorem 1.1 is an equivalence, Theorem 1.2 is not. One might ask whether it
is possible to find reductions back to SET COVER and to strengthen Theorem 1.2 in this
manner. We believe that this would be quite difficult: A suitable reduction from, say,
STEINER TREE to SET COVER that proves the converse of Theorem 1.2 would probably
also work for ε = 1. This would give an alternative proof that STEINER TREE can be
computed in time 2tpoly(m). Hence, finding such a reduction is likely to be a challenge
since the fastest known algorithms [Björklund et al. 2007; Nederlof 2009] for STEINER
TREE are quite non-trivial — it took more than 30 years before the classical 3tpoly(n)-
time Dreyfus–Wagner algorithm for STEINER TREE was improved to 2tpoly(n). Similar
comments apply to CONNECTED VERTEX COVER since its 2tpoly(n)-time algorithm is
quite complex [Cygan et al. 2011].

The hardness assumption for SET COVER in Theorem 1.2 needs some justification.
Ideally we would like to replace this assumption with SETH, that is, we would like
to prove that SETH implies the hardness assumption for SET COVER in Theorem 1.2.
We do not know a suitable reduction, but we are able to provide a different kind of evi-
dence for hardness: We show that a 2εnpoly(m)-time algorithm to compute the number
of set covers modulo two would violate ⊕-SETH, which is a hypothesis that implies
SETH. Formally, ⊕-SETH asserts that, for all ε < 1, there exists a (large) integer k
such that k-CNF-⊕SAT cannot be computed in time O(2εn). Here, k-CNF-⊕SAT is the
problem of computing the number of satisfying assignments of a given k-CNF formula
modulo two. It follows from known results [Calabro et al. 2003; Traxler 2008] (see also
Section 3.1) that, if SETH holds, then so does ⊕-SETH. As a partial justification for
the hardness assumption for SET COVER in Theorem 1.2, we provide the following
theorem.

THEOREM 1.3.

(1) For all ε < 1, there exists k such that k-CNF-⊕SAT, the parity satisfiability problem
for n-variable k-CNF formulas, cannot be solved in time O(2εn).
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(2) For all ε < 1, there exists k such that k-⊕ALL HITTING SETS, the parity hitting
set problem for set systems over [n] with sets of size at most k, cannot be solved in
time O(2εn).

(3) For all ε < 1, there exists k such that k-⊕ALL SET COVERS, the parity set cover
problem for set systems over [n] with sets of size at most k, cannot be solved in
time O(2εn).

In the statement of Theorem 1.3, the ⊕ALL HITTING SETS and ⊕ALL SET COVERS
problems are defined as follows: the input is a set system and the objective is to com-
pute the parity of the number of hitting sets (resp. set covers) in the system. An imme-
diate consequence of Theorem 1.3 that we find interesting is that ⊕-SETH rules out
the existence of 2εnpoly(m)-time algorithms to compute the number of set covers of a
set system, for any ε < 1.

Theorem 1.3 together with the fact that the algorithms for all problems mentioned
in Theorem 1.2 can be modified to count solutions modulo two leads to the following
questions: Can we show running time lower bounds for the counting versions of these
problems? We show that this is indeed possible. In particular we show that, assuming
⊕-SETH, there is no 2εtpoly(n)-time algorithm that computes the parity of the number
of Steiner trees that have size at most t, and no 2εtpoly(n)-time algorithm that com-
putes the parity of the number of connected vertex covers that have size at most t.
Thus, unless ⊕-SETH fails, any improved algorithm for SET COVER, STEINER TREE,
or CONNECTED VERTEX COVER cannot be used to compute the parity of the number
of solutions.

We find it intriguing that SETH and⊕-SETH can be used to show tight running time
lower bounds, sometimes for problems for which the best algorithm has been improved
several times, such as for STEINER TREE or CONNECTED VERTEX COVER. We feel
that such sharp bounds are unlikely to just be a coincidence, leading us to conjecture
that the relationship between the considered problems is even closer than what we
show. Specifically, we conjecture that SETH implies the hardness assumption for SET
COVER in Theorem 1.2. This conjecture provides an interesting open problem.

Our results are obtained by a collection of reductions. Section 3 contains the reduc-
tions that constitute the proof of Theorem 1.1, and some of the reductions needed for
Theorem 1.3. Section 4 contains the proof of Theorem 1.2, the remaining reductions for
Theorem 1.3, and the hardness results for counting Steiner trees and connected vertex
covers. A schematic representation of our reductions can be found in Figure 1.

2. PRELIMINARIES AND NOTATION
2.1. General Notation
In this paper, ∆ denotes the symmetric difference and ∪̇ denotes the disjoint union.
For a set U and a positive integer i ≤ |U |, we denote the family of all subsets of U of
size i by

(
U
i

)
. In this paper, ≡ will always denote congruence modulo 2, that is, i ≡ j

holds for integers i, j if and only if i and j have the same parity. Every assignment
α : {v1, . . . , vn} → {0, 1} to n Boolean variables v1, . . . , vn is identified with the set A :=
{vi | α(vi) = 1} ⊆ {v1, . . . , vn}.

2.2. Problem definitions
Since we consider a significant number of problems in this paper, each of which has a
few variants, we use the following notation for clarity. We write k-Π for problems whose
input consists of set systems of sets of size at most k, or CNF formulas with clauses
of width at most k. We write c-SPARSE-k-Π if, in addition, the set systems or formulas
that we get as input are guaranteed to have density at most c, that is, the number of
sets or clauses is at most cn, where n is the number of elements or variables.
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Fig. 1. Overview of the reduction graph in this paper. An arrow Π/s→ Π′/s′ depicts a serf-reduction from
the problem Π with size-parameter s to the problem Π′ with size parameter s′. Most of the problems have
a secondary parameter, such as the maximum clause width or the maximum set size, which are not repre-
sented in the picture. Roughly speaking, a serf-reduction Π/s → Π′/s′ implies that, if Π′ can be solved in
time cs

′ · poly, then Π can be solved in time cs+o(1) · poly, where the o(1)-term is a function whose limit is
zero as the secondary parameter tends to infinity. The edge labels depict the theorem (T), corollary (C), or
observation (O) that contains the formal statement of the reduction. When the size parameter s is the num-
ber of vertices or variables n, we omit it. Other parameters are: the number m of clauses, hyperedges, or the
number of bits used to represent the input integers in SUBSET SUM; and the size t of the solution that we
are looking for. Note that the figure suppresses details about which reductions require or preserve that the
instances have bounded clause or hyperedge width, or bounded density. On the left, we have decision prob-
lems, and on the right we have parity problems; the two groups are related via the isolation lemma [Calabro
et al. 2003; Traxler 2008], cf. Theorem 3.2, and via the decision-to-parity reduction of [Björklund et al. 2015].
Furthermore, we observe a cluster on the top, which contains problems for which the best-known algorithm
is naı̈ve exhaustive search; see Section 3. And there is a cluster on the bottom, which contains problems for
which the best-known algorithm has a dynamic programming flavor; see Section 4. These two clusters are
connected in the parity world via our “flip theorem”, Theorem 4.3. In the decision world, this connection is
an open problem: Does SETH imply the assumption of Theorem 1.2?
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For each problem Π that we consider, we fix the canonical NP-verifier that is implicit
in the way we define the problem. Then every yes-instance of Π has associated with it
a set of NP-witnesses or “solutions”. We write ⊕Π for the problem of deciding whether,
for a given instance, the number of its solutions is odd. For many problems, we are
looking for certain subsets of size at most t, where t is given as part of the input. So
when writing ⊕Π in this case, we only count solutions of size at most t. Sometimes we
want to count all solutions, not only those of at most a certain size. In this case, we add
the modifier ALL to the name; for example. while ⊕HITTING SETS is the problem of
counting modulo two all hitting sets of size at most t, the problem⊕ALL HITTING SETS
counts all hitting sets modulo two (regardless of their size).

We now state all problems that we consider in this paper, and we discuss how exactly
the modifiers affect them.

2.2.1. CNF Problems. For CNF problems, the input is a CNF formula ϕ. We usually
denote the number of variables by n and the number of clauses by m. The two basic
problems that we consider are CNF-SAT and NAE-SAT.

CNF-SAT. Does ϕ have a satisfying assignment?
NAE-SAT. Does ϕ have a satisfying assignment so that (i) the first variable is set
to true and (ii) each clause contains a literal set to true and a literal set to false?

We added condition (i) to NAE-SAT solely for the purpose of making its corresponding
parity problem non-trivial.

Modifiers. In addition to these two basic problems, we can name new problems by
adding one of the following modifiers to their names (which we do by example just for
CNF-SAT).

◦ k-CNF-SAT is the problem in which the input formula ϕ is guaranteed to have at
most k literals in each clause.
◦ c-SPARSE-k-CNF-SAT is the problem in which the input formula ϕ is guaranteed to

have at most k literals in each clause and to have at most m ≤ c · n clauses.

The goal of the problem remains the same in both cases, and the two modifiers only
affect the promise on the input. In order to change the goal of the problem, we allow for
the parity modifier, ⊕, to be put in front of the type of assignment that we are looking
for, i.e., we have CNF-⊕SAT and ⊕NAE-SAT. The parity modifier can be combined
with one of the input modifiers.

2.2.2. Hypergraph Problems. For problems on hypergraphs, the input is a set system
F ⊆ 2U , which consists of subsets of some universe U . The elements of U are called
vertices and the elements of F are called hyperedges. The number of vertices is usually
denoted by n and the number of hyperedges by m. The goal in all of these problems
will be to find or count subsets of U that have special properties with respect to F , or to
do the dual and find or count subsets of the set system F that have a special property.
Often there will be an additional input t ∈ N that will determine that we are looking
for a subset S or a subfamily of size at most t.

We have the following four basic hypergraph problems.

HITTING SET. Does F have a hitting set of size at most t, that is, a subset H ⊆ U
with |H| ≤ t such that H ∩ S 6= ∅ for every S ∈ F?
SET COVER. Does F have a set cover of size at most t, that is, a subset C ⊆ F with
|C| ≤ t such that

⋃
S∈C S = U?

SET PARTITIONING (or PERFECT SET MATCHING). Does F have a set partition-
ing of size at most t, that is, a set cover C such that, for every S, S′ ∈ C with S 6= S′,
we have S ∩ S′ = ∅?
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SET SPLITTING. Is there a subset X ⊆ U such that (i) the first element of the
universe is a member of X and (ii), for every S ∈ F , neither S ⊆ X nor S ⊆ (U−X)?

Note that the first three problems have the additional input t ∈ N, while the last
problem does not. Similar to our definition of NAE-SAT, we added condition (i) in SET
SPLITTING solely for the purpose of making the corresponding parity problem non-
trivial.

Modifiers. The input modifiers such as in k-HITTING SET or c-SPARSE-k-HITTING
SET work as before in the case of CNF problems. The number k promises that all sets
S in the set system F will have size at most k, and the number c promises that the
number m of sets is at most c · n. We also introduce the parity modifier, ⊕, just as
before. For example, in ⊕HITTING SETS, we are given t and F , and we want to count
modulo two the number of hitting sets of size at most t.

Interestingly, for parity problems, we can prove hardness results also for the case
in which the input parameter t is guaranteed to be t = n. For decision problems, this
setting of t is trivial, but the counting case turns out to be still interesting. To make this
distinction clear, we add the modifier ALL in front of the object that we are counting.
For clarity, we give the definition of the following modified version of HITTING SET.

⊕ALL HITTING SETS
Input. A set system F ⊆ 2U .
Question. Does F have an odd number of hitting sets (of any size)?

2.2.3. Graph Problems. In graph problems, the input is a graph G = (V,E) with n
vertices and m edges, and often there is some additional input, such as a number t ∈ N
or a set of terminals T ⊆ V . We consider the following basic graph problems:

CONNECTED VERTEX COVER. Does G have a connected vertex cover of size at
most t, that is, a subset X ⊆ V such that |X| ≤ t, the induced subgraph G[X]
is connected, and X ∩ e 6= ∅ holds for every edge e ∈ E?
STEINER TREE. Does G has a Steiner tree of size at most t between the terminals
T ⊆ V , that is, is there a subset X ⊆ V so that |X| ≤ t, the induced subgraph G[X]
is connected, and T ⊆ X?

For these problems, we will only use the parity modifier. So for example, in
⊕CONNECTED VERTEX COVERS, we are given G and t, and we want to count mod-
ulo two the number of connected vertex covers of size at most t.

2.2.4. Other Problems. We also study the following problems.

SUBSET SUM
Input. Integers a1, . . . , an ∈ Z+ and a target integer t on m bits.
Question. Is there a subset X ⊆ {1, . . . , n} with

∑
i∈X ai = t?

c-VSP-CIRCUIT-SAT
Input. A cn-size Valiant series-parallel circuit over n variables.
Question. Is there a satisfying assignment?

2.3. The optimal growth rate of a problem
Running times in this paper have the form cn · poly(m), where c is a nonnegative con-
stant, m is the total size of the input, and n is a somewhat smaller parameter of the
input, typically the number of variables, vertices, or elements. The constant c is the
growth rate of the running time, and it may be different for different choices for the
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parameter n. To make this parameterization explicit, we use the notation Π/n. For
every such parameterized problem, we now define the number σ = σ(Π/n).

Definition 2.1. For a parameterized problem Π/n, let σ(Π/n) be the infimum over
all σ > 0 such that there exists a randomized 2σnpoly(m)-time algorithm for Π whose
error probability is at most 1/3.

The optimal growth rate of Π with respect to n is C := 2σ(Π/n). If the infimum in the def-
inition above is a minimum, then Π has an algorithm that runs in time Cnpoly(m) and
no algorithm for Π can have a running time cnpoly(m) for any c < C. On the other hand,
if the minimum does not exist, then no algorithm for Π can run in time Cnpoly(m), but
Π has a cnpoly(m)-time algorithm for every c > C. We formally define the Strong Expo-
nential Time Hypothesis (SETH) as the assertion that limk→∞ σ(k-CNF-SAT/n) = 1.

We remark that it is consistent with current knowledge that SETH fails and
yet CNF-SAT (without restriction on the clause width) does not have 2εnpoly(m)-
algorithms for any ε < 1: If SETH fails, then k-CNF-SAT has, say, kk1.99n-time al-
gorithms for every k, which does not seem to translate to a 2εnpoly(m)-time algorithm
for CNF-SAT for any ε < 1.

3. ON IMPROVING BRANCHING ALGORITHMS
In this section we show that significantly faster algorithms for search problems such
as HITTING SET and SET SPLITTING imply significantly faster algorithms for CNF-
SAT. More precisely, we prove that the growth rates of these problems are equal, or
equivalently,

σ(CNF-SAT/n) = σ(HITTING SET/n) = σ(SET SPLITTING/n).

We also give a reduction from CNF-⊕SAT to ⊕ALL HITTING SETS, thus establishing
a connection between the parity versions of these two problems.

3.1. Previous results for CNF-SAT
In the following few subsections, we show reductions from CNF-SAT/n to HITTING
SET/n and SET SPLITTING/n. These reductions work even when the given instance of
CNF-SAT/n is dense, that is, when there is no bound on the number of clauses that
is linear in the number of variables. However, our starting point in Section 4 is the
SPARSE-HITTING SET/n problem, where the number of sets in the set system is linear
in n. For this reason we formulate our results for the sparse versions of HITTING SET/n
and SET SPLITTING/n, and we develop a sparse version of SETH first.

The sparsification lemma by Impagliazzo et al. [Impagliazzo et al. 2001] is that every
k-CNF formula ϕ can be written as the disjunction of 2εn formulas in k-CNF, each of
which has at most c(k, ε)·n clauses. Moreover, this disjunction of sparse formulas can be
computed from ϕ and ε in time 2εn · poly(m). Hence, the growth rate of k-CNF-SAT for
formulas of density at most c(k, ε) is ε-close to the growth rate of general k-CNF-SAT.
More precisely, for every k and every ε > 0, we have

σ
(
c-SPARSE-k-CNF-SAT/n

)
≤ σ

(
k-CNF-SAT/n

)
≤ σ

(
c-SPARSE-k-CNF-SAT/n

)
+ ε,

where the first inequality is trivial and the second inequality follows from the spar-
sification lemma. The density c = c(k, ε) is the sparsification constant, and the best
known bound is c(k, ε) = (k/ε)3k [Calabro et al. 2006]. By setting ε = ε(k) = o(1), this
immediately yields the following theorem.
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THEOREM 3.1 ([IMPAGLIAZZO ET AL. 2001; CALABRO ET AL. 2006]). For every
function c = c(k) ≥ (ω(k))3k, we have

lim
k→∞

σ
(
k-CNF-SAT/n

)
= lim
k→∞

σ
(
c-SPARSE-k-CNF-SAT/n

)
.

Hence, SETH is equivalent to the right-hand side being equal to 1. In [Dell et al. 2012]
it was observed that the sparsification lemma can be made parsimonious, which gives
the following equality for the same functions c = c(k):

lim
k→∞

σ
(
k-CNF-⊕SAT/n

)
= lim
k→∞

σ
(
c-SPARSE-k-CNF-⊕SAT/n

)
.

We define ⊕-SETH as the assertion that these limits are equal to 1. The isolation
lemmas for k-CNF formulas [Calabro et al. 2003; Traxler 2008] immediately yield that
SETH implies ⊕-SETH. More precisely, we have the following theorem.

THEOREM 3.2 ([CALABRO ET AL. 2003; TRAXLER 2008]).

lim
k→∞

σ(k-CNF-SAT/n) ≤ lim
k→∞

σ(k-CNF-⊕SAT/n) .

3.2. From CNF-SAT to Hitting Set
Here we will reduce SPARSE-CNF-SAT to SPARSE-HITTING SET. For this, and also for
the reduction from CNF-⊕SAT to ⊕ALL HITTING SETS in Section 3.4, the following
construction will be useful.

Given a CNF formula ϕ = C1∧· · ·∧Cm over n variables v1, . . . , vn and an odd integer
p ≥ 3 that divides n, we construct the set system Fϕ,p ⊆ 2U as follows.

(1) Let p′ be the odd integer p′ = p+2dlog2 pe, and let U = {u1, . . . , un′}with n′ = p′ ·n/p.
(2) Partition the variables of ϕ into blocks Vi of size p, i.e., Vi := {vpi+1, . . . , vp(i+1)}.
(3) Partition U into blocks Ui of size p′, i.e., Ui = {up′i+1, . . . , up′(i+1)}.

(4) Choose an arbitrary injective function ψi : 2Vi →
(

Ui
dp′/2e

)
. This exists since∣∣∣∣( Ui

dp′/2e

)∣∣∣∣ =

(
p′

dp′/2e

)
≥ 2p

′

p′
≥ 2pp2

p+ 2dlog2 pe
≥ 2p =

∣∣2Vi∣∣ .
We think of ψi as a mapping that, given an assignment to the variables of Vi,
associates with it a subset of Ui of size dp′/2e.

(5) If X ∈
(

Ui
dp′/2e

)
for some i, then add the set X to Fϕ,p.

(6) If X ∈
(

Ui
bp′/2c

)
for some i such that ψ−1

i ({Ui −X}) = ∅, then add the set X to Fϕ,p.
(7) For every clause C of ϕ, do the following:

◦Let I = {j | 1 ≤ j ≤ n
p , and C contains a variable of block Vj};

◦For every i ∈ I, we let Ai be the set{
Xi ∈

(
Ui
bp′/2c

) ∣∣∣∣ some assignment in ψ−1
i ({Ui −Xi}) sets all literals in C ∩ Vi to false

}
;

◦For every tuple (Xi)i∈I with Xi ∈ Ai, add the set
⋃
i∈I Xi to Fϕ,p.

LEMMA 3.3. For every n-variable CNF formula ϕ and every odd integer p ≥ 3 that
divides n, the number of satisfying assignments of ϕ is equal to the number of hitting
sets of size dp

′

2 e
n
p of the set system Fϕ,p, where p′ = p+ 2dlog2 pe.

PROOF. For convenience denote g = n
p . Define ψ : 2V → 2U as ψ(A) =

⋃g
i=1 ψi(A∩Vi).

Note that ψ is injective, since for every i, ψi is injective and the Vi’s partition V . Hence
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to prove the lemma, it is sufficient to prove that (1) A is a satisfying assignment if and
only if ψ(A) is a hitting set of size dp

′

2 eg, and (2) if there is no assignment A ⊆ V such
that ψ(A) = H, than no set H ⊆ U of size dp

′

2 eg is a hitting set of Fϕ,p.
For the forward direction of (1), note that the sets added in Step 5 are hit by the

pigeon-hole principle since |ψi(A ∩ Vi)| = dp
′

2 e and p′ is odd. For the sets added in
Step 6, consider the following. The set X of size bp′/2c is added because for some i,
ψ−1
i ({Ui − X}) = ∅. Thus ψi(A ∩ Vi) automatically hits X. For the sets added in Step

7, consider a clause C of ϕ and the associated index set I as in Step 7. Since A is a
satisfying assignment of ϕ, there exists i ∈ I such that A sets at least one variable in
C ∩ Vi to true. Hence, Ui − ψi(A ∩ Vi) 6∈ Ai. On the other hand, Ui − ψi(A ∩ Vi) is the
only member of Fϕ,p that cannot be hit by ψ(A ∩ Vi). Therefore, all sets added in Step
7 are hit by ψ(A). It is easy to check that ψ(A) has size dp

′

2 eg since there are g blocks.
For the reverse direction of (1), let A be an assignment such that ψ(A) is a hitting

set of size dp
′

2 eg. We show that A is a satisfying assignment of ϕ. Suppose for the sake
of contradiction that a clause C is not satisfied by A, and let I be as defined in Step
7 for this C. Since ψ(A) is a hitting set, |ψ(A) ∩ Ui| ≥ p′

2 for every i because it hits all
sets added in Step 5. More precisely, |ψ(A) ∩ Ui| = dp

′

2 e because |ψ(A)| = dp
′

2 eg and
there are g disjoint blocks U1, . . . , Ug. Therefore, |Ui − ψ(A)| = bp

′

2 c, and so Ui ∩ ψ(A) =
Ui− (Ui−ψ(A)) is a member of Ai for every i. This means that in Step 7 the set

⋃
i∈I Ai

with Ai = Ui − ψ(A) was added, but this set is not hit by ψ(A). So it contradicts that
ψ(A) is a hitting set.

For (2), let H ⊆ U be a set of size dp
′

2 eg and assume that there is no assignment
A ⊆ V such that ψ(A) = H. We show that H is not a hitting set of Fϕ,p. For the sake
of contradiction, suppose that H is a hitting set. Then, as in the proof of the reverse
direction of (1), we obtain |H ∩ Ui| = dp

′

2 e for every i. Since it hits all sets added in
Step 6, we also know that ψ−1

i ({H ∩ Ui}) 6= ∅ for every i. However, this contradicts the
non-existence of A ⊆ V such that ψ(A) = H.

THEOREM 3.4. For every non-decreasing function c = c(k), there exists a non-
decreasing function c′ = c′(k′) such that

lim
k→∞

σ(c-SPARSE-k-CNF-SAT/n) ≤ lim
k′→∞

σ(c′-SPARSE-k′-HITTING SET/n) , and

lim
k→∞

σ(c-SPARSE-k-CNF-⊕SAT/n) ≤ lim
k′→∞

σ(c′-SPARSE-k′-⊕HITTING SETS/n) .

PROOF. We prove that, for any positive integer k and for any positive odd integer
p ≥ 3, there exist positive integers k′ = k′(p) := p′k and c′ = c′(k′) := 2k

′+1c(k′) such
that

σ(c-SPARSE-k-CNF-SAT/n) ≤ σ(c′-SPARSE-k′-HITTING SET/n) +O

(
log p

p

)
.

As p → ∞, the right-hand side tends to the right-hand side of the inequality that we
want to prove, and since the inequality holds for all k, it also holds as k →∞.

To prove the claim, we let ϕ be a k-CNF formula of density at most c(k), and we
create the set system Fϕ,p as described above together with the desired hitting set size
t = dp

′

2 e
n
p , and we recall that p′ = p + 2dlog2 pe. For any constant p, this can clearly be

done in polynomial time. By Lemma 3.3, this is a reduction from CNF-SAT to HITTING
SET, and the reduction is parsimonious, that is, the number of hitting sets is exactly

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 Marek Cygan et al.

equal to the number of satisfying assignments. It remains to check that the set system
uses at most c′n′ sets, each of size at most k′, and that the inequality above holds.

It is easy to see that any set in Fϕ,p has size at most k′. Let m′ be the number of
sets in Fϕ,p. We observe that there are at most 2p

′
n/p sets added in Step 5 and Step 6.

Moreover, since each clause contains variables from at most k blocks, there are at most
2p
′km sets added in Step 7. Therefore m′/n′ ≤ m′/n ≤ 2p

′
+ 2kp

′
c(k) ≤ c′(k′) holds,

where we use the monotonicity of c. This means that we can determine whether ϕ
is satisfiable in time 2σ(c′-SPARSE-k′-HITTING SET/n)n′ · poly(n), where n′ is the size of the
universe of Fϕ,p. Since n′ = n

p (p + 2dlog pe) = n(1 + O( log p
p )) and σ ≤ 1, the claim

follows.

We remark that the proof also works when there is no restriction on the density
and even when there is no restriction on the clause/set size. This is because the run-
ning time of the reduction is polynomial time for every constant p. Furthermore, the
theorem trivially holds for the counting versions of the problems as well.

3.3. From Hitting Set via Set Splitting to CNF-SAT
THEOREM 3.5.

lim
k→∞

σ(k-HITTING SET/n) ≤ lim
k→∞

σ(k-SET SPLITTING/n) , and

lim
k→∞

σ(k-⊕HITTING SETS/n) ≤ lim
k→∞

σ(k-⊕SET SPLITTING/n) .

PROOF. It is enough to show that, for all positive integers k and p, we have

σ(k-HITTING SET/n) ≤ σ(k′-SET SPLITTING/n) +
log2(p+ 1)

p
,

where k′ = max(k+1, p+1). Let (F , t) be an instance of k-HITTING SET. We can assume
that the universe U of F has n elements and that p divides n. Let U = U1 ∪̇ . . . ∪̇ Un/p
be a partition in which each part has exactly |Ui| = p elements of the universe U .
Let t1, . . . , tn/p be nonnegative integers such that

∑n/p
i=1 ti = t. The ti’s are our current

guess for how many elements of a t-element hitting set will intersect with the Ui’s. The
number of ways to write t as the ordered sum of n/p nonnegative integers t1, . . . , tn/p
with 0 ≤ ti ≤ p can be bounded by (p + 1)n/p = 2n·log(p+1)/p. For each choice of the ti’s,
we construct an instance F ′ of k′-SET SPLITTING as follows.

(1) Let R (red) and B (blue) be two special elements and add the set {R,B} to F ′.
(2) For all i with ti < p and for all X ∈

(
Ui
ti+1

)
, add X ∪ {R} to F ′.

(3) For every Y ∈ F , add Y ∪ {B} to F ′.

Clearly F ′ can be computed in polynomial time and its universe has n + 2 elements.
The sets added in step 2 have size at most p+ 1 and the sets added in step 3 have size
at most k + 1. Given an algorithm for SET SPLITTING, we compute F ′ for every choice
of the ti’s and we decide HITTING SET in time 2(ε+σ(k′-SET SPLITTING/n))·n ·poly(m), where
ε = log(p + 1)/p. It remains to show the correctness of the reduction, i.e., that F has
a hitting set of size at most t if and only if F ′ has a set splitting for some choice of
t1, . . . , tn/p.

For the completeness of the reduction, let H be a hitting set of size t and set ti =
|Ui ∩H| for all i. We now observe that H ∪ {R} and its complement (U −H)∪ {B} form
a set splitting of F ′. The set {R,B} added in step 1 is split. The sets X ∪ {R} added in
step 2 are split since at least one of the ti + 1 elements of X ⊆ Ui is not contained in H.
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Finally, the sets Y ∪ {B} added in step 3 are split since each Y ∈ F has a non-empty
intersection with H.

For the soundness of the reduction, let (S, S) be a set splitting of F ′ for some choice
of t1, . . . , tn/p. Without loss of generality, assume that R is the first vertex and thus,
because of the way we defined SET SPLITTING, we will have R ∈ S. By the set added
in step 1, this means that B ∈ S. The sets added in step 2 guarantee that Ui ∩ S
contains at most ti elements for all i. Finally, the sets added in step 3 make sure that
each set Y ∈ F has a non-empty intersection with S. Thus, S − {R} is a hitting set of
F and has size at most

∑
i ti = t.

The claim for the parity versions follows as well since the reduction preserves the
number of solutions exactly.

OBSERVATION 3.6. For any positive integer k we have
σ(k-SET SPLITTING/n) ≤ σ(k-NAE-SAT/n) ≤ σ(k-CNF-SAT/n) , and

σ(k-⊕SET SPLITTING/n) ≤ σ(k-⊕NAE-SAT/n) ≤ σ(k-CNF-⊕SAT/n) .

PROOF. For the first reduction, let F be an instance of k-SET SPLITTING. We con-
struct an equivalent k-CNF formula ϕ as follows. For each element in the universe of
F , we add a variable, and for each set X ∈ F we add a clause in which each vari-
able occurs positively. A characteristic function of a set splitting U = U1 ∪̇ U2 is one
that assigns 1 to the elements in U1 and 0 to the elements of U2. Observe that the
characteristic functions of set splittings of F stand in one-to-one correspondence to
variable assignments that satisfy the NAE-SAT constraints of ϕ. Thus, any algorithm
for k-NAE-SAT works for k-SET SPLITTING, too.

For the second reduction, let ϕ be a k-NAE-SAT-formula. The standard reduction to
k-CNF-SAT creates two copies of every clause of ϕ and flips the sign of all literals in the
second copies. Then any NAE-SAT-assignment of ϕ satisfies both copies of the clauses
of ϕ′. On the other hand, any satisfying assignment of ϕ′ sets a literal to true and a
literal to false in each clause of ϕ. To make the satisfying assignments of ϕ′ exactly
the same as the NAE-assignments of ϕ, we furthermore add a single clause that forces
the first variable of x to be set to true (recall that this requirement was part of our
definition of NAE-SAT). Thus, any algorithm for k-CNF-SAT works for k-NAE-SAT,
too.

3.4. From Parity CNF-SAT to Parity All Hitting Sets
Given a CNF formula ϕ over n variables and clauses of size at most k and an odd
integer p ≥ 3 that divides n, we first construct the set system Fϕ,p ⊆ 2U as described in
Section 3.2. Given the set system Fϕ,p ⊆ 2U , we create the set system F ′ϕ,p as follows.

(8) For every block Ui:
◦ add a special element ei to the universe,
◦ for every X ∈

(
Ui
bp′/2c

)
, add the set X ∪ {ei} to the set family.

LEMMA 3.7. The number of hitting sets of size t = dp′/2enp in Fϕ,p is odd if and only
if the number of all hitting sets in F ′ϕ,p is odd.

PROOF. Let g = n
p . We first prove that the number of hitting sets of Fϕ,p of size

dp′/2eg is equal to the number of hitting sets H ′ of F ′ϕ,p such that |H ′ ∩ Ui| = dp
′

2 e for
every 1 ≤ i ≤ g. Suppose that H is a hitting set of Fϕ,p of size dp′/2eg, then it is easy
to see that H ∪ {e1, . . . , eg} is a hitting set of F ′ϕ,p since all the sets added in Step 8
are hit by some ei, and indeed |H ′ ∩ Ui| = dp

′

2 e for every 1 ≤ i ≤ g since otherwise the
set Ui −H ′ added in Step 5 is not hit by H ′. For the reverse direction, suppose H ′ is a
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hitting set of F ′ϕ,p such that |H ′ ∩ Ui| = dp
′

2 e for every 1 ≤ i ≤ g. Then {e1, . . . , eg} ⊆ H ′
since all the sets added in Step 8 are hit by H ′. And hence we have a bijection between
the two families of hitting sets.

For every hitting set H ′ of F ′ϕ,p and block Ui, we know that |H ′ ∩ Ui| ≥ dp′/2e. So
it remains to show that the number of hitting sets H ′ of F ′ϕ,p such that there is an
1 ≤ i ≤ g with |H ′ ∩Ui| > dp

′

2 e is even. Given such a hitting set H ′, let γ(H ′) = H ′∆{ei}
where i is the smallest integer such that |H ′∩Ui| > dp

′

2 e. Obviously γ is its own inverse
and |γ(H ′)∩Ui| > dp

′

2 e so now it remains to show that γ(H ′) is also a hitting set of F ′ϕ,p.
To see this, notice that all sets X ∪{ei} added in Step 8 where X ∈

(
Ui
bp′/2c

)
are hit since

|γ(H ′) ∩ Ui| > dp
′

2 e and that those are the only sets containing ei.

THEOREM 3.8. For every non-decreasing function c = c(k), there exists a non-
decreasing function c′ = c′(k′) such that

lim
k→∞

σ(c-SPARSE-k-CNF-⊕SAT/n) ≤ lim
k′→∞

σ(c′-SPARSE-k′-⊕ALL HITTING SETS/n) .

PROOF. Let ϕ be an instance of c-SPARSE-k-CNF-⊕SAT. First recall from the proof
of Theorem 3.4 that the reduction

σ(c-SPARSE-k-CNF-⊕SAT/n) ≤ σ(c′-SPARSE-k′-⊕HITTING SETS/n) +O

(
log p

p

)
worked by constructing the set system Fϕ,p, and that the reduction was parsimonious.
Thus, when we now further move to F ′ϕ,p, we have that the parity of the number of
all hitting sets in F ′ϕ,p is equal to the parity of the number of hitting sets of size
at most t in Fϕ,p (by Lemma 3.7), which in turn is equal to the parity of the num-
ber of satisfying assignments to ϕ. Thus, this is a valid reduction from CNF-⊕SAT to
⊕ALL HITTING SETS; since the maximum edge size k′ does not increase, we just have
to verify that the instance remains sparse and does not have too many more vertices.

For the density, note that, in Step 8, we add at most 2p
′
n/p sets, so the density c′ of

Fϕ,p goes up by at most an additive term of 2p
′
/p, which can be easily bounded by a

function just of k′. For the running time, note that the number n′ of vertices in Fϕ,p
goes up by exactly n/p′, that is, the new number n′′ of vertices can be bounded by n′′ ≤
(1+1/p′)n′. As p→∞, this will approach n′′ ≤ n′. The claim follows because we can de-
termine the parity of the number of hitting sets of size at most t in the set system Fϕ,p
by running the best algorithm for the corresponding problem ⊕ALL HITTING SETS,
which runs in time 2σ(c′′-SPARSE-k′-⊕ALL HITTING SETS/n)n′′ · poly(m).

Note that conversely, an improved algorithm for CNF-⊕SAT gives an improved algo-
rithm for ⊕ALL HITTING SETS. This is because instances of ⊕ALL HITTING SETS can
be viewed in a natural way a monotone CNF formulas: given a set family F ⊆ U we
simply associate a variable with every element of U and a monotone clause for every
set S ∈ F .

OBSERVATION 3.9. For all positive integers k and c, we have

σ(c-SPARSE-k-⊕ALL HITTING SETS/n) ≤ σ(c-SPARSE-k-CNF-⊕SAT/n)

3.5. Satisfiability for Series-Parallel Circuits
In this subsection, we show that the satisfiability of cn-size series-parallel circuits
can be decided in time time 2δn for δ < 1 independent of c if and only if SETH is
not true. Here the size of a circuit is the number of wires. Our proof is based on a
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result of Valiant regarding paths in sparse graphs [Valiant 1977]. Calabro [Calabro
2008] discusses various notions of series-parallel graphs and provides a more com-
plete proof of Valiant’s lower bound on the size of series-parallel graphs (which he calls
Valiant series-parallel graphs) that have “many” long paths. We remark that the class
of Valiant series-parallel graphs is not the same as the notion of series-parallel graphs
used most commonly in graph theory (see [Calabro 2008]).

In this section a multidag G = (V,E) is a directed acyclic multigraph. Let input(G)
denote the set of vertices v ∈ V such that the indegree of v in G is zero. Similarly, let
output(G) denote the set of vertices v ∈ V such that the outdegree of v in G is zero.
A labeling of G is a function l : V → N such that ∀(u, v) ∈ E, l(u) < l(v). A labeling
l is normal if for all v ∈ input(G), l(v) = 0 and there exists an integer d ∈ N such
that for all v ∈ output(G) − input(G), l(v) = d. A multidag G is Valiant series-parallel
(VSP) if it has a normal labeling l such that there exist no (u, v), (u′, v′) ∈ E such that
l(u) < l(u′) < l(v) < l(v′).

We say that a boolean circuit C is a VSP circuit if the underlying multidag of C is a
VSP graph and the indegree of every node is at most two (namely, the fan-in of each
gate is at most two). Using the depth-reduction result by Valiant [Valiant 1977] and
following the arguments by Calabro [Calabro 2008] and Viola [Viola 2009], we may
show the following.

THEOREM 3.10. Let C be a VSP circuit of size cn with n input variables. There is
an algorithm A which on input C and a parameter d ≥ 1 outputs an equivalent depth-3
unbounded fan-in OR-AND-OR circuit C ′ with the following properties.

(1) Fan-in of the top OR gate in C ′ is bounded by 2n/d.
(2) Fan-in of the bottom OR gates is bounded by 22µcd where µ is an absolute constant.
(3) A runs in time O(2n/dnO(1)) if c and d are constant.

In other words, for all d ≥ 1, Theorem 3.10 reduces the satisfiability of a cn-size VSP
circuit to that of the satisfiability of a disjunction of 2n/d k-CNFs where k ≤ 22µcd in
time O(2n/dnO(1)). This implies that

σ(c-VSP-CIRCUIT-SAT/n) ≤ σ(22µcd -CNF-SAT/n) +
1

d
.

Hence, we obtain the following theorem.

THEOREM 3.11.

lim
c→∞

σ(c-VSP-CIRCUIT-SAT/n) ≤ lim
k→∞

σ(k-CNF-SAT/n).

For the reverse direction, observe that a CNF formula with cn clauses, all of size at
most k, can be written as a 4ck-size VSP circuit. This observation implies that

σ(c-SPARSE-k-CNF-SAT/n) ≤ σ(4ck-VSP-CIRCUIT-SAT/n).

Together with the sparsification lemma, Theorem 3.1, we obtain the following theorem.

THEOREM 3.12.

lim
k→∞

σ(k-CNF-SAT/n) ≤ lim
c→∞

σ(c-VSP-CIRCUIT-SAT/n) .

4. ON IMPROVING DYNAMIC PROGRAMMING BASED ALGORITHMS
In this section we give some reductions that show that several dynamic program-
ming based algorithms cannot be improved unless the growth rate of CNF-SAT
can be improved. In the parity world, our starting point will be the hardness of
⊕ALL HITTING SETS/n as proved in Theorem 3.8. More specifically, we show that
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⊕ALL HITTING SETS and ⊕ALL SET COVERS are actually the same problem, for
which we use a simple but novel property of independent sets in bipartite graphs
in §4.1. In §4.2 we show that the current algorithms for ⊕STEINER TREE/t and
⊕CONNECTED VERTEX COVERS/t are at least as hard to improve as the algorithm
for ⊕ALL SET COVERS/n. Motivated by these facts, we concoct the hypothesis that
the growth rate 2 of the best known algorithm for SET COVER cannot be im-
proved, and we show similar implications for the problems STEINER TREE/t and
CONNECTED VERTEX COVER/k, SET PARTITIONING and SUBSET SUM.

4.1. The flip: Parity Hitting Set equals Parity Set Cover
It is well known that the Hitting Set and the Set Cover problem are dual to each
other: The hitting sets of any set family F are in one-to-one correspondence with the
set covers of its dual set family F∗. Here the dual is defined by flipping the roles of sets
and elements: in F∗, every element becomes a set and every set becomes an element,
but we preserve all incidences between them.

OBSERVATION 4.1. For all set families F , we have

⊕ALL HITTING SETS(F) = ⊕ALL SET COVERS(F∗) .
We demonstrate now that, in the parity world, the duality between hitting set and

set cover is very strong: Indeed, the two parities are equal even without going to the
dual set system! For this, we first state the following intermediate step.

LEMMA 4.2. Let G = (A ∪ B,E) be a bipartite graph, then the number of indepen-
dent sets of G modulo two is equal to |{X ⊆ A : N(X) = B}| mod 2.

PROOF. Grouping on their intersection with A, the number of independent sets of
G is equal to∑

X⊆A

2|B−N(X)| ≡
∑
X⊆A

|B−N(X)|=0

20 ≡ |{X ⊆ A : N(X) = B}| mod 2 .

Thus, the lemma holds.

This lemma was inspired by a non-modular variant from [Nederlof and van Rooij
2010, Lemma 2] (see also [van Rooij 2011, Proposition 9.1]). We now show that, for any
set system, the parity of the number of hitting sets is always equal to the parity of the
number of set covers.

THEOREM 4.3 (FLIP THEOREM). ⊕ALL HITTING SETS = ⊕ALL SET COVERS .

PROOF. Let F ⊆ 2U be a set system, let G = (F , U,E) be the bipartite graph where
(S, e) ∈ E if and only if e ∈ S. Note that the number of hitting sets of F is equal
to |{X ⊆ U : N(X) = F}|. Then by Lemma 4.2, the number of hitting sets is equal
to the number of independent sets of G modulo 2. And similarly, since the lemma is
symmetric with respect to the two color classes of the bipartite graph, the number of
set covers of F is also equal to the number of independent sets of G modulo 2. Thus all
three parities are equal.

Let us emphasize once again that the problem ⊕ALL HITTING SETS is equal to the
problem ⊕ALL SET COVERS. If, in the following, we use two different names, we do so
only because the view of one or the other is more convenient for us.

The duality observation and the theorem above give rise to the following curious
corollary.

COROLLARY 4.4. σ(⊕ALL HITTING SETS/n) = σ(⊕ALL HITTING SETS/m)
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That is, ⊕ALL HITTING SETS has a 1.99n · poly(m + n) algorithm if and only it has a
1.99m · poly(m+ n) algorithm. Since hitting sets can be seen as satisfying assignments
of a monotone CNF formula, we can also formulate an analogue of Observation 3.9.

OBSERVATION 4.5. σ(⊕ALL HITTING SETS/m) ≤ σ(CNF-⊕SAT/m).

Putting all things together, we proved that a 1.99m · poly(m + n) algorithm for CNF-
⊕SAT implies a 1.99n ·poly(m+n) time algorithm for the same problem, and thus such
an algorithm would violate SETH.

We finish this discussion with one more observation: We can always reduce from the
problem ⊕ALL HITTING SETS to ⊕HITTING SETS and to ⊕SET COVERS.

OBSERVATION 4.6. For all size parameters s of ⊕ALL HITTING SETS, we have

σ(⊕ALL HITTING SETS/s) ≤ σ(⊕HITTING SETS/s) , and
σ(⊕ALL HITTING SETS/s) ≤ σ(⊕SET COVERS/s) .

PROOF. Note that ⊕ALL HITTING SETS is equal to the problem ⊕HITTING SETS in
which the size t of the hitting sets we are counting is fixed to t = n, i.e., we count
all hitting sets. Then any algorithm for ⊕HITTING SETS will immediately work for
⊕ALL HITTING SETS as well. The analogous argument applies to ⊕SET COVERS.

4.2. From Set Cover to Steiner Tree and Connected Vertex Cover
In this subsection we will give reductions from SET COVER/n to STEINER TREE/t and
CONNECTED VERTEX COVER/k. We transfer the reductions to the parity versions SET
COVER/n, ⊕STEINER TREE/t, and ⊕CONNECTED VERTEX COVERS/k. For the reduc-
tion, we first need an intermediate result, showing that SET COVER/(n + t), that is,
SET COVER parameterized by the sum of the size of the universe and solution size, is
as hard as SET COVER/n (and similarly for⊕SET COVERS/n and⊕SET COVERS/(n+t)).
Once we have this intermediate result, the reductions to the ⊕STEINER TREE/t and
⊕CONNECTED VERTEX COVERS/k problems follow more easily.

THEOREM 4.7.

lim
k→∞

σ(k-SET COVER/n) = lim
k→∞

σ(k-SET COVER/(n+ t)) .

PROOF. The case ≥ follows from the basic fact that increasing the size parameter
cannot increase the running time relative to the parameter.

To prove ≤, we use the “powering” technique for SET COVER: for each constant
α > 0, we transform an instance (F , U, t) of k-SET COVER into an instance of
k′-SET COVER, for some positive integer k′, where the size t′ of the solution in the
resulting p′-SET COVER instances is at most α|U |, without changing the universe size.

Without loss of generality, we assume that t ≤ |U |. Consider any α > 0. Let q be
the smallest positive integer such that 1

q ≤ α. We may assume that t is divisible by
q, since otherwise we may add at most q additional elements to the universe U and
singleton sets to the family F . We form a family F ′ of all unions of exactly q sets
from F , that is for each of

(|F|
q

)
choices of q sets S1, . . . , Sq ∈ F we add to F ′ the set⋃q

i=1 Si. Note that since q is a constant we can create F ′ in polynomial time. We set
t′ = t/q ≤ |U |/q ≤ α|U |. It is easy to see that (F , U, t) is a YES-instance of k-SET COVER
if and only if (F ′, U, t′) is a YES-instance of qk-SET COVER.

Observe that in the proof above, because of the grouping of q sets, one solution for the
initial instance may correspond to several solutions in the resulting instance. For this
reason the counting variant of the above reduction is much more technically involved.
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THEOREM 4.8. For every function c = c(k), we have

lim
k→∞

σ(c-SPARSE-k-⊕SET COVERS/n) ≤ lim
k′→∞

σ(k′-⊕SET COVERS/(n+ t)) .

The reverse σ(c-SPARSE-k-⊕SET COVERS/n) ≥ σ(c-SPARSE-k-⊕SET COVERS/(n+ t))
holds trivially for all k and c. The proof of Theorem 4.8 is quite involved, and we post-
pone it to the end of this section. Instead, we will first look at some of its consequences.

THEOREM 4.9.

lim
k→∞

σ(k-SET COVER/(n+ t)) ≤ σ(STEINER TREE/t) , and

lim
k→∞

σ(k-⊕SET COVERS/(n+ t)) ≤ σ(⊕STEINER TREE/t) .

PROOF. Given an instance of SET COVER consisting of a set system (F , U) and inte-
ger i, letG′ be the graph obtained from the incidence graph of (F , U) by adding a vertex
s universal to F with a pendant vertex u, and define the terminal set to be U ∪ {u}. It
is easy to see that the number of Steiner trees with |U | + i + 1 edges is equal to the
number of set covers of (F , U) of size i. Hence the theorem follows.

THEOREM 4.10.

lim
k→∞

σ(k-SET COVER/(n+ t)) ≤ σ(CONNECTED VERTEX COVER/t) , and

lim
k→∞

σ(k-⊕SET COVERS/(n+ t)) ≤ σ(⊕CONNECTED VERTEX COVERS/t) .

PROOF. Given an instance (F , U, t) of SET COVER, we create an instance of CON-
NECTED VERTEX COVER with G being obtained from the incidence graph of (F , U) by
adding a vertex s adjacent to all vertices corresponding to sets and adding pendant
vertices for every element of U ∪ {s}. Moreover let t′ = t + |U | + 1 in the CONNECTED
VERTEX COVER instance.

It is easy to see that for every i, there exists a set cover of (F , U) of size i ≤ t if
and only if there exists a connected vertex cover of G of size at most i + |U | + 1 ≤ t′

since we can take without loss of optimality all vertices having a pendant vertex, and
then connecting these vertices is equivalent to covering all elements of U with sets
in F . Hence, by using an algorithm for CONNECTED VERTEX COVER, we obtain an
O(2σ(CONNECTED VERTEX COVER/t)t′nO(1)) = O(2σ(CONNECTED VERTEX COVER/t)(|U |+t)nO(1)) time
algorithm for p-SET COVER.

For the parity case, let us study the number of connected vertex covers of size j of G
for every j. Similarly to the previous case, note that for any connected vertex cover C,
C∩F must be a set cover of (F , U) by the connectivity requirement. Hence we group all
connected vertex covers in G depending on which set cover in (F , U) their intersection
with F is. Let cj be the number of connected vertex covers of G of size j and si be the
number of set covers of size i in (F , U), then:

cj =

j−|U |−1∑
i=1

si

(
|U |+ 1

j − i− |U | − 1

)
.

Now the number si modulo 2 can be determined in polynomial time once
(c1, . . . , ci+|U |+1) modulo 2 are computed by recovering s1 up to si in increasing order,
since for i = j − |U | − 1 we have

( |U |+1
j−i−|U |−1

)
= 1.

Thus, if we can compute the parity of the number of connected vertex covers of
size n in O(2σ(CONNECTED VERTEX COVER/t)t′nO(1)) time, we can compute the parity of all
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(c1, . . . , ci+|U |+1) in O(2σ(CONNECTED VERTEX COVER/t)(|U |+t)nO(1)) time, and hence the parity
of si.

4.3. From Set Cover via Set Partitioning to Subset Sum
THEOREM 4.11.

lim
p→∞

σ(p-SET COVER/n) ≤ lim
p→∞

σ(p-SET PARTITIONING/n).

PROOF. Let (F , t) be an instance of p-SET COVER. Create an instance (F ′, t) of p-
SET PARTITIONING by for every S ∈ F adding all subsets of S to F ′. Clearly (F ′, t)
has a set partitioning of size at most t if and only if (F , t) has a set cover of size at
most t. Since the size of the sets in F is bounded by p, the reduction runs in polynomial
time.

THEOREM 4.12.

lim
k→∞

σ(k-SET PARTITIONING/n) ≤ σ(SUBSET SUM/m).

PROOF. Let F ⊆ 2U be an instance of k-SET PARTITIONING. We iterate over all
potential sizes 1 ≤ t0 ≤ n of the solution for the SET PARTITIONING problem.

We create an instance of SUBSET SUM as follows. Let the target integer t for SUBSET
SUM have a bit expansion consisting of three fields. First, as the most significant bits, a
field coding the value of t0, to check the cardinality of the solution C ⊆ F ; second, a field
of length log2 t0 + log2 n containing the value n, to check the total size of all sets in C;
finally, a field of length log2 t0+n containing n ones. The paddings of length log2 t0 serve
to isolate the fields from each other. For every Si ∈ F , we create an integer ai with the
same field division as t, where the first field encodes 1, the second field encodes |Si|,
and the third field contains a one in position j if and only if uj ∈ Si. We argue that
the resulting SUBSET SUM instance is a YES-instance if and only if F contains a
partitioning of U using exactly t0 sets.

Clearly, if C ⊆ F partitions U and |C| = t0, then the integers ai corresponding to Si ∈
C sum to t. The first field sums to t0 by cardinality of C, the second sums to n, and in
the third field the non-zero digits are simply partitioned among the ai.

So let A be a collection of integers ai that sum to t. By the first field, we have |A| ≤ t0;
thus the padding of length log t0 is enough to isolate the fields, and we have |A| = t0.
By the same argument on the second field, the sum over all ai ∈ A of the number
of non-zero bits in the third field is exactly n. Under these conditions, the only way
that the third field can actually contain n true bits is if the true bits in the third
field are partitioned among the ai. Indeed, since the total number of non-zero bits in
the third field among the numbers ai is n, restricted to the third field we can rewrite
the sum as

∑
i∈[n] 2ei = 2n − 1, where ei ∈ {0, . . . , n − 1} for each i ∈ [n]. But 2n − 1

has a unique description as the sum of n powers of 2, which requires all values ei to
be distinct. Hence the non-zero bits in the third field are partitioned among the ai,
and C = {Si | ai ∈ A} is a set partitioning of U of cardinality exactly t0.

By looping over all 1 ≤ t0 ≤ t for the SET PARTITIONING instance, this solves the
problem. Note that the length of the bit string t is n + O(log n), which disappears into
the asymptotics.

4.4. Proof of Theorem 4.8
As a proof we present a reduction which for fixed α > 0 transforms an instance
(F ′, U ′) of c-SPARSE-k-⊕ALL SET COVERS into polynomially many instances of the
k′-⊕SET COVERS problem, for some positive integer k′, where the size t of the solution
in the resulting k′-⊕SET COVERS instances is at most α|U ′|.
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In order to find the parity of the number of all set covers of the instance (F ′, U ′)
we find the parity of the number of set covers of a particular size. That is we iterate
over all possible sizes j = 1, . . . , |F ′| of a set cover. Let us assume that we want to find
the parity of the number of set covers of size j and for each positive integer j′ < j we
know the parity of the number of set covers of (F ′, U ′) of size j′. Let q be the smallest
power of two satisfying |F

′|
q + 2 ≤ α|U ′|. We assume that α|U ′| ≥ 3 since otherwise the

instance is small and we can solve it by brute force (recall that α is a given constant).
Observe that q is upper bounded by a constant independent of |U ′| since |F ′| ≤ c|U ′|.

We create a temporary set system (F0, U0) to ensure that the size of the set covers
we are looking for is divisible by q. Let r = j mod q. We make (F0, U0) by taking the
set system (F ′, U ′) and adding q − r new elements to the universe U0 and also q − r
singleton sets of the new elements to the family F0. Now we are looking for the parity
of the number of set covers of size j0 = j + (q − r) in (F0, U0). Observe that for each
j′ < j0 we know the parity of the number of set covers of size j′ in (F0, U0) since it is
equal to the parity of set covers of (F ′, U ′) of size j′ − (q − r) < j which we already
know.

To obtain a k′-⊕ALL SET COVERS instance we set U∗ = U0 and we form a family
F∗ of all unions of exactly q sets from F0, that is for each of

(|F0|
q

)
choices of q sets

S1, . . . , Sq ∈ F0 we add to F∗ the set
⋃q
i=1 Si (note that F∗ might be a multiset). Finally

we set t∗ = j0/q which is an integer since j + (q − r) is divisible by q. Observe that
t∗ ≤ j

q + 1 ≤ α|U ′| − 1, by the definition of q, but (F∗, U∗, t∗) might not be a proper
instance of kq-⊕ALL SET COVERS, since F∗ could be a multiset. Note that each subset
of U∗ appears in F∗ at most (2kq)q = 2kq

2

times, since F0 has no duplicates and each
set in F∗ is a union of exactly q sets from F0. To overcome this technical obstacle we
make a new instance (F , U, t), where as U we take U∗ with z = 1+kq2 elements added,
U = U∗ ∪ {e1, . . . , ez}. We use elements {e1, . . . , ez−1} to make sets from F∗ different in
F by taking a different subset of {e1, . . . , ez−1} for duplicates. Additionally we add one
set {e1, . . . , ez} to the family F and set t = t∗+ 1. In this way we obtain (F , U, t), that is
a proper (kq + z)-⊕ALL SET COVERS instance and t = t∗ + 1 ≤ α|U ′|. Observe that in
the final instance we have |U | ≤ n+ q+ z and |F| ≤ (cn+ q)q + 1, which is a polynomial
since k, c, q and z are constants.

To summarize the reduction, we have taken an instance of c-SPARSE-k-⊕ALL SET
COVERS and iterated over the size of solution. Next we made the size divisible by q
by adding additional elements to the universe and created a multiset family F∗ from
which we made a set family by differentiating identical sets with additional elements
of the universe. Our goal was to decide whether the k-⊕ALL SET COVERS instance
(F ′, U ′) (for k′ = kq+ z) has an odd number of set covers, which means that we want to
control the correspondence between the parity of the number of solutions in each part
of the construction. Observe that the only step of the construction which has nontrivial
correspondence between the number of solutions of the former and the latter instance
is the grouping step where we transform an instance (F0, U0, j0) into a multiset in-
stance (F∗, U∗, t∗).

Hence we assume that we know the parity of the number of set covers of size t∗ =
j0/q in (F∗, U∗) as well as the parity of the number of set covers of size j′ for each
j′ < j0 in (F0, U0). Our objective is to compute the parity of the number of set covers of
size j0 in (F0, U0) in polynomial time and for this reason we introduce a few definitions
and lemmas. Recall that each set in F∗ corresponds to a union of exactly q sets in F0

and let Γ: F∗ → 2F0 be a function that for each set in F∗ assigns a family of exactly q
sets from F0 that it was made of. Moreover let S∗ ⊆ 2F

∗
be the family of set covers of

size t∗ in (F∗, U∗) and let S0 ⊆ 2F0 be the set of set covers of size at most j0 in (F0, U0).
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We construct a mapping Φ: S∗ → S0 which maps each set cover A ∈ S∗ to a set cover
A0 ∈ S0 such that A0 is exactly the set of sets from F0 used in the t∗ unions of q sets
from F0, that is Φ(A) =

⋃
X∈A Γ(X). In the following lemma we prove that for a set

cover A0 ∈ S0 the size of Φ−1(A0) depends solely on the size of A0.

LEMMA 4.13. Let A0, B0 ∈ S0 such that |A0| = |B0|. Then |Φ−1(A0)| = |Φ−1(B0)|.

PROOF. Let A0 = {X1, . . . , Xa} be a set from S0, where each Xi ∈ F0. Observe
that for any A ∈ S∗ we have Φ(A) = A0 if and only if

⋃a
i=1 Γ(Xi) = A. Consequently

|Φ−1(A0)| is equal to the number of set covers of size t∗ in the set system (
(
A0

q

)
, A0) and

hence |Φ−1(A0)| depends only on the size of A0.

Now we prove that for each set cover A0 ∈ S0 of size j0 an odd number of set covers
from S∗ is mapped by Φ to A0.

LEMMA 4.14. For any pair of nonnegative integers a, b such that b ≤ a the binomial
coefficient

(
a
b

)
is odd if and only if ones(b) ⊆ ones(a), where ones(x) is the set of indices

containing ones in the binary representation of x.

PROOF. For a nonnegative integer x, we denote by f(x) the greatest integer i such
that x! is divisible by 2i. It is easy to see that

f(x) =
∑
i≥1

⌊ x
2i

⌋
since for each i there are b x2i c values from 1 to x that are divisible by 2i. Then, we
observe

f(x) =
∑
i≥1

⌊ x
2i

⌋
=

∑
i≥1

x

2i

− 1

2
·
∣∣∣{i ≥ 1 :

⌊ x

2i−1

⌋
is odd

}∣∣∣ =

∑
i≥1

x

2i

− |ones(x)|
2

.

Since
(
a
b

)
= a!

b!(a−b)! we infer that
(
a
b

)
is odd if and only if f(a) = f(b) + f(a− b), which

by the above formula is equivalent to |ones(a)| = |ones(b)| + |ones(a − b)|. However for
any nonnegative integers x, y we have |ones(x+y)| ≤ |ones(x)|+ |ones(y)| and moreover
|ones(x + y)| = |ones(x)| + |ones(y)| if and only if there are no carry-operations when
adding x to y, which is equivalent to ones(x) ∩ ones(y) = ∅.

Therefore by setting x = b and y = a−b we infer that
(
a
b

)
is odd if and only if ones(b)∩

ones(a− b) = ∅ which is equivalent to ones(b) ⊆ ones(a) and the lemma follows.

LEMMA 4.15. Let A0 ∈ S0 such that |A0| = j0 then |Φ−1(A0)| is odd.

PROOF. Since |Φ−1(A0)| is equal to the number of set covers of size t∗ in the set
system (

(
A0

q

)
, A0) and |A0| = j0 = t∗q we infer that |Φ−1(A0)| is equal to the number of

unordered partitions of A0 into sets of size q. Hence |Φ−1(A0)| =
∏t∗−1
i=0

(
j0−1−iq
q−1

)
. Since

j0 is divisible by q and q is a power of two using Lemma 4.14 we have |Φ−1(A0)| ≡
1 (mod 2).

For j = 1, . . . , j0 by sj let us denote the parity of the number of set covers of (F0, U0)
of size j. Recall that we know the value of sj for each j < j0 and we want to compute
sj0 knowing also |S∗| mod 2. By Lemma 4.13 we can define dj for j = 1, . . . , j0, that is
the value of |Φ−1(A0)| mod 2 for a set A0 ∈ S0 of size j. By Lemma 4.15 we know that
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dj0 equals one. Thus we have the following congruence modulo 2.

|S∗| =
∑
A0∈S0

|Φ−1(A0)| ≡
j0∑
j=1

sjdj = sj0 +

j0−1∑
j=1

sjdj .

Hence knowing |S∗| mod 2 and all values sj for j < j0 in order to compute sj0 it is
enough to compute all the values dj , what we can do in polynomial time thanks to the
following lemma.

LEMMA 4.16. For each j = 1, . . . , j0 we can calculate the value of dj in polynomial
time.

PROOF. Again we use that fact that for a set A0 ∈ S0 we have that |Φ−1(A0)| is equal
to the number set covers of size t∗ in the set system (

(
A0

q

)
, A0). Using the inclusion-

exclusion principle modulo two we obtain the following formula when |A0| = j.

|Φ−1(A0)| ≡
∑
X⊆A0

∣∣∣∣{H ⊆ (Xq
)∣∣∣|H| = t∗

}∣∣∣∣ =

j∑
i=0

(
j

i

)((i
q

)
t∗

)
,

Where the second equality follows by grouping all summands X ⊆ A0 with |X| = i for
every 0 ≤ i ≤ |A0|.

Consequently, by solving a polynomial of n number of instances of the k′-⊕SET COV-
ERS problem with universe size bounded by n + q + z and set family size bounded by
(cn + q)q + 1, we verify whether the initial set system F ′ ⊆ 2U

′
has an odd number of

set covers, which finishes the proof of Theorem 4.8.

5. SUMMARY AND OPEN PROBLEMS
We have shown that the exponential time complexity of a number of basic problems is
strongly interconnected. Specifically, our results imply that the optimal growth rates
of a number of problems are in fact asymptotically equal. Assuming SETH, our results
imply tight lower bounds on the growth rates for a number of search problems whose
growth rates are achieved by naı̈ve brute force algorithms. For problems solvable by
dynamic programming, we gave tight lower bounds assuming that the optimal growth
rate of SET COVER is achieved by its known dynamic programming algorithm. Fi-
nally, we connected the two types of results by showing that SETH implies tight lower
bounds on the optimal growth rates of corresponding parity variants. We conclude our
work with some open problems.

(1) Is it possible to rule out an algorithm for SET COVER with running time 2εnmO(1),
ε < 1, assuming SETH?

(2) Is it possible to rule out an algorithm for GRAPH COLORING with running time 2εn,
ε < 1, assuming SETH? What about a lower bound for GRAPH COLORING under
the assumption that there does not exist a δ < 1 such that SET COVER with sets of
size at most k has a O(2δnmO(1)) time algorithm for every k?

(3) Is it possible to rule out an algorithm that counts the number of proper c-colorings
of an input graph in time 2εn, ε < 1 assuming ⊕-SETH?

(4) Assuming SETH, is it possible to rule out an algorithm with running time 2εnnO(1),
ε < 1 for the satisfiability of circuits with at most cn gates of unbounded fan in, for
a concrete constant c?

(5) Assuming SETH, is it possible to rule out an algorithm with running time O(cn)
for 3-CNF-SAT for a concrete constant c?
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and related problems. In Proceedings of the 36th Internationcal Colloquium on Automata, Languages
and Programming, ICALP 2009. 713–725. DOI:http://dx.doi.org/10.1007/978-3-642-02927-1 59

Jesper Nederlof and Johan M. M. van Rooij. 2010. Inclusion/exclusion branching for partial dominating
set and set splitting. In Proceedings of the 5th International Symposium on Parameterized and Exact
Computation, IPEC 2010. 204–215. DOI:http://dx.doi.org/10.1007/978-3-642-17493-3 20

J. M. Robson. 1986. Algorithms for maximum independent sets. Journal of Algorithms 7, 3 (1986), 425–440.
DOI:http://dx.doi.org/10.1016/0196-6774(86)90032-5

Rahul Santhanam and Srikanth Srinivasan. 2011. On the limits of sparsification. Tech report TR11-131.
Electronic Colloquium on Computational Complexity (ECCC). http://eccc.hpi-web.de/eccc-reports/2011/
TR11-131/

Rainer Schuler. 2005. An algorithm for the satisfiability problem of formulas in conjunctive normal form.
Journal of Algorithms 54, 1 (2005), 40–44. DOI:http://dx.doi.org/10.1016/j.jalgor.2004.04.012

Patrick Traxler. 2008. The time complexity of constraint satisfaction. In Proceedings of the
3rd International Workshop on Parameterized and Exact Computation, IWPEC 2008. 190–201.
DOI:http://dx.doi.org/10.1007/978-3-540-79723-4 18

Leslie G. Valiant. 1977. Graph-theoretic arguments in low-level complexity. In Proceedings of the
6th Symposium on Mathematical Foundations of Computer Science, MFCS 1977. 162–176.
DOI:http://dx.doi.org/10.1007/3-540-08353-7 135

Johan M. M. van Rooij. 2011. Exact exponential-time algorithms for domination problems in graphs. Ph.D.
Dissertation. Utrecht University.

Johan M. M. van Rooij, Jesper Nederlof, and Thomas C. van Dijk. 2009. Inclusion/exclusion meets measure
and conquer. In Proceedings of the 17th Annual European Symposium on Algorithms, ESA 2009. 554–
565. DOI:http://dx.doi.org/10.1007/978-3-642-04128-0 50

Emanuele Viola. 2009. On the power of small-depth computation. Foundations and Trends in Theoretical
Computer Science 5, 1 (2009), 1–72. DOI:http://dx.doi.org/10.1561/0400000033

Ryan Williams. 2011. Non-uniform ACC circuit lower bounds. In Proceedings of the 26th Annual IEEE Con-
ference on Computational Complexity, CCC 2011. 115–125. DOI:http://dx.doi.org/10.1109/CCC.2011.36

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1007/978-3-642-02927-1_59
http://dx.doi.org/10.1007/978-3-642-17493-3_20
http://dx.doi.org/10.1016/0196-6774(86)90032-5
http://eccc.hpi-web.de/eccc-reports/2011/TR11-131/
http://eccc.hpi-web.de/eccc-reports/2011/TR11-131/
http://dx.doi.org/10.1016/j.jalgor.2004.04.012
http://dx.doi.org/10.1007/978-3-540-79723-4_18
http://dx.doi.org/10.1007/3-540-08353-7_135
http://dx.doi.org/10.1007/978-3-642-04128-0_50
http://dx.doi.org/10.1561/0400000033
http://dx.doi.org/10.1109/CCC.2011.36

	Introduction
	Preliminaries and Notation
	General Notation
	Problem definitions
	CNF Problems
	Hypergraph Problems
	Graph Problems
	Other Problems

	The optimal growth rate of a problem

	On Improving Branching Algorithms
	Previous results for CNF-SAT
	From CNF-SAT to Hitting Set
	From Hitting Set via Set Splitting to CNF-SAT
	From Parity CNF-SAT to Parity All Hitting Sets
	Satisfiability for Series-Parallel Circuits

	On Improving Dynamic Programming Based Algorithms
	The flip: Parity Hitting Set equals Parity Set Cover
	From Set Cover to Steiner Tree and Connected Vertex Cover
	From Set Cover via Set Partitioning to Subset Sum
	Proof of Theorem 4.8

	Summary and Open Problems

