
Tight conditional lower bounds for counting perfect matchings on

graphs of bounded treewidth, cliquewidth, and genus

Radu Curticapean∗ Dániel Marx†

October 14, 2015

Abstract

By now, we have a good understanding of how NP-hard

problems become easier on graphs of bounded treewidth

and bounded cliquewidth: for various problems, match-

ing upper bounds and conditional lower bounds describe

exactly how the running time has to depend on treewidth

or cliquewidth. In particular, Fomin et al. (2009, 2010)

have shown a significant difference between these two

parameters: assuming the Exponential-Time Hypothesis

(ETH), the optimal algorithms for problems such as MAX

CUT and EDGE DOMINATING SET have running time

2O(t)nO(1) when parameterized by treewidth, but nO(t)

when parameterized by cliquewidth.

In this paper, we show that a similar phenomenon

occurs also for counting problems. Specifically, we

prove that, assuming the counting version of the Strong

Exponential-Time Hypothesis (#SETH), the problem of

counting perfect matchings

• has no (2−ε)knO(1) time algorithm for any ε > 0 on

graphs of treewidth k (but it is known to be solvable

in time 2knO(1) if a tree decomposition of width k is

given), and

• has no O(n(1−ε)k) time algorithm for any ε > 0 on

graphs of cliquewidth k (but it can be solved in time

O(nk+1) if a k-expression is given).

A celebrated result of Fisher, Kasteleyn, and Temper-

ley from the 1960s shows that counting perfect match-

ings in planar graphs is polynomial-time solvable. This

was later extended by Gallucio and Loebl (1999), Tesler

(2000) and Regge and Zechina (2000) who gave 4k ·nO(1)

time algorithms for graphs of genus k. We show that the

dependence on the genus k has to be exponential: as-

suming #ETH, the counting version of ETH, there is no

2o(k) · nO(1) time algorithm for the problem on graphs of

genus k.

∗Simons Institute for the Theory of Computing, Berkeley, and Insti-

tute for Computer Science and Control, Hungarian Academy of Sciences

(MTA SZTAKI), Budapest, Hungary, curticapean@cs.uni-sb.de
†Institute for Computer Science and Control, Hungarian Academy of

Sciences (MTA SZTAKI), dmarx@cs.bme.hu. Research supported by

ERC Grant PARAMTIGHT (No. 280152) and OTKA grant NK105645.

1 Introduction

Many NP-hard optimization problems are solvable in

polynomial time when restricted to graphs of bounded

treewidth. This fact is exploited in a wide range of con-

texts, perhaps most notably, in the design of parame-

terized algorithms and approximation schemes. There

has been a significant amount of research on devel-

oping and improving algorithms for bounded-treewidth

graphs, as well as on trying to understand the limita-

tions of treewidth-based algorithms. Courcelle’s Theorem

[25, 26] is a very general result showing that if a prob-

lem can be formulated in a logical language called MSO2,

then it can be solved in linear-time on graphs of bounded

treewidth; however, problem-specific techniques usually

give more efficient algorithms that have better dependence

on treewidth.

Thanks to a series of recent results, by now we have a

fairly good understanding on how the running time has

to depend on the treewidth of the input graph. Con-

cerning upper bounds, the development of new algorith-

mic techniques, such as fast subset convolution [6, 88],

Cut & Count [36, 76], and rank-based dynamic program-

ming [8, 34, 53], improved the running times for various

problems, sometimes in unexpected ways. On the other

hand, matching conditional lower bounds were obtained

for many of these problems [9, 12, 35, 36, 71, 72]. For ex-

ample, fast subset convolution can be used to solve DOM-

INATING SET in time 3knO(1) if a tree decomposition of

width k is given [88], but there is no such algorithm with

running time (3− ε)knO(1) for any ε > 0, assuming the

Strong Exponential-Time Hypothesis (SETH) [71]. This

hypothesis, introduced by Impagliazzo, Paturi, and Zane

[61, 62], can be informally stated as the assertion that

n-variable m-clause CNF-SAT cannot be solved in time

(2− ε)nmO(1) for any ε > 0. While the validity of this

hypothesis is not accepted as widely in the community as

some other complexity conjectures, SETH seems to be a

very fruitful working assumption that explains why cer-

tain well-known algorithms are best possible and cannot

be improved further [1–4, 10, 11, 15, 33, 71, 75, 90].

1650 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Cliquewidth. The notion of cliquewidth was intro-

duced by Courcelle and Olariu [29] and can be seen as a

generalization of treewidth that keeps some of the favor-

able algorithmic properties of bounded-treewidth graphs.

The main motivation for this width measure lies in the

observation that highly homogeneous structures of large

treewidth, such as cliques and complete bipartite graphs,

do not pose great difficulties for, e.g., INDEPENDENT

SET, DOMINATING SET, or VERTEX COLORING. This

homogeneity is then captured by so-called k-expressions:

For a graph G, this is a construction scheme that succes-

sively builds G from graphs whose vertices are labeled by

1, . . . ,k such that vertices of the same label cannot be dis-

tinguished in later steps. A graph has cliquewidth at most

k if it has a k-expression.

Courcelle, Makowsky, and Rotics [27] general-

ized, to some extent, Courcelle’s Theorem to bounded-

cliquewidth graphs, but this generalization comes at a

price: it gives linear-time algorithms only for problems

defined by MSO1 formulas, which is a proper subset

of MSO2 that does not allow quantification over edge

sets. Many problems, such as HAMILTONIAN CYCLE,

are (provably) not definable in MSO1 and there is a

large literature on designing algorithms for problems on

bounded-cliquewidth graphs with problem-specific ap-

proaches [48, 56–58, 67, 68, 73, 79, 81, 89]. Unlike for

problems parameterized by treewidth, most of these prob-

lems are not known to be fixed-parameter tractable pa-

rameterized by cliquewidth, that is, they can be solved in

time n f (k), but not in time f (k)nO(1). Fomin et al. [50, 51]

showed conditional lower bounds suggesting that this is

not a shortcoming of algorithm design, but an inevitable

price one has to pay for the generalization to cliquewidth.

Counting perfect matchings. Some of the algorith-

mic results mentioned above can be generalized to the

counting versions of the problems, where the task is to

count the number of solutions. For example, Courcelle’s

Theorem and its variant for cliquewidth have counting

analogs [28]. However, it is a well-known fact that a

counting problem can be significantly harder than its de-

cision version: finding a perfect matching is a classic

polynomial-time solvable problem [47], but a seminal re-

sult of Valiant showed that counting the number of perfect

matchings is #P-hard [85], even in bipartite graphs, where

this problem is equivalent to evaluating the permanent of a

matrix. In the present paper, we show that problems such

as counting perfect matchings are also amenable to the

study of quantitative lower bounds outlined in the previ-

ous paragraphs: We obtain tight upper and lower bounds

on the running time needed to count perfect matchings

when parameterized by treewidth, cliquewidth or genus.

Parameterizing by treewidth. The counting ver-

sion of Courcelle’s Theorem [28] immediately shows that

the problem #PERFMATCH of counting perfect matchings

is fixed-parameter tractable parameterized by treewidth.

Furthermore, standard dynamic programming techniques

directly give a 3knO(1) time algorithm. The base of the ex-

ponential part was improved by van Rooij et al. [88] using

the technique of fast subset convolution:

THEOREM 1.1. ([88]) The problem #PERFMATCH can

be solved in time 2knO(1) on an n-vertex graph G if a tree

decomposition of width k is given.

Our first result gives a matching lower bound: assuming

#SETH (the natural counting analog of SETH, which a

priori is a weaker hypothesis than SETH), the base of the

exponent cannot be improved any further.

THEOREM 1.2. Assuming #SETH, there is no algorithm

that, given an n-vertex graph G together with a tree

decomposition of width k, solves #PERFMATCH in time

(2− ε)knO(1) for some fixed ε > 0.

Our proof in fact gives a lower bound for the problem

parameterized by cutwidth, a parameter that is an upper

bound on treewidth and also on the related notion of

pathwidth. Therefore, our proof implies Theorem 1.2,

even when treewidth is replaced by pathwidth.

Parameterizing by cliquewidth. Besides the gen-

eral algorithmic result on counting problems defin-

able in MSO1, counting problems for graphs of

bounded cliquewidth were investigated mostly in the

context of computing graph polynomials [57, 58, 73].

Makowsky et al. [73] showed that, given a k-expression

of an n-vertex graph G, the matching polynomial can be

computed in time O(n2k+1); in particular, this gives an

O(n2k+1) time algorithm for #PERFMATCH. In the full

version of this paper, we improve this algorithm:

THEOREM 1.3. The problem #PERFMATCH can be

solved in time O(nk+1) on an n-vertex graph G if a k-

expression of G is given in the input.

Makowsky et al. [73] asked whether #PERFMATCH (or

computing the matching polynomial) is fixed-parameter

tractable parameterized by cliquewidth. We show that, as-

suming #SETH, the algorithm of Theorem 1.3 is optimal,

up to constant additive terms in the exponent.

THEOREM 1.4. There exists a constant c∗ ∈ N such that

the following holds: Assuming #SETH, there is no integer

k ≥ 1 such that #PERFMATCH can be solved in time

O(nk−c∗) on n-vertex graphs G that are given together

with a k-expression.

Thus in particular #PERFMATCH is not fixed-parameter

tractable (assuming #SETH), and this holds also for the

more general problem of computing the matching poly-

nomial, answering the question of Makowsky et al. [73].

Our proof also shows that the problem is W[2]-hard.

1651 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Parameterizing by crossing number or genus. Fi-

nally, we turn our attention to graphs that are almost pla-

nar. A celebrated result of Fisher, Kasteleyn, and Temper-

ley [63, 64, 82] showed that #PERFMATCH is polynomial-

time solvable on planar graphs. If a graph is not planar,

but a drawing with k crossings is given, then a simple

branching algorithm can reduce the problem to 2k planar

instances of #PERFMATCH.1

THEOREM 1.5. Given an n-vertex planar graph G with a

drawing in the plane with k crossings, #PERFMATCH can

be solved in time 2knO(1).

Thus the problem is polynomial-time solvable (and ac-

tually fixed-parameter tractable) for graphs of bounded

crossing number; we avoid the discussion of how to find

the drawing. More generally, Gallucio and Loebl [55],

Tesler [83], and Regge and Zecchina [80] showed that the

problem is fixed-parameter tractable even for graphs of

bounded genus.

THEOREM 1.6. ([55, 80, 83]) Given an n-vertex graph

G embedded on a surface of genus g, the problem #PERF-

MATCH can be solved in time 4gnO(1).

The base of the exponential is worse in Theorem 1.6 than

in Theorem 1.5, which raises the obvious question of what

the best possible base could be. While we cannot answer

this question as tightly as in Theorems 1.2 and 1.4, we can

at least show that the dependence on the parameter has to

be exponential.

THEOREM 1.7. Assuming #ETH, there is no 2o(k)nO(1)

time algorithm for #PERFMATCH when given as input

an n-vertex graph G and a drawing of G in the plane with

k crossings.

As the crossing number of a graph is always an upper

bound on its genus, this theorem also gives a lower bound

for the problem parameterized by genus.

Somewhat interestingly, this opposes a certain

“square root phenomenon” that has been observed in the

context of parameterized algorithms on planar graphs: for

many decision problems, the best possible running times

(assuming ETH) are often of the form 2O(
√

k)nO(1) or

nO(
√

k) [24, 38–46, 52, 54, 65, 66, 77, 78, 84]. Thus one

could have expected that the running time has a depen-

dence of the form 2O(
√

k) on the number k of crossings in-

troduced into the planar drawing. However, Theorem 1.7

shows that this is not the case: the dependence has to

be single-exponential. Similar violations of the square

1The basic idea is that we select one edge from each of the k crossings

and branch on which of the 2k possible subsets of these k edges appear

in the perfect matching. If an edge does not appear in the matching, then

we remove it; otherwise, we remove its endpoints. In all cases, we get a

planar graph.

root phenomenon for counting problems have also been

observed for #PERFMATCH on k-apex graphs, where a

nΩ(k/ logk) lower bound is known [32].

Reductions among counting problems. If the de-

cision version of a problem is polynomial-time solvable,

then hardness of the counting version cannot be proved

by a parsimonious reduction from an NP-hard problem, as

this would imply that the decision version of the NP-hard

problem is polynomial-time solvable. Therefore, such

hardness results necessarily involve a “mysterious” step

that is highly non-parsimonious and usually very specific

to the particular reduction source and target.

A standard way of doing this for #PERFMATCH in-

troduces a weighted version of the problem: each edge is

equipped with a weight, the weight of a perfect match-

ing is defined as the product of the weights of its edges,

and the task is to compute the sum of the weights of all

the perfect matchings. Crucially, weights can be nega-

tive, thus allowing different perfect matchings to cancel

out each other. After proving hardness for the weighted

version, the negative weights can be eliminated by modu-

lar arithmetic [85] or polynomial interpolation [7, 30, 37],

yielding hardness of the unweighted problem under Tur-

ing reductions. It is precisely at this step that the reduc-

tion becomes non-parsimonious: the existence of a perfect

matching in one of the constructed instances does not tell

directly whether the source instance has a solution or not.

While this technique is very powerful, we do not

want to repeat it all over again every time a lower bound

is proved for some counting problem. Therefore, we

hide these steps behind a layer of abstraction, the so-

called Holant framework: We first prove hardness for

a certain type of Holant problem and then reduce this

to #PERFMATCH in a second step. This last step en-

capsulates the arguments involving negative weights and

polynomial interpolation, which allows us focus on our

main task: constructing instances with bounded treewidth

or cliquewidth. While the Holant framework introduces

some notational overhead, the proofs become relatively

transparent and comparable to similar lower bounds for

decision problems.

The Holant framework. Let us briefly present the

Holant framework (see Section 3 for more details), which

was introduced by Valiant in the context of holographic

algorithms [86], and which was extended into a more

general framework since then [13, 15–20, 59, 60, 69].

A signature graph is a graph Ω with a weight w(e)
on each edge and a function fv : {0,1}I(v) →Q associated

with each vertex v, where I(v) is the set of edges incident

to v. That is, fv assigns a rational value to every subset of

edges of I(v); we call fv the signature of v. Then for every

subset x ∈ {0,1}E(Ω) of edges, the functions fv determine

a rational value at each vertex v in a natural way. We

define the value of x to be the product of these values for

1652 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

all v ∈V (Ω) and we define the weight of a subset of edges

to be the product of the weights of the edges. The Holant

of Ω sums up, for every subset x of edges, the product of

the weight of x and the value of x:

Holant(Ω) = ∑
x∈{0,1}E(Ω)

∏
e∈x

w(e) ∏
v∈V (Ω)

fv(x|I(v)).

To approach this somewhat abstract problem, it may

help to observe that it contains counting perfect matchings

as a special case. Let G be a graph, define Ω := G, and

assign w(e) = 1 to every e ∈ E(Ω). For every v ∈ V (Ω),
define fv to be 1 if exactly one edge of I(v) is selected

and 0 otherwise. In this case, we also say that fv has

the signature HW=1, which is short for “Hamming weight

= 1”. Then Holant(Ω) counts exactly those edge subsets

x ⊆ E(G) where fv(x) �= 0 at every vertex v, that is, where

every vertex has degree exactly one in x. Therefore, one

can think of Holant problems as a certain generalization

of counting weighted perfect matchings and other degree-

bounded subgraph counting problems.

In our proofs of lower bounds based on the Holant

framework, we first reduce the problem of counting the

satisfying assignments of a CNF-SAT formula to that of

computing the Holant of a certain signature graph Ω.

Then we transform Ω to a signature graph Ω′ in which

every vertex has signature HW=1. This can equivalently be

viewed as a weighted version of #PERFMATCH. Finally, a

self-contained weight removal step shows that Holant(Ω′)
can be reduced to unweighted #PERFMATCH. The trans-

formation from Ω to Ω′ is performed using certain gad-

gets: if a vertex v of degree d features some signature fv,

then we replace it with a signature graph that has d exter-

nal edges and (in a well-defined sense) computes exactly

the function fv. The Holant framework provides a natural

language for a rigorous treatment of this operation.

For our purposes, gadgets using only the signature

HW=1 are of particular interest; such gadgets are known as

matchgates in the literature [14, 87]. It should be noted

here that the established meaning of the term “matchgate”

refers to planar gadgets, whereas in this paper, we devi-

ate from this convention by explicitly allowing non-planar

matchgates as well. This allows us to make the crucial ob-

servation that every signature of constant size (satisfying

a trivially necessary parity condition) can be realized by a

matchgate of constant size. Therefore, for our purposes,

it is sufficient to construct a signature graph Ω where ev-

ery vertex has the signature HW=1 or has bounded degree.

Then the rest of the reduction from Holant(Ω) to #PERF-

MATCH is completely automatic, we only need to verify

that the these steps change treewidth or cliquewidth of

the graph in a controlled way (but usually this is easy).

We encapsulate this reduction from Holant problems to

#PERFMATCH in Theorem 4.1. The hardness proofs in

Theorems 1.2, 1.4, and 1.7 all construct Holant instances

and then invoke Theorem 4.1 to complete the reduction

to #PERFMATCH. We believe that this way of approach-

ing hardness results for counting problems would also be

fruitful for other problems and parameters.

2 Preliminaries

2.1 Complexity assumptions. The Exponential Time

Hypothesis (ETH) conjectured by Impagliazzo, Paturi and

Zane [62] and its strong variant (SETH) are conjectures

about the exponential time complexity of k-SAT. Let sk

be the infimum over all δ such that n-variable k-SAT can

be solved in 2δn time. Then ETH states that s3 > 0. A

simple and perhaps more intuitive consequence of ETH is

that there is no 2o(n) time algorithm for n-variable 3SAT,

that is, no algorithm for 3SAT is subexponential in the

number of variables. On its own, this may not rule out

algorithms that are subexponential in the input size: the

number of clauses can be superlinear in the number of

variables. However, the Sparsification Lemma shows that

ETH in fact rules out such algorithms as well. One way

to formulate this result is the following:

LEMMA 2.1. ([62]) Assuming ETH, n-variable m-

clause 3SAT has no 2o(n+m) time algorithm.

Since CNF-SAT with n variables and m clauses

has a 2n ·mO(1) time algorithm, the sequence {sk}k∈N is

bounded from above by 1. Impagliazzo and Paturi [61]

conjecture that 1 is indeed the limit of this sequence, a

statement that became later known as SETH, the Strong

Exponential Time Hypothesis [23]. We can formulate

a convenient consequence of SETH by saying that n-

variable m-clause CNF-SAT has no (2− ε)nmO(1) time

algorithm for any ε > 0.

In the context of counting problems, it is natural to

use the counting versions of ETH and SETH, which are

defined analogously in terms of the counting problems

#3SAT and #CNF-SAT (see [37]). Clearly, #ETH and

#SETH are weaker assumptions than ETH and SETH,

respectively, as they only rule out the existence of im-

proved counting algorithms. Thus stating negative results

assuming #ETH instead of ETH makes the result a pri-

ori stronger, but perhaps more importantly, it seems very

natural and closer to the spirit of the problem to start our

reductions from genuine counting problems.

Dell et. al [37] showed that the Sparsification Lemma

can be made to work also for the counting version. Thus

we have the following counting analog of Lemma 2.1.

LEMMA 2.2. ([62]) Assuming #ETH, the problem

#3SAT on formulas with n variables and m clauses

cannot be solved in time 2o(n+m).

Analogously to SETH, assuming #SETH has the con-

sequence that n-variable m-clause #CNF-SAT has no

(2− ε)n ·mO(1) time algorithm for any ε > 0.

1653 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

2.2 Inserting gadgets into graphs. Our graph notation

is standard, but we need to introduce formal definitions

for replacing vertices with gadgets in graphs. For this pur-

pose, we find it convenient to use the notion of dangling

edges, which are edges having only one endpoint [22].

Let Hv be a graph with d distinguished dan-

gling edges e1, . . . ,ed incident to distinct portal vertices

v1, . . . ,vd , respectively. Let G be a graph, let v ∈ V (G)
be of degree d, and assume that an ordering f1, . . . , fd of

the d edges incident to v is given. Then the operation of

inserting Hv at v is defined as follows: take the disjoint

union of G and Hv, remove v, and for every 1 ≤ i ≤ d,

remove ei and replace it with an edge connecting vi with

the other endpoint of fi.

We can extend this operation to inserting more than

one graph in parallel. That is, assume we are given ver-

tices v1, . . . ,vt in G (each vertex having a fixed ordering

of the edges incident to it) and graphs Hv1 , . . . ,Hvt such

that the number of dangling edges of Hvi and the degree

of vi agree, we can define the insertion of Hvi at vi in par-

allel for 1 ≤ i ≤ t with the obvious meaning depicted in

Figure 1.

2.3 Treewidth, pathwidth and cutwidth. We recall

the most important notions related to treewidth in this

section. A tree decomposition of a graph G is a pair (T,B)
in which T is a tree and B = {Bt | t ∈V (T)} is a family of

subsets of V (G) such that

1.
⋃

t∈V (T) Bt =V ;

2. for each edge e = uv ∈ E(G), there exists a node

t ∈V (T) such that u,v ∈ Bt , and

3. the set of nodes {t ∈V (T) |v∈Bt} forms a connected

subtree of T for every v ∈V (G).

To distinguish between vertices of the original graph G

and vertices of T in the tree decomposition, we call

vertices i of T nodes and their corresponding Bi’s bags.

The width of the tree decomposition is the maximum size

of a bag in B minus 1. The treewidth of a graph G, denoted

by tw(G), is the minimum width over all possible tree

decompositions of G.

A path decomposition is a tree decomposition where

T is a path. The pathwidth pw(G) of a graph G is the

minimum width over all possible path decompositions of

G. By definition, we have tw(G)≤ pw(G).
A linear layout of an n-vertex graph G is an ordering

v1, . . . , vn of V (G). For 1 ≤ i ≤ n, the cut after vi is the

set of edges between {v1, . . . ,vi} and {vi+1, . . . ,vn}. The

cutwidth of the linear layout is the maximum size of the

cut after vi for 1 ≤ i < n. The cutwidth of G, denoted

by cutw(G), is the minimum cutwidth over all possible

linear layouts of G. A linear layout of cutwidth cutw(G)
is called optimal. It is easy to see that pw(G)≤ cutw(G).

The following lemma shows that inserting gadgets of

bounded cutwidth increases cutwidth only by a constant

(this property of cutwidth is the main reason we are using

it in our proofs).

LEMMA 2.3. Let G be a graph and let X ⊆ V (G) be a

subset of vertices, each of degree at most d. For every

v ∈ X, let us replace v by inserting a graph Hv of cutwidth

at most c; let G′ be the resulting graph. Then cutw(G′) =
cutw(G)+d + c.

2.4 Cliquewidth. We follow Fomin et al. [51] for the

basic definitions of cliquewidth. Let G be a graph and t

be a positive integer. A t-graph is a graph with vertices

labeled by integers from {1,2, . . . , t}. We refer to a t-

graph consisting of exactly one vertex labeled by some i∈
{1,2, . . . , t} as an initial t-graph. The cliquewidth cw(G)
is the smallest integer t such that G can be constructed by

repeated applications of the following four operations:

i(v): Introduce operation constructing an initial t-graph

with vertex v labeled by i,

⊕: Disjoint union of two t-graphs,

ρi→ j: Relabel operation changing all labels i to j, and

ηi, j: Join operation making all vertices labeled by i adja-

cent to all vertices labeled by j.

An expression tree of a graph G is a rooted tree T with

nodes of four types i, ⊕, ρ , and η , corresponding to

the operations described above. To each node, a t-graph

is associated such that G is isomorphic to the graph

corresponding to the root of T after removal of all labels.

Introduce nodes i(v) are precisely the leaves of T , and

each such node corresponds to an initial t-graph

consisting of the i-labeled vertex v.

Union node ⊕ stands for a disjoint union of graphs asso-

ciated with its children.

Relabel node ρi→ j has one child and is associated with

the t-graph obtained by the application of the relabel-

ing operation to the graph corresponding to its child.

Join node ηi, j has one child and is associated with the

t-graph resulting from the application of the join

operation to the graph corresponding to its child.

The width of the expression tree T is the number of

different labels appearing in T . If G is of cliquewidth t,

then there is a rooted expression tree T of width t for G.

An expression tree T is irredundant if for any join node

ηi, j, the vertices labeled by i and j are not adjacent in the

graph associated with its child. It was shown by Courcelle

and Olariu [29] that every expression tree T of G can be

transformed into an irredundant expression tree T ′ of the

same width in time linear in the size of T . We will use

this for algorithmic purposes.

The following definitions related to clique expres-

sions are nonstandard, but we find them very useful for

1654 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

v1
3

v1
2v1

1v1
1e1

1

v1

v2

e1
2

e1
3

e2
2

e3
4

v2
4

v2
3v2

1e2
1 e2

3

v2
2

1 2
3

Hv1

Hv2

1 3
4

2

Figure 1: Inserting gadgets Hv1
and Hv2

at v1 and v2, respectively. The numbers around v1 and v2 show the ordering of

the edges incident to them.

our purposes. We say that a label i is singleton if for every

subexpression, the labeled graph associated to it contains

at most one vertex with label i and there is no operation

ρ j→i in the expression (i.e., the only way a vertex can get

label i is by an i(v) operation). Sometimes we say that

a label is large to emphasize that it is not required to be

singleton. A (k,s)-expression is a (k+ s)-expression with

at least s singleton labels.

We say that an edge uv is singular in an irredundant

clique expression if the unique operation ηi, j creating uv

created exactly one edge (i.e., there was exactly one vertex

with label i and exactly one vertex with label j at this

point). We say that label i is a forget label if there is no

operation i(v), ρi→ j, or ηi, j in the k-expression for any j

(thus label i may appear only in an operation of the form

ρ j→i). We say that a vertex v is singular if every edge

incident to v is singular and whenever the graph associated

to a subexpression contains v, then v has either a singleton

label or a forget label.

It is known and easy to see that cw(G) ≤ pw(G) +
2 [49] and we can verify that the proof provides a

(1,pw(G) + 1)-expression featuring only singular ver-

tices. We prove that inserting bounded-pathwidth gadgets

at singular vertices increases the cliquewidth only moder-

ately: only the number of singleton labels is increased.

LEMMA 2.4. Let G be a graph and let X ⊆ V (G) be a

subset of vertices, each of degree at most d. Suppose that

G has a (k,s)-expression T where every v ∈ X is singular.

For every v ∈ X, replace v by inserting a graph Gv of

pathwidth at most p; let G′ be the resulting graph. Then

cw(G′)≤ k+d(s+1)+ p+1.

3 Holants and Matchgates

We give an introduction to what we call the Holant

framework, a toolbox based on [21, 22, 87]. A more

detailed exposition can be found in Chapter 2 of [31].

3.1 Holants. Given a graph G and v ∈V (G), we denote

the edges incident with v by I(v).

DEFINITION 1. A signature graph is an edge-weighted

graph Ω, which may feature parallel edges, and which

has a signature fv : {0,1}I(v) → Q associated with each

vertex v ∈V (Ω).

The Holant of Ω is a particular sum over the edge assign-

ments x∈ {0,1}E(Ω). Given an assignment x∈ {0,1}E(Ω),

we say that an edge e ∈ E(Ω) is active in x if x(e) = 1

holds, otherwise e is inactive in x. We tacitly identify x

with the set of active edges in x. Given a subset S ⊆ E(Ω),
we write x|S for the restriction of x to S, which is the

unique assignment in {0,1}S that agrees with x on S.

DEFINITION 2. ([87]) Let Ω be a signature graph with

edge weights w : E(Ω) → Q and a function fv :

{0,1}I(v) → Q for each v ∈ V (Ω). Furthermore, let

x ∈ {0,1}E(Ω) be an assignment to the edges of Ω. Then

we define

valΩ(x) := ∏
v∈V (Ω)

fv(x|I(v)),(3.1)

wΩ(x) := ∏
e∈x

w(e),(3.2)

and we say that x satisfies Ω if valΩ(x) �= 0 holds. Fur-

thermore, we define

(3.3) Holant(Ω) := ∑
x∈{0,1}E(Ω)

wΩ(x) ·valΩ(x).

A particularly useful type of signatures is that of Boolean

functions, whose ranges are restricted to {0,1} rather

than Q. If all signatures appearing in Ω are Boolean,

then Holant(Ω) simply sums over those assignments x ∈
{0,1}E(Ω) that pass all constraints imposed by the vertex

functions, and each x is weighted by wΩ(x). We use the

following Boolean signatures:

1655 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

DEFINITION 3. For x ∈ {0,1}∗, let hw(x) be the Ham-

ming weight of x, that is, the number of ones in x. For

statements ϕ , we define [ϕ] = 1 if ϕ is true, and [ϕ] = 0

otherwise. For any arity k ∈ N and x ∈ {0,1}k, we then

define signatures

HW=d(x) = [hw(x) = d], for d ∈ N,

EVEN(x) = [hw(x) even],

ODD(x) = [hw(x) odd].

3.2 Gates and matchgates. Given a signature graph

Ω, we can sometimes simulate signatures by gadgets or

gates, which are signature graphs with dangling edges. A

dangling edge is an “edge” with only one endpoint. These

notions are borrowed from the F-gates in [22].

DEFINITION 4. For disjoint sets A and B, and for assign-

ments x∈ {0,1}A and y∈ {0,1}B, we write xy∈ {0,1}A∪B

for the assignment that agrees with x on A, and with y on

B. We also say that the assignment xy extends x.

A gate is a signature graph Γ, possibly containing a

set D ⊆ E(Γ) of dangling edges, all of which have edge

weight 1. A gate Γ is a matchgate if it features only the

signature HW=1. The signature realized by Γ is the function

Sig(Γ) : {0,1}D →Q that maps x to

(3.4) Sig(Γ,x) = ∑
xy∈{0,1}E(Γ)

extendsx

wΓ(xy) ·valΓ(xy).

We consider the dangling edges D of gates Γ to be labeled

as 1, . . . , |D|. This way, we can consider signatures Sig(Γ)
as functions of type {0,1}|D| →Q instead of {0,1}D →Q.

REMARK 1. Note that we allow matchgates to be non-

planar. This deviates from the notion of matchgates

established in the literature [14, 87], which are required

to be planar. More precisely, a matchgate on dangling

edges 1, . . . ,d is planar if it can be drawn in the plane

without crossings such that its dangling edges appear in

the order 1, . . . ,d on its outer face.

The usefulness of gates for our arguments lies in

their ability of simulating complex signatures by simpler

signatures. For instance, for any even arity k ∈ N, we can

realize the k-ary signature

EQk(x1, . . . ,xk) := [x1 = . . .= xk]

by a gate whose vertices feature only the equality signa-

ture EQ4 of arity 4.

EXAMPLE 1. For all even k ≥ 4, there exists a gate

ΓEQ with Sig(ΓEQ) = EQk. This gate consists of vertices

v1, . . . ,vk/2−1, each equipped with EQ4, internal edges

e1, . . . ,ek/2−2 with ei = vivi+1 for all i, and k additional

dangling edges, as shown in Figure 2.

Figure 2: The gate ΓEQ with Sig(ΓEQ) = EQk in Example 1.

Its correctness can be verified from the definition: an

assignment to the dangling edges of ΓEQ can be extended

to a satisfying assignment for ΓEQ only if all values agree,

in which case there is exactly one assignment.

In the following, we formalize the operation of in-

serting a gate Γ into a signature graph so as to simulate a

vertex of a specific signature.

DEFINITION 5. Let Ω be a signature graph, let v ∈V (Ω)
with D = I(v) and let Γ be a gate with dangling edges D.

Then we can insert Γ at v by (i) deleting v and keeping

D as dangling edges, and then (ii) placing a copy of Γ into

Ω and identifying each dangling edge e ∈ D across Γ and

Ω. That is, if e has an endpoint u in Ω, and an endpoint

v in Γ, then we consider e as an edge uv in the resulting

graph.

A simple calculation shows that insertions of suitable

matchgates preserve Holants.

LEMMA 3.1. Let Ω be a signature graph and let v ∈
V (Ω). Let Ω′ be derived from Ω by inserting a gate Γ

with Sig(Γ) = fv at v. Then Holant(Ω) = Holant(Ω′).

We focus on matchgates, as defined above, since these

allow us to reduce the problem of computing Holants to

#PERFMATCH. Note that only graphs with an even num-

ber of vertices admit perfect matchings. This implies the

following parity condition on signatures of matchgates.

FACT 3.1. (PARITY CONDITION) If a signature f :

{0,1}d →Q can be realized by a matchgate, then at least

one of the following holds:

• For all x∈ {0,1}d with odd hw(x), we have f (x) = 0.

Then we call f even.

• For all x ∈ {0,1}d with even hw(x), we have f (x) =
0. Then we call f odd.

We say that f is parity-consistent if it is even or odd. We

also say that a signature graph is parity-consistent if every

vertex has a parity-consistent signature.

Furthermore, we can summarize the use of matchgates in

the following fact. To this end, given a graph G with edge

weights w : E(G)→Q, let us define

PerfMatch(G) = ∑
M

∏
e∈M

w(e),

where M ranges over the perfect matchings M ⊆ E(G) of

G. This was also defined in [87].

1656 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Figure 3: The equality matchgate Γ= that realizes EQ4.

Edges of weight −1, 1/2 and 1 are shown gray, dashed and

black, respectively. A comparable matchgate is shown in

[7], but it realizes only a weighted version of the signature

EQ4.

FACT 3.2. Let Ω be a signature graph. If there is a

matchgate Γv with Sig(Γv) = fv for every vertex v∈V (Ω),
then we can insert Γv as a gate at v, as specified in

Definition 5. This yields a signature graph that uses only

edge weights and the signature HW=1. In other words,

we obtain a graph G = G(Ω) on ∑v |V (Γv)| vertices and

∑v |E(Γv)| edges with

Holant(Ω) = PerfMatch(G(Ω)).

3.3 Matchgates for parity-consistent signatures. As

seen in Example 1, we can use matchgates for simple sig-

natures to construct matchgates for more complex signa-

tures. In the following, we use this to realize the signature

EQk for even k ∈ N from the matchgate Γ= for EQ4 shown

in Figure 3. We discovered Γ= using a computer alge-

bra system, in a process that is detailed in Appendix C of

[31]. Note that EQk for odd k ∈N does not satisfy the par-

ity condition and hence cannot be realized by matchgates.

LEMMA 3.2. For all even k ∈ N, there is a matchgate

realizing EQk. This matchgate features O(k) vertices and

edges and only −1, 1
2
,1 as edge weights.

Proof. For k = 2, we use a path on 4 vertices with

dangling edges at its endpoints. For k = 4, we can verify

that the matchgate Γ= in Figure 3 realizes EQ4. For

k > 4, we use the gate from Example 1 and realize each

occurrence of EQ4 by Γ=.

The parity condition in Fact 3.1 tells us that every

signature of a matchgate is even or odd. In the following,

we show that the converse holds as well:

LEMMA 3.3. Let f : {0,1}[d] → I be a signature of arity

d ∈ N that is parity-consistent. Then there is a matchgate

Figure 4: The gate Γ′ constructed in the proof of

Lemma 3.3. In this example, Γ′ realizes the signature f

that maps {00011,11101,11000} to 1 and all other inputs

to 0.

Γ that realizes f . Furthermore, if supp(f) denotes the

support of f , then

• Γ has O(|supp(f)| ·d) vertices and edges,

• Γ has maximum degree at most |supp(f)|+O(1),
• the edge weights of Γ are contained in the set I ∪
{−1, 1/2,1},

• given as input {(x, f (x)) | x ∈ supp(f)}, we can

construct Γ in time O(|supp(f)| ·d).
The construction of Γ resembles the construction of a

formula in DNF from a given Boolean function. For each

element x ∈ supp(f), we create an assignment gate Lx that

tests whether the dangling edges of Γ are assigned x and

this way ensures that Sig(Γ,x) = f (x). Furthermore, we

ensure that Sig(Γ,x) �= 0 holds only if exactly one of these

tests succeeds.

Proof. of Lemma 3.3. For this proof, we assume that

d − hw(x) is odd for every x ∈ supp(f), which implies

that exactly one of d and f is even, while the other one is

odd. If d −hw(x) is even, the proof proceeds similarly.

We first define the following gate Γ′ on dangling

edges [d], shown exemplarily in Figure 4. The matchgate

Γ is then obtained by realizing all signatures appearing in

Γ′ by matchgates.

1. Create vertices O = {o1, . . . ,od} with signature

HW=1, and for i ∈ [d], add the dangling edge i and

make it incident to oi.

2. Create a vertex a with signature HW=1.

3. Let supp(f) = {x1, . . . ,xr} for some r ∈ N. For each

κ ∈ [r], let Sκ = O \ {oi | i ∈ xκ}. Note that |Sκ | is

odd by assumption. We perform the following steps.

(a) Create a vertex vκ with signature EQ|Sκ |+1 and

make it adjacent to all vertices in Sκ . Note that

1657 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

|Sκ |+1 is even, so EQ|Sκ |+1 can be realized by

a matchgate by Lemma 3.3.

(b) Draw an edge of weight f (xκ) from vκ to a.

We prove that Γ′ realizes f . Let y ∈ {0,1}E(Γ′) be a

satisfying assignment. By HW=1 at the vertex a and EQ

at vκ for κ ∈ [r], there is exactly one κ ∈ [r] such that all

edges of I(vκ) are active under y, while all edges in I(vκ ′)
for κ ′ �= κ are inactive. In particular, we then have

(3.5) valΓ′(y) ·wΓ′(y) = f (xκ).

Let x = y|[d] be the restriction of y to the dangling

edges of Γ′. We observe that, if the edges in I(vκ)
are active under y, for κ ∈ [r], then x = xκ : Since y

is satisfying, by HW=1 at O, every oi ∈ O for i ∈ [d] is

incident with exactly one active edge, and this edge must

be dangling if x(i) = 1, or contained in I(vk) if x(i) =
0. Hence, for every x ∈ {0,1}[d], there is a satisfying

assignment y of Γ′ that extends x if and only if x = xκ

for some κ ∈ [s]. Furthermore, in this case, y is unique

and satisfies (3.5). We conclude that Sig(Γ′,x) = f (x).

4 From Holants to perfect matchings

In this section, we present our main technical tool that

encapsulates the reduction from Holant problems to un-

weighted #PERFMATCH. From the previous section, we

know that bounded-arity signatures can be replaced with

matchgates that may feature edge weights (which are pos-

sibly even negative). In the following, we show how

to simulate these weights in a careful way to ensure

an overall bound on the cutwidth, crossing number, or

cliquewidth of the resulting graphs.

THEOREM 4.1. For every integer d ≥ 1, there is some

cd ∈N such that the following holds. Let Ω be a signature

graph featuring no edge weights and only Boolean signa-

tures that are parity-consistent. Let X ⊆V (Ω) be a set of

vertices of degree at most d such that every vertex not in

X has the signature HW=1. Then there is a cd · nO(1) time

Turing reduction from computing Holant(Ω) to #PERF-

MATCH on unweighted graphs, and we can choose one of

the following three statements to hold:

1. For every constructed instance G′ of #PERFMATCH,

we have cutw(G′)≤ cutw(Ω)+ cd.

2. If Ω is a graph embedded in the plane and there are

t vertices in X whose signatures can be realized by

planar matchgates, then every constructed instance

G′ of #PERFMATCH has crossing number at most

cd · (|X | − t). Here, we assume that all used planar

matchgates feature only weights 1 and −1.

3. If Ω has no parallel edges and has a (k,s)-expression

where every vertex of X is singular, then every con-

structed instance G′ of #PERFMATCH has cw(G′)≤
k+ s · cd.

Proof. By Lemma 3.3, we obtain a matchgate Γv on

O(2dd) vertices for each parity-consistent signature fv

at v ∈ V (Ω) of arity d. Let G denote the graph on

edge weights {−1, 1/2,1} obtained from Ω by inserting

Γv at v, for all v. By Fact 3.2, we have Holant(Ω) =
PerfMatch(G).

To reduce to unweighted #PERFMATCH, it remains

to remove the edge weights −1 and 1/2 from G. To

this end, we apply a standard interpolation argument:

Introduce two indeterminates x,y and replace each edge

weight −1 by x, and each edge weight 1/2 by y. This yields

a graph Gx,y on edge weights 1,x,y. Then

p(x,y) := PerfMatch(Gx,y) ∈ Z[x,y]

is a polynomial of maximum degree � := |V (G)|/2 in the

indeterminates x and y. Assume we can evaluate p(ξ)
on all points ξ ∈ A2 for an arbitrary set A ⊆ Q with

|A| = �+ 1. That is, we can evaluate PerfMatch(Gξ)
for graphs on edge weights {1} ∪ A. Then we can use

multivariate polynomial interpolation (see [30]) to obtain

all coefficients of p in time �O(1). In particular, we can

then evaluate p(−1,1/2) = PerfMatch(G).
In the following, the set A will be chosen according to

the parameter we wish to bound. We then evaluate p(ξ)
for ξ ∈ A2 by means of certain gadgets/matchgates that

simulate the edge weights from A. To this end, we present

two different ways of choosing A and simulating the edge

weights (see Figure 5).

Method 1. We let A = {2i | i ∈ [�]} and observe that an

edge ab of weight 2i can be simulated with a path

of length 2i− 1 on edges e1, . . . ,e2i−1, where edge

e2κ−1 for κ ∈ [i] has weight 2. Then an edge of

weight 2 between vertices u and v can in turn be

simulated by two parallel edges between u and v,

each of which is subdivided twice. We obtain a

gadget of cutwidth 2 on O(�) vertices.

Method 2. We let A = [�] and use a construction from

[37] to simulate the weight i ∈ [�] with O(log2 i)
vertices and pathwidth 2. It is clear that we can

simulate an edge of weight r + s by two parallel

edges of weights r and s, respectively. Hence, we

can simulate weight i ∈ [�] by at most log i� parallel

edges by introducing an edge for each 1-bit in the

binary representation of i: if the κ-th bit is 1, then we

introduce a parallel edge of weight 2κ−1. Then we

realize each weight 2κ−1 by a path on O(κ) vertices

as in Method 1.

Using interpolation as described above, we can then

reduce the computation of Holant(Ω) to unweighted

#PERFMATCH with either of the two methods. To ensure

that one of the three chosen statements holds, we choose

between the two methods in the following way:

1658 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

a
8

2 2 211

Method 1

21=1+4+16

Method 2

4

16

a

a

a

a

ab

b

b

b

b

b

1

Figure 5: Removing weights using Method 1 and Method 2 in the proof of Theorem 4.1.

In the case of cutwidth, we use Method 1. Every

weighted matchgate Γ to be inserted into Ω has size

bounded by a function of d, hence its cutwidth is also

bounded by a function of d. Method 1 can be expressed

as subdividing edges of Γ a certain number of times,

replacing some edges with two parallel edges, and then

again subdividing some edges. Subdividing edges does

not increase cutwidth and duplicating edges increases

cutwidth at most by a factor of 2, hence the matchgates

have cutwidth bounded by a function of d even after

simulating the weights. Then Lemma 2.3 shows that

inserting these gadgets increases cutwidth at most by a

function of d.

In the case of crossing number, we use Method 1.

We can extend the planar drawing of Ω to a drawing of G

that features crossings only in the drawings of nonplanar

matchgates Γ. Subdividing edges does not increase the

crossing number, duplicating edges increases it at most

by a factor of 4. Thus each nonplanar matchgate has

crossing number bounded by some function of d, even

after simulation of weights. Since Ω features at most

(|X | − t) nonplanar matchgates, we obtain that G has

crossing number at most (|X | − t) · cd for some suitably

large constant cd . Note that no crossings are introduced

into planar matchgates by simulating edge-weights.

In the case of cliquewidth, we use Method 2. Every

weighted matchgate Γ has size bounded by a function of

d, hence its pathwidth is also bounded by a function of

d. Method 2 can be expressed as replacing edges with

several parallel copies, subdividing edges several times,

duplicating certain edges, and then again subdividing

them. Replacing an edge with parallel edges has no effect

on pathwidth and subdividing a subset of the edges (even

multiple times) can increase pathwidth at most by 1, as

shown in [5]. Thus, after the application of Method 2,

the unweighted gadgets still have pathwidth bounded by a

function of d. Then by Lemma 2.4, the graph G′ obtained

after the insertion of the weighted gadgets has cliquewidth

at most k + d(s+ 1) plus a constant depending only on

d, hence we can indeed bound cw(G′) by k+ s · cd for a

suitably large constant cd . This concludes the proof.

5 Parameterizing by cutwidth or crossing number

In this section, we prove Theorems 1.2 and 1.7 by a

lower bound for parameterization by cutwidth (implying

the lower bound for parameterization by pathwidth and

treewidth) and by a lower bound for parameterization by

crossing number (implying the lower bound for parame-

terization by genus).

We first show how to reduce counting the number of

satisfying assignments of an n-variable m-clause d-CNF

formula ϕ to computing the Holant of certain signature

graphs. Then we invoke Theorem 4.1 to reduce the

resulting Holant problem to #PERFMATCH on graphs

with O(nm) vertices and edges that have cutwidth n +
O(1) or crossing number O(n+dm).

5.1 Parameterizing by cutwidth. Let ϕ be a d-CNF

formula on n variables x1, . . . ,xn and m clauses C1, . . . ,Cm.

As an intermediate step in the reduction to #PERFMATCH,

we derive two signature graphs from ϕ , following the

structure outlined in Figure 6.

That is, each graph consists essentially of an n×m

square grid whose rows and columns correspond to the

variables and clauses of ϕ , respectively. The horizontal

1659 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

edges in row i ∈ [n] will serve to propagate a binary

assignment to the variable xi, and in column j ∈ [m], we

will test whether the assignment to x1, . . . ,xn encoded this

way satisfies clause Cj.

To realize this construction, we need to define certain

auxiliary Boolean signatures that play the role of negative

and positive (and neutral) literals in ϕ .

DEFINITION 6. We define the Boolean 6-ary signatures

LIT0, LIT− and LIT+ on the following six inputs,

grouped into three pairs of inputs

(xin,xout), (xtop1,xtop2), (xbtm1,xbtm2).

For any assignment a ∈ {0,1}6, the signatures yield value

1 iff all of the following holds: Firstly, for each input pair,

the two values in the pair agree. That is, we have a(xin) =
a(xout) and a(xtop1) = a(xtop2) and a(xbtm1) = a(xbtm2).

Secondly, if the top input pair is active, then so is

the bottom input pair, regardless of the assignment to

any other inputs. That is, if a(xtop1) = a(xtop2) = 1, then

a(xbtm1) = a(xbtm2) = 1.

On the other hand, if the top input pair is inactive,

that is, a(xtop1) = a(xtop1) = 0, then LIT0, LIT− and LIT+

differ in their behavior:

• For LIT0, we require a(xbtm1) = a(xbtm2) = 0.

• For LIT+, require a(xbtm1) = a(xbtm2) = a(xin).
• For LIT−, require a(xbtm1) = a(xbtm2) = a(¬xin).

It is evident that LIT0, LIT− and LIT+ are all even

signatures. As a matter of fact, the inputs xtop1, xtop2 and

xbtm1, xbtm2 are defined to come in pairs with enforced

equality for no other reason than to ensure this.

All signatures defined above propagate the assign-

ment of xin to xout. This ensures that, in every satisfying

assignment to the constructed signature graph, the same

binary value will be assigned to all horizontal edges. If

xtop1 = 1, then we require xbtm1 = 1 as well. This en-

sures that if a clause is satisfied by previous literals, then

this information will be propagated to the next literal. If

xtop1 = 0, then LIT0 simply passes this information to

xbtm1. The signatures LIT− and LIT+ however check

whether xin is assigned 1 (in which case a positive literal

would be satisfied and LIT+ assigns xin to xbtm1) or 0 (in

which case LIT− assigns ¬xin to xbtm1). We can now de-

fine the relevant signature graphs from ϕ .

LEMMA 5.1. Let ϕ be a d-CNF formula on n variables

and m clauses. Then we can construct two unweighted

signature graphs Ω0 and Ω1 such that

(5.6) #SAT(ϕ) = Holant(Ω0)+Holant(Ω1).

Furthermore, both Ω0 and Ω1 are planar, have cutwidth

n+O(1) and maximum degree O(1).

Proof. We define the graphs underlying Ω0 and Ω1 as

follows, see also Figure 6:

1. Create an n×m grid of vertices vi, j for i ∈ [n] and

j ∈ [m]. Copy each vertical edge, such that vi, j

and vi+1, j are connected by two parallel edges for

i ∈ [n−1] and j ∈ [m]. We will later describe how to

assign signatures to these vertices.

2. Create two additional sets of vertices {vi,0 | i ∈ [n]}
and {vi,m+1 | i ∈ [n]}. For each i ≤ n− 1, connect

vi,0 to vi+1,0 and to vi,1. Connect vn,0 to vn,1. Also

connect vi,m+1 to vi+1,m+1 and to vi,m for each i ≤
n−1. Connect vn,m+1 to vn,m.

3. In the case of Ω0, assign the signature EVEN of ap-

propriate arity to each vertex created in the previous

step. Define Ω1 likewise, but assign ODD to the two

vertices vn,0 and vn,m+1. Note that the vertex sets

{vi,0 | i ∈ [n]} and {vi,m+1 | i ∈ [n]} each effectively

express an EVEN gate of arity n in Ω0, and an ODD

gate of arity n in Ω1. That is, we may contract, say,

{vi,0 | i ∈ [n]} to a single vertex of arity n with signa-

ture EVEN without changing the Holant of Ω0. How-

ever, in order to use Theorem 4.1, we would like to

use only EVEN and ODD gates of constant arity.

4. Create m additional vertices vn+1, j for j ∈ [m]. For

all j ∈ [m], connect vn+1, j to vn, j with two parallel

edges and assign HW=2 to vn, j.

5. Create m additional vertices v0, j for j ∈ [m]. For all

j ∈ [m], connect v0, j to v1, j with two parallel edges

and assign HW=0 to v0, j.

It is evident from the construction and the drawing in

Figure 6 that Ω0 and Ω1 are planar. Furthermore, if we

enumerate the vertices of the graphs column by column,

we obtain linear layouts with cutwidth at most n+ c for a

constant c ∈ N independent of the input.

It remains to assign signatures to the vertices vi, j for

i ∈ [n] and j ∈ [m] constructed in the first step. Recall

that ϕ has variables x1, . . . ,xn and clauses C1, . . . ,Cm. We

define an array A ∈ {0,+,−}n×m by

A(i, j) =

⎧⎪⎨
⎪⎩

0 xi does not appear in Cj

+ xi appears in Cj

− ¬xi appears in Cj

and assign to vi, j the signature LITA(i, j). In the following,

we verify that Holant(Ω0) indeed counts the satisfying

assignments a : {x1, . . . ,xn} → {0,1} for ϕ with even

Hamming weight. The same can be verified for Ω1 and the

assignments of odd weight. As a notational simplification,

for i ∈ [n], we write vi,� for the vertices in row i, and for

j ∈ [m], we write v�, j for the vertices in column j.

For each i ∈ [n], the signatures LIT0, LIT− and LIT+

in vi,� ensure that all horizontal edges between vertices in

vi,� have the same value ai. By the two columns of EVEN

1660 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

HW=0

HW=2

EVEN EVEN
LIT−

LIT0

LIT+

LIT+

LIT0

EVEN

EVEN

EVEN

EVEN

EVEN

EVEN

EVEN

EVEN

HW=0 HW=0 HW=0 HW=0 HW=0 HW=0

HW=2 HW=2 HW=2 HW=2 HW=2 HW=2

vn,mvn,1

v1,mv1,1

Figure 6: A drawing of Ω0 with n = 5 and m = 7. As an example, the column corresponding to clause C4 =
(x1 ∨ x3 ∨ x4) is highlighted.

signatures (which act like two vertices of degree n with

signature EVEN), evenly many rows have active edges.

Altogether, this implies that the satisfying assignments to

Ω0 encode even assignments a : {x1, . . . ,xn} → {0,1} to

the formula ϕ .

For each j ∈ [m], we propagate along the vertical

edges in column v�, j whether the clause Cj is satisfied

by the assignment a. For each 1 ≤ i ≤ n, the vertex vi, j

has two top edges whose assignment encodes whether Cj

is satisfied by a1, . . . ,ai. At v1, j, this value is false, as

ensured by the HW=0 signatures at v0, j. If the variable x j

does not appear in the clause Cj, then we propagate the

assignment at the top edges downward by definition of

LIT0. If x j appears positively or negatively, then we check

whether xi satisfies Cj and propagate the result downward

by definition of LIT− or LIT+. At the bottom of each

column j ∈ [m], the vertex vn+1, j of signature HW=2 tests

whether clause Cj was satisfied by the assignment a =

a1 . . .an.

Altogether, this shows that the satisfying assignments

to Ω0 encode the satisfying assignments to ϕ where an

even number of variables is set to true. A similar proof

applies for Ω1. This proves (5.6) and hence the theorem.

By invoking Theorem 4.1, we obtain hardness for the

parameterization by cutwidth.

Proof. of Theorem 1.2. Given a CNF formula ϕ on n

variables, invoke Lemma 5.1 to obtain signature graphs

Ω0 and Ω1 of cutwidth n+O(1) that satisfy (5.6). Us-

ing Theorem 4.1 and choosing statement 1, we can then

determine Holant(Ωi) for i ∈ {0,1} with an oracle for un-

weighted #PERFMATCH that asks only queries on graphs

with nO(1) vertices and cutwidth n+O(1). Thus an algo-

rithm with running time (2−ε)cutw(G)nO(1) for some ε > 0

would yield a (2−ε)nmO(1) time algorithm for n-variable

m-clause CNF-SAT, violating #SETH. As the treewidth

of a graph is always bounded from above by its cutwidth,

the theorem follows.

5.2 Parameterizing by crossing number. With a

slight modification, the construction of Lemma 5.1 also

allows us to prove the lower bound for #PERFMATCH pa-

rameterized by crossing number. To this end, we first need

to observe that the signature LIT0 can almost be realized

by a planar matchgate. That is, we can realize a signature

LIT0
∗ that agrees with LIT0 on assignments a ∈ {0,1}6

that give the same value to xtop1 and xtop2, but LIT0
∗ may

attain arbitrary values on all other assignments.

LEMMA 5.2. There is a signature LIT0
∗ that can be

realized by a planar matchgate (on edge-weights 1 and

−1) and satisfies, on all a ∈ {0,1}6 with a(xtop1) =
a(xtop2), the condition LIT0(a)= LIT0

∗(a). The signature

LIT0
∗ may however attain arbitrary values on all other

a ∈ {0,1}6.

From this, we can conclude the desired lower bound.

Proof. of Theorem 1.7. Since we wish to prove a lower

bound under #ETH, we may reduce from #SAT on 3-

CNF formulas. Given such a formula ϕ on n variables

and m clauses, it is clear that ϕ contains at most 3m literals

that occur positively or negatively.

We construct the planar signature graphs Ω0 and

Ω1 from ϕ described in Lemma 5.1, replacing each

occurrence of LIT0 by LIT0
∗. It can be checked that this

particular replacement preserves Holants: At the top-most

vertex v1, j of each column j ∈ [m], the two inputs xtop1 and

xtop2 are forced to the same assignment, and by definition

of LIT0
∗, LIT− and LIT+, the same applies inductively

1661 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

at all vertices vi, j for i ∈ [n]. Hence, under any satisfying

assignment, LIT0 would yield the same value as LIT0
∗.

As described above, there are at most 3m occurrences

of the non-planar signatures LIT− and LIT+ in Ω0 and

Ω1. In addition, there are O(n + m) occurrences of

the signatures HW=2, ODD, and EVEN, which in fact have

planar matchgates, but we do not use this here. Thus,

using Theorem 4.1, we obtain a reduction from #SAT

on 3-CNF formulas with n variables and m clauses to

#PERFMATCH with O(nm) vertices and crossing number

O(n+m). Consequently, an algorithm for #PERFMATCH

with running time 2o(k)nO(1) on graphs with crossing

number k would imply a 2o(n+m)nO(1) time algorithm for

#SAT on 3-CNF formulas, and thus refute #ETH by

Lemma 2.2.

6 Parameterizing by cliquewidth

In this section, we prove the following conditional lower

bound under #SETH that complements Theorem 1.3. This

lower bound then implies Theorem 1.4.

THEOREM 6.1. For any fixed k ∈ N and ε > 0, the

following holds: If we can solve #PERFMATCH in time

O(|T | ·nk−2−ε) on an unweighted graph G given with an

expression for G with k large and O(1) singleton labels,

then #SETH fails.

Since expressions with k large and O(1) singleton la-

bels trivially have k+O(1) labels, this indeed proves The-

orem 1.4. We note that it is crucial to obtain unweighted

graphs, as the evaluation of PerfMatch is trivially #P-hard

on edge-weighted cliques, whose underlying graphs have

cliquewidth 2. (We can simply assign weight zero to non-

edges. If zero-weight edges are explicitly forbidden, then

a simple interpolation argument allows to simulate them

by edges of non-zero weight.)

6.1 The colored hitting set problem. To prove Theo-

rem 6.1, we reduce from counting colorful hitting k-sets.

This is a simple variant of the hitting k-set problem, for

which a tight lower bound was already shown by Patrascu

and Williams [75].

DEFINITION 7. In the problem #COLHS, the input con-

sists of k disjoint universes X = (X1, . . . ,Xk) with n indi-

viduals each and sets A = (A1, . . . ,Am) with A j ⊆ X1 ∪
. . .∪Xk for j ∈ [m]. We may assume that Xi = {i}× [n]
for all i ∈ [k]. The task is then to determine the number of

colorful hitting sets, that is, the size of the set

COLHS(X ,A,k) = {(s1, . . . ,sk) ∈ X1 × . . .×Xk |
∀ j ∈ [m] : ∃i ∈ [k] : si ∈ A j}.

The difference to the usual hitting k-set problem is

that the universe X can be considered to be colored by k

colors, and we are looking for a colorful hitting set. A

tight lower bound for this problem can be established in a

similar way as in [75].

LEMMA 6.1. For each fixed k ≥ 2, the following holds:

If there exists an ε > 0 such that, for each d ∈ N, there

is an O(nk−ε) time algorithm for #COLHS on instances

with universe size n and O(kd · logd n) sets, then #SETH

fails. Here, the constant factor in the running time may

depend on d.

6.2 Construction of the signature graph. In the re-

mainder of this section, we show how to solve an in-

stance (X ,A,k) for the problem #COLHS by reduction

to the problem #PERFMATCH on unweighted graphs of

cliquewidth k + O(1). To this end, we first construct a

grid-like signature graph Ω on k rows and m columns con-

taining cell gates Ci, j for i ∈ [k] and j ∈ [m]. The i-th row

corresponds to the individual from Xi to be picked in our

hitting set, while the j-th column, which we denote by D j,

corresponds to the set A j.

The construction resembles that of Section 5: Each

row i propagates an element xi ∈ Xi from left to right,

and each column D j will check whether A j is hit by the

elements {x1, . . . ,xk} propagated by the rows. The checks

at each column D j are performed from top to bottom, so

that cell Ci, j will know the value of xi and whether A j was

already hit by {x1, . . . ,xi−1}. This allows Ci, j to determine

whether A j is hit by {x1, . . . ,xi} and to propagate this

information to the cell Ci+1, j below. When reaching the

bottom-most cell Ck, j, the column D j will know whether

A j is hit by {x1, . . . ,xk}. The main difference to Section 5

is that we do not transfer a Boolean value along the i-

th row, but rather a number xi ∈ [n], which encodes the

element (i,xi) chosen in our hitting set. In particular, cell

gates will therefore feature O(n) dangling edges (rather

than a constant number).

In the following, we give a formal construction of a

cell by first specifying its underlying graph. We will then

attach signatures to this graph to obtain a gate.

DEFINITION 8. A cell is a gate containing pairs of dan-

gling edges (etop1,etop2) and (ebtm1,ebtm1) and (aκ ,bκ)
for κ ∈ [n]. It is defined as follows; see also Figure 7.

1. Create vertices c1, . . . ,cn. For all κ ∈ [n], connect cκ

to the dangling edges aκ and bκ .

2. For 1 ≤ κ ≤ n− 1, connect cκ to cκ+1 by 4 parallel

edges. Add (etop1,etop2) as dangling edges to c1 and

add (ebtm1,ebtm2) to cn.

3. Connect c1 to an extra vertex utop of signature HW=2

with 2 parallel edges, and connect cn to an extra

vertex ubtm of signature HW=0 with 2 parallel edges.

Intuitively speaking, the 4 parallel edges between consec-

utive vertices in a cell are used to transfer 2 bits in a

1662 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

parity-consistent way. We require the cell Ci, j to behave as

follows. For every satisfying assignment x ∈ {0,1}E(Ci, j)

to Ci, j , the following conditions have to be fulfilled:

Doubling: For each pair of dangling edges, its two edges

must agree in their values on x. This implies in

particular that the assignment to a1, . . . ,an is propa-

gated to b1, . . . ,bn.

Block: There exists a number t ∈ [n] such that all dan-

gling edges aκ ,bκ for 1 ≤ κ ≤ t are active in x, and

all dangling edges aκ ,bκ for κ > t are inactive.

That is, the active dangling edges in any satisfying

assignment appear in a consecutive block starting at

a1 and b1. The length of this block will encode the

propagated element from [n].
Propagation: If (etop1,etop2) is active, then so is

(ebtm1,ebtm2). This will later ensure that, if a set

A j was already hit by elements x1, . . . ,xi−1 preced-

ing xi, then this information is propagated down. If

(etop1,etop2) is inactive, then (ebtm1,ebtm2) is active

iff the set A j is hit by (i, t), where t is the number

defined in the block condition.

It remains to add signatures to the cell Ci, j to ensure these

conditions. To this end, we define the following “master”

signatures MSTR0 and MSTR+ on five pairs of dangling

edges. See also Figure 7. There is one “wire” pair, two

pairs that we denote as “Boolean” in-/outputs, and two

pairs that we denote as “thru” in-/outputs.

These signatures are used in a similar way as the

signatures LIT0 and LIT+ from Section 5. If i ∈ [k],
j ∈ [m] and κ ∈ [n] are such that (i,κ) ∈ A j, then we place

MSTR+ at the vertex cκ in the cell Ci, j. Otherwise, we

place MSTR0 at cκ .

The main difference to Section 5 is the presence of

dangling edges that are considered as “thru” in-/outputs.

These will ensure that active dangling edges of the cell

Ci, j appear in a consecutive block as defined above: An

inactive thru input at cκ enforces that the thru output of cκ

is inactive as well, and we use this to ensure that the active

edges among a1, . . . ,an appear as a consecutive block.

Due to the vertex utop, the thru inputs at c1 are forced to

be active.

The Boolean in-/outputs of MSTR0 and MSTR+ at cκ

will then be used to propagate whether the set A j was hit

by any of the elements (i,1), . . .(i,κ), precisely as for the

signatures LIT0 and LIT+ from Section 5: In the case of

MSTR0 (which we use if (i,κ) /∈ A j), we simply propagate

the Boolean inputs to the outputs, as seen for LIT0. In

the case of MSTR+ (which we use if (i,κ) ∈ A j), we test

whether aκ is the first inactive edge after the block of

active edges among a1 . . . ,an. If this is the case, then A j

is hit by (i,κ), and we propagate this information down to

the Boolean output pair. This is parallel to the behaviour

of LIT+.

In the following, we give formal definitions for the

signatures MSTR0 and MSTR+.

DEFINITION 9. The master signatures MSTR0 and MSTR+

are 10-ary Boolean signatures

MSTR0,MSTR+ : {0,1}10 →{0,1}
with inputs

(xin,xout), (ein
bool1,e

in
bool2), (e

out
bool1,e

out
bool2),

(ein
thru1,e

in
thru2), (e

out
thru1,e

out
thru2).

They are defined such that MSTR0(x) = 1 and MSTR+(x) =
1 hold for x ∈ {0,1}10 iff all of the following conditions

are fulfilled:

1. For each pair of dangling edges, such as (xin,xout),
the two dangling edges in x have the same assign-

ment. In the remainder of this definition, we will

therefore refer only to one of the two dangling edges,

say to xin.

2. If ein
thru1 is inactive, then so is eout

thru1.

If ein
thru1 is active, then eout

thru1 is active iff xin is.

3. If ein
bool1 is active, then so is eout

bool1. Furthermore:

(a) In the case of MSTR0, if ein
bool1 is inactive, then

eout
bool1 is inactive as well.

(b) In the case of MSTR+, if ein
bool1 is inactive, then

eout
bool1 is active iff ein

thru1 is active and xin is

inactive

We apply these signatures as follows to the vertices of

a cell Ci, j: For all κ ∈ [n], if (i,κ) ∈ A j, we place MSTR+

at cκ . If (i,κ) /∈ A j, then we place MSTR0 at cκ . This

concludes the definition of the cell Ci, j .

It is clear from the definitions of MSTR0 and MSTR+ that

both signatures are even. Furthermore, we can verify that

the cell Ci, j satisfies the conditions of Definition 8 (dou-

bling, block, propagation): The doubling condition fol-

lows from item 1 of Definition 9, the block condition fol-

lows from item 2, and the propagation condition follows

from item 3.

To proceed, for any j ∈ [m], we connect the cells Ci, j

for i ∈ [n] into the column D j.

DEFINITION 10. For any j ∈ [m], we define the column

D j as follows: First, we create a disjoint union of cells

C1, j, . . . ,Ck, j . Denote the subset of dangling edges {aκ |
κ ∈ [n]} in Ci, j by Fin

i, j , and the subset {bκ | κ ∈ [n]} by

Fout
i, j . This results in 2k sets Fin

i, j and Fout
i, j for i ∈ [k].

Within a column, we then connect cells in the follow-

ing way:

1. For 1≤ i≤ n−1, connect the input pair (ebtm1,ebtm2)
of Ci, j with the input pair (etop1,etop2) of Ci+1, j to

obtain two parallel edges.

1663 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

ein
thru1

ein
thru2 ein

bool1

ein
bool2

eout
thru1 eout

bool2

eout
thru2 eout

bool1

HW=2

HW=0

xin xout

Figure 7: A cell and a vertex of signature MSTR.

2. Add two extra vertices u0 and un+1. Assign HW=0

to u0 and HW=2 to un+1, similarly as in Lemma 5.1.

Connect u0 with two parallel edges to the input pair

(etop1,etop2) of C1, j , and likewise connect un+1 to the

input pair (ebtm1,ebtm2) of Cn, j .

Note that the resulting gate D j has 2kn dangling edges,

grouped into the 2k sets Fin
i, j and Fout

i, j for i ∈ [k], each of

which has size n.

We observe that the column D j has a Boolean signature

when considered as a gate. For i ∈ [k], the propagation

condition of cell Ci, j ensures that the assignments for Fin
i, j

and Fout
i, j agree. Furthermore, by construction of the cells

Ci, j for i ∈ [k], if x is a satisfying assignment to D j, then

there are numbers t1, . . . , tk ∈ [n] such that precisely the

first ti edges in Fin
i, j are active, while no other edges are

active. Finally, we can verify that the column D j yields

value 1 on an input x as above iff the set {(i, ti) | i ∈ [k]}
hits the set A j.

To conclude our construction, we connect the m

columns D1, . . . ,Dm to a signature graph Ω. This requires

a slightly cumbersome construction to ensure that each

colorful hitting k-set in (X ,A,k) corresponds to a fixed

number of satisfying assignments in G while preserving

a low cliquewidth. To this end, we “wrap” the cells of

columns by bicliques, as demonstrated in Figure 8 and

specified in the following.

DEFINITION 11. Let (X ,A,k) be an instance to #COLHS

with universes {i} × [n] for i ∈ [k] and sets A1, . . . ,Am.

Without limitation of generality, we may assume that each

A j for j ∈ [m] contains only elements (i,κ) with even

κ ∈ [n]. Proceed as follows to obtain Ω = Ω(X ,A,k):

1. For j ∈ [m], construct the column D j as in Defini-

tion 10. Let Fin
i, j and Fout

i, j for i ∈ [k] denote its sets of

dangling edges.

2. For each i ∈ [k] and j ∈ [m], add four independent

sets I
(t)
i, j of size n, for t ∈ [4], and denote its vertices

by I
(t)
i, j = {a

(t)
i, j,1, . . . ,a

(t)
i, j,n}. Assign the signature HW=1

to these vertices.

3. For κ ∈ [n], connect vertex cκ to a
(1)
i, j,κ and to a

(2)
i, j,κ .

Then connect a
(2)
i, j,κ to a

(3)
i, j,κ .

4. Add all edges between vertices in I
(3)
j and I

(4)
j to

obtain a complete bipartite graph between these sets.

Consider Figure 8 for an example.

5. For 1 ≤ j ≤ m−1, add all edges between vertices in

I
(4)
j and I

(1)
j+1, see also Figure 8.

6. Add two vertices u∗ and v∗.

(a) Delete the independent set I
(1)
1 , so that the

edges in Fin
1,1 ∪ . . .∪Fin

n,1 of the left-most column

become dangling edges. Connect them to u∗
and assign the signature EVEN to u∗.

(b) Delete the independent sets I
(2)
m , I

(3)
m , I

(4)
m , so

that the edges in Fout
1,m ∪ . . .∪Fout

n,m of the right-

most column become dangling edges. Connect

them to v∗ and assign the signature EVEN to v∗.

(c) Finally, as in Section 3, replace u∗ and v∗ by

paths of vertices on EVEN signatures of arity 3.

FACT 6.1. For an instance to #COLHS with k universes

of size n each, and m sets, the signature graph Ω con-

structed above has O(kmn) vertices. Furthermore, all sig-

natures other than HW=1 in it have constant arity.

6.3 Correctness of the signature graph. We prove

that, for Ω = Ω(X ,A,k), the quantity Holant(Ω) counts

colorful hitting sets in (X ,A,k) up to a simple factor.

LEMMA 6.2. Let (X ,A,k) be an instance to #COLHS

with Xi = {i} × [n] for i ∈ [k] and sets A1, . . . ,Am. Let

Ω = Ω(X ,A) be constructed as in Definition 11. Then

Holant(Ω) = (n!)k(m−1) ·#COLHS(X ,A,k).

Proof. Consider the satisfying assignments for Ω. It

follows from Definition 8 that, for each i∈ [k], there exists

1664 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Ci, jI
(4)
i, j−1 I

(1)
i, j I

(2)
i, j I

(3)
i, j I

(4)
i, j I

(1)
i, j+1

Figure 8: The subgraph of G containing the cell Ci, j and its surrounding independent sets

a number xi ∈ [n] such that the first xi dangling edges in

Fin
i,1 and Fout

i,1 are active, while no other edges in these sets

are active. Please recall Figure 8 in the following.

• Since the first xi dangling edges in Fin
i,1 and Fout

i,1 are

active, while no other dangling edges are active, the

following holds: Among the independent set I
(2)
i,1 ,

precisely the first xi vertices are matched by dangling

edges of the cell Ci, j.

• This in turn implies that exactly the last n− xi edges

are active between I
(2)
i,1 and I

(3)
i,1 , so the last n − xi

vertices of I
(3)
i,1 are matched by edges from I

(2)
i,1 to I

(3)
i,1 .

• Consequently, there are xi active edges between I
(3)
i,1

and I
(4)
i,1 . Since their endpoints in I

(3)
i,1 are fixed (to

the first xi vertices, as the last n − xi vertices are

already matched), there are (n)xi
ways of choosing

these active edges. Here, we denote by (n)t the

falling factorial (n)t = (n)(n−1) . . .(n− t +1).

• Finally, there are n−xi active edges between I
(4)
i,1 and

I
(1)
i,2 . The endpoints of these n− xi edges in I

(4)
i,1 are

fixed by the choices in the preceding step, and by the

block property of the cell Ci,2, the endpoints of these

edges in I
(1)
i,2 are fixed to the last n− xi vertices as

well. Hence, there are (n−xi)! ways of choosing the

active edges between I
(4)
i,1 and I

(1)
i,2 . In particular, the

first xi edges among Fin
i,2 are now active. That is, the

value xi was propagated correctly from Ci,1 to Ci,2.

From this initial step, we obtain inductively that, for

satisfying assignment and every i ∈ [k] and j ∈ [m], the

first xi edges in every set Fin
i, j and Fout

i, j are active. We can

thus associate with each satisfying assignment x to Ω the

encoding of a set Sx = {(i,xi) | i ∈ [k]} with |Sx ∩Xi| = 1

for all i ∈ [k].
For a given set S as above, either there is no satisfying

assignment x to Ω with S = Sx (this occurs when at least

one of the column signatures D j yields value 0, which in

turn occurs precisely if there is some set A j that was not

hit by S), or there are precisely

∏
i∈[k]

((n)xi
· (n− xi)!)

m−1 = (n!)k(m−1)

satisfying assignments x to Ω, each having value 1 as all

involved signatures are Boolean. We use here that ∑i xi is

even to ensure that an even number of dangling edges is

active in each column, thus satisfying the paths of EVEN

signatures at the first and last columns. This proves the

lemma.

6.4 Bounding the cliquewidth. Finally, we bound the

cliquewidth of the graph Ω = Ω(X ,A,k) obtained from

an instance (X ,A,k) of counting colorful hitting k-sets

via Definition 11. Let us note that parallel edges (which

appear in Ω) cannot be obtained by clique expressions.

We can however subdivide each parallel edge twice, and

this way obtain a simple graph Ω′ from Ω. If all parallel

edges are singular (which can be verified for Ω), then the

subdivision introduces only O(1) new singleton labels.

LEMMA 6.3. Let (X ,A,k) be an instance for #COLHS

and let Ω = Ω(X ,A,k). Then we can construct in polyno-

mial time a (k+2,O(1))-expression for Ω.

Proof. (Sketch.) We construct the graph Ω column by

column. For this, we use a large forget label κ∗, large

labels κ1, . . . ,κk, and an additional large working label τ .

Furthermore, we use O(1) singleton labels.

To construct column D j, assume that the columns

D1, . . . ,D j−1 have been constructed already, that τ is

empty, and that the label κi for i ∈ [k] contains precisely

the elements in the independent set I
(4)
i, j−1 specified in Def-

inition 11. Then we can construct D j and its independent

sets I
(b)
i, j for i ∈ [k] and b ∈ [4] as follows. Please consider

again Figure 8.

Consider i ∈ [k] fixed for now. For b ∈ [4], let us write

I
(b)
i, j = {a

(b)
i, j,κ | κ ∈ [n]}. For each κ ∈ [n], we perform the

following steps:

1665 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

1. Construct the vertices a
(1)
i, j,κ , a

(2)
i, j,κ and a

(3)
i, j,κ , and the

cell vertex cκ of Ci, j on singleton labels.

2. Connect a
(1)
i, j,κ to all vertices of label κi by means of

the join operation. This adds all edges between a
(1)
i, j,κ

and the independent set I
(4)
i, j−1.

3. Connect cκ to a
(1)
i, j,κ and a

(2)
i, j,κ , and connect a

(2)
i, j,κ to

a
(3)
i, j,κ by means of join operations on their singleton

labels.

4. Relabel a
(3)
i, j,κ from its singleton label to τ . Relabel

a
(1)
i, j,κ , a

(2)
i, j,κ to the forget label κ∗.

5. If κ > 1, connect cκ−1 to cκ . (Here, we assume that

cκ−1 is contained in a singleton label.) Relabel cκ−1

to the forget label κ∗.

So far, we have constructed the cell Ci, j and the in-

dependent sets I
(1)
i, j , I

(2)
i, j and I

(3)
i, j . Our expression contains

precisely the independent set I
(3)
i, j in label τ . To add the

independent set I
(4)
i, j , we proceed as follows:

1. Relabel κi to the forget label κ∗. Note that κi is

empty now.

2. Add the independent set I
(4)
i, j on label κi.

3. Join labels τ and κi so as to add all edges between

I
(3)
i, j and I

(4)
i, j .

4. Relabel τ to the forget label κ∗.

This finishes the construction of a single cell Ci, j and

its independent sets I
(b)
i, j for i ∈ [k] and b ∈ [4]. Repeat

this process for all i ∈ [k], and connect vertically adjacent

cells Ci, j and Ci+1, j to columns by adding edges between

vertices on singleton labels.

6.5 Finishing the proof. By combining Lemmas 6.1,

6.2 and 6.3, we obtain the proof of Theorem 6.1.

Proof. By Lemma 6.1, an algorithm with running time

O(nk−ε) for #COLHS on instances (X ,A,k) with k uni-

verses of size n and m = O(logd(n)) sets for fixed d ∈ N

would refute #SETH. Using Definition 11, we can trans-

form (X ,A,k) to a signature graph Ω such that

1. the value Holant(Ω) allows to recover the solution

#COLHS(X ,A,k) by Lemma 6.2,

2. all signatures appearing in Ω other than HW=1 are

even by Fact 6.1,

3. Ω has O(nmk) = O(n logd n) vertices by Fact 6.1,

4. and there is an expression for Ω with at most k+ 2

large labels and O(1) singleton labels by Lemma 6.3.

In particular, all vertices of signatures other than

HW=1 are singular in this expression.

Together with Theorem 4.1, we then obtain a re-

duction from Holant(Ω) to #PERFMATCH on graphs G′

that admit clique expressions with k + 2 large and O(1)
labels. The theorem also asserts that the size of these

graphs is bounded by O(n logd+2 n). Hence, if there were

an algorithm with running time O(tk−2−ε) for solving

#PERFMATCH on t-vertex graphs G′ that are given to-

gether with a (k,O(1))-expression, then we would obtain

an O((n logd+2 n)k−ε)=O(nk−ε ′) time algorithm for solv-

ing #COLHS, for any ε ′ < ε , thus refuting #SETH.

References

[1] A. Abboud, A. Backurs, and V. V. Williams.

Quadratic-time hardness of LCS and other sequence

similarity measures. FOCS 2015.

[2] A. Abboud and V. V. Williams. Popular conjectures

imply strong lower bounds for dynamic problems.

In FOCS 2014, pages 434–443.

[3] A. Abboud, V. V. Williams, and O. Weimann. Con-

sequences of faster alignment of sequences. In

ICALP 2014, pages 39–51.

[4] A. Backurs and P. Indyk. Edit distance cannot

be computed in strongly subquadratic time (unless

SETH is false). In STOC 2015, pages 51–58.

[5] D. Bienstock. Graph searching, path-width, tree-

width and related problems (a survey). In Reliabil-

ity of computer and communication networks (New

Brunswick, NJ, 1989), volume 5 of DIMACS Ser.

Discrete Math. Theoret. Comput. Sci., pages 33–49.

Amer. Math. Soc., Providence, RI, 1991.

[6] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto.

Fourier meets Möbius: fast subset convolution. In

STOC 2007, pages 67–74.

[7] M. Bläser and H. Dell. Complexity of the cover

polynomial. In ICALP 2007, pages 801–812.

[8] H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Ned-

erlof. Deterministic single exponential time algo-

rithms for connectivity problems parameterized by

treewidth. In ICALP 2013, pages 196–207.

[9] G. Borradaile and H. Le. Optimal dynamic pro-

gram for r-domination problems over tree decom-

positions. CoRR, abs/1502.00716, 2015.

[10] K. Bringmann. Why walking the dog takes time:

Frechet distance has no strongly subquadratic algo-

rithms unless SETH fails. In FOCS 2014, pages

661–670.

[11] K. Bringmann and M. Künnemann. Quadratic con-

ditional lower bounds for string problems and dy-

namic time warping. To appear in FOCS 2015.

1666 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[12] H. Broersma, P. A. Golovach, and V. Patel. Tight

complexity bounds for FPT subgraph problems pa-

rameterized by the clique-width. Theor. Comput.

Sci., 485:69–84, 2013.

[13] J. Cai and V. Choudhary. Valiant’s Holant theo-

rem and matchgate tensors. Theor. Comput. Sci.,

384(1):22–32, 2007.

[14] J. Cai and A. Gorenstein. Matchgates revisited.

Theory of Computing, 10:167–197, 2014.

[15] J. Cai, H. Guo, and T. Williams. The complexity of

counting edge colorings and a dichotomy for some

higher domain Holant problems. In FOCS 2014,

pages 601–610.

[16] J. Cai, S. Huang, and P. Lu. From Holant to

#CSP and back: Dichotomy for Holantc problems.

Algorithmica, 64(3):511–533, 2012.

[17] J. Cai, P. Lu, and M. Xia. Holant problems and

counting CSP. In STOC 2009, pages 715–724.

[18] J. Cai, P. Lu, and M. Xia. Computational complexity

of Holant problems. SIAM J. Comput., 40(4):1101–

1132, 2011.

[19] J. Cai, P. Lu, and M. Xia. Dichotomy for Holant*

problems of Boolean domain. In SODA 2011, pages

1714–1728.

[20] J. Cai, P. Lu, and M. Xia. Dichotomy for Holant*

problems with domain size 3. In SODA 2013, pages

1278–1295.

[21] J.-Y. Cai and P. Lu. Holographic algorithms: From

art to science. In STOC 2007, pages 401–410.

[22] J.-Y. Cai, P. Lu, and M. Xia. Holographic algorithms

by Fibonacci gates and holographic reductions for

hardness. In FOCS 2008, pages 644–653.

[23] C. Calabro and R. Paturi. k-Sat is no harder than

Decision-Unique-k-Sat. In CSR 2009, pages 59–70.

[24] R. H. Chitnis, M. Hajiaghayi, and D. Marx. Tight

bounds for Planar Strongly Connected Steiner Sub-

graph with fixed number of terminals (and exten-

sions). In SODA 2014, pages 1782–1801, 2014.

[25] B. Courcelle. The monadic second-order logic of

graphs I: Recognizable sets of finite graphs. Infor-

mation and Computation, 85:12–75, 1990.

[26] B. Courcelle. The monadic second-order logic of

graphs III: Treewidth, forbidden minors and com-

plexity issues. Informatique Théorique, 26:257–

286, 1992.

[27] B. Courcelle, J. A. Makowsky, and U. Rotics. Lin-

ear time solvable optimization problems on graphs

of bounded clique-width. Theory Comput. Syst.,

33(2):125–150, 2000.

[28] B. Courcelle, J. A. Makowsky, and U. Rotics. On

the fixed parameter complexity of graph enumer-

ation problems definable in monadic second-order

logic. Discrete Applied Mathematics, 108(1-2):23–

52, 2001.

[29] B. Courcelle and S. Olariu. Upper bounds to the

clique width of graphs. Discrete Applied Mathemat-

ics, 101(1-3):77–114, 2000.

[30] R. Curticapean. Block interpolation: A framework

for tight exponential-time counting complexity. In

ICALP 2015, pages 380–392.

[31] R. Curticapean. The simple, little and slow things

count: on parameterized counting complexity. PhD

thesis, Universität des Saarlandes, Postfach 151141,

66041 Saarbrücken, 2015.

[32] R. Curticapean and M. Xia. Parameterizing the

permanent: Genus, apices, minors, evaluation mod

2k. To appear in FOCS 2015.

[33] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Ned-

erlof, Y. Okamoto, R. Paturi, S. Saurabh, and

M. Wahlström. On problems as hard as CNF-SAT.

In CCC 2012, pages 74–84.

[34] M. Cygan, S. Kratsch, and J. Nederlof. Fast hamil-

tonicity checking via bases of perfect matchings. In

STOC 2013, pages 301–310.

[35] M. Cygan, D. Marx, M. Pilipczuk, and M. Pilipczuk.

Hitting forbidden subgraphs in graphs of bounded

treewidth. In MFCS 2014, pages 189–200.

[36] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk,

J. M. M. van Rooij, and J. O. Wojtaszczyk. Solving

connectivity problems parameterized by treewidth in

single exponential time. In FOCS 2011, pages 150–

159.

[37] H. Dell, T. Husfeldt, D. Marx, N. Taslaman, and

M. Wahlen. Exponential time complexity of the per-

manent and the Tutte polynomial. ACM Transac-

tions on Algorithms, 10(4):21:1–21:32, 2014.

[38] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and

D. M. Thilikos. Bidimensional parameters and local

treewidth. SIAM J. Discrete Math., 18(3):501–511,

2004.

1667 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[39] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and

D. M. Thilikos. Fixed-parameter algorithms for

(k,r)-Center in planar graphs and map graphs. ACM

Transactions on Algorithms, 1(1):33–47, 2005.

[40] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi,

and D. M. Thilikos. Subexponential parameterized

algorithms on bounded-genus graphs and H-minor-

free graphs. J. ACM, 52(6):866–893, 2005.

[41] E. D. Demaine and M. Hajiaghayi. The bidimen-

sionality theory and its algorithmic applications.

Comput. J., 51(3):292–302, 2008.

[42] E. D. Demaine and M. Hajiaghayi. Linearity of grid

minors in treewidth with applications through bidi-

mensionality. Combinatorica, 28(1):19–36, 2008.

[43] E. D. Demaine and M. T. Hajiaghayi. Fast algo-

rithms for hard graph problems: Bidimensionality,

minors, and local treewidth. In Graph Drawing,

pages 517–533, 2004.

[44] F. Dorn, F. V. Fomin, D. Lokshtanov, V. Raman, and

S. Saurabh. Beyond bidimensionality: Parameter-

ized subexponential algorithms on directed graphs.

In STACS 2010, pages 251–262, 2010.

[45] F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexpo-

nential parameterized algorithms. Computer Science

Review, 2(1):29–39, 2008.

[46] F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V.

Fomin. Efficient exact algorithms on planar graphs:

Exploiting sphere cut decompositions. Algorith-

mica, 58(3):790–810, 2010.

[47] J. Edmonds. Paths, trees, and flowers. Canad. J.

Math., 17:449–467, 1965.

[48] W. Espelage, F. Gurski, and E. Wanke. How to solve

NP-hard graph problems on clique-width bounded

graphs in polynomial time. In WG 2001, pages 117–

128.

[49] M. R. Fellows, F. A. Rosamond, U. Rotics, and

S. Szeider. Clique-width is NP-complete. SIAM J.

Discrete Math., 23(2):909–939, 2009.

[50] F. V. Fomin, P. A. Golovach, D. Lokshtanov, and

S. Saurabh. Intractability of clique-width parameter-

izations. SIAM J. Comput., 39(5):1941–1956, 2010.

[51] F. V. Fomin, P. A. Golovach, D. Lokshtanov, and

S. Saurabh. Almost optimal lower bounds for prob-

lems parameterized by clique-width. SIAM J. Com-

put., 43(5):1541–1563, 2014.

[52] F. V. Fomin, D. Lokshtanov, V. Raman, and

S. Saurabh. Subexponential algorithms for partial

cover problems. Inf. Process. Lett., 111(16):814–

818, 2011.

[53] F. V. Fomin, D. Lokshtanov, and S. Saurabh. Effi-

cient computation of representative sets with appli-

cations in parameterized and exact algorithms. In

SODA 2014, pages 142–151.

[54] F. V. Fomin and D. M. Thilikos. Dominating sets in

planar graphs: Branch-width and exponential speed-

up. SIAM J. Comput., 36(2):281–309, 2006.

[55] A. Galluccio and M. Loebl. On the theory of Pfaffian

orientations. I. Perfect matchings and permanents.

Electr. J. Comb., 6, 1999.

[56] M. U. Gerber and D. Kobler. Algorithms for vertex-

partitioning problems on graphs with fixed clique-

width. Theor. Comput. Sci., 1-3(299):719–734,

2003.

[57] O. Giménez, P. Hlinený, and M. Noy. Computing

the Tutte polynomial on graphs of bounded clique-

width. SIAM J. Discrete Math., 20(4):932–946,

2006.

[58] B. Godlin, T. Kotek, and J. A. Makowsky. Evalu-

ations of graph polynomials. In WG 2008, pages

183–194.

[59] H. Guo, P. Lu, and L. G. Valiant. The complexity of

symmetric Boolean parity Holant problems. SIAM

J. Comput., 42(1):324–356, 2013.

[60] S. Huang and P. Lu. A dichotomy for real weighted

Holant problems. In CCC 2012, pages 96–106.

[61] R. Impagliazzo and R. Paturi. On the complexity of

k-sat. J. Comput. Syst. Sci., 62(2):367–375, 2001.

[62] R. Impagliazzo, R. Paturi, and F. Zane. Which prob-

lems have strongly exponential complexity? J. Com-

puter and System Sciences, 63(4):512–530, 2001.

[63] P. W. Kasteleyn. The statistics of dimers on a lattice:

I. The number of dimer arrangements on a quadratic

lattice. Physica, 27(12):1209–1225, 1961.

[64] P. W. Kasteleyn. Graph theory and crystal physics.

In Graph Theory and Theoretical Physics, pages 43–

110. Academic Press, London, 1967.

[65] P. N. Klein and D. Marx. Solving Planar k-Terminal

Cut in O(nc
√

k) time. In ICALP 2012 (1), pages 569–

580.

1668 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[66] P. N. Klein and D. Marx. A subexponential param-

eterized algorithm for Subset TSP on planar graphs.

In SODA 2014, pages 1812–1830.

[67] D. Kobler and U. Rotics. Polynomial algorithms for

partitioning problems on graphs with fixed clique-

width (extended abstract). In SODA 2001, pages

468–476.

[68] D. Kobler and U. Rotics. Edge dominating set

and colorings on graphs with fixed clique-width.

Discrete Applied Mathematics, 126(2-3):197–221,

2003.

[69] M. Kowalczyk and J. Cai. Holant problems for

regular graphs with complex edge functions. In

STACS 2010, pages 525–536.

[70] J. M. Landsberg. Tensors: geometry and applica-

tions, volume 128 of Graduate Studies in Mathemat-

ics. American Mathematical Society, Providence,

RI, 2012.

[71] D. Lokshtanov, D. Marx, and S. Saurabh. Known al-

gorithms on graphs on bounded treewidth are prob-

ably optimal. In SODA 2011, pages 777–789.

[72] D. Lokshtanov, D. Marx, and S. Saurabh. Slightly

superexponential parameterized problems. In SODA

2011, pages 760–776.

[73] J. A. Makowsky, U. Rotics, I. Averbouch, and

B. Godlin. Computing graph polynomials on graphs

of bounded clique-width. In WG 2006, pages 191–

204.

[74] V. Y. Pan. Simple multivariate polynomial multipli-

cation. J. Symb. Comput., 18(3):183–186, 1994.

[75] M. Patrascu and R. Williams. On the possibility of

faster SAT algorithms. In SODA 2010, pages 1065–

1075.

[76] M. Pilipczuk. Problems parameterized by treewidth

tractable in single exponential time: A logical ap-

proach. In MFCS 2011, pages 520–531.

[77] M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J.

van Leeuwen. Subexponential-time parameterized

algorithm for Steiner Tree on planar graphs. In

STACS 2013, pages 353–364.

[78] M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J.

van Leeuwen. Network sparsification for Steiner

problems on planar and bounded-genus graphs. In

FOCS 2014, pages 276–285.

[79] M. Rao. MSOL partitioning problems on graphs

of bounded treewidth and clique-width. Theor.

Comput. Sci., 377(1-3):260–267, 2007.

[80] T. Regge and R. Zecchina. Combinatorial and topo-

logical approach to the 3d ising model. Journal of

Physics A: Mathematical and General, 33(4):741–

761, 2000.

[81] K. Suchan and I. Todinca. On powers of graphs

of bounded NLC-width (clique-width). Discrete

Applied Mathematics, 155(14):1885–1893, 2007.

[82] H. N. V. Temperley and M. E. Fisher. Dimer problem

in statistical mechanics-an exact result. Philosophi-

cal Magazine, 6(68):1061–1063, 1961.

[83] G. Tesler. Matchings in graphs on non-orientable

surfaces. J. Comb. Theory, Ser. B, 78(2):198–231,

2000.

[84] D. M. Thilikos. Fast sub-exponential algorithms and

compactness in planar graphs. In ESA 2011, pages

358–369.

[85] L. G. Valiant. The complexity of computing the

permanent. Theor. Comput. Sci., 8:189–201, 1979.

[86] L. G. Valiant. Holographic algorithms (extended

abstract). FOCS 2004, pages 306–315.

[87] L. G. Valiant. Holographic algorithms. SIAM J.

Comput., 37(5):1565–1594, 2008.

[88] J. M. M. van Rooij, H. L. Bodlaender, and P. Ross-

manith. Dynamic programming on tree decomposi-

tions using generalised fast subset convolution. In

ESA 2009, pages 566–577.

[89] E. Wanke. k-NLC graphs and polynomial algo-

rithms. Discrete Applied Mathematics, 54(2-3):251–

266, 1994.

[90] R. Williams and H. Yu. Finding orthogonal vectors

in discrete structures. In SODA 2014, pages 1867–

1877.

1669 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

