
JoCG 9(2), 47–80, 2018 47

Journal of Computational Geometry jocg.org

FINE-GRAINED COMPLEXITY OF COLORING UNIT DISKS AND BALLS∗

Csaba Biró,†Édouard Bonnet,‡Dániel Marx,§Tillmann Miltzow,¶and Paweł Rzążewski‖

Abstract. On planar graphs, many classic algorithmic problems enjoy a certain “square
root phenomenon” and can be solved significantly faster than what is known to be possible
on general graphs: for example, Independent Set, 3-Coloring, Hamiltonian Cycle,
Dominating Set can be solved in time 2O(

√
n) on an n-vertex planar graph, while no 2o(n)

algorithms exist for general graphs, assuming the Exponential Time Hypothesis (ETH).
The square root in the exponent seems to be best possible for planar graphs: assuming the
ETH, the running time for these problems cannot be improved to 2o(

√
n). In some cases, a

similar speedup can be obtained for 2-dimensional geometric problems, for example, there
are 2O(

√
n logn) time algorithms for Independent Set on unit disk graphs or for TSP on

2-dimensional point sets.

In this paper, we explore whether such a speedup is possible for geometric coloring
problems. On the one hand, geometric objects can behave similarly to planar graphs: 3-
Coloring can be solved in time 2O(

√
n) on the intersection graph of n disks in the plane and,

assuming the ETH, there is no such algorithm with running time 2o(
√
n). On the other hand,

if the number ` of colors is part of the input, then no such speedup is possible: Coloring the
intersection graph of n unit disks with ` colors cannot be solved in time 2o(n), assuming the
ETH. More precisely, we exhibit a smooth increase of complexity as the number ` of colors
increases: If we restrict the number of colors to ` = Θ(nα) for some 0 6 α 6 1, then the
problem of coloring the intersection graph of n disks with ` colors

• can be solved in time exp
(
O(n

1+α
2 log n)

)
= exp

(
O(
√
n` log n)

)
, and

• cannot be solved in time exp
(
o(n

1+α
2)
)

= exp
(
o(
√
n`)
)
, even on unit disks, unless

the ETH fails.

More generally, we consider the problem of coloring d-dimensional balls in the Eu-
clidean space and obtain analogous results showing that the problem

∗Supported by the European Research Council (ERC) Starting Grant PARAMTIGHT (no. 280152) and
Consolidator Grant SYSTEMATICGRAPH (no. 725978).
†Department of Mathematics, University of Louisville, csaba.biro@louisville.edu
‡Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France,

edouard.bonnet@dauphine.fr
§Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI),

dmarx@cs.bme.hu
¶Université libre de Bruxelles (ULB), Brussels, Belgium, t.miltzow@gmail.com
‖Faculty of Mathematics and Information Science, Warsaw University of Technology,

p.rzazewski@mini.pw.edu.pl

http://jocg.org/

JoCG 9(2), 47–80, 2018 48

Journal of Computational Geometry jocg.org

• can be solved in time exp
(
O(n

d−1+α
d log n)

)
= exp

(
O(n1−1/d`1/d log n)

)
, and

• cannot be solved in time exp
(
O(n

d−1+α
d
−ε)
)

= exp
(
O(n1−1/d−ε`1/d)

)
for any ε > 0,

even for unit balls, unless the ETH fails.

Finally, we prove that fatness is crucial to obtain subexponential algorithms for
coloring. We show that existence of an algorithm coloring an intersection graph of segments
using a constant number of colors in time 2o(n) already refutes the ETH.

1 Introduction

There are many examples of 2-dimensional geometric problems that are NP-hard, but can
be solved significantly faster than the general case of the problem: for example, there are
2O(
√
n logn) time algorithms for TSP on 2-dimensional point sets or for Independent Set

on the intersection graph of unit disks in the plane [1, 23, 30], while only 2O(n) time algo-
rithms are known for these problems on general metrics or on arbitrary graphs. There is
evidence that these running times are essentially best possible: under the Exponential Time
Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [19], the 2O(

√
n logn) time algorithms

for these 2-dimensional problems cannot be improved to 2o(
√
n), and the 2O(n) algorithms

for the general case cannot be improved to 2o(n). Thus running times with a square root in
the exponent seems to be the natural complexity behavior of many 2-dimensional geometric
problems. There is a similar “square root phenomenon” for planar graphs, where running
times of the form 2O(

√
n), 2O(

√
k) · nO(1), or nO(

√
k) are known for a number of problems

[4, 7–15, 17, 18, 20, 21, 23, 27, 28, 31]. More generally, for d-dimensional geometric prob-
lems, running times of the form 2O(n1−1/d) or nO(k1−1/d) appear naturally, and Marx and
Sidiropoulos [24] showed that, assuming the ETH, this form of running time is essentially
best possible for some problems.

In this paper, we explore whether such a speedup is possible for geometric coloring
problems. Deciding whether an n-vertex graph has an `-coloring can be done in time `O(n)

by brute force, or in time 2O(n) using dynamic programming. On planar graphs, we can
decide 3-colorability significantly faster in time 2O(

√
n), for example, by observing that planar

graphs have treewidth O(
√
n). Let us consider now the problem of coloring the intersection

graph of a set of disks in the 2-dimensional plane, that is, assigning a color to each disk
such that if two disks intersect, then they receive different colors. For a constant number of
colors, geometric objects can behave similarly to planar graphs: 3-Coloring can be solved
in time 2O(

√
n) on the intersection graph of n disks in the plane and, assuming the ETH,

there is no such algorithm with running time 2o(
√
n). However, while every planar graph

is 4-colorable, disks graphs can contain arbitrary large cliques, and hence `-colorability is
a meaningful question for larger, non-constant, values of ` as well. We show that if the
number ` of colors is part of the input and can be up to Θ(n), then, surprisingly, no speedup
is possible: Coloring the intersection graph of n disks with ` colors cannot be solved in
time 2o(n), assuming the ETH. Thus we understand the complexity of the problem when
the number of colors is a constant or Θ(n), but what exactly happens between these two

http://jocg.org/

JoCG 9(2), 47–80, 2018 49

Journal of Computational Geometry jocg.org

extremes? Our main 2-dimensional result exhibits a smooth increase of complexity as the
number ` of colors increases.

Theorem 1. For any fixed 0 6 α 6 1, the problem of coloring the intersection graph of n
disks with ` = Θ(nα) colors

• can be solved in time 2O(n
1+α
2 logn) = 2O(

√
n` logn), and

• cannot be solved in time 2o(n
1+α
2) = 2o(

√
n`), even for unit disks, unless the ETH fails.

Let us remark that when we express the running time as a function of two parameters
(number n of disks and number ` of colors) it is not obvious what we mean by claiming that a
running time is “best possible.” In the statement of Theorem 1, we follow Fomin et al. [16],
who studied the complexity of a two-parameter clustering problem in a similar way: We
restrict the parameter ` to be Θ(nα) for some fixed α, and determine the complexity under
this restriction as a univariate function of n.

The proofs of both statements in Theorem 1 are not very specific to disks and can be
easily adapted to, say, axis-parallel squares or other fat objects. However, it seems that the
requirement of fatness is essential for this type of complexity behavior as, for example, the
coloring of the intersection graphs of line segments does not admit any speedup compared
to the 2O(n) algorithm, even for a constant number of colors.

Theorem 2. There is no 2o(n) time algorithm for 6-Coloring the intersection graph of
line segments in the plane, unless the ETH fails.

We actually show a stronger statement that proves the lower bound even if the
segments have only two directions. Let us mention that very recently Theorem 2 was
strengthened by a subset of authors, who modified the argument to show that the same lower
bound holds even for 4-Coloring, while for 3-Coloring there exists a subexponential
algorithm [2]. We include the proof of Theorem 2 for the sake of completeness.

We observe that both hardness proofs crucially use that the segments can be of
different (non-constant) lengths. For unit segments, only a weaker lower bound was shown
in [2]: assuming the ETH, there is no algorithm for 4-Coloring an intersection graph of
unit segments in time 2o(n

2/3). The exact complexity of coloring the intersection graphs of
unit line segments remains open.

How does the complexity change if we look at the generalization of the coloring
problem into higher dimensions? It is known for some problems that if we generalize the
problem from two dimensions to d dimensions, then the square root in the exponent of
the running time changes to a 1 − 1/d power, which makes the running time closer and
closer to the running time of the brute force as d increases [24]. This may suggest that the
d-dimensional generalization of Theorem 1 should have (n`)1−1/d in the exponent instead
of
√
n`. Actually, this is not exactly what happens:1 the correct exponent appears to be

1The astute reader can quickly realize that 2O((n`)1−1/d) is certainly not the correct answer when, say,
` = Θ(n) and d = 3: then 2O((n`)1−1/d) = 2O(n4/3) is worse than the running time 2O(n) possible even for
general graphs!

http://jocg.org/

JoCG 9(2), 47–80, 2018 50

Journal of Computational Geometry jocg.org

n1−1/d times `1/d. That is, as d increases, the running time becomes less and less sensitive
to the number of colors and approaches 2O(n), even for constant number of colors.

Theorem 3. For any fixed 0 6 α 6 1 and dimension d > 2, the problem of coloring the
intersection graph of n balls in the d-dimensional Euclidean space with ` = Θ(nα) colors

• can be solved in time 2
O

(
n
d−1+α

d logn

)
= 2O(n1−1/d`1/d logn), and

• cannot be solved in time 2
O

(
n
d−1+α

d
−ε

)
for any ε > 0, even for unit balls, unless the

ETH fails.

Note that the lower bound of Theorem 3 is slightly weaker than the lower bound
of Theorem 1: we only prove that the exponent of n cannot be improved by any positive
ε > 0.

Techniques. The upper bounds of Theorems 1 and 3 follow fairly easily using
standard techniques. Clearly, the problem of coloring disks with ` colors is non-trivial only
if every point of the plane is contained in at most ` disks: otherwise the intersection graph
would contain a clique of size larger than ` and we would immediately know that there is no
`-coloring. On the other hand, if every point is contained in at most ` of the n disks, then
it is known that there is a balanced separator of size O(

√
n`) [26, 29, 30]. By finding such a

separator and trying every possible coloring on the disks of the separator, we can branch into
`O(
√
n`) smaller instances (here it is convenient to generalize the problem into the list coloring

problem, where certain colors are forbidden on certain disks). This recursive procedure has
the running time claimed in Theorem 1. We can use higher-dimensional separation theorems
and a similar approach to prove the upper bound of Theorem 3. This part is explained in
detail in Section 2.

For the lower bound of Theorem 1, the first observation is that instances with the
following structure seem to be the hardest: the set of disks consists of g2 groups forming a
g × g-grid and each group consists of ` pairwise intersecting disks such that disks in group
(i, j) can intersect disks only from those other groups that are adjacent to (i, j) in the g×g-
grid. Note that this instance has n = g2` disks. As a sanity check, let us observe that
the g` disks in any given row have `g` possible different colorings, hence we can solve the
problem by a dynamic programming algorithm that sweeps the instance row by row in time
in 2O(g` log `) = 2O(

√
n` log `), which is consistent with the upper bound of Theorem 1. We

introduce the Partial d-grid Coloring problem as a slight generalization of such grid-like
instances where some of the g × g groups can be missing, see Figure 1 for an illustration.

To prove that instances of this form cannot be solved significantly faster, we reduce
from a restricted version of satisfiability where g2k variables are partitioned into g2 groups of
size k each such that these groups form a g × g-grid and there are two types of constraints:
clauses of size at most 3 where each variable comes from the same group and equality
constraints forcing two variables from two adjacent groups to be equal. It is not very
difficult to show that any 3-SAT instance with O(gk) variables and O(gk) clauses can be
embedded into such a problem, hence the ETH implies that the problem cannot be solved in

http://jocg.org/

JoCG 9(2), 47–80, 2018 51

Journal of Computational Geometry jocg.org

Figure 1: A grid of disks.

time 2o(gk). We reduce such instances of 3-SAT to the coloring problem by representing each
group of k variables with a group of ` = O(k) disks and make the following correspondence
between truth assignments and colorings: if the i-th variable of the group is true, then we
represent it by giving color 2i− 1 to the (2i− 1)-st disk and color 2i to the 2i-th disk, and
we represent false by swapping these two colors. Then we implement gadgets that enforce
the meaning of the clauses and the equality constraints. This way, we create an equivalent
instance with O(g2) groups of ` = O(k) disks in each group, hence an algorithm with running
time 2o(g`) = 2o(gk) would violate ETH, which is what we wanted to show.

A technical issue that arises in the reduction is that we want to consistently assign the
same meaning to the colors everywhere throughout the created instance (e.g., in each group,
we want to use colors {2i−1, 2i} on the (2i−1)-st and 2i-th disks of the group). This would
be easy to do in the more general list coloring version of the problem where it is possible
to distinguish colors using the lists. However, the colors are completely interchangeable in
the ordinary coloring problem, for example, we can arbitrarily permute the colors in any
proper coloring. An obvious approach is to use one of the groups as reference and define the
color appearing on the i-th disk of the group to be interpreted as the i-th color. Then the
challenge is to propagate this reference coloring to each and every gadget of the constructed
instance. This may seem impossible at first: the “wires” propagating the reference coloring
would need to cross the “wires” propagating streams of information between the gadgets. We
get around this problem by splitting the reference coloring into two halves and propagating
them separately.

The d-dimensional lower bound of Theorem 3 goes along the same lines, but we
first prove a lower bound for a d-dimensional version of 3-SAT, where there are gd groups
of variables of size k each, arranged into a g × · · · × g-grid. Based on earlier results by
Marx and Sidiropoulos [24], we prove an almost tight lower bound for this d-dimensional
3-SAT by embedding a 3-SAT instance with roughly gd−1k variables and clauses into the
d-dimensional g × · · · × g-grid. Then the reduction from this problem to coloring unit balls
in d-dimensional space is very similar to the 2-dimensional case.

http://jocg.org/

JoCG 9(2), 47–80, 2018 52

Journal of Computational Geometry jocg.org

2 Algorithms

The ply (also called thickness) of a family of sets is the maximum number of sets that cover
a single point. Fix d > 2 and let S be a family of n d-dimensional convex objects. Note
that the ply of S is at most the chromatic number of the intersection graph of S. Indeed,
the subfamily of objects covering a same point forms a clique.

The diameter of a geometric object S is the supremum of the distance between
any pair of points of S. The width of S is the infimum of distances between two parallel
hyperplanes H1, H2, such that S lies between H1 and H2. A family S of geometric objects
is B-fat if for each S ∈ S it holds that

diameter(S)

width(S)
6 B.

The theorem below is a special case of Theorem 26 in the manuscript of Smith and
Wormald [29], which was informally announced in the extended abstract presented at FOCS
1998 [30].

Theorem 4 (Smith, Wormald [29]). For every d > 1 and B > 0, there exists a constant
c = c(d,B), such that for every B-fat collection S of n d-dimensional convex sets with ply
at most `, there exists a d-dimensional sphere Q, such that:

(i) at most d+1
d+2 n elements of S are entirely inside Q,

(ii) at most d+1
d+2 n elements of S are entirely outside Q,

(iii) at most cn1−1/d`1/d elements of S intersect Q.

Now, using a fairly standard divide-and-conquer approach we prove the main result
of this section, which implies the upper bounds in Theorems 1 and 3.

Theorem 5. Let G be an intersection graph of a B-fat collection S = {S1, S2, . . . , Sn} of
n d-dimensional convex objects. For any integer ` 6 n and lists L : S → 2[`], we can decide
whether G can be properly colored with lists L in time nO(n1−1/d`1/d) = 2O(n1−1/d`1/d logn),
using polynomial space.

Proof. First, we will exhaustively check if G contains an (`+ 1)-clique. If so, we can imme-
diately terminate, as ` colors are clearly not sufficient to color G. We can do it in time:

n`+1 · nO(1) = n` · nO(1) = 2` logn · nO(1) = 2O(n1−1/d`1/d log `).

Indeed, ` log n 6 n1−1/d`1/d log ` is equivalent to `1−1/d/log ` 6 n1−1/d/logn; which holds when
n is sufficiently large (n > 8) since ` 6 n and x→ x1−1/d/log x is increasing for x > 8.

From now on, we can assume that there is no (`+ 1)-clique in G and thus the ply of
S is at most `. By Theorem 4, there exists a set Q ⊆ S of at most cn1−1/d`1/d objects (or,
equivalently, a subset of vertices of G) such that S \Q is split into two parts S1,S2, each of
size at most d+1/d+2 n and such that no object of S1 intersects an object of S2.

http://jocg.org/

JoCG 9(2), 47–80, 2018 53

Journal of Computational Geometry jocg.org

We can find such a set in an exhaustive way in time:

ncn
1−1/d`1/d · nO(1) = 2O(n1−1/d`1/d logn).

Now, for every coloring of Q with lists L, we can try to extend this coloring to S1 and S2

recursively, using the standard divide-and-conquer approach (note that the lists of objects
in S \Q are updated according to the coloring of Q). This gives us the total running time

T (n) 6 2O(n1−1/d`1/d log `) · 2 T
(
d+ 1

d+ 2
n

)
.

Solving this recursion we obtain the running time 2O(n1−1/d`1/d log `).

Thus, the total running time of the algorithm is 2O(n1−1/d`1/d logn). Observe that the
space used is polynomial.

Since finding a proper geometric representation of many types of intersection graphs
is NP-hard [32] (or even ∃R-hard [3]), we are often interested in designing robust algorithms.
An algorithm is robust if its input is a graph (without a geometric representation), and the
algorithm either gives a correct answer, or reports that the input graph is not an intersection
graph.

We point out that the above coloring procedure is robust. If G is not an intersection
graph of fat convex objects, then the algorithm either gives the correct answer (if G happens
to have appropriate separators), or we can correctly report that the input is invalid (the
exhaustive search step fails to find any separator).

Note that the running time could be slightly improved to 2O(n1−1/d`1/d log `) should
we have a faster algorithm for finding separators. It is worth noting that such (polynomial)
algorithms exist for d-dimensional balls, cubes, and many other shapes [26, 30]. In particular,
we obtain the following result for disks in a plane.

Corollary 6. Given a set S of n disks in the plane, the existence of a `-coloring of an
intersection graph of S can be decided in time 2O(

√
n` log `), using polynomial space.

3 Intermediate problems

In this section, we introduce two technical problems, which will serve as an intermediate
step in our hardness reductions. Let us start with some notation and definitions. For an
integer n, we denote by [n] the set {1, 2, . . . , n}. For a set S, we denote by 2S the family
of all subsets of S. For a fixed dimension d and i ∈ [d], we denote by ei the d-dimensional
vector, whose i-th coordinate is equal to 1 and all remaining coordinates are equal to 0. For
a point p ∈ Nd and i ∈ [d], by p[i] we denote the i-th coordinate of p, i.e. p · ei, where ‘·’
denotes the inner product of vectors. For two positive integers g, d, we denote by R[g, d] the
d-dimensional g-grid, i.e., a graph whose vertices are all vectors from [g]d, and two vertices
are adjacent if they differ on exactly one coordinate, and exactly by one (on that coordinate).
In other words, a and a′ are adjacent if a = a′ ± ei for some i ∈ [d].

http://jocg.org/

JoCG 9(2), 47–80, 2018 54

Journal of Computational Geometry jocg.org

We will often refer to vertices of a grid as cells. Moreover, if the value of g is either
clear from the context or unimportant, we will call R[g, d] simply a d-dimensional grid.

The first problem is called d-grid 3-Sat and can be seen as a 3-Sat embedded in
a grid.

Problem: d-grid 3-Sat

Input: A d-dimensional grid G = R[g, d], a positive integer k, a function ζ : v ∈
V (G) 7→ {v1, v2, . . . , vk} mapping each cell v to k fresh boolean variables, and a set C of
constraints of two kinds:

clause constraints: for a cell v, a set C(v) of pairwise variable-disjoint disjunctions of
at most 3 literals on ζ(v);

equality constraints: for adjacent cells v and w, a set C(v, w) of pairwise variable-
disjoint constraints of the form vi = wj (with i, j ∈ [k]).

Question: Is there an assignment of the variables such that all constraints are satisfied?

Not all variables need to appear in some constraint.

The second technical problem is called Partial d-grid Coloring.

Problem: Partial d-grid Coloring

Input: An induced subgraph G of the d-dimensional grid R[g, d], a positive integer `,
and a function ρ : v ∈ V (G) 7→ {pv1, pv2, . . . , pv`} ∈ ([`]d)` mapping each cell v to a set of
` points in [`]d. It is possible that some points pvi and pvj are superimposed, i.e., they
have exactly the same coordinates – they are still counted as different points.
Question: Is there an `-coloring of all the points such that:

• two points in the same cell get different colors;

• if v and w are adjacent in G with w = v + ei (for some i ∈ [d]), and p ∈ ρ(v) and
q ∈ ρ(w) receive the same color, then p[i] 6 q[i]?

The above definition is fairly technical but its underlying idea is simple. Let us first
think of Partial 2-grid Coloring, the case when d = 2. We want to see a grid of unit
disks (see Figure 1) as the centers of the disks in a discretized and normalized space (say,
inner grids) where adjacencies between two contiguous cells (of the outer grid) is determined
by exactly one coordinate within the inner grids. The forthcoming Section 4.1 and Figure 2
show the direct correspondence between a grid of unit disks and an instance of Partial
2-grid Coloring.

http://jocg.org/

JoCG 9(2), 47–80, 2018 55

Journal of Computational Geometry jocg.org

4 Two-Dimensional Lower Bounds

In this section, we discuss how to obtain a lower bound for the complexity of coloring unit
disk graphs. We do it using a three-step reduction and the intermediate problems introduced
in the previous section. Thanks to introducing these two intermediate steps, our construction
is easy to generalize to higher dimensions (see Section 5).

We start with the last step of the reduction chain as it is the most direct. Furthermore
it explains and motivates the introduction of Partial d-grid Coloring, or rather here
Partial 2-grid Coloring, its special case in dimension 2. We will use the following
theorem, whose proof can be found in Section 4.3.

Theorem 8. For any 0 6 α 6 1, there is no 2o(
√
n`) algorithm solving Partial 2-grid

Coloring on a total of n points and ` = Θ(nα) points in each cell (that is n/` cells), unless
the ETH fails.

4.1 Reduction from Partial 2-grid Coloring to `-Coloring of unit disk graphs

Proof of the third and last step of the lower bound of Theorem 1. There is a transparent re-
duction from Partial 2-grid Coloring to `-Coloring on unit disk graphs. We follow,
for instance, Theorems 1 and 3 in [22]. In that paper, a reduction is given from a problem
called Grid Tiling to Independent Set on unit disk graphs. The same reduction applies
from Partial 2-grid Coloring, which can be seen as a coloring variant of Grid Tiling,
to `-Coloring on unit disk graphs.

Consider an instance of Partial 2-grid Coloring with n points in total, whose
points are are in [`]2 in each cell. One turns every point (x, y) ∈ [`]2 of every cell at position
(i, j) into a disk centered at ((2`2 + 0.1)i + x, (2`2 + 0.1)j + y). The common radius of all
the disks is set to `2, and we set the number of colors to ` (see Figure 2). This way, the fact
that two disks coming from adjacent cells along the x-axis (resp. y-axis) intersect is only
determined by their x-coordinate (resp. y-coordinate). Indeed, the disks are big enough
compared to the cells containing the points so that in the region where the disks of adjacent
cells may intersect, their boundaries are close to horizontal or vertical straight lines (see the
red rectangle in Figure 2). A formal explanation is detailed in Theorem 14.34 of [6]. Now
Theorem 1 follows directly from Theorem 8.

Remark 1. Note that we do not actually require that the relation of the number n of disks
and the number ` of colors is ` = Θ(nα) for some α. The claim holds also for other functions
` = `(n) = O(n), e.g. ` = Θ(log n).

Then we detail the first step of the reduction chain.

4.2 Reduction from 3-Sat to 2-grid 3-Sat

Theorem 7. For any 0 6 α 6 1 there is no algorithm solving 2-grid 3-Sat with n variables

in total and k = Θ(nα) variables per cell in time 2o(
√
nk) = 2

o

(
n

1+α
2

)
, unless the ETH fails.

http://jocg.org/

JoCG 9(2), 47–80, 2018 56

Journal of Computational Geometry jocg.org

Figure 2: Illustration of how the disks are spaced out. In the region marked by the red
rectangle, where disks of two adjacent cells may intersect, the boundary of each disk is close
to a horizontal straight line. So, two disks do not intersect if and only if the y-coordinate
of the center in the top cell is at most the y-coordinate of the center in the bottom cell.

Proof. The ETH together with the Sparsification Lemma [19] implies that there is no
2o(N+M) algorithm to decide satisfiability of a 3-Sat formula with N variables and M
clauses.

Let Φ be a 3-Sat formula with the variable set V ar and the clause set C. There
is a simple polynomial-time procedure to modify Φ so that each variable appears at most
3 times. Indeed, first note that we can assume that no variable appears more than once
within a clause. For each variable v appearing ∆ > 3 times, we introduce ∆ new variables
v1, v2, . . . , v∆ and substitute each appearance of v with a different vi. We also add clauses
(v1 ∨ ¬v2), (v2 ∨ ¬v3), . . . , (v∆−1 ∨ ¬v∆), (v∆ ∨ ¬v1) to C. This chain of clauses enforces
that all vi’s have the same truth-value in any satisfying assignment. Note that each newly
introduced variable has exactly 3 occurrences. We repeat this until there are no variables
with more than 3 occurrences. Thus we introduced at most 3|C| new variables and 3|C|
new clauses. So we can assume that each variable of Φ appears at most three times, let
N := |V ar| and M := |C|. Clearly M = Θ(N).

We choose k = Θ(N2α/(1+α)) (actual constants will follow from the description
below). Now we want to cover the set of variables by g = 7 d6M/ke = Θ(k(1−α)/2α) groups
V1, . . . ,Vg such that the following conditions hold:

• for each clause C, there exists a group Vi, such that all variables of C belong to Vi;
we say this group contains the clause C;

• if two clauses C,C ′ share a variable, then they are contained in different groups;

http://jocg.org/

JoCG 9(2), 47–80, 2018 57

Journal of Computational Geometry jocg.org

• each group contains at most k/2 variables.

To form these groups, we first construct a partition P0 of the clauses into g′ = g/7 = d6M/ke
groups of size at most bM/g′c 6 k/6. As each variable occurs in at most three clauses, and
thus every clause shares some variable with at most six other clauses, we can easily define a
second refined partition P1 of the clauses into g = 7g′ groups, such that no two clauses that
share a variable are contained in the same group. We denote these groups by C1, . . . , Cg.
Now, we set Vi to be exactly the set of variables contained in the set of clauses Ci. As each
clause has at most three variables, each group Vi contains at most 3 · k/6 = k/2 variables.
Now, we construct an instance I(Φ) of 2-grid 3-Sat. Let G = R[g, 2] with k variables in

V1

V2

V3

V4

V5

V1 V2 V3 V4 V5

x

x

x

x x x

Figure 3: Allocation of the variables. Each color corresponds to a set of variables. Note
that for any variable x, the set of cells containing x is connected.

each cell. Note that the number of variables in I(Φ) is g2k = Θ(k1/α).

The cell (i, j) should contain the information about truth assignment of Vi ∪ Vj .
Note that if a variable appears in both Vi and Vj , it will be represented just once in the
cell (i, j). As each group Vi contains at most k/2 variables, each cell has enough space to
accommodate all this information. To make all cells contain exactly k variables, we can
add some dummy variables, which will not appear in any constraints. The total number
of dummy variables added is at most g2 · k, so the total number n of variables is Θ(k1/α).
Observe that the variable group Vi is contained exactly in the i-th row and i-th column of
G. Now, we add each clause C ∈ Ci to the set of clause constraints of the cell (i, i). Finally,
we need to make sure that all copies of a single variable have the same truth assignment.
Observe that for each variable x the cells containing x form a connected set (see Fig. 3).
Therefore the consistency can be ensured using equality constraints. Note that since no
variable appears more than once in a single cell, the equality constraints related to each
edge of G are variable-disjoint.

It is easy to see that Φ is satisfiable if and only if I(Φ) is satisfiable. Furthermore
N = O(gk) = O(

√
g2k2) = O(

√
nk). This implies that a 2o(

√
nk) algorithm for 2-grid

3-Sat refutes the ETH.

http://jocg.org/

JoCG 9(2), 47–80, 2018 58

Journal of Computational Geometry jocg.org

4.3 Reduction from 2-grid 3-Sat to Partial 2-grid Coloring

The next step is reducing 2-grid 3-Sat to Partial 2-grid Coloring. This step is the
most important part of the proof.

Theorem 8. For any 0 6 α 6 1, there is no 2o(
√
n`) algorithm solving Partial 2-grid

Coloring on a total of n points and ` = Θ(nα) points in each cell (that is n/` cells), unless
the ETH fails.

Proof. We present a reduction from 2-grid 3-Sat to Partial 2-grid Coloring. Let
I = (G, k, ζ, C) be an instance of 2-grid 3-Sat, where G = R[g, 2] and each cell contains
k variables. We think of G as embedded in the plane in a natural way, with edges being
horizontal or vertical segments. We construct an equivalent instance J = (F, `, ρ) of Partial
2-grid Coloring with |V (F)| = Θ(|V (G)|) = Θ(g2) and ` := 4k points per cell, where F
is an induced subgraph of R[g′, 2] with g′ = Θ(g).

First, we will explain the most basic building blocks of our construction, i.e., standard
cells, reference cell, variable-assignment cells, local reference cells, and wires. Then we are
ready to give an overview of the whole reduction. We finish with an elaborate explanation
of more complicated gadgets and proof of their correctness.

Standard cells. A standard cell is a cell where the points p1, . . . , p` are on the main
diagonal, that is pi = (i, i) for every i ∈ [`] (see cells A and B of Figure 5a). When we
talk about the ordering of the points in a standard cell, we always mean the left-to-right (or
equivalently, top-to-bottom) ordering. Standard cells will be used for the basic pieces of the
construction, i.e., variable-assignment cells, local reference cells, and wires (see below).

Reference coloring. Later in the construction we will choose one standard cell R̄, which
will be given a special function. We will refer to the coloring of R̄ as the reference coloring.
For each i ∈ [`], we define the color i to be the color used for the point pi in R̄. Now, saying
that a point somewhere else has color i, has an absolute meaning; it means using the same
color as used for point pi in R̄.

Variable-assignment cells. For each cell v = (i, j) ∈ V (G), we introduce in F a standard
cell A(v) = (δi, δj), where δ is a large constant (the coordinates of cells refer to their position
in R[g′, 2], which is a supergraph of F). The cells A(v) for v ∈ V (G) are responsible
for encoding the truth assignment of variables in ζ(v). Therefore we call them variable-
assignment cells. We will partition variable-assignment cells into two types. The cell A(v)
for v = (i, j) of I is called even if i+ j is even. Otherwise A(v) is odd. Note that if v and w
are adjacent cells in I, then A(v) and A(w) have different parity.

As each variable-assignment cell contains ` = 4k points, there are `! = 2O(` log `)

ways to color these points with ` colors. We will only make use of 2`/4 = 2k colorings
among those. In our construction, we will make sure that each variable-assignment cell
receives one of the standard colorings. If the cell A(v) is even, the coloring ϕ of A(v) is
standard if {ϕ(p2i−1), ϕ(p2i)} = {2i − 1, 2i} for i ∈ [k] and ϕ(pi) = i for i ∈ [4k] \ [2k]. If
the cell A(v) is odd, its standard colorings ϕ are the ones with ϕ(pi) = i for i ∈ [2k] and
{ϕ(p2i−1), ϕ(p2i)} = {2i − 1, 2i} for i ∈ [2k] \ [k]. The choice of the particular standard
coloring for the points in A(v) defines the actual assignment of variables in ζ(v). If A(v) is

http://jocg.org/

JoCG 9(2), 47–80, 2018 59

Journal of Computational Geometry jocg.org

A1
2
4
3

5
6
7
8

x1

x2

bottom of
reference
coloring

B

y1

y2

top of
reference
coloring

1
2
3
4

6
5

7
8

Figure 4: Variable-assignment cells of even parity contain the bottom half of the reference
coloring as in cell A and cells of odd parity contain the top part of the reference coloring,
as in cell B.

even, then for each i ∈ [k], we interpret the coloring in the following way:

p2i−1 7→ 2i− 1 , p2i 7→ 2i as setting the variable vi to true;
p2i−1 7→ 2i , p2i 7→ 2i− 1 as setting the variable vi to false.

If A(v) is odd, for each i ∈ [k], we interpret it in that way:

p2k+2i−1 7→ 2i− 1 , p2k+2i 7→ 2i as setting the variable vi to true;
p2k+2i−1 7→ 2i , p2k+2i 7→ 2i− 1 as setting the variable vi to false.

Observe that in even (odd, respectively) cells A(v) the assignment of variables is
only encoded by the coloring of the first (last, respectively) 2k points in A(v). The colors of
the remaining points are exactly the same as in the reference coloring, so each cell contains
exactly one half of the reference coloring.

Local reference cells. For all i, j ∈ [g − 1], we introduce a new standard cell R(i, j) :=
(δi + δ/2, δj + δ/2), called a local reference cell. Moreover, we set the reference R̄ to be
R(1, 1). In the construction, we will ensure that the coloring of each local reference cell is
exactly the same, i.e., is exactly the reference coloring.

Consider the variable-assignment cellA(v) for v = (i, j). We say that a local reference
cell R(i′, j′) is associated with A(v), if j − j′ ∈ {0, 1} and i − i′ ∈ {0, 1}. Note that each
variable-assignment cell has one, two, or four associated local reference cells. Moreover, if
v, w are adjacent cells of I, then A(v) and A(w) share at least one associated local reference
cell.

Wires. If two standard cells are adjacent, then they must be colored in the same way;
thus having a path of standard cells, allows us to transport the information from one cell to
another. Let us prove that claim. Let A and B be two adjacent standard cells, such that A
is left of B (see Figure 5a; the argument is similar if the cells are vertically adjacent).

Let p1, . . . , p` be the points of the cell A and q1, . . . , q` be the points of the cell B.
Note that the color of q1 is necessarily equal to the color of p1, because the x-coordinates
of points p2, p3, . . . , p` exceed the x-coordinate of q1. Inductively, we can show that for
every i > 2, the color of qi is the same as the color of pi. Indeed, the colors used for
pi+1, pi+2, . . . , p` are not available for qi, because these points are too close to qi. On the

http://jocg.org/

JoCG 9(2), 47–80, 2018 60

Journal of Computational Geometry jocg.org

p1
p2

A

p3
p4

q1
q2

B

q3
q4

(a) If two standard cells are adjacent, they
must have the same coloring. (b) Wires can be used to create many copies

of the same cell.

Figure 5: Construction and usage of wires.

other hand, by the inductive assumption, all colors used on p1, p2, . . . , pi−1 are already used
for points q1, q2, . . . , qi−1. Thus the only possible choice for the color of qi is the color of pi.

Observe that the use of wires allows us to create many copies of the same cell (see
Fig. 5b). We say two cells are the same, if the point configuration and their coloring must
be necessarily the same.

clause checking gadget

local reference cell

consistency checking
gadget

wires

even variable assignment cell

odd variable assignment cell

Figure 6: Illustration of the instance J . Each blue square represents a cell A(v) correspond-
ing to the cell v of I (light blue cells represent even cells and dark blue ones represent odd
cells). The orange squares are local reference cells, which contain the reference coloring.
Gray and brown squares represent, respectively, clause-checking and consistency gadgets.

Overview of the construction Before we move on to describe more complicated gadgets,
we explain the overview of the construction. Figure 6 presents the arrangement of the cells
in F . For each variable-assignment cell A(v), we introduce a clause-checking gadget, which
is responsible for ensuring that all clauses in C(v) are satisfied. This gadget requires an
access to the reference coloring, which can be attained from the local reference cells (we can
choose any of the local reference cells associated with A(v)). For each edge vw of G, we
introduce a consistency gadget. In fact, for inner edges of G (i.e., the ones not incident with
the outer face2) we introduce two consistency gadgets, one for each face incident with vw.

2by a face we mean a region of the plane bounded by edges of G

http://jocg.org/

JoCG 9(2), 47–80, 2018 61

Journal of Computational Geometry jocg.org

This gadget is responsible for ensuring the consistency on three different levels:

• to force all equality constraints C(v, w) to be satisfied,

• to ensure that each of A(v) and A(w) receives one of the standard colorings,

• to ensure that the local reference cell contains exactly the reference coloring.

This gadget also requires access to the reference coloring, so we join it with the appropriate
local reference cell (see Fig. 6).

To join the variable-assignment cells and local reference cells with appropriate gad-
gets, we will use wires. Notice that each cell A can interact with at most four other cells,
which may not be enough, if we want to attach several gadgets to A (see e.g. the middle
variable assignment cell in Figure 6). However, since wires allow us to create an exact copy
of A, we can attach any constant number of gadgets to copies of A, adding only a constant
number of additional cells. Moreover, we can do it in a way that ensures that no two gad-
gets interact with each other (anywhere but on A). Thus, when we say that we attach some
gadget to a cell, we will not discuss how exactly we do this.

Every gadget uses only a constant number of cells. Thus, making the constant δ
large enough and using wires, we can make sure that different gadgets do not interact with
each other (except for the shared cells). The total number of points in the construction is
clearly increased only by a constant factor.

Permuting points and colors. Recall that when describing wires, we have not used the
second coordinate of the points p1, . . . , p` and q1, . . . , q`. In fact, those coordinates can be
chosen at our convenience, and the argument supporting the claim in the paragraphs on
the wires would still work. Combining this observation horizontally and vertically, we can
force any permutation of the colors (see Figure 7a). The gadget is realized as follows. Let
σ be our target permutation. To the right of a standard cell A, we put a cell B. For each
i ∈ [`], we add a point (i, σ(i)) to B, so there are ` points in total. Below the cell B, we put
a standard cell C. We observe that in any feasible coloring of those three cells, for every
i ∈ [`], the points pi and qσ(i) have the same color, where pi (resp. qi) is the point in (i, i) in
the cell A (resp. cell C). Although permutation gadgets are more complicated than wires,
the formal argument of correctness is identical as in the case of wires, as the propagation of
colors between neighboring cells depends on only one coordinate.

Forgetting color assignment. Besides permuting points and colors, it is also possible to
forget the color assignment of some points. Figure 7b shows a forgetting gadget attached
to standard cells A and C. In the cell A we have the coloring from left to right a, b, c, d.
In the cell C, the first two points can be colored either a, b or b, a. In particular, if A is an
even variable-assignment cell, then by looking at C we cannot distinguish anymore whether
the variable was set to true or to false. Thus, using a forgetting gadget attached to two
standard cells, we may force equality of colors of some corresponding points, while giving
some freedom of choosing the others. This concept will be used in the next paragraph.

Parallelism. As we may have hinted in the previous paragraph, subparts of a given cell
can act independently. In particular, this means that we can choose to forget any subset

http://jocg.org/

JoCG 9(2), 47–80, 2018 62

Journal of Computational Geometry jocg.org

a

b

c

d

a

b

c

d

d

c

a

b

A B

C

(a) The coloring of C is the coloring of A with
the permutation σ = (3, 4, 1, 2) applied.

a

b

c

d

a|b

c

d

d

c

a|b

a|b
a|b

A B

C

(b) In the cell C, colors a and b are now in-
terchangeable.

Figure 7: Permutation gadget (left) and forgetting gadget (right), attached to cells A and
C.

`1

`2

`3

`4

`5

`1

`2

`3

`4

`5

A B

(a) The sets of colors used within corresponding
boxes of A and B are equal.

R

A

(b) If R contains the reference coloring, then
A receives one of standard colorings (for an
even cell).

Figure 8: Boxes in adjacent cells with the same box-structure act independently from each
other.

of information but preserve the rest. It is important to note that this is a more general
phenomenon. Let `1, . . . , `t be positive integers summing up to `. Consider an arrangement
of cells where the points of each cell are all contained in the same square boxes of side lengths
respectively `1, . . . , `t, along the diagonal as shown in Figure 8a. For each h ∈ [t], the h-th
box (of side length `h) contains exactly `h points.

One may observe that a slight generalization of the argument given in the paragraph
on wires shows that if A and B are adjacent cells with the same box-structure, i.e., each has
points grouped in t boxes of sizes `1, . . . , `t, then for each h ∈ [t], the set of colors used on
points in h-th box in A is exactly the same as the set of colors used in h-th box in B (see
Figure 8a).

We point out that the combination of this observation and the forgetting gadget
attached to a local reference cell and a variable-assignment cell A can be used to ensure that
A receives one of the standard colorings (see Fig. 8b). The construction of the forgetting

http://jocg.org/

JoCG 9(2), 47–80, 2018 63

Journal of Computational Geometry jocg.org

gadget varies depending on the parity of A. In general the gadget preserves the colors of 2k
points containing the copy of one half of the reference coloring, and allows any permutation
of colors within two-element boxes representing the variables. We will use a similar approach
to check several clauses in parallel within the same group of a constant number of cells.

re
fe
re
n
ce

co
lo
ri
n
g 1

2
3
4
5
6

1

2

3

4
6

5

1

2

3

4
6

5

c

x1

x2

x3

[6] \ c

varia
b
le

a
ssign

m
en
t

R S

T

UB

Aa
b

a
b

re
fe
re
n
ce

co
lo
ri
n
g

varia
b
le

a
ssign

m
en
t

R S

T

UB

AC1

C2

Figure 9: Illustration of the clause-checking gadget. To the left, one clause x1 ∨ ¬x2 ∨ x3 is
represented. To the right, two clauses are checked in parallel.

Clause gadget. We detail how a disjunction of three literals is encoded (see the left part of
Figure 9). Clauses with fewer literals are just a simplification of what comes next. First, we
will explain how to express a clause C, whose variables x1, x2, x3 are contained in a (6× 6)-
box of a variable-assignment cell A. In the next paragraph we will show how to check several
variable-disjoint clauses in one constant-size gadget. In general, in what follows, one should
think of the coordinates that we will specify as coordinates within a box part of the cell,
rather than as coordinates in the cell. The same applies to the colors, we should always look
at the set of colors appearing in the particular box. Obviously, the clause-checking gadget
needs to interact with variable-assignment encoding the values of x1, x2, x3. For simplicity of
notation assume that x1 is encoded by coloring points p1, p2 with colors 1, 2; x2 is encoded by
coloring points p3, p4 with colors 3, 4 and; x3 is encoded by coloring points p5, p6 with colors
5, 6. Our clause-checking gadget needs also an access to the reference coloring contained in
the cell R. This is necessary to be able to distinguish between colors e.g. 1 and 2, and thus
between setting x1 to true or to false.

First consider cells S, T , and U . The cell R contains the reference coloring and we
force the order of the colors in cell T to be from top to bottom 1, 3, 5, 2, 4, 6, similarly as we
did in a permutation gadget. Consider now cell U . It has one point at position p = (3, 3)
and 5 points superimposed at position (6, 6). Now, because of cell T , the point p can only
have a color c ∈ {1, 3, 5}. All the other colors should be given to the 5 superimposed points.

http://jocg.org/

JoCG 9(2), 47–80, 2018 64

Journal of Computational Geometry jocg.org

Then, consider cells A and B.

The cell A contains the variable assignment. Recall that for each variable we use two
points. If a variable occupying rows 2i− 1 and 2i in the cell A occurs positively in C, then
we place in cell B a point in row 2i − 1 in the third column of the box and a point in the
row 2i in the sixth column; if the variable appears negatively, we do the opposite: we place
in cell B a point in the row 2i − 1 in the sixth column and a point in row 2i in the third
column. Note that the colors of points in B are forced, looking from top to bottom they
are the same as in A. By construction, the colors in the sixth column are not available to
the point p. Therefore, the point p can be colored if and only if one of colors 1,3,5 appears
in the third column of B, i.e., one of literals is true. Since the remaining points in U can
receive any distinct colors, we conclude that the whole set of cells constituting the gadget
can be colored if and only if the clause is satisfied by the truth assignment.

Checking clauses in parallel. Consider the cell v of 2-grid 3-Sat. Let C1, . . . , Cf be
the clauses of C(v) and recall that these clauses are pairwise variable-disjoint. Let σ be a
permutation of points in A(v), such that the 2|C1| points encoding the variables of C1 appear
on positions 1, 2, . . . , 2|C1|, the 2|C1| points encoding the variables of C2 appear on positions
2|C1|+ 1, 2|C1|+ 2, . . . , 2|C1|+ 2|C2| and so on. The points encoding variables which do not
appear in any clause from C(v) and the points which do not encode any variable (i.e., the
points carrying a half of the reference coloring) appear on the last position, in any order.

We introduce a new standard cell A, and using a permutation gadget we ensure that
it contains the copies of points of A(v) in the permutation σ. In the same way we introduce
a standard cell R, which contains the reference coloring with the permutation σ applied.
An illustration on how two clauses can be checked simultaneously is shown on the right
part of Figure 9. Observe that since the clauses in C(v) are pairwise variable-disjoint, one
clause-checking gadget is enough to ensure the satisfiability of all clauses in C(v).

Thus, for each cell A(v) and its associated local reference cell R, we introduce a
clause-checking gadget corresponding to the clauses in C(v), and join it with A(v) and R.

Equality check. Let A be a cell of J and let the points p2i−1, p2i (p2j−1, p2j for 2i <
2j − 1) in the cell A encode the variable x (y, respectively). Suppose we want to make
sure that always x = y. This is equivalent to saying that in any proper coloring ϕ, we have
ϕ(p2i−1) + 1 = ϕ(p2i) whenever ϕ(p2j−1) + 1 = ϕ(p2j).

Such an equivalence of two variables can be expressed by two clauses C1 = x ∨ ¬y
and C2 = ¬x ∨ y. Thus, if we have an access to the reference coloring, we can ensure
the equivalence using the clause-checking gadget. Observe that C1 and C2 are not variable-
disjoint, so in fact we need to use two clause-checking gadgets. However, two clause-checking
gadgets are enough to ensure the equivalence of any set of pairwise-disjoint pairs of variables
represented in the single cell. Observe that A does not have to be a variable-assignment cell
(i.e., does not have to carry a half of the reference coloring). In fact, we will use the equality
checks for cells where each pair of points p2i−1, p2i corresponds to some variable, encoded in
an analogous way as in variable-assignment cells.

Consistency gadget. The last gadget, called the consistency gadget, will join every three
cells A(v), A(w), R, where A(v) and A(w) are variable-assignment cells corresponding to

http://jocg.org/

JoCG 9(2), 47–80, 2018 65

Journal of Computational Geometry jocg.org

adjacent cells v and w of I, and a R is a local reference cell associated with both A(v)
and A(w). This gadget is responsible for ensuring that colorings of these three cells are
consistent, that is:

• each cell A(v), A(w) is colored with a standard coloring,

• the equality constraints C(v, w) in the 2-grid 3-Sat instance I are satisfied,

• R has exactly the reference coloring.

For schematic picture of the gadget, refer to Figure 10. Suppose that A(v) is even, A(w) is
odd, and v is above w in I (all other cases are symmetric). We denote the points of A(v)
by p1, p2, . . . , p`, the points of A(w) by q1, q2, . . . , q`, and the points by R by r1, r2, . . . , r`
(going from top-left to bottom-right). First, we introduce two forgetting gadgets and attach
one of them to R and A(v), and the other one to R and A(w). The first gadget forgets the
top half of the reference coloring, i.e., it ensures that in every coloring ϕ we have

• {ϕ(p2i−1), ϕ(p2i)} = {ϕ(r2i−1), ϕ(r2i)} for i ∈ [k],

• ϕ(p2i−1) = ϕ(r2i−1) and ϕ(p2i) = ϕ(r2i) for i ∈ [2k] \ [k].

The second gadget forgets the bottom half of the reference coloring, i.e., it ensures that in
every coloring ϕ we have

• ϕ(q2i−1) = ϕ(r2i−1) and ϕ(q2i) = ϕ(r2i) for i ∈ [k],

• {ϕ(q2i−1), ϕ(q2i)} = {ϕ(r2i−1), ϕ(r2i)} for i ∈ [2k] \ [k].

We also introduce a new standard cell S. Let s1, s2, . . . , s` be the points in S. With
two additional forgetting gadgets, one attached to S and A(v), and the other one attached
to S and A(w), we ensure that in every coloring ϕ we have:

• ϕ(s2i−1) = ϕ(p2i−1) and ϕ(s2i) = ϕ(p2i) for i ∈ [k],

• ϕ(s2i−1) = ϕ(q2i−1) and ϕ(s2i) = ϕ(q2i) for i ∈ [2k] \ [k].

Note that the cell S contains the information about the values of all variables in ζ(v) (first
2k points) and in ζ(w) (second 2k points). Now consider the set of equality constraints
C(v, w), recall that each of them is of the form vi = wj . Thus we want to ensure that in
every coloring ϕ, we have ϕ(s2i−1) + 1 = ϕ(s2i) if and only if ϕ(s2k+2j−1) + 1 = ϕ(s2k+2j).
We can easily do it by performing the equality check on S, using two clause gadgets and R
as a reference coloring.

Is is straightforward to observe that if I is satisfiable, then J can be colored with `
colors, in a way described above. The opposite implication follows from the claims below.

Claim 1. The coloring of each R(i, j) for i, j ∈ [g − 1] is exactly the same as the coloring
of R̄ = R(1, 1).

http://jocg.org/

JoCG 9(2), 47–80, 2018 66

Journal of Computational Geometry jocg.org

S

A(v)

A(w)

clause

wires

forget

local reference cell

combined
assignment

even variable
assignment cell

odd variable
assignment cell

variable
assignments

top of reference
coloring

bottom of
reference coloring

Figure 10: Overview of the consistency gadget. The clause gadgets serve to realize the
equality constraints C(v, w).

R(i− 1, j) R(i, j)

Figure 11: Two consistency gadgets ensure propagation of the reference coloring.

Proof. To show this, we will prove that the coloring of R(i, j) is the same as the coloring of
R(i− 1, j) for each 2 6 i 6 g − 1 and j ∈ [g − 1]. The case for R(i, j − 1) is analogous, and
the claim follows inductively.

Let v = (i, j) and w = (i, j + 1) be cells of I. Note that v and w are adjacent and
A(v) and A(w) are associated with both R(i− 1, j) and R(i, j). Without loss of generality
assume that v is even and w is odd, see Fig. 11 for illustration.

Intuitively, the consistency gadget corresponding to the edge vw and the left face
bounded by vw (we shall call it the left consistency gadget) is responsible for copying one
half of the coloring of R(i − 1, j) to A(v) and the other half to A(w). Analogously, the
consistency gadget corresponding to vw and the right face bounded by vw (we shall call
it the right consistency gadget) is responsible for copying these halves to R(i, j), making
sure that the coloring of R(i, j) is exactly the same as the coloring of R(i − 1, j). More
formally, for f ∈ [`], by pf , qf , rf , and r′f we denote, respectively, the points of A(v), A(w),
R(i− 1, j), and R(i, j). By the correctness of the left consistency gadget, we know that for
every coloring ϕ, we have:

• ϕ(rf) = ϕ(qf) for all f ∈ [2k],

http://jocg.org/

JoCG 9(2), 47–80, 2018 67

Journal of Computational Geometry jocg.org

• ϕ(rf) = ϕ(pf) for all f ∈ [4k] \ [2k].

Analogously, by the correctness of the right consistency gadget, we know that for every
coloring ϕ, we have:

• ϕ(qf) = ϕ(r′f) for all f ∈ [2k],

• ϕ(pf) = ϕ(r′f) for all f ∈ [4k] \ [2k].

This shows that ϕ(rf) = ϕ(r′f) for every coloring ϕ and every f ∈ [`], which proves the
claim.

Claim 2. The following statements are true.

1. The coloring of each A(v) is one of the standard colorings.

2. For each pair of adjacent cells v, w of I, all local constraints C(v, w) are satisfied.

3. For each cell v of I, all constraints C(v) are satisfied.

The claim follows directly from Claim 1 and the correctness of forget, clause-checking,
and consistency gadgets.

Now, observe that the total number of points in F is n = O(g2`) = O(n′), where
n′ = g2k is the total number of variables in I. Thus, the existence of an algorithm solving J
in time 2o(

√
n`) could be used to solve I in time 2o(

√
n′k), which, by Theorem 7, contradicts

the ETH.

5 Higher Dimensional Lower Bounds

Recall that in the hardness proof of 2-grid 3-Sat and Partial 2-grid Coloring (see
Theorems 7 and 8) we started with a 3-Sat instance with N variables and Θ(N) clauses,
we formed g = Θ(N/k) groups, each containing O(k) variables, and we arranged them on
in such a way that every pair of groups met in a separate grid cell. This required O(g2) grid
cells.

Suppose we want to try a similiar approach to obtain a tight (i.e., matching the
upper bound in Theorem 5 lower bound in d > 3 dimensions. We observe that the naive
approach of creating Θ(N/k) groups is not enough. Indeed, a standard computation shows
that the bound in Theorem 5 is attained for the grid R[g, d] with g = Θ((N/k)1/(d−1)) and k
variables/points per cell. Thus we have to refine our reduction from 3-Sat to d-grid 3-Sat.

5.1 Embeddings

For integers g, d > 1, we denote by H[g, d] the d-dimensional Hamming grid, i.e., a graph
whose vertices are all points from [g]d, and two vertices are adjacent if their Hamming
distance is exactly one (in other words, they differ on exactly one coordinate).

http://jocg.org/

JoCG 9(2), 47–80, 2018 68

Journal of Computational Geometry jocg.org

An embedding of a graph F into a graph G is a mapping f : V (F) → 2V (G), such
that:

• for each v ∈ V (F), the set f(v) is connected in G,

• for each edge uv of G, the sets f(u) and f(v) touch, i.e., either they have a non-empty
intersection or there is an edge in G joining a vertex from f(u) to a vertex of f(v).

The depth of an embedding f is the maximum number of vertices of F mapped to sets
containing the same vertex of G, that is max{|S| : S ⊆ V (F) and

⋂
v∈S f(v) 6= ∅}.

Observe that if f is an embedding of G into F with depth D, and f ′ is an embedding
of F into H with depth D′, then the composition f ′ ◦ f of f and f ′ is an embedding of F
into H with depth D ·D′.

Now we will present a series of results about graph embeddings. We start with
embedding arbitrary graphs into Hamming grids.

Theorem 9 (Marx, Sidiropoulos [25]). Let d > 2. For every graph G with m edges, no
isolated vertices, and with maximum degree ∆, there is an embedding f from G to H[g, d−1]
having depth O(d2∆), where g = O(m1/(d−1) · logm

log logm). Moreover, such an embedding can
be found in deterministic polynomial time.

The next step will be embedding a Hamming grid into another, smaller Hamming
grid.

Lemma 10. For every g, d > 1 and every k = O(gd), there exists g′ = O(g/k1/d) and an
embedding f of H[g, d] into H[g′, d] with depth O(k). Moreover, this embedding can be found
in deterministic polynomial time.

Proof. Let s = bk1/dc and g′ = dg/se = O(g/k1/d). Let v = (a1, a2, . . . , ad) be a vertex of
H[g, d]. We define f by mapping v to the singleton containing (1+ba1/sc, 1+ba2/sc, . . . , 1+
bad/sc). Note that the number of vertices of H[g, d] mapped to a single vertex is sd = O(k)
It is straightforward to verify that f is an embedding.

Finally, Hamming grids can be embedded in grids.

Theorem 11 (Marx, Sidiropoulos [25]). For every d, g > 1 there is an embedding f from
H[g, d− 1] to R[g, d] having depth at most d. Moreover, such an embedding can be found in
deterministic polynomial time.

Now, by combining the above results, we show how we can efficiently embed an
incidence graph of a 3-Sat formula into the grid.

Lemma 12. Let Φ be a 3-Sat formula over the variable set V ar = {x1, x2 . . . , xN}, such
that each variable appears in at most ∆ > 3 clauses, and let k = O(N) be an integer. There
exists g = O(∆(∆N/k)1/(d−1) · log(∆N)

log log(∆N)) and a mapping ϕ of variables of Φ to subsets of
vertices of R[g, d], such that:

http://jocg.org/

JoCG 9(2), 47–80, 2018 69

Journal of Computational Geometry jocg.org

(i) for every x ∈ V ar, the set ϕ(x) is connected,

(ii) for every v ∈ V (R[g, d]), the number of variables x such that v ∈ ϕ(x) is O(∆d3k),

(iii) for every clause C, there exists a vertex v(C) ∈ V (R[g, d]) such that v(C) ∈
⋂
x∈C ϕ(x)

(if there is more than one such vertex, we set v(C) to be any of them);

(iv) if for two clauses C,C ′ it holds that v(C) = v(C ′), then C and C ′ are variable-disjoint.

Moreover, such a mapping can be found in polynomial time.

Proof. Let C = {C1, C2, . . . , CM} be the set of clauses of Φ. Consider an incidence graphG of
Φ, i.e., the bipartite graph with the vertex set V ar∪C, and the edge set {xC : x ∈ V ar, C ∈ C,
and x ∈ C}. Note that the maximum degree of G is ∆.

By Theorem 9, we can find an embedding f from G to H[g′, d − 1] for g′ =

O((∆N)1/(d−1) · log(∆N)
log log(∆N)), with depth O(d2∆). Now, by Lemma 10, there exists an embed-

ding f ′ ofH[g′, d−1] intoH[g′′, d−1] for g′′ = O(g′/k1/(d−1)) = O((∆N/k)1/(d−1)· log(∆N)
log log(∆N))

with depth O(k). By Theorem 11, there is an embedding f ′′ of H[g′′, d − 1] into R[g′′, d]
with depth at most d.

Let b = 3∆ + 1. Next, consider the following depth-1 embedding f ′′′ of R[g′′, d]

into R[g, d], where g = bg′′ = O(∆(∆N/k)1/(d−1) · log(∆N)
log log(∆N)). For a = (a1, a2, . . . , ad) ∈

V (G[g′′, d]), we define f ′′′(a) =
⋃d
q=1

⋃b−1
p=0{(ba1, ba2, . . . , bad) + peq}.

The composition ϕ′ of f, f ′, f ′′, and f ′′′ is an embedding of G into R[g, d] with depth
O(d3∆k).

By the properties of f ′′′, we observe that for every clause C the set ϕ′(C) contains
a vertex of the form ba, where a = (a1, a2, . . . , ad) for integers a1, a2, . . . , ad. We set v′(C)
to be such a vertex (if there is more than one, we pick an arbitrary one).

Consider a clause C and let v′(C) = ba for a = (a1, a2, . . . , ad). Let C′ be the set
of clauses C ′, such that v′(C ′) = ba. We want to partition C′ into at most b − 1 = 3∆
groups C′1, C′2, . . . , C′b−1, such that the clauses in one group are variable-disjoint. We can
easily do it with a greedy algorithm – note that each clause may share a variable with at
most 3(∆ − 1) < 3∆ other clauses. Now, for every clause C of C′i, for i ∈ [b − 1], we will
extend ϕ′, by including v(C) := ba + ie1 + e2 in ϕ′(C). It is not hard to verify that ϕ′ is
still an embedding of G into R[g, d] with depth O(d3∆k).

Finally, for every x ∈ V ar, we define a mapping ϕ of variables of Φ to subsets of
vertices of R[g, d] in the following way: ϕ(x) = ϕ′(x)∪

⋃
C : x∈C ϕ

′(C). Note that each ϕ(x)
is connected, since ϕ′(x) and every ϕ′(C) is connected, and ϕ′(x) and ϕ′(C) touch whenever
x ∈ C.

Moreover, recall that the depth of ϕ′ is O(d3∆k). Since the number of variables
mapped by ϕ to any fixed vertex of R[g′′, d] is at most three times larger, so it is O(d3∆k).
The last two properties follow from the observation that v(C) belongs to ϕ(x) for every
x ∈ C.

http://jocg.org/

JoCG 9(2), 47–80, 2018 70

Journal of Computational Geometry jocg.org

Now we are ready to prove the following theorem, which is a generalization of The-
orem 7 to higher dimensions.

Theorem 13. For any integer d > 3 and reals ε > 0 and 0 6 α 6 1, there is no algorithm
solving d-grid 3-Sat with n variables in total and k = Θ(nα) variables per cell in time

2
O

(
n
d−1+α

d
−ε

)
= 2O(n1−1/d−εk1/d), unless the ETH fails.

Proof. Let Φ be a 3-Sat instance with N variables and Θ(N) clauses, and let each variable
appear in at most ∆ = 3 clauses. By the ETH and the Sparsification Lemma [19], there is
no algorithm deciding the satisfability of Φ in time 2o(N).

Let k = Θ

((
N1/(d−1) logN

log logN

)d/(1/(d−1)+1/α)
)
, g = O((N/k)1/(d−1) · logN

log logN), and let

ϕ be the mapping of variables of Φ to the subsets of vertices of R[g, d] given by Lemma 12
(recall that ∆ = 3).

Now we construct an instance I(Φ) just as we did in the proof of Theorem 7. For
every cell v of R[g, d] we add variables ϕ−1(v). For each clause C, we add the clause
constraint to the cell v(C). Moreover, using equality constraints, we ensure that all copies
of the same variable get the same truth assignment (recall that each set ϕ(x) is connected).
It is clear that I(Φ) is a satisfiable instance of d-grid 3-Sat if and only if Φ is satisfiable.

The number of cells in I(Φ) is gd = O

(
(N/k)d/(d−1)

(
logN

log logN

)d)
. The total number

of variables is thus

n =gdk = O

(
(N/k)d/(d−1)k ·

(
logN

log logN

)d)
= O

(
(Nd/k)1/(d−1) ·

(
logN

log logN

)d)
,

and a direct computation shows that k = Θ(nα).

Suppose we have an algorithm solving d-grid 3-Sat in time 2
O

(
n
d−1+α

d
−ε

)
for some

ε > 0. Applying it to I(Φ) gives a total running time exp
(
O(n

d−1+α
d
−ε)
)

= 2o(N). So we

can use this algorithm to solve Φ in time 2o(N), thus refuting the ETH.

5.2 Reduction from d-grid 3-Sat to Partial d-grid Coloring

After establishing the hardness of d-grid 3-Sat, we can proceed to showing the hardness
of Partial d-grid Coloring.

Theorem 14. For any integer d > 3, and reals 0 6 α 6 1 and ε > 0, there is no
2O(n1−1/d−ε`1/d) algorithm solving Partial d-grid Coloring on a total of n points and
` = Θ(nα) points in each cell, unless the ETH fails.

The proof of Theorem 14 is a consequence of Theorem 13 and of the gadgets con-
structed in Section 4. The reduction is now from d-grid 3-Sat and we only have to very
slightly adapt the construction. The overall picture is the grid-like structure of Figure 6

http://jocg.org/

JoCG 9(2), 47–80, 2018 71

Journal of Computational Geometry jocg.org

extended to dimension d. From an instance I of d-grid 3-Sat produced by the reduction
of Theorem 13 on the grid R[g, d] with k variables per cell, we build an equivalent instance
J of Partial d-grid Coloring on a subgraph of R[g′, d] with g′ = Θ(g) with ` := 4k
points (and colors), in the following way. A cell of I is again called even (resp. odd) if
its coordinates sum up to an even integer (resp. odd integer). For each even/odd cell of
I, we have a corresponding even/odd standard cell in J (in the grid R[g′, d]). We define
similarly a standard cell as a cell in which the ` points p1, . . . , p` are in the main diagonal,
i.e., pi = (i, i, . . . , i) ∈ [`]d for all i ∈ [`]. Observe that, as in the 2-dimensional case, two
adjacent standard cells have to be colored in the same way (see Figure 12).

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

Figure 12: A wire in dimension 3. The coloring of any cell forces the same coloring in the
others.

In each even/odd cell of J , the truth assignment of the k variables is encoded the
same way as in the 2-dimensional case. Each of those cells are wired via a constant number
(four is enough) of adjacent standard cells to one clause gadget (responsible for ensuring
the satisfiability of the clauses on those very variables). One can notice that, planarity not
being an obstacle anymore, bringing the reference coloring to the clause gadgets is no longer
a delicate issue. We can therefore simplify a bit our reduction for d > 3.

First, we do not require the local reference coloring cells of the planar case. Now, we
only have one global reference coloring cell, and we wire this cell to every clause gadget. We
can do it, as all gadgets are are embedded in a two-dimensional subspace, so we can always
use extra dimensions to find place for wires (see Fig. 13).

Secondly, we no longer need two consistency gadgets between two adjacent even and
odd cells. Now, between every even cell (resp. every odd cell) and each of its 2d neighboring

Figure 13: Wiring the reference coloring (depicted in blue), to the place where it is needed.

http://jocg.org/

JoCG 9(2), 47–80, 2018 72

Journal of Computational Geometry jocg.org

odd cells (resp. even cells), we have one consistency gadget. Each even/odd cell is attached
to 2d wires as represented in Figure 14 in dimension 3.

1
2
3
4
5
6

Figure 14: The 2d wires leaving a, say, even cell to reach each one of the 2d consistency
gadgets shared with the 2d adjacent odd cells. The cells in red are part of the wires to the
clause gadget.

Every consistency and clause gadget is embedded into a plane (subset of cells in
an affine subspace of dimension 2) supported by say, e1 and e2, the first two vectors of
the canonical basis. The wires which should be plugged to the corresponding gadget are
naturally guided towards the plane (see Figure 15 where we give the example of the clause
gadget). This construction can be realized with g′ = 100g. The soundness follows from the
2-dimensional case.

It is noteworthy that we are not using the extra dimensions for those crucial gadgets.
The higher dimensional space is mainly needed and used in Section 5.1 to get Theorem 13.

The final step in proving the lower bound in Theorem 3 is reducing Partial d-grid
Coloring to `-Coloring of an intersection graph of d-dimensional unit balls. It is very
similar to the one in Theorem 1 (see also [24, Theorem 3.1.]).

5.3 Reduction from Partial d-grid Coloring to `-Coloring of unit d-ball graphs

Proof of the third and last step of the lower bound of Theorem 3. There is a transparent re-
duction from Partial d-grid Coloring to `-Coloring on intersection graphs of d-
dimensional balls. Recall that the points of an instance of Partial d-grid Coloring
are in [`]d in each cell, and that the cells created by the reduction of Theorem 14 are in [g′]d

with g′ = Θ(g).

One turns every point (x1, . . . , xd) ∈ [`]d of every cell at position (i1, . . . , id) ∈ [g′]d

into a d-dimensional ball centered at ((2(d−1)`2 +0.1)i1 +x1, . . . , (2(d−1)`2 +0.1)id+xd).

http://jocg.org/

JoCG 9(2), 47–80, 2018 73

Journal of Computational Geometry jocg.org

1

2

3

4

5

6

1

2

3

4

5

6

a

b

a

b

123456

1
3

52
4

6135246

c
[6] \ c

a
b

a
b

Figure 15: The clause gadget in dimension 3. The wires meet in a plane where the in-
formation is projected to 2 dimensions. The core of the gadget is then identical to the
2-dimensional case.

The common radius of all the balls is set to (d− 1)`2, and we set the number of colors to `.
The correctness of this reduction is similar to the 2-dimensional case and is detailed in [25,
Theorem 3.1.].

6 Segments

First we will present the hardness proof for the list coloring problem, and then we will show
how to modify it to obtain the result for 6-coloring. The segments in our construction will
be axis-parallel, the class of intersection graphs of such segments in denoted by 2-Dir. In
the description, we will identify the vertices of the intersection graph with the segments.

Theorem 15. There is no algorithm working in time 2o(n) for the list 6-coloring of 2-Dir
graphs with n vertices, unless the ETH fails.

Proof. We reduce from 3-coloring of graphs with maximum degree at most 4. Let G be a
graph with n vertices and m = Θ(n) edges. It is a folklore result that, assuming the ETH,
there is no algorithm solving this problem in time 2o(n) (see for instance Lemma 1 in [5]).

Let the vertex set of G be V = {v1, v2 . . . , vn}. We construct a 2-Dir graph G′ with
lists L of colors from the set {1, 2, 3, 4, 5, 6}, such that G is 3-colorable if and only if G′ is
list-colorable with respect to the lists L.

For each vertex vi we introduce two segments: a horizontal one, called xi, and a
vertical one, called yi, so that they form a half of a n × n grid (see Figure 16). When i
increases, xi becomes longer and yi shorter. One may observe that the intersection graph

http://jocg.org/

JoCG 9(2), 47–80, 2018 74

Journal of Computational Geometry jocg.org

v1 v2

v3 v4

v5 v6 x1

x2

x3

x4

x5

x6

y1 y2 y3 y4 y5 y6

Figure 16: A graph G (left) and a high-level construction of G′ (right). Circles denote
equality gadgets and squares denote inequality gadget

induced by those segments is not grid-like. We set the lists of each xi to {1, 2, 3} and the
lists of each yi to {4, 5, 6}.

Each color c ∈ {1, 2, 3} will be identified with the color c + 3. Thus, we want to
ensure that in any feasible 6-coloring f of G′ we have:

1. f(xi) + 3 = f(yi) for all i ∈ [n],

2. f(xi) + 3 6= f(yi) for all i > j such that vivj is an edge of G.

This is achieved by using equality gadgets and inequality gadgets. At the crossing point of
xi and yi, we put an equality gadget (represented by a circle on Figure 16). Moreover, for
each edge vivj of G, we put an inequality gadget at the crossing point of xi and yj , i > j
(represented by a square on Figure 16).

The equality gadget consists of 9 segments, arranged as depicted on Figure 17. Con-
sider the equality gadget and suppose xi gets the color 1. Then a1 receives color 4, and b1
and c1 colors 5 and 6, respectively. Thus the only choice for the color for yi is 4. This can
be extended to remaining segments of the gadget e.g. by coloring a2 with color 2, a3 with
color 3, b2, c2 with color 5, and b3, c3 with color 6. The other cases are symmetric.

The inequality gadget consists of 7 segments, arranged as depicted on Figure 18. So
now consider an inequality gadget and suppose the color of xi is 1. Then p1 and p2 get
colors 5 and 6, respectively. Thus the only choice for x′ is 4, which prevent yj from receiving
color 4. This coloring can be extended to remaining segments by coloring q1, q2 with color
2 and r1, r2 with color 3. The other cases are again symmetric.

This proves that G′ has a coloring with lists L if and only if G is 3-colorable.

The number of vertices of G′ is n′ = 2n︸︷︷︸
xi,yi

+ 9n︸︷︷︸
equality

+ 7m︸︷︷︸
inequality

= Θ(n).

Now suppose we can find a list coloring of G′ in time 2o(n
′). This yields an algorithm

for 3-coloring of G in time 2o(n
′) = 2o(n), which in turn contradicts the ETH.

To obtain Theorem 2, we modify the construction above to simulate the lists of
available colors.

http://jocg.org/

JoCG 9(2), 47–80, 2018 75

Journal of Computational Geometry jocg.org

vertex list

xi

yi

a1

a2

a3

b1

b2

b3

c1

c2

c3

vertex list

1, 2, 3

4, 5, 6

1, 4

4, 5

4, 6

2, 5

4, 5

5, 6

3, 6

4, 6

5, 6

xi

yi

a1

b1
b2

a2

a3

b3
c3

c1
c2

Figure 17: Equality gadget.

xi

yi

p1 p2 q1 q2 r1 r2

x′
vertex list

xi

yi

vertex list

1, 2, 3

4, 5, 6

1, 5

1, 6

2, 4

2, 6

3, 4

3, 5

x′

p1

p2

q1

q2

r1

r2

4, 5, 6

Figure 18: Inequality gadget.

http://jocg.org/

JoCG 9(2), 47–80, 2018 76

Journal of Computational Geometry jocg.org

Theorem 2. There is no 2o(n) time algorithm for 6-Coloring the intersection graph of
line segments in the plane, unless the ETH fails.

Proof. We modify the construction from the proof of Theorem 15. We first introduce six
overlapping segments R1, R2, . . . , R6, whose coloring will serve as a reference coloring. Since
these segments are pairwise intersecting, each of them receives a different color. We will
denote by i ∈ {1, 2, . . . , 6} the color assigned to Ri.

Now, for each segment v of G′, we want to simulate the list L(v) from the instance
of list 6-coloring constructed in the proof of Theorem 15. For every color i /∈ L(v), we want
to introduce a segment si intersecting v, which will always receive color i.

To achieve this, we first need to transport the reference coloring to every gadget.
We will do it using bundles of overlapping segments, the overall high-level idea is depicted
in Figure 19. We make sure that a bundle consisting of overlapping segments colored 1,2,3
intersects all yi’s, and a bundle consisting of overlapping segments colored 4,5,6 intersects
all xi’s. Observe that this already simulates the lists for every xi, yi (i ∈ [n]).

x1

x2

x3

x4

x5

x6

y1 y2 y3 y4 y5 y6

Figure 19: Reference coloring is transported to every gadget. Red and blue lines denote,
respectively, triples of overlapping segments with colors 1,2,3, and 4,5,6. Parallel lines
depicted close to each other are in fact overlapping. Segments R1, R2, . . . , R6 are positioned
in the lower left corner of the picture.

Such a construction relies on a constant-size gadget, which allows us to split, join,
or turn the reference coloring. In other words, we want to be able to split a bundle into two
perpendicular bundles, carrying the same information (splitting, see e.g. red bundles in the
left of Figure 19), join two bundles carrying distinct sets of colors into a single one (joining,
this happens next to the inequality gadgets), or change the orientation of a bundle from a
horizontal to vertical (turning, see the top-right bundles in Figure 19). We always need to

http://jocg.org/

JoCG 9(2), 47–80, 2018 77

Journal of Computational Geometry jocg.org

make sure that the color of each overlapping segment in the bundle is uniquely determined.

The construction of the gadget for splitting a bundle of six segments is depicted in
Figure 20. Turning a bundle or splitting a bundle of three colors can be easily realized
by finishing unnecessary segments just after leaving the gadget. Also note that joining is
actually the same as splitting. In order to join two perpendicular bundles, each carrying
three colors, we add three segments to each of bundles (this will make sure that they receive
the colors not appearing in the bundle), and attaching the extended bundles to a split
gadget.

Figure 20: Split gadget for 6 colors. The parallel segments depicted close to each other are
in fact overlapping. Observe that the depicted 6-coloring is the only possible (up to the
permutation of colors).

Note that the number of segments in this gadget is constant. Now, the only thing left
is to connect every segment in every gadget to appropriate segments carrying the reference
coloring. This can easily be done using a constant number of additional segments per gadget
(see Figure 21).

The total size of the construction increases by a constant factor, as we introduce
O(n) constant-size split gadgets. Thus an algorithm for 6-coloring the constructed 2-Dir
graph in time 2o(n

′) could be used to 3-color the input graph G in time 2o(n), contradicting
the ETH.

References

[1] J. Alber and J. Fiala. Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. Algorithms, 52(2):134–151, 2004.

[2] É. Bonnet and P. Rzążewski. Optimality program in segment and string graphs. CoRR,
abs/1712.08907, 2017.

http://jocg.org/

JoCG 9(2), 47–80, 2018 78

Journal of Computational Geometry jocg.org

xi

yi

a1

b1
b2

a2

a3

b3
c3

c1
c2

xi

yi

p1 p2 q1 q2 r1 r2

x′

Figure 21: Simulation of lists for vertices in equality and inequality gadgets. Violet lines
denote tuples of overlapping segments, carrying the reference coloring. We finish unwanted
segments just after leaving the turning gadgets.

[3] J. Cardinal. Computational geometry column 62. SIGACT News, 46(4):69–78, 2015.

[4] R. H. Chitnis, M. Hajiaghayi, and D. Marx. Tight bounds for Planar Strongly Con-
nected Steiner Subgraph with fixed number of terminals (and extensions). In SODA
2014 Proc., pages 1782–1801, 2014.

[5] M. Cygan, F. V. Fomin, A. Golovnev, A. S. Kulikov, I. Mihajlin, J. W. Pachocki, and
A. Socała. Tight lower bounds on graph embedding problems. CoRR, abs/1602.05016,
2016.

[6] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer Publishing Com-
pany, Incorporated, 1st edition, 2015.

[7] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Bidimensional
parameters and local treewidth. SIAM J. Discrete Math., 18(3):501–511, 2004.

[8] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Fixed-parameter
algorithms for (k, r)-Center in planar graphs and map graphs. ACM Transactions on
Algorithms, 1(1):33–47, 2005.

[9] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexponential
parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM,
52(6):866–893, 2005.

[10] E. D. Demaine and M. Hajiaghayi. The bidimensionality theory and its algorithmic
applications. Comput. J., 51(3):292–302, 2008.

[11] E. D. Demaine and M. Hajiaghayi. Linearity of grid minors in treewidth with applica-
tions through bidimensionality. Combinatorica, 28(1):19–36, 2008.

http://jocg.org/

JoCG 9(2), 47–80, 2018 79

Journal of Computational Geometry jocg.org

[12] E. D. Demaine and M. T. Hajiaghayi. Fast algorithms for hard graph problems: Bidi-
mensionality, minors, and local treewidth. In GD 2014 Proc., pages 517–533, 2004.

[13] F. Dorn, F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Beyond bidimension-
ality: Parameterized subexponential algorithms on directed graphs. In STACS 2010
Proc., pages 251–262, 2010.

[14] F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algorithms.
Computer Science Review, 2(1):29–39, 2008.

[15] F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. Efficient exact algorithms
on planar graphs: Exploiting sphere cut decompositions. Algorithmica, 58(3):790–810,
2010.

[16] F. V. Fomin, S. Kratsch, M. Pilipczuk, M. Pilipczuk, and Y. Villanger. Tight bounds
for parameterized complexity of cluster editing with a small number of clusters. J.
Comput. Syst. Sci., 80(7):1430–1447, 2014.

[17] F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Subexponential algorithms
for partial cover problems. Inf. Process. Lett., 111(16):814–818, 2011.

[18] F. V. Fomin and D. M. Thilikos. Dominating sets in planar graphs: Branch-width and
exponential speed-up. SIAM J. Comput., 36(2):281–309, 2006.

[19] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[20] P. N. Klein and D. Marx. Solving Planar k-Terminal Cut in O(nc
√
k) time. In ICALP

2012 Proc., pages 569–580, 2012.

[21] P. N. Klein and D. Marx. A subexponential parameterized algorithm for Subset TSP
on planar graphs. In SODA 2014 Proc., pages 1812–1830, 2014.

[22] D. Marx. Efficient approximation schemes for geometric problems? In ESA 2005 Proc.,
pages 448–459, 2005.

[23] D. Marx and M. Pilipczuk. Optimal parameterized algorithms for planar facility loca-
tion problems using voronoi diagrams. In N. Bansal and I. Finocchi, editors, ESA 2015
Proc., volume 9294 of LNCS, pages 865–877. Springer, 2015.

[24] D. Marx and A. Sidiropoulos. The limited blessing of low dimensionality: When 1-1/d
is the best possible exponent for d-dimensional geometric problems. SOCG 2014 Proc.,
pages 67:67–67:76, New York, NY, USA, 2014. ACM.

[25] D. Marx and A. Sidiropoulos. The limited blessing of low dimensionality: When
1-1/d is the best possible exponent for d-dimensional geometric problems. CoRR,
abs/1612.01171, 2016.

[26] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Separators for sphere-packings
and nearest neighbor graphs. J. ACM, 44(1):1–29, Jan. 1997.

http://jocg.org/

JoCG 9(2), 47–80, 2018 80

Journal of Computational Geometry jocg.org

[27] M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van Leeuwen. Subexponential-
time parameterized algorithm for Steiner Tree on planar graphs. In STACS 2013 Proc.,
pages 353–364, 2013.

[28] M. Pilipczuk, M. Pilipczuk, P. Sankowski, and E. J. van Leeuwen. Network sparsifica-
tion for steiner problems on planar and bounded-genus graphs. In FOCS 2014 Proc.,
pages 276–285. IEEE Computer Society, 2014.

[29] W. D. Smith and N. C. Wormald. Geometric separator theorems. available online at
https://www.math.uwaterloo.ca/~nwormald/papers/focssep.ps.gz.

[30] W. D. Smith and N. C. Wormald. Geometric separator theorems and applications.
FOCS 1998 Proc., pages 232–243, Washington, DC, USA, 1998. IEEE Computer Soci-
ety.

[31] D. M. Thilikos. Fast sub-exponential algorithms and compactness in planar graphs. In
ESA 2011 Proc., pages 358–369, 2011.

[32] E. J. van Leeuwen and J. van Leeuwen. Convex Polygon Intersection Graphs, pages
377–388. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

http://jocg.org/
https://www.math.uwaterloo.ca/~nwormald/papers/focssep.ps.gz

	Introduction
	Algorithms
	Intermediate problems
	Two-Dimensional Lower Bounds
	Reduction from Partial 2-grid Coloring to -Coloring of unit disk graphs
	Reduction from �sat to 2-grid 3-Sat
	Reduction from 2-grid 3-Sat to Partial 2-grid Coloring

	Higher Dimensional Lower Bounds
	Embeddings
	Reduction from d-grid 3-Sat to Partial d-grid Coloring
	Reduction from Partial d-grid Coloring to -Coloring of unit d-ball graphs

	Segments

