
Directed Subset Feedback Vertex Set is Fixed-Parameter Tractable∗

Rajesh Chitnis†1, Marek Cygan‡2, MohammadTaghi Hajiaghayi§1 and Dániel Marx¶3

1Department of Computer Science, University of Maryland at College Park, USA. Email:
{rchitnis,hajiagha}@cs.umd.edu

2Institute of Informatics, University of Warsaw, Poland. Email: cygan@mimuw.edu.pl
3Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA

SZTAKI), Budapest, Hungary. Email: dmarx@cs.bme.hu

November 30, 2014

Abstract

Given a graph G and an integer k, the Feedback Vertex Set (FVS) problem asks if there
is a vertex set T of size at most k that hits all cycles in the graph. The first fixed-parameter
algorithm for FVS in undirected graphs appeared in a monograph of Mehlhorn in 1984. The
fixed-parameter tractability status of FVS in directed graphs was a long-standing open problem
until Chen et al. (STOC ’08, JACM ’08) showed that it is fixed-parameter tractable by giving
a 4kk!nO(1) time algorithm. There are two subset versions of this problems: we are given an
additional subset S of vertices (resp., edges) and we want to hit all cycles passing through a
vertex of S (resp. an edge of S); the two variants are known to be equivalent in the parameter-
ized sense. Recently, the Subset Feedback Vertex Set problem in undirected graphs was
shown to be FPT by Cygan et al. (ICALP ’11, SIDMA ’13) and independently by Kakimura
et al. (SODA ’12). We generalize the result of Chen et al. (STOC ’08, JACM ’08) by showing

that Subset Feedback Vertex Set in directed graphs can be solved in time 2O(k3)nO(1),
i.e., FPT parameterized by size k of the solution. By our result, we complete the picture for
feedback vertex set problems and their subset versions in undirected and directed graphs.

The technique of random sampling of important separators was used by Marx and Razgon
(STOC ’11, SICOMP ’14) to show that Undirected Multicut is FPT and was generalized by
Chitnis et al. (SODA ’12, SICOMP ’13) to directed graphs to show that Directed Multiway
Cut is FPT. Besides proving the fixed-parameter tractability of Directed Subset Feedback
Vertex Set, we reformulate the random sampling of important separators technique in an
abstract way that can be used for a general family of transversal problems. We believe this
general approach will be useful for showing the fixed-parameter tractability of other problems

∗A preliminary version of this paper appeared in ICALP 2012 [9].
†Supported in part by NSF CAREER award 1053605, ONR YIP award N000141110662, DARPA/AFRL award

FA8650-11-1-7162, a University of Maryland Research and Scholarship Award (RASA), a Graduate Student Interna-
tional Research Fellowship from the University of Maryland, ERC Starting Grant PARAMTIGHT (No. 280152) and
a Simons Award for Graduate Students in Theoretical Computer Science.
‡Supported in part by ERC Starting Grant NEWNET 279352, NCN grant N206567140 and Foundation for Polish

Science.
§The author is also with AT&T Labs–Research. Supported in part by NSF CAREER award 1053605, ONR YIP

award N000141110662, DARPA/AFRL award FA8650-11-1-7162, a University of Maryland Research and Scholarship
Award (RASA)
¶Supported by ERC Starting Grant PARAMTIGHT (No. 280152) and OTKA grant NK105645.

1

in directed graphs. Moreover, we modify the probability distribution used in the technique to

achieve better running time; in particular, this gives an improvement from 22
O(k)

to 2O(k2) in the
parameter dependence of the Directed Multiway Cut algorithm of Chitnis et al. (SODA
’12, SICOMP ’13).

1 Introduction

The Feedback Vertex Set (FVS) problem has been one of the most extensively studied problems
in the parameterized complexity community. Given a graph G and an integer k, it asks if there is
a set T ⊆ V (G) of size at most k which hits all cycles in G. The FVS problem in both undirected
and directed graphs was shown to be NP-hard by Karp [27]. A generalization of the FVS problem
is Subset Feedback Vertex Set (SFVS): given a subset S ⊆ V (G) (resp., S ⊆ E(G)), find a
set T ⊆ V (G) of size at most k such that T hits all cycles passing through a vertex of S (resp., an
edge of S). It is easy to see that S = V (G) (resp., S = E(G)) gives the FVS problem.

As compared to undirected graphs, FVS behaves quite differently on directed graphs. In par-
ticular the trick of replacing each edge of an undirected graph G by arcs in both directions does
not work: every feedback vertex set of the resulting digraph is a vertex cover of G and vice
versa. Any other simple transformation does not seem possible either and thus the directed and
undirected versions are very different problems. This is reflected in the best known approxima-
tion ratio for the directed versions as compared to the undirected problems: FVS in undirected
graphs has an 2-approximation [1] while FVS in directed graphs has an O(log |V (G)| log log |V (G)|)-
approximation [19, 44]. The more general SFVS problem in undirected graphs has an 8-approximation
[20] while the best-known approximation ratio in directed graphs isO(min{log |V (G)| log log |V (G)|,
log2 |S|}) [19].

Rather than finding approximate solutions in polynomial time, one can look for exact solutions
in time that is superpolynomial, but still better than the running time obtained by brute force so-
lutions. In both the directed and the undirected versions of the feedback vertex set problems, brute
force can be used to check in time nO(k) if a solution of size at most k exists: one can go through
all sets of size at most k. Thus the problem can be solved in polynomial time if the optimum is
assumed to be small. In the undirected case, we can do significantly better: since the first FPT
algorithm for FVS in undirected graphs by Mehlhorn [36] almost 30 years ago, there have been a
number of papers [2, 3, 5, 6, 16, 17, 23, 26, 39, 40] giving faster algorithms and the current fastest
(randomized) algorithm runs in time O∗(3k) [13] (the O∗ notation hides all factors that are polyno-
mial in the size of input). That is, undirected FVS is fixed-parameter tractable parameterized by
the size of the solution. Recall that a problem is fixed-parameter tractable (FPT) with a particular
parameter k if it can be solved in time f(k)nO(1), where f is an arbitrary function depending only
on k; see [18, 21, 38] for more background. For digraphs, the fixed-parameter tractability status of
FVS was a long-standing open problem (almost 16 years) until Chen et al. [8] resolved it by giving
an O∗(4kk!) algorithm. This was recently generalized by Bonsma and Lokshtanov [4] who gave a
O∗(47.5kk!) algorithm for FVS in mixed graphs, i.e., graphs having both directed and undirected
edges.

In the more general Subset Feedback Vertex Set problem, an additional subset S of
vertices is given and we want to find a set T ⊆ V (G) of size at most k that hits all cycles passing
through a vertex of S. In the edge version, we are given a subset S ⊆ E(G) and we want to hit
all cycles passing through an edge of S. The vertex and edge versions are indeed known to be
equivalent in the parameterized sense in both undirected and directed graphs. Recently, Cygan et
al. [15] and independently Kakimura et al. [25] have shown that Subset Feedback Vertex Set in
undirected graphs is FPT parameterized by the size of the solution. Our main result is that Subset

2

Feedback Vertex Set in directed graphs is also fixed-parameter tractable parameterized by the
size of the solution:

Theorem 1.1. (main result) Subset Feedback Vertex Set (Subset-DFVS) in directed
graphs can be solved in time O∗(2O(k3)).

Our techniques. As a first step, we use the standard technique of iterative compression
[43] to argue that it is sufficient to solve the compression version of Subset-DFVS, where we
assume that a solution T of size k + 1 is given in the input and we have to find a solution of
size k. Our algorithm for the compression problem uses the technique of “random sampling of
important separators,” which was introduced by Marx and Razgon [35] for undirected Multicut
and generalized to directed graphs by Chitnis et al. [11] to handle Directed Multiway Cut.
We contribute two improvements to this technique on directed graphs. First, we abstract out a
framework that allows the clean and immediate application of this technique for various problems.
Second, we modify the random selection process to improve the probability of success. In particular,
plugging in this improved result to the Directed Multiway Cut algorithm of Chitnis et al. [11],

the running time decreases from O∗(22
k
) to O∗(2O(k2)) thus giving an exponential improvement.

Theorem 1.2. Directed Multiway Cut can be solved in time O∗(2O(k2)), where k is the number
of vertices to be deleted.

Our generic framework can be used for the following general family of problems. Let F =
{F1, F2, . . . , Fq} be a set of subgraphs of a graph G. An F-transversal is a set of vertices that
intersects every Fi. We consider problems that can be formulated as finding an F-traversal. In
particular, we will investigate F-transversal problems satisfying the following property: we say
that F is T -connected if for every i ∈ [q], each vertex of Fi can reach some vertex of T by a walk
completely contained in Fi and is reachable from some vertex of T by a walk completely contained
in Fi.

F-transversal for T -connected F
Input : A directed graph G, a positive integer k, and a set T ⊆ V (G).
Parameter : k
Question: Does there exist an F-transversal W ⊆ V (G) with |W | ≤ k, i.e., a set W such
that Fi ∩W 6= ∅ for every i ∈ [q]?

We emphasize here that the collection F is implicitly defined in a problem specific-way and we do
not assume that it is given explicitly in the input, in fact, it is possible that F is exponentially
large. For example, in the Directed Multiway Cut problem we take T as the set of terminals
and F as the set of all walks between different terminals; note that F is clearly T -connected. In
the compression version of Subset-DFVS, we take T as the solution that we want to compress
and F as the set of all cycles containing a vertex of S; again, F is T -connected, since if T is a
solution, then every cycle containing a vertex of S goes through T .

We define the “shadow” of a solution X as those vertices that are disconnected from T (in either
direction) after the removal of X. A common idea in [35, 11] is to ensure first that there is a solution
whose shadow is empty, as finding such a shadowless solution can be a significantly easier task.
Our generic framework shows that for the F-transversal problems defined above, we can invoke
the random sampling of important separators technique and obtain a set which is disjoint from a
minimum solution and covers its shadow. What we do with this set, however, is problem specific.
Typically, given such a set, we can use (some problem-specific variant of) the “torso operation” to
find an equivalent instance that has a shadowless solution. Therefore, we can focus on the simpler

3

task of finding a shadowless solution; or more precisely, finding any solution under the guarantee
that a shadowless solution exists. We believe our framework will provide a useful opening step in
the design of FPT algorithms for other transversal and cut problems on directed graphs.

In the case of undirected Multicut [35], if there was a shadowless solution, then the problem
could be reduced to an FPT problem called Almost 2SAT [32, 42]. In the case of Directed
Multiway Cut [11], if there was a solution whose shadow is empty, then the problem could be
reduced to the undirected version, which was known to be FPT [7, 14, 34]. For Subset-DFVS, the
situation turns out to be a bit more complicated. As mentioned above, we first use the technique
of iterative compression to reduce the problem to an instance where we are given a solution T and
we want to find a disjoint solution of size at most k. We define the “shadows” with respect to the
solution T that we want to compress, whereas in [11], the shadows were defined with respect to
the terminal set T . The “torso” operation we define in this paper is specific to the Subset-DFVS
problem, as it takes into account the set S and modifies it accordingly. Furthermore, even after
ensuring that there is a solution T ′ whose shadow is empty, we are not done unlike in [11]. We
then analyze the structure of the graph G \T ′ and focus on the last strongly connected component
in the topological ordering of this graph, i.e., the strongly connected component which can only
have incoming edges from other strongly connected components. We would like to find the subset
of T ′ that separates this component from the rest of the graph. In most cases, a pushing argument
can be used to argue that this subset of T ′ is an important separator, and hence we can branch
on removing an important separator from the graph. However, due to the way the set S interacts
with the solution T ′, there is a small number of vertices that behave in a special way. We need
surprisingly complex arguments to handle these special vertices.

The paper is organized as follows. Section 2 introduces notation and the preliminary steps of
the algorithm, including iterative compression. Section 3 presents the general result on covering
shadows of F-transversals. The remaining sections are specific to the Subset-DFVS problem:
they discuss how to use the techniques of Section 3 to reduce the problem to instances where
the existence of shadowless solutions is guaranteed (Section 4) and how to find a solution under
the guarantee that a shadowless solution exists (Section 5); the full algorithm is summarized in
Section 6. Finally Section 7 concludes the paper.

2 Preliminaries

Observe that a directed graph contains no cycles if and only if it contains no closed walks; moreover,
there is a cycle going through S if and only there is a closed walk going through S. For this reason,
throughout the paper we use the term closed walks instead of cycles, since it is sometimes easier
to show the existence of a closed walk and avoid discussion whether it is a simple cycle or not. A
feedback vertex set is a set of vertices that hits all the closed walks of the graph.

Definition 2.1. (feedback vertex set) Let G be a directed graph. A set T ⊆ V (G) is a feedback
vertex set of G if G \ T does not contain any closed walks.

This gives rise to the Directed Feedback Vertex Set (DFVS) problem where we are given
a directed graph G and we want to find if G has a feedback vertex set of size at most k. The DFVS
problem was shown to be FPT by Chen et al. [8], answering a long-standing open problem in the
parameterized complexity community.

In this paper, we consider a generalization of the DFVS problem where given a set S ⊆ V (G),
we ask if there exists a vertex set of size ≤ k that hits all closed walks passing through S.

4

Subset Directed Feedback Vertex Set (Subset-DFVS)
Input : A directed graph G, a set S ⊆ V (G), and a positive integer k.
Parameter : k
Question: Does there exist a set T ⊆ V (G) with |T | ≤ k such that G\T has no closed walk
containing a vertex of S?

It is easy to see that DFVS is a special case of Subset-DFVS obtained by setting S = V (G).
We also define a variant of Subset-DFVS where the set S is a subset of edges. In this variant,
we have destroy the following type of closed walks:

Definition 2.2. (S-closed-walk) Let G be a directed graph and S ⊆ E(G). A closed walk (starting
and ending at same vertex) C in G is said to be a S-closed-walk if it contains an edge from S.

Edge Subset Directed Feedback Vertex Set (Edge-Subset-DFVS)
Input : A directed graph G, a set S ⊆ E(G), and a positive integer k.
Parameter : k
Question : Does there exist a set T ⊆ V (G) with |T | ≤ k such that G \ T has no S-closed-
walks?

The above two problems can be shown to be equivalent as follows. If (G,S, k) is an instance of
Subset-DFVS we create an instance (G,S′, k) of Edge-Subset-DFVS by taking S′ as the set of
edges incident to any vertex of S. Then any closed walk passing through a vertex of S must pass
through an edge of S′, and conversely any closed walk passing through an edge of S′ must contain
a vertex from S.

On the other hand, given an instance (G,S′, k) of Edge-Subset-DFVS we create an instance
(G′, S, k) of Subset-DFVS where G′ is obtained from G by the following modification: For every
directed edge (u, v) ∈ E(G) we add a new vertex xuv and path u → xuv → v of length 2. We set
S = {xe : e ∈ S′}. Then any closed walk in G passing through an edge of S′ corresponds to
a closed-walk in G′ which must pass through a vertex of S, and conversely any closed walk in G′

passing through a vertex of S can be easily converted to a closed walk in G passing through an edge
of S′. Both the reductions work in polynomial time and do not change the parameter. Therefore, in
the rest of the paper we concentrate on solving the Edge Subset Directed Feedback Vertex
Set problem and we shall refer to both the above problems as Subset-DFVS.

2.1 Iterative Compression

The first step of our algorithm is to use the technique of iterative compression introduced by Reed
et al. [43]. It has been used to obtain faster FPT algorithms for various problems [6, 8, 16, 22, 23,
24, 35, 42]. We transform the Subset-DFVS problem into the following problem:

Subset-DFVS Compression
Input : A directed graph G, a set S ⊆ E(G), a positive integer k, and a set T ⊆ V such
that G \ T has no S-closed-walks.
Parameter : k + |T |
Question: Does there exist a set T ′ ⊆ V (G) with |T ′| ≤ k such that G \T ′ has no S-closed-
walks?

Lemma 2.3. (power of iterative compression) Subset-DFVS can be solved by O(n) calls to
an algorithm for the Subset-DFVS Compression problem with |T | ≤ k + 1.

5

Proof. Let V (G) = {v1, . . . , vn} and for i ∈ [n] let Vi = {v1, . . . vi}. We construct a sequence of
subsets Xi ⊆ Vi, such that Xi is a solution for G[Vi]. Clearly, X1 = ∅ is a solution for G[V1].
Observe that if Xi is a solution for G[Vi], then Xi ∪ {vi+1} is a solution for G[Vi+1]. Therefore, for
each i ∈ [n − 1], we set T = Xi ∪ {vi+1} and use, as a blackbox, an algorithm for Subset-DFVS
Compression, to construct a set Xi+1 that is a solution of size at most k for G[Vi+1]. Note that
if there is no solution for G[Vi] for some i ∈ [n], then there is no solution for the whole graph G
and moreover, since Vn = V (G), if all the calls to the reduction problem are successful, then Xn is
a solution for the graph G.

Now we transform the Subset-DFVS Compression problem into the following problem whose
only difference is that the subset feedback vertex set in the output must be disjoint from the one
in the input:

Disjoint Subset-DFVS Compression
Input : A directed graph G, a set S ⊆ E(G), a positive integer k, and a set T ⊆ V such
that G \ T has no S-closed-walks.
Parameter : k + |T |
Question: Does there exist a set T ′ ⊆ V (G) with |T ′| ≤ k such that T ∩ T ′ = ∅ and G \ T ′
has no S-closed-walks?

Lemma 2.4. (adding disjointness) Subset-DFVS Compression can be solved by O(2|T |) calls
to an algorithm for the Disjoint Subset-DFVS Compression problem.

Proof. Given an instance I = (G,S, T, k) of Subset-DFVS Compression we guess the intersec-
tion X of T and the subset feedback vertex set T ′ in the output. We have at most 2|T | choices for
X. Then for each guess for X, we solve the Disjoint Subset-DFVS Compression problem for
the instance IX = (G \X,S, T \X, k − |X|). It is easy to see that if T ′ is a solution for instance I
of Subset-DFVS Compression, then T ′ \X is a solution of instance IX of Disjoint Subset-
DFVS Compression for X = T ′ ∩ T . Conversely, if T ′′ is a solution to some instance IX , then
T ′′ ∪X is a solution for X.

From Lemmas 2.3 and 2.4, an FPT algorithm for Disjoint Subset-DFVS Compression
translates into an FPT algorithm for Subset-DFVS with an additional blowup factor of O(2|T |n)
in the running time.

3 General F-transversal Problems: Covering the Shadow of a So-
lution

The purpose of this section is to present the “random sampling of important separators” technique
developed in [11] for Directed Multiway Cut in a generalized way that applies to Subset-
DFVS as well. The technique consists of two steps:

1. First find a set Z small enough to be disjoint from a solution X (of size ≤ k) but large enough
to cover the “shadow” of X.

2. Then define a “torso” operation that uses the set Z to reduce the problem instance in such
a way that X becomes a shadowless solution of the reduced instance.

6

In this section, we define a general family of problems for which Step 1 can be efficiently
performed. The general technique to execute Step 1 is very similar to what was done for Directed
Multiway Cut [11]. In Section 4, we show how Step 2 can be done for the specific problem
of Disjoint Subset-DFVS Compression. First we start by defining separators and shadows.
Following [11], we define separators in a generalized setting where we assume that the graph G
is equipped with a subset V∞(G) of undeletable vertices and separators by definition have to be
disjoint from this set. This extension will be very convenient in the proofs of Section 3.3.

Definition 3.1. (separator) Let G be a directed graph and V∞(G) be the set of distinguished
(“undeletable”) vertices. Given two disjoint non-empty sets X,Y ⊆ V , we call a set W ⊆ V \ (X ∪
Y ∪ V∞) an X − Y separator if there is no path from X to Y in G \W . A set W is a minimal
X − Y separator if no proper subset of W is an X − Y separator.

Note that here we explicitly define the X − Y separator W to be disjoint from X and Y .

Definition 3.2. (shadows) Let G be graph and T be a set of terminals. Let W ⊆ V (G) \ V∞(G)
be a subset of vertices.

1. The forward shadow fG,T (W) of W (with respect to T) is the set of vertices v such that W
is a T − {v} separator in G.

2. The reverse shadow rG,T (W) of W (with respect to T) is the set of vertices v such that W is
a {v} − T separator in G.

The shadow of W (with respect to T) is the union of fG,T (W) and rG,T (W).

That is, we can imagine T as a light source with light spreading on the directed edges. The
forward shadow is the set of vertices that remain dark if the set W blocks the light, hiding v from
T ’s sight. In the reverse shadow, we imagine that light is spreading on the edges backwards. We
abuse the notation slightly and write v − T separator instead of {v} − T separator. We also drop
G and T from the subscript if they are clear from the context. Note that W itself is not in the
shadow of W (as, by definition, a T − v or v−T separator needs to be disjoint from T and v), that
is, W and fG,T (W) ∪ rG,T (W) are disjoint. See Figure 1 for an illustration.

Let G be a directed graph and T ⊆ V (G). Let F = {F1, F2, . . . , Fq} be a set of subgraphs of
G. We define the following property:

Definition 3.3. (T-connected) Let F = {F1, F2, . . . , Fq} be a set of subgraphs of G. For a set
T ⊆ V , we say that F is T -connected if for every i ∈ [q] , each vertex of the subgraph Fi can reach
some vertex of T by a walk completely contained in Fi and is reachable from some vertex of T by
a walk completely contained in Fi.

For a set F of subgraphs of G, an F-transversal is a set of vertices that intersects each subgraph
in F .

Definition 3.4. (F-transversal) Let F = {F1, F2, . . . , Fq} be a set of subgraphs of G. Then
W ⊆ V (G) is said to be an F-transversal if ∀ i ∈ [q] we have Fi ∩W 6= ∅.

The main result of this section is a randomized algorithm for producing a set that covers the
shadow of some F-transversal:

Theorem 3.5. (randomized covering of the shadow) Let T ⊆ V (G). There is an algorithm
RandomSet(G,T, k) that runs in O∗(4k) time and returns a set Z ⊆ V (G) such that for any set F
of T -connected subgraphs, if there exists an F-transversal of size ≤ k, then the following holds with
probability 2−O(k2): there is an F-transversal X of size ≤ k such that

7

W

r(W) f(W)

f(W) ∩ r(W)

T

Figure 1: For every vertex v ∈ f(W), the set W is a T − v separator. For every vertex w ∈ r(W),
the set W is a w− T separator. For every vertex y ∈ f(W)∩ r(W), the set W is both a T − y and
y − T separator. Finally for every z ∈ V (G) \ [W ∪ r(W) ∪ f(W) ∪ T], there are both z − T and
T − z paths in the graph G \W .

1. X ∩ Z = ∅ and

2. Z covers the shadow of X.

Note that F is not an input of the algorithm described by Theorem 3.5: the set Z constructed
in the above theorem works for every T -connected set F of subgraphs. Therefore, issues related
to the representation of F do not arise. Using the theory of splitters, we also prove the following
derandomized version of Theorem 3.5:

Theorem 3.6. (deterministic covering of the shadow) Let T ⊆ V (G). We can construct a
set {Z1, Z2, . . . , Zt} with t = 2O(k2) log2 n in time O∗(2O(k2)) such that for any set F of T -connected
subgraphs, if there exists an F-transversal of size ≤ k, then there is an F-transversal X of size ≤ k
such that for at least one i ∈ [t] we have

1. X ∩ Zi = ∅ and

2. Zi covers the shadow of X.

Sections 3.1–3.3 are devoted to the proofs of Theorems 3.5–3.6.
In the Directed Multiway Cut algorithm of Chitnis et al. [11], the set T was the set of

terminals and the set F was the set of all walks from one vertex of T to another vertex of T .
Clearly, F is T -connected: every vertex on a walk from T to T satisfies the reachability conditions.
With this interpretation, Theorem 3.6 generalizes Theorem 4.11 of [11] with a better running time.
Plugging Theorem 3.6 into the Directed Multiway Cut algorithm of [11] gives an O∗(2O(k2))
time algorithm, proving Theorem 1.2.

In Subset-DFVS, the set T is the solution that we want to compress and F is the set of all
S-closed-walks passing through some vertex of T . Again, F is T -connected: every S-closed-walk
goes through T (as T is a solution), hence any vertex on an S-closed-walk is reachable from T , and
some vertex of T is reachable from every vertex of the S-closed-walk.

We say that an F-transversal T ′ is shadowless if f(T ′)∪r(T ′) = ∅. Note that if T ′ is a shadowless
solution, then each vertex of G \ T ′ is reachable from some vertex of T and can reach some vertex

8

of T . In Section 4, we show that given an instance of Disjoint Subset-DFVS Compression
and a set Z as in Theorem 3.5, we are able to transform the instance using the torso operation in a
way that guarantees the existence of the shadowless solution for the reduced instance. In Section 5,
we will see how we can make progress in Disjoint Subset-DFVS Compression if there exists a
shadowless solution: we identify a bounded-size set of vertices such that every shadowless solution
contains at least one vertex of this set. Therefore, we can branch on including one vertex of this
set into the solution.

3.1 Important separators and random sampling

This subsection reviews the notion of important separators and the random sampling technique
introduced in [35]. These ideas were later adapted and generalized for directed graphs in [11]. We
closely follow [11], but we deviate from it in two ways: we state the results in the framework of
F-transversal problems and improve the random selection and its analysis to achieve better running
time. Unfortunately, this means that we have to go step-by-step through most of the corresponding
arguments of [11]. While some of the statements and proofs are almost the same as in [11], we give
a self-contained presentation without relying on earlier work (with the exception of the proof of
Lemma 3.8).

3.1.1 Important separators

Marx [34] introduced the concept of important separators to deal with the Undirected Multiway
Cut problem. Since then it has been used implicitly or explicitly in [7, 8, 11, 28, 31, 33, 35, 42]
in the design of fixed-parameter algorithms. In this section, we define and use this concept in the
setting of directed graphs. Roughly speaking, an important separator is a separator of small size
that is maximal with respect to the set of vertices on one side. Recall that, as in Definition 3.1, the
graph G has a set V∞(G) of undeletable vertices and an X − Y separator is defined to be disjoint
from X ∪ Y ∪ V∞(G).

Definition 3.7. (important separator) Let G be a directed graph and let X,Y ⊆ V be two
disjoint non-empty sets. A minimal X − Y separator W is called an important X − Y separator
if there is no X − Y separator W ′ with |W ′| ≤ |W | and R+

G\W (X) ⊂ R+
G\W ′(X), where R+

A(X) is
the set of vertices reachable from X in the graph A.

Let X,Y be disjoint sets of vertices of an undirected graph. Then for every k ≥ 0, it is known [7,
34] that there are at most 4k important X − Y separators of size at most k for any sets X,Y . The
next lemma shows that the same bound holds for important separators even in directed graphs.

Lemma 3.8 ([11]). (number of important separators) Let X,Y ⊆ V (G) be disjoint sets in a
directed graph G. Then for every k ≥ 0 there are at most 4k important X − Y separators of size at
most k. Furthermore, we can enumerate all these separators in time O(4k · k(|V (G) + |E(G)|)).

For ease of notation, we now define the following collection of important separators:

Definition 3.9. Given a graph G, a set T ⊆ V (G), and an integer k, the set Ik contains the set
W ⊆ V (G) if W is an important v − T separator of size at most k in G for some vertex v in
V (G) \ T .

Remark 3.10. It follows from Lemma 3.8 that |Ik| ≤ 4k · |V (G)| and we can enumerate the sets
in Ik in time O∗(4k).

9

Z

X

W

T

𝑤1

𝑤3

𝑤2

𝑧3

𝑧2

𝑧1

𝑥2

𝑥1

𝑡2

𝑡1

Figure 2: W is a minimal X − T separator, but it is not an important X − T separator as Z
satisfies |Z| = |W | and R+

G\W (X) = X ⊂ X ∪W = R+
G\Z(X). In fact it is easy to check that the

only important X − T separator of size 3 is Z. If k ≥ 2 then the set {z1, z2} is in Ik, since it is
an important x1 − T separator of size 2. Finally, x1 belongs to the “exact reverse shadow” of each
of the sets {w1, w2}, {w1, z2}, {w2, z1} and {z1, z2}, since they are all minimal x1 − T separators.
However x1 does not belong to the exact reverse shadow of the set W as it is not a minimal x1−T
separator.

We now define a special type of shadows which we use later for the random sampling:

Definition 3.11. (exact shadows) Let G be a directed graph and T ⊆ V (G) a set of terminals.
Let W ⊆ V (G) \ V∞(G) be a subset of vertices. Then for v ∈ V (G) we say that

1. v is in the “ exact forward shadow” of W (with respect to T) if W is a minimal T−v separator
in G, and

2. v is in the “ exact reverse shadow” of W (with respect to T) if W is a minimal v−T separator
in G.

We refer the reader to Figure 2 for examples of Definitions 3.7, 3.9 and 3.11. Note that from
the two definitions appearing in Defintion 3.11, we will be using only the exact reverse shadow in
the paper; the definition of exact forward shadow is given only for completeness. The exact reverse
shadow of W is a subset of the reverse shadow of W : it contains a vertex v only if every vertex
w ∈ S is “useful” in separating v from T , i.e., vertex w can be reached from v and T can be reached
from w. Similarly for the forward shadow. This slight difference between the shadow and the exact
shadow will be crucial in the analysis of the algorithm (Section 3.3).

The weaker version of the random sampling described in Section 3.1.2 (Theorem 3.16) randomly
selects members of Ik and creates a subset by taking the union of the exact reverse shadows of
these sets. The following lemma will be used to give an upper bound on the probability that a
vertex is covered by the union.

Lemma 3.12. Let z be any vertex. Then there are at most 4k members of Ik that contain z in
their exact reverse shadows.

For the proof of Lemma 3.12, we need to establish first the following:

10

Lemma 3.13. If W ∈ Ik and v is in the exact reverse shadow of W , then W is an important v−T
separator.

Proof. Let w be the witness that W is in Ik, i.e., W is an important w − T separator in G. Let v
be any vertex in the exact reverse shadow of W , which means that W is a minimal v−T separator
in G. Suppose that W is not an important v − T separator. Then there exists a v − T separator
W ′ such that |W ′| ≤ |W | and R+

G\W (v) ⊂ R+
G\W ′(v). We will arrive to a contradiction by showing

that R+
G\W (w) ⊂ R+

G\W ′(w), i.e., W is not an important w − T separator.

First, we claim that W ′ is a (W \W ′)−T separator. Suppose that there is a path P from some
x ∈ W \W ′ to T that is disjoint from W ′. As W is a minimal v − T separator, there is a path
Q from v to x whose internal vertices are disjoint from W . Furthermore, R+

G\W (v) ⊂ R+
G\W ′(v)

implies that the internal vertices of Q are disjoint from W ′ as well. Therefore, concatenating Q
and P gives a path from v to T that is disjoint from W ′, contradicting the fact that W ′ is a v − T
separator.

We show that W ′ is a w − T separator and its existence contradicts the assumption that W is
an important w− T separator. First we show that W ′ is a w− T separator. Suppose that there is
a w−T path P disjoint from W ′. Path P has to go through a vertex y ∈W \W ′ (as W is a w−T
separator). Thus by the previous claim, the subpath of P from y to T has to contain a vertex of
W ′, a contradiction.

Finally, we show that R+
G\W (w) ⊆ R+

G\W ′(w). As W 6= W ′ and |W ′| ≤ |W |, this will contradict
the assumption that W is an important w − T separator. Suppose that there is a vertex z ∈
R+

G\W (w) \ R+
G\W ′(w) and consider a w − z path that is fully contained in R+

G\W (w), i.e., disjoint

from W . As z 6∈ R+
G\W ′(w), path Q contains a vertex q ∈ W ′ \W . Since W ′ is a minimal v − T

separator, there is a v−T path that intersects W ′ only in q. Let P be the subpath of this path from
q to T . If P contains a vertex r ∈W , then the subpath of P from r to T contains no vertex of W ′

(as z 6= r is the only vertex of W ′ on P), contradicting our earlier claim that W ′ is a (W \W ′)−T
separator. Thus P is disjoint from W , and hence the concatenation of the subpath of Q from w to
q and the path P is a w − T path disjoint from W , a contradiction.

Lemma 3.12 easily follows from Lemma 3.13. Let J be a member of Ik such that z is in the
exact reverse shadow of J . By Lemma 3.13, J is an important z − T separator. By Lemma 3.8,
there are at most 4k important z − T separators of size at most k and hence z belongs to at most
4k exact reverse shadows.

Remark 3.14. It is crucial to distinguish between “reverse shadow” and “exact reverse shadow”:
Lemma 3.13 (and hence Lemma 3.12) does not remain true if we remove the word “exact.” Consider
the following example (see Figure 3). Let a1, . . . , ar be vertices such that there is an edge going
from every ai to every vertex of T = {t1, t2, . . . , tk}. For every 1 ≤ i ≤ r, let bi be a vertex with an
edge going from bi to ai. For every 1 ≤ i < j ≤ r, let ci,j be a vertex with two edges going from ci,j
to ai and aj . Then every set {ai, aj} is in Ik, since it is an important ci,j − T separator; and every
set {ai} is in Ik as well, as it is an important bi − T separator. Every bi is in the reverse shadow
of {aj , ai} for 1 ≤ i 6= j ≤ r. However, bi is in the exact reverse shadow of exactly one member of
Ik, the set {ai}.

3.1.2 Random sampling

In this subsection, we describe the technique of random sampling of important separators, which
is crucial to the proof of Theorem 3.5. This technique was introduced in [35] and was adapted to

11

𝑏𝑏1

T

𝑏𝑏3

𝑏𝑏2

𝑎𝑎3

𝑎𝑎2

𝑎𝑎1

𝑐𝑐1,2

𝑐𝑐2,3

𝑐𝑐1,3

𝑡𝑡1

𝑡𝑡2

𝑡𝑡3

𝑡𝑡4

Figure 3: An illustration of Remark 3.14 in the special case when k = 4 and r = 3.

directed graphs in [11]. We follow it closely and try to present it in a self-contained way that might
be useful for future applications. In Section 4, in order to reduce the problem (via the “torso”
operation) to a shadowless instance, we need a set Z that has the following property:

Property (*)
There is an F-transversal T ∗ of size at most k such that Z covers the shadow of T ∗, but Z
is disjoint from T ∗.

Of course, when we are trying to construct this set Z, we do not know anything about the
F-transversals of the instance. In particular we have no way of checking if a given set Z satisfies
this property. Nevertheless, we use a randomized procedure that creates a set Z and we give a
lower bound on the probability that Z satisfies the requirements. For the construction of this set
Z, one can use a very specific probability distribution that was introduced in [35]. This probability
distribution is based on randomly selecting “important separators” and taking the union of their
shadows. In this paper, we modify the selection of important separators in a way that improves
the success probability. The precise description of the randomized procedure and the properties of
the distribution it creates is described in Theorems 3.16 and 3.17. Using the theory of splitters we
can derandomize the randomized selection into a deterministic algorithm that returns a bounded
number of sets such that at least one of them satisfies the required property (Section 3.2).

First we focus on the reverse shadow and try to ensure that (with good probability) Z covers
the reverse shadow of T ∗. Then in Section 3.3, we argue that, after reversing the orientation of the
edges of the graph, a second application of the random selection can be used to cover the forward
shadow. Thus in this section, we consider only the reverse shadow of T ∗.

Roughly speaking, we want to select a random set Z such that for every every (W,Y) where
Y is in the reverse shadow of W , the probability that Z is disjoint from W but contains Y can be
bounded from below. We can guarantee such a lower bound only if (W,Y) satisfies two conditions.
First, it is not enough that Y is in the shadow of W (or in other words, W is an Y − T separator),
but W should contain important separators separating the vertices of Y from T (see Theorems 3.16
and 3.17 for the exact statement). Second, W and Y have to be disjoint, otherwise there is clearly
no set covering Y and disjoint from W . In other words, a vertex of W cannot be in the reverse
shadow of other vertices of W , which is expressed by the following technical definition:

Definition 3.15. (thin) Let G be a directed graph. We say that a set W ⊆ V (G) is thin in G if
there is no v ∈W such that v belongs to the reverse shadow of W \ v with respect to T .

12

We first give an easy version of the random sampling, which only gives a double exponentially
small lower bound on the probability of constructing a set Z with the required properties.

Theorem 3.16. (random sampling) There is an algorithm RandomSet(G,T, k) that produces
a random set Z ⊆ V (G) \ T in time O∗(4k) such that the following holds. Let W be a thin set
with |W | ≤ k, and let Y be a set such that for every v ∈ Y there is an important v − T separator
W ′ ⊆ W . For every such pair (W,Y), the probability that the following two events both occur is

2−2
O(k)

:

1. W ∩ Z = ∅, and

2. Y ⊆ Z.

Proof. The algorithm RandomSet(G,T, k) first enumerates the collection Ik; let X be the set of all
exact reverse shadows of these sets. Note that two different sets in Ik have different exact reverse
shadows: if X is the exact reverse shadow of J ∈ Ik, then J is exactly the set of vertices not in X
and having an inneighbor in X. By Lemma 3.8, the size of X is O∗(4k) and can be constructed
in time O∗(4k). Let X ′ be the subset of X where each element from X occurs with probability 1

2
independently at random. Let Z be the union of the exact reverse shadows in X ′. We claim that
the set Z satisfies the requirement of the theorem.

Let us fix a pair (W,Y) as in the statement of the theorem. Let X1, X2, . . . , Xd ∈ X be the
exact reverse shadows of every member of Ik that is a subset of W . As |W | ≤ k, we have d ≤ 2k.
By the assumption that W is thin, we have Xj∩W = ∅ for every j ∈ [d]. Now consider the following
events:

(E1) W ∩ Z = ∅
(E2) Xj ⊆ Z for every j ∈ [d]

First we show that (E2) implies that Y ⊆ Z: v ∈ Y implies there is an important separator
W ′ ⊆W , i.e., there is some ` ∈ [d] such that X` is the exact reverse shadow of W . Also note that
v ∈ X` since W ′ is a minimal (in fact important) v − T separator. Since Xj ⊆ Z for every j ∈ [d],
we have that v ∈ Z. This shows that Y ⊆ Z.

Our goal is to show that both events (E1) and (E2) occur with probability 2−2
O(k)

. Let A =
{X1, X2, . . . , Xd} and B = {X ∈ X | X ∩W 6= ∅}. By Lemma 3.12, each vertex of W is contained
in the exact reverse shadows of at most 4k members of Ik. Thus |B| ≤ |W | · 4k ≤ k · 4k. If no exact
reverse shadow from B is selected, then event (E1) holds. If every exact reverse shadow from A is
selected, then event (E2) holds. Thus the probability that both (E1) and (E2) occur is bounded
from below by the probability of the event that every element from A is selected and no element
from B is selected. Note that A and B are disjoint: A contains only sets disjoint from W , while B
contains only sets intersecting W . Therefore, the two events are independent and the probability
that both events occur is at least (1

2

)2k(
1− 1

2

)k·4k
= 2−2

O(k)

We now give an improved version of the random sampling that gives a stronger lower bound on
the success probability than the one guaranteed by Theorem 3.16. Recall that in Theorem 3.16,
we randomly selected members of Ik and took Z as the union of the exact reverse shadows of
the selected sets. However, we only had single-exponential upper bounds on both types of exact
reverse shadows: number of shadows intersecting W was at most k · 4k and the number of exact

13

reverse shadows of every subset of W is at most 2k. In Theorem 3.17, we take a different view: we
randomly select a subset of vertices P and take Z as the union of exact reverse shadows of every
subset of P. This will give us a stronger (single exponentially small) lower bound on the probability
that the constructed set Z satisfies the required properties.

Theorem 3.17. (improved random sampling) There is an algorithm RandomSet(G,T, k) that
produces a random set Z ⊆ V (G) \ T in time O∗(4k) such that the following holds. Let W be a
thin set with |W | ≤ k, and let Y be a set such that for every v ∈ Y there is an important v − T
separator W ′ ⊆ W . For every such pair (W,Y), the probability that the following two events both
occur is 2−O(k2):

1. W ∩ Z = ∅, and

2. Y ⊆ Z.

Proof. The algorithm RandomSet(G,T, k) picks a subset P of V (G) where each element occurs
with probability 4−k uniformly at random. For every S ∈ Ik with S ⊆ P , let us add the exact
reverse shadow of S to X ′. Let Z be the union of the exact reverse shadows in X ′. We claim that
the set Z satisfies the requirement of the theorem.

Fix a pair (W,Y) as in the statement of the theorem. For each w ∈W , we define

Lw = {S | S is an important w − T separator of size ≤ k},
Iw =

⋃
S∈Lw

S,

I =
⋃

w∈W
Iw.

Note that a vertex w ∈ W may have an outneighbor in T , in which case Lw and Iw are empty.
Since |W | ≤ k and for each w ∈W there are at most 4k important w−T separators of size at most
k, we have |Iw| ≤ k · 4k. Since |W | ≤ k, we have |I| ≤ k2 · 4k.

Let X be the set of exact reverse shadows of every set S ∈ Ik. Let X1, X2, . . . , Xd ∈ X
be the exact reverse shadows of every S ∈ Ik with S ⊆ W . Let A = {X1, X2, . . . , Xd} and
B = {X ∈ X | X ∩W 6= ∅}. Now consider the following events:

(E1) W ∩ Z = ∅
(E2) Xj ⊆ Z for every j ∈ [d]

First we show that (E2) implies that Y ⊆ Z: v ∈ Y implies there is an important separator
W ′ ⊆W , i.e., there is some ` ∈ [d] such that X` is the exact reverse shadow of W . Also note that
v ∈ X` since W ′ is a minimal (in fact important) v − T separator. Since Xj ⊆ Z for every j ∈ [d],
we have that v ∈ Z. This shows that Y ⊆ Z.

Our goal is to show that both events (E1) and (E2) occur with probability 2−O(k2). If every
vertex from W is selected in P , then every reverse shadow from A is selected into X ′ and event (E2)
holds. We claim that if no vertex from I \W is selected in P , then no exact reverse shadow from
B is selected into X ′ and hence event (E1) will also hold. Suppose to the contrary that an exact
reverse shadow X ∈ B was selected into X ′; by the definition of B, there is a vertex w ∈ X ∩W .
Let J ∈ Ik be the set whose exact reverse shadow is X, which implies by Lemma 3.13 that J ∈ Lw
and J ⊆ Iw ⊆ I. If J \W 6= ∅, then the assumption that no vertex of I \W was selected into
P condtradicts the fact that X was selected into X ′. Suppose therefore that J ⊆ W holds. Since
X is the exact reverse shadow of J , we know that J is a minimal X − T separator. But J ⊆ W

14

implies that W \X is also an X − T separator, i.e., W ∩X lies in the reverse shadow of W \X.
This contradicts the fact that W is a thin set (see Definition 3.15).

Thus the probability that both the events (E1) and (E2) occur is bounded from below by the
probability of the event that every vertex from W is selected in P and no vertex from I \W is
selected in P . Note that the sets W and I \W are clearly disjoint. Therefore, the two events are
independent and the probability that both events occur is at least

(4−k)k(1− 4−k)k
2·4k ≥ 4−k

2 · e−2k2 = 2−O(k2)

where we used the inequalities that 1 + x ≥ e
x

1+x for every x > −1 and 1 − 4−k ≥ 1
2 for every

k ≥ 1.

3.2 Derandomization

We now derandomize the process of choosing exact reverse shadows in Theorem 3.17 using the
technique of splitters. An (n, r, r2)-splitter is a family of functions from [n] → [r2] such that for
every M ⊆ [n] with |M | = r, at least one of the functions in the family is injective on M . Naor et
al. [37] give an explicit construction of an (n, r, r2)-splitter of size O(r6 log r log n) in time poly(n, r).

Theorem 3.18. (deterministic sampling) There is an algorithm DeterministicSets(G,T, k) that
produces t = 2O(k2) log |V (G)| subsets of Z1, . . . , Zt of V (G) \ T in time O∗(2O(k2)) such that the
following holds. Let W be a thin set with |W | ≤ k, and let Y be a set such that for every v ∈ Y
there is an important v − T separator W ′ ⊆ W . For every such pair (W,Y), there is at least one
1 ≤ i ≤ t with

1. W ∩ Z = ∅, and

2. Y ⊆ Z.

Proof. In the proof of Theorem 3.17, a random subset P of a universe V (G) of size n is selected.
We argued that if every vertex from W is selected in P and no element from I \W is selected, then
both the events (E1) and (E2) occur. Instead of selecting a random subset P , we will construct
several subsets such that at least one of them will contain every vertex in W and no vertex from
I \W . Let n = |V (G)|, a = |W | ≤ k, and b = |I \W | ≤ k2 · 4k. Each subset is defined by a pair
(h,H), where h is a function in an (n, a+ b, (a+ b)2)-splitter family and H is a subset of [(a+ b)2]

of size a (there are
(
(a+b)2

a

)
=
((k+k2·4k)2

k

)
= 2O(k2) such sets H). For a particular choice of h and

H, we select those vertices v ∈ V (G) into P for which h(v) ∈ H. The size of the splitter family is

O
(

(a+b)6 log(a+b) log(n)
)

= 2O(k) log n and the number of possibilities for H is 2O(k2). Therefore,

we construct 2O(k2) log n subsets of V (G). The total time taken for constructing these subsets is
poly(n, a+ b) = poly(n, 4k).

By the definition of the splitter, there is a function h that is injective on W , and there is a
subset H such that h(v) ∈ H for every set v ∈ W and h(y) 6∈ H for every y ∈ I \W . For such an
h and H, the selection will ensure that (E1) and (E2) hold. Thus at least one of the constructed
subsets has the required properties, which is what we had to show.

3.3 Proof of Theorem 3.5: The Covering Algorithm

To prove Theorem 3.5, we show that Algorithm 1 gives a set Z satisfying the properties of Theo-
rem 3.5. Due to the delicate way separators and shadows behave in directed graphs, we construct
the set Z in two phases, calling the function RandomSet of Section 3.1 twice and taking Z to be

15

Algorithm 1: Covering (randomized version)

Input: A directed graph G1, integer k.
Output: A set Z.

1: Let Z1 = RandomSet(G1, T, k).
2: Let G2 be obtained from G1 by reversing the orientation of every edge and adding every

vertex of Z1 to V∞.
3: Let Z2 = RandomSet(G2, T, k).
4: Let Z = Z1 ∪ Z2.

the union of the two outputs. For consistency of notation, we denote the input graph by G1. Let
Z1 be the output of the first call of the function RandomSet, i.e., Z1 = RandomSet(G1, T, k). We
build a new graph G2 from G1 by reversing the orientation of every edge and adding every vertex
of Z1 to V∞. Since the structure of the graph G2 depends on the set Z1, the distribution of the
second random sampling depends on the result Z1 of the first random sampling. This means that
we cannot make the two calls in parallel. Our aim is to show that there is a transversal T ∗ such that
we can give a lower bound on the probability that Z1 covers rG1,T (T ∗) and Z2 covers fG1,T (T ∗).

To prove the existence of the required transversal T ∗, we need the following definition:

Definition 3.19. (shadow-maximal transversal) An F-transversal W is minimum if there is
no F-transversal of size less than |W |. A minimum F-transversal W is called shadow-maximal if
rG1,T (W) ∪ fG1,T (W) ∪W is inclusion-wise maximal among all minimum F-transversals.

For the rest of the proof, let us fix T ∗ to be a shadow-maximal F-transversal such that
|rG1,T (T ∗)| is maximum possible among all shadow-maximal F-transversals. We bound the prob-
ability that Z ∩ T ∗ = ∅ and rG1,T (T ∗) ∪ fG1,T (T ∗) ⊆ Z. More precisely, we bound the probability
that all of the following four events occur:

1. Z1 ∩ T ∗ = ∅,
2. rG1,T (T ∗) ⊆ Z1,

3. Z2 ∩ T ∗ = ∅, and

4. fG1,T (T ∗) ⊆ Z2.

That is, the first random selection takes care of the reverse shadow, the second takes care of the
forward shadow, and none of Z1 or Z2 hits T ∗. Note that it is somewhat counterintuitive that we
choose a T ∗ for which the shadow is large: intuitively, it seems that the larger the shadow is, the
less likely that it is fully covered by Z. However, we need this maximality property in order to
bound the probability that Z ∩ T ∗ = ∅.

We want to invoke Theorem 3.17 to bound the probability that Z1 covers Y = rG1,T (T ∗) and
Z1 ∩ T ∗ = ∅. First, we need to ensure that T ∗ is a thin set, but this follows easily from the fact
that T ∗ is a minimum F-transversal:

Lemma 3.20. If W is a minimum F-transversal for some T -connected F , then no v ∈ W is in
the reverse shadow of some W ′ ⊆W \ v.

Proof. Suppose to the contrary that there is a vertex v ∈ W such that v ∈ r(W ′) for some
W ′ ⊆ W \ v. Then we claim that W \ v is also an F-transversal, contradicting the minimality of
W . Let F = {F1, F2, . . . , Fq} and suppose that there is a i ∈ [q] such that Fi ∩W = {v}. As F is
T -connected, there is a v → T walk P in Fi. But P ∩W = {v} implies that there is a v → T walk
in G \ (W \ v), i.e., v cannot belong to the reverse shadow of any W ′ ⊆W \ v.

16

More importantly, if we want to use Theorem 3.17 with Y = rG1,T (T ∗), then we have to make
sure that for every vertex v of rG1,T (T ∗), there is an important v − T separator that is a subset
of T ∗. The “pushing argument” of Lemma 3.21 shows that if this is not true for some v, then we
can modify the F-transversal in a way that increases the size of the reverse shadow. The extremal
choice of T ∗ ensures that no such modification is possible, thus T ∗ contains an important v − T
separator for every v.

Lemma 3.21. (pushing) Let W be an F-transversal for some T -connected F . For every v ∈
r(W), either there is a W1 ⊆W that is an important v− T separator, or there is an F-transversal
W ′ such that

1. |W ′| ≤ |W |,
2. r(W) ⊂ r(W ′),
3. (r(W) ∪ f(W) ∪W) ⊆ (r(W ′) ∪ f(W ′) ∪W ′).

Proof. Let W0 be the subset of W reachable from v without going through any other vertices of
W . Then W0 is clearly a v − T separator. Let W1 be the minimal v − T separator contained in
W0 (we may note that if W is a minimal F-transversal, then we always have W1 = W0). If W1 is
an important v − T separator, then we are done as W itself contains W1. Otherwise, there exists
an important v− T separator W ′1, i.e., |W ′1| ≤ |W1| and R+

G\W1
(v) ⊂ R+

G\W ′1
(v). Now we show that

W ′ = (W \W1) ∪W ′1 is also an F-transversal. Note that W ′1 ⊆W ′ and |W ′| ≤ |W |.
First we claim that r(W) ∪ (W \W ′) ⊆ r(W ′). Suppose that there is a walk P from β to T in

G\W ′ for some β ∈ r(W)∪(W \W ′). If β ∈ r(W), then walk P has to go through a vertex β′ ∈W .
As β′ is not in W ′, it has to be in W \W ′. Therefore, by replacing β with β′, we can assume in the
following that β ∈W \W ′ ⊆W1 \W ′1. By the minimality of W1, every vertex of W1 ⊆W0 has an
incoming edge from some vertex in R+

G\W (v). This means that there is a vertex α ∈ R+
G\W (v) such

that (α, β) ∈ E(G). Since R+
G\W (v) ⊂ R+

G\W ′(v), we have α ∈ R+
G\W ′(v), implying that there is a

v → α walk in G \W ′. The edge α→ β also survives in G \W ′ as α ∈ R+
G\W ′(v) and β ∈W1 \W ′1.

By assumption, we have a walk in G \W ′ from β to some t ∈ T . Concatenating the three walks
we obtain a v → t walk in G \W ′, which contradicts the fact that W ′ contains an (important)
v − T separator W ′1. This proves the claim. Since W 6= W ′ and |W | = |W ′|, the set W1 \W ′1 is
non-empty. Thus r(W) ⊂ r(W ′) follows from the claim r(W) ∪ (W \W ′) ⊆ r(W ′).

Suppose now that W ′ is not an F-transversal. Then there is some i ∈ [q] such that Fi∩W ′ = ∅.
As W is an F-transversal, there is some w ∈ W \W ′ with w ∈ Fi. As F is T -connected, there
is a w → T walk in Fi, which gives a w → T walk in G \W ′ as W ′ ∩ Fi = ∅. However, we have
W \W ′ ⊆ r(W ′) (by the claim in the previous paragraph), a contradiction. Thus W ′ is also an
F-transversal.

Finally, we show that r(W)∪f(W)∪W ⊆ r(W ′)∪f(W ′)∪W ′. We know that r(W)∪(W \W ′) ⊆
r(W ′). Thus it is sufficient to consider a vertex v ∈ f(W) \ r(W). Suppose that v 6∈ f(W ′) and
v 6∈ r(W ′): there are walks P1 and P2 in G \W ′, going from T to v and from v to T , respectively.
As v ∈ f(W), walk P1 intersects W , i.e., it goes through a vertex of β ∈W \W ′ ⊆ r(W ′). However,
concatenating the subwalk of P1 from β to v and the walk P2 gives a walk from β ∈ r(W ′) to T in
G \W ′, a contradiction.

Note that if W is a shadow-maximal F-transversal, then the F-transversal W ′ in Lemma 3.21
is also a minimum F-transversal and shadow-maximal. Therefore, by the extremal choice of T ∗,
applying Lemma 3.21 on T ∗ cannot produce a shadow-maximal F-transversal T ′ with rG1,T (T ∗) ⊂
rG1,T (T ′), and hence T ∗ contains an important v − T separator for every v ∈ rG1,T (T ∗). Thus by
Theorem 3.17 for Y = rG1,T (T ∗), we get:

17

Lemma 3.22. With probability at least 2−O(k2), both rG1,T (T ∗) ⊆ Z1 and Z1 ∩ T ∗ = ∅ occur.

In the following, we assume that the events in Lemma 3.22 occur. Our next goal is to bound
the probability that Z2 covers fG1,T (T ∗). Let us define a collection F ′ of subgraphs of G2 as
follows: for every subgraph F ∈ F of G1, let us add to F ′ the corresponding subgraph F ′ of
G2, i.e., F ′ is the same as F with every edge reversed. Note that F ′ is T -connected in G2: the
definition of T -connected is symmetric with respect to the orientation of the edges. Moreover, T ∗

is an F ′-transversal in G2: the vertices in T ∗ remained finite (as Z1 ∩ T ∗ = ∅ by Lemma 3.22),
and reversing the orientation of the edges does not change the fact that T ∗ is a transversal. Set
T ∗ is also shadow-maximal as an F ′-transversal in G2: Definition 3.19 is insensitive to reversing
the orientation of the edges and adding some vertices to V∞ can only decrease the set of potential
transversals. Furthermore, the forward shadow of T ∗ in G2 is same as the reverse shadow of T ∗

in G1, that is, fG2,T (T ∗) = rG1,T (T ∗). Therefore, assuming that the events in Lemma 3.22 occur,
every vertex of fG2,T (T ∗) is in V∞ in G2. We show that now it holds that T ∗ contains an important
v − T separator in G2 for every v ∈ rG2,T (T ∗) = fG1,T (T ∗):

Lemma 3.23. If W is a shadow-maximal F-transversal for some T -connected F and every vertex
of f(W) belongs to V∞, then W contains an important v − T separator for every v ∈ r(W).

Proof. Suppose to the contrary that there exists v ∈ r(W) such that W does not contain an
important v−T separator. Then by Lemma 3.21, there is a another shadow-maximal F-transversal
W ′. As W is shadow-maximal, it follows that r(W)∪f(W)∪W = r(W ′)∪f(W ′)∪W ′. Therefore,
the nonempty set W ′ \W is fully contained in r(W) ∪ f(W) ∪W . However, it cannot contain any
vertex of f(W) (as they are infinite by assumption) and cannot contain any vertex of r(W) (as
r(W) ⊂ r(W ′)), a contradiction.

Recall that T ∗ is a shadow-maximal F ′-transversal in G2. In particular, T ∗ is a minimal F ′-
transversal in G2, hence Lemma 3.20 implies that T ∗ is thin in G2 also. Thus Theorem 3.17 can
be used again (this time with Y = rG2,T (T ∗)) to bound the probability that rG2,T (T ∗) ⊆ Z2 and
Z2 ∩ T ∗ = ∅. As the reverse shadow rG2,T (T ∗) in G2 is the same as the forward shadow fG1,T (T ∗)
in G, we can state the following:

Lemma 3.24. Assuming the events in Lemma 3.22 occur, with probability at least 2−O(k2) both
fG1,T (T ∗) ⊆ Z2 and Z2 ∩ T ∗ = ∅ occur.

Therefore, with probability (2−O(k2))2, the set Z1 ∪ Z2 covers fG1,T (T ∗) ∪ rG1,T (T ∗) and it is
disjoint from T ∗. This completes the proof of Theorem 3.5.

Finally, to prove Theorem 3.6, the derandomized version of Theorem 3.6, we use the determinis-
tic variant DeterministicSets(G,T, k) of the function RandomSet(G,T, k) that, instead of returning
a random set Z, returns a deterministic set Z1, . . . , Zt of t = 2O(k2) log n sets in poly(n, 4k) time
(Theorem 3.18). Therefore, in Steps 1 and 3 of Algorithm 1, we can replace RandomSet with this
deterministic variant DeterministicSets, and branch on the choice of one Zi from the returned sets.
By the properties of the deterministic algorithm, if I is a yes-instance, then Z has Property (*)
in at least one of the 2O(k2) log2 n branches. The branching increases the running time only by a
factor of (O∗(2O(k2)))2 and therefore the total running time is O∗(2O(k2)). This completes the proof
of Theorem 3.6.

18

4 Disjoint Subset-DFVS Compression: Reduction to Shadowless
Solutions

We use the algorithm of Theorem 3.6 to construct a set Z of vertices that we want to get rid of. The
second ingredient of our algorithm is an operation that removes a set of vertices without making
the problem any easier. This transformation can be conveniently described using the operation
of taking the torso of a graph. From this point onwards in the paper, we do not follow [11]. In
particular, the torso operation is problem-specific. For Disjoint Subset-DFVS Compression,
we define it as follows:

Definition 4.1. (torso) Let (G,S, T, k) be an instance of Disjoint Subset-DFVS Compres-
sion and C ⊆ V (G). Then torso(G,C, S) is a pair (G′, S′) defined as follows:

• G′ has vertex set C and there is (directed) edge (a, b) in G′ if there is an a → b walk in G
whose internal vertices are not in C,

• S′ contains those edges of S whose endpoints are both in C; furthermore, we add the edge
(a, b) to S′ if there is an a → b walk in G that contains an edge from S and whose internal
vertices are not in C.

In particular, if a, b ∈ C and (a, b) is a directed edge of G and torso(G,C, S) = (G′, S′), then
G′ contains (a, b) as well. Thus G′ is a supergraph of the subgraph of G induced by C. Figure 4
illustrates the definition of torso with an example.

The following easy statement was proved in [11]: the torso operation preserves whether a set
W ⊆ C is a separator.

Lemma 4.2 ([11]). (torso preserves separation) Let G be a directed graph and C ⊆ V (G). Let
(G′, ∅) = torso(G,C, ∅) and W ⊆ C. For a, b ∈ C \W , the graph G \W has an a→ b path if and
only if G′ \W has an a→ b path.

We need a very similar statement here: the torso operation preserves whether a set W ⊆ C
hits every S-closed-walk.

Lemma 4.3. (torso preserves S-closed-walks) Let G be a directed graph with C ⊆ V (G) and
S ⊆ E(G). Let (G′, S′) = torso(G,C, S), v ∈ C, and W ⊆ C. Then G \W has an S-closed-walk
passing through v if and only if G′ \W has an S′-closed-walk passing through v.

Proof. Let P be an S-closed-walk in G \W passing through v. If P is fully contained in C, then
P also appears in G′ \W . Otherwise, P contains vertices from both C and V (G) \ C. Let u,w
be two vertices of C such that every vertex of P between u and w is from V (G) \ C. Then, by
definition of torso, there is an edge (u,w) in G′. Using such edges, we can modify P to obtain
another closed walk say P ′ passing through v that lies completely in G′ but avoids W . Note that
since P is a S-closed-walk, at least one of the edges on some u → w walk that we short-circuited
above must have been from S and by Definition 4.1 we would have put the edge (u,w) edge into
S′, which makes P ′ an S′-closed-walk in G′.

Conversely, suppose that P ′ is an S′-closed-walk passing through a vertex v in G′ and it avoids
W ⊆ C. If P ′ uses an edge (u,w) /∈ E(G), then this means that there is a u→ w walk Puw whose
internal vertices are not in C. Using such walks, we modify P ′ to get a closed walk P passing
through v that only uses edges from G, i.e., P is a closed walk in G \W . It remains to show that
P is an S-closed-walk: since P ′ is an S′-closed-walk, either some edge of P ′ was originally in S or
there exist some a, b ∈ P ′ such that there is a a→ b walk does not contain any vertex from C and
some edge on this walk was originally in S.

19

The graph G

v1 v2 v3 v4

v5 v7v6

v1
v2 v3 v4

The graph torso(G,C, S)

Figure 4: In the top graph G we have C = {v1, v2, v3, v4}. The edges in S are given by the dotted
lines. In the bottom graph we show the graph torso(G,C, S). All edges from G[C] appear in this
graph. In addition, we also add the edges (v1, v2), (v2, v4) and (v4, v2). The edge (v2, v3) ∈ G[C]∩S
appears in S′. In addition, we also add the edge (v4, v2) to S′ since the v4 → v7 → v5 → v2 path
in G has an edge (v7, v5) ∈ S.

If we want to remove a set Z of vertices, then we create a new instance by taking the torso on
the complement of Z:

Definition 4.4. Let I = (G,S, T, k) be an instance of Disjoint Subset-DFVS Compression
and Z ⊆ V (G) \ T . The reduced instance I/Z = (G′, S′, T, k) is obtained by setting (G′, S′) =
torso(G,V (G) \ Z, S).

The following lemma states that the operation of taking the torso does not make the Disjoint
Subset-DFVS Compression problem easier for any Z ⊆ V (G) \T in the sense that any solution
of the reduced instance I/Z is a solution of the original instance I. Moreover, if we perform the
torso operation for a Z that is large enough to cover the shadow of some solution T ∗ and also small
enough to be disjoint from T ∗, then T ∗ becomes a shadowless solution for the reduced instance
I/Z.

Lemma 4.5. (creating a shadowless instance) Let I = (G,S, T, k) be an instance of Disjoint
Subset-DFVS Compression and Z ⊆ V (G) \ T .

20

1. If I is a no-instance, then the reduced instance I/Z is also a no-instance.

2. If I has solution T ′ with fG,T (T ′) ∪ rG,T (T ′) ⊆ Z and T ′ ∩ Z = ∅, then T ′ is a shadowless
solution of I/Z.

Proof. Let C = V (G)\Z and (G′, S′) = torso(G,C, S). To prove the first statement, suppose that
T ′ ⊆ V (G′) is a solution for I/Z. We show that T ′ is also a solution for I. Suppose to the contrary
that G \T ′ has an S-closed-walk, which has to pass through some vertex v ∈ T (since G \T has no
S-closed-walks). Note that v ∈ T and Z ⊆ V (G) \ T implies v ∈ C. Then by Lemma 4.3, G′ \ T ′
also has an S′-closed-walk passing through v contradicting the fact that T ′ is a solution for I/Z.

For the second statement, let T ′ be a solution of I with T ′∩Z = ∅ and fG,T (T ′)∪rG,T (T ′) ⊆ Z.
We claim T ′ is a solution of I/Z as well. Suppose to the contrary that G′ \T ′ has an S′-closed-walk
passing through some vertex v ∈ C. As v ∈ C, Lemma 4.3 implies G \T ′ also has an S-closed-walk
passing through v, which is a contradiction as T ′ is a solution of I.

Finally, we show that T ′ is a shadowless solution, i.e, rG′,T (T ′) = fG′,T (T ′) = ∅. We only prove
rG′,T (T ′) = ∅: the argument for fG′,T (T ′) = ∅ is analogous. Assume to the contrary that there
exists w ∈ rG′,T (T ′) (note that we have w ∈ V (G′), i.e., w /∈ Z). This means that T ′ is a w − T
separator in G′, i.e., there is no w − T walk in G′ \ T ′. By Lemma 4.2, it follows that there is no
w − T walk in G \ T ′ either, i.e., w ∈ rG,T (T ′). But rG,T (T ′) ⊆ Z and therefore we have w ∈ Z,
which is a contradiction.

For every Zi in the output of Theorem 3.6, we use the torso operation to remove the vertices
in Zi. We prove that this procedure is safe in the following sense:

Lemma 4.6. Let I = (G,S, T, k) be an instance of Disjoint Subset-DFVS Compression. Let
the sets in the output of Theorem 3.6 be Z1, Z2, . . . , Zt. For every i ∈ [t], let Gi be the reduced
instance G/Zi.

1. If I is a no-instance, then Gi is also a no-instance for every i ∈ [t].

2. If I is a yes-instance, then there exists a solution T ∗ of I which is a shadowless solution of
some Gj for some j ∈ [t].

Proof. The first claim is easy to see: any solution T ′ of the reduced instance (Gi, S, T, k) is also a
solution of (G,S, T, k) (by Lemma 4.5(1), the torso operation does not make the problem easier by
creating new solutions).

By the derandomization of Covering algorithm, there is a j ∈ [t] such that Z has the Property
(∗), i.e., there is a solution T ∗ of I such that Z ∩ T ∗ = ∅ and Z covers shadow of T ∗. Then
Lemma 4.5(2) implies that T ∗ is a shadowless solution for the instance Gj = I/Zj .

5 Disjoint Subset-DFVS Compression: Finding a Shadowless So-
lution

Consider an instance (G,S, T, k) of Disjoint Subset-DFVS Compression. First, let us assume
that we can reach a start point of some edge of S from each vertex of T , since otherwise we can
clearly remove such a vertex from the graph (and from the set T) without changing the problem.
Next, we branch on all 2O(k2) log2 n choices for Z taken from {Z1, Z2, . . . , Zt} (given by Theorem 3.6)
and build a reduced instance I/Z for each choice of Z. By Lemma 4.6, if I is a no-instance, then
I/Zj is a no-instance for each j ∈ [t]. If I is a yes-instance, then by Lemma 4.6 there is at least
one i ∈ [t] such that I has a shadowless solution for the reduced instance I/Zi.

21

𝐶1

𝐶3

𝐶2

𝐶𝑙

𝑇0

Figure 5: We arrange the strongly connected components of G \ T ′ in a topological order so that
the only possible direction of edges between the strongly connected components is as shown by the
blue arrow. We will show later that the last component C` must contain a non-empty subset T0 of
T and further that no edge of S can be present within C`. This allows us to make some progress
as we shall see in Theorem 5.5.

Let us consider the branch where Z = Zi and let T ′ ⊆ V \ T be a hypothetical shadowless
solution for I/Z. We know that each vertex in G\T ′ can reach some vertex of T and can be reached
from a vertex of T . Since T ′ is a solution for the instance (G,S, T, k) of Disjoint Subset-DFVS
Compression, we know that G \ T ′ does not have any S-closed-walks. Consider a topological
ordering C1, C2, . . ., C` of the strongly connected components of G \ T ′, i.e., there can be an edge
from Ci to Cj only if i ≤ j. We illustrate this in Figure 5.

Definition 5.1. (starting/ending points of S) Let S− and S+ be the sets of starting and ending
points of edges in S respectively, i.e., S− = {u | (u, v) ∈ S} and S+ = {v | (u, v) ∈ S}.

Lemma 5.2. (properties of C`) For a shadowless solution T ′ for an instance of Disjoint
Subset-DFVS Compression, let C` be the last strongly connected component in the topological
ordering of G \ T ′ (refer to Figure 5). Then

1. C` contains a non-empty subset T0 of T .

2. No edge of S is present within C`.

3. For each edge (u, v) ∈ S with u ∈ C`, we have v ∈ T ′.
4. If T ′ ∩ S+ = ∅, then C` ∩ S− = ∅.

Proof. 1. If C` does not contain any vertex from T , then the vertices of C` cannot reach any
vertex of T in G \ T ′. This means that C` is in the (reverse) shadow of T ′, which is a
contradiction to the fact that T ′ is shadowless.

2. If C` contains an edge of S, then we will have an S-closed-walk in the strongly connected
component C`, which is a contradiction, as T ′ is a solution for the instance (G,S, T, k) of
Disjoint Subset-DFVS Compression.

3. Consider an edge (u, v) ∈ S such that u ∈ C` and v 6∈ T ′. All outgoing edges from u must
lie within C`, since C` is the last strongly connected component. In particular v ∈ C`, which
contradicts the second claim of the lemma.

4. Assume that (u, v) ∈ S and u ∈ C` (which means u ∈ C` ∩ S−). Since T ′ contains no vertex
of S+ we have v 6∈ T ′ and by the third property we have u 6∈ C`, a contradiction.

Lemma 5.2 suggests that we can start by guessing the (nonempty) subset T0 ⊆ T of vertices
appearing in the last component C`. Given a set X of removed vertices, we say that edge (u, v) ∈ S
is traversable from T0 in G\X if u, v 6∈ X and vertex u (and hence v) is reachable from T0 in G\X.

22

If T ′ is a shadowless solution, then Lemma 5.2(2) implies that no edge of S is traversable from T0
in G \ T ′. There are two ways of making sure that an edge (u, v) ∈ S is not traversable: (i) by
making u unreachable from T0, or (ii) by including v in T ′. The situation is significantly simpler
if every edge of S is handled the first way, that is, S− is unreachable from T0 in G \ T ′. Then
T ′ contains a T0 − S− separator, and (as we shall see later) we may assume that T ′ contains an
important T0 − S− separator. Therefore, we can proceed by branching on choosing an important
T0 − S− separator of size at most k and including it into the solution.

The situation is much more complicated if some edges of S are handled the second way. Given
a set X of vertices, we say that an edge (u, v) ∈ S is critical (with respect to X) if v ∈ X and u
is reachable from T0 in G \ X. Our main observation is that only a bounded number of vertices
can be the head of a critical edge in a solution. Moreover, we can enumerate these vertices (more
precisely, a bounded-size superset of these vertices) and therefore we can branch on including one
of these vertices in the solution. We describe next how to enumerate these vertices.

Let us formalize the property of the vertices we are looking for:

Definition 5.3. (critical vertex) For a fixed non-empty set T0 ⊆ V , a vertex v ∈ (V \T0)∩S+ is
called an `-critical vertex, with respect to T0, if there exists an edge (u, v) ∈ S and a set W ⊆ V \T0
such that:

• |W | ≤ `,
• edge (u, v) is critical with respect to W (that is, u is reachable from T0 in G\W and v ∈W),

• no edge of S is traversable from T0 in G \W .

We say that v is witnessed by u, T0 and W .

We need an upper bound on the number of critical vertices, furthermore our proof needs to
be algorithmic, as we want to find the set of critical vertices, or at least a bounded-size superset
of this. Roughly speaking, to test if v is a critical vertex, we need to check if there is a set T ′

that “cuts away” every edge of S from T0 in a way that some vertex u with (u, v) ∈ S is still
reachable from T0. One could argue that it is sufficient to look at important separators: if there
is such a separator where u is reachable from T0, then certainly there is an important separator
where u is reachable from T0. However, describing the requirement as “cutting away every edge of
S from T0” is imprecise: what we need is that no edge of S is traversable from T0, which cannot
be simply described by the separation of two sets of vertices. We fix this problem by moving to
an auxiliary graph G′ by duplicating vertices; whether or not an edge of S is traversable from T0
translates to a simple reachability question in G′. However, due to technical issues that arise from
this transformation, it is not obvious how to enumerate precisely the k-critical vertices. Instead,
we construct a set F of bounded size that contains each k-critical vertex, and potentially some
additional vertices. Thus if the solution has a critical edge, then we can branch on including a
vertex of F into the solution.

Theorem 5.4. (bounding critical vertices) Given a directed graph G, a subset S of its edges,
and a fixed non-empty subset T0 ⊆ V (G), we can find in time O∗(2O(k)) a set FT0 of 2O(k) vertices
that is a superset of all k-critical vertices with respect to T0.

Proof. We create an auxiliary graph G′, where the vertex set of G′ consists of two copies for each
vertex of V and two extra vertices s and t, i.e., V (G′) = {vin, vout : v ∈ V } ∪ {s, t}. The edges of
G′ are defined as follows (see also Fig. 6):

• For each edge e = (u, v) ∈ E(G), we add the following edges to E(G′): if e ∈ S, then add to
E(G′) an edge (uout, vin), otherwise add to E(G′) an edge (uout, vout).

23

v

6∈ S

∈ S
vin vout

∈ S′

6∈ S′

Figure 6: On the left there is a vertex v of G and on the right the corresponding vertices vin and
vout of G′.

• For each vertex v ∈ V , we add to E(G′) an edge (vin, vout).

• For each vertex v ∈ V , we add an edge (vin, t) to E(G′).

• For each vertex v ∈ T0, we add an edge (s, vout) to E(G′).

Let F ′T0
be the set of vertices of G′ which belong to some important s−t separator of size at most

2k. By Lemma 3.8 the cardinality of F ′T0
is at most 2k · 42k. We define FT0 as {v ∈ V : vin ∈ F ′T0

}.
Clearly, the claimed upper bound of 2O(k) on |FT0 | follows, hence it remains to prove that each
k-critical vertex belongs to FT0 .

Let x be an arbitrary k-critical vertex witnessed by u, T0 and W . Define W ′ = {vin, vout :
v ∈ W} and note that |W ′| ≤ 2k. The only out-neighbors of s are {vout | v ∈ T0} while the only
in-neighbors of t are {vin | v ∈ V }. Hence the existence of an s − t path in G′ implies that there
is in fact an edge (a, b) ∈ S that is traversable from T0 in G \W (at some point we have to go
from an “out” vertex to an “in” vertex, and the only possible way to do this is via an edge from
S). This is a contradiction to Definition 5.3. Therefore, no in-neighbor of t is reachable from s in
G′ \W ′, i.e., W ′ is an s − t separator. Finally, a path from T0 to u in G \W translates into a
path from s to uout in G′ \W ′. Consider an important s − t separator W ′′, i.e., |W ′′| ≤ |W ′| and
R+

G′\W ′(s) ⊂ R
+
G′\W ′′(s). As uout is reachable from s in G′ \W ′ we infer that uout is also reachable

from s in G′ \W ′′. Consequently xin ∈W ′′, as otherwise there would be an s− t path in G′ \W ′′.
Hence xin belongs to F ′T0

, which implies that x belongs to FT0 and the theorem follows.

The following theorem characterizes a solution, so that we can find a vertex contained in it by
inspecting a number of vertices in V bounded by a function of k. We apply Theorem 5.4 for each
subset T0 ⊆ T and let F =

⋃
T0⊆T FT0 . Note that |F | ≤ 2|T | ·2O(k) = 2O(|T |+k), and we can generate

F in time 2|T | ·O∗(2O(k)) = O∗(2O(|T |+k))

Theorem 5.5. (pushing) Let I = (G,S, T, k) be an instance of Disjoint Subset-DFVS Com-
pression having a shadowless solution and let F be a set generated by the algorithm of Theorem 5.4.
Let G+ be obtained from G by introducing a new vertex t and adding an edge (u, t) for every u ∈ S−.
Then there exists a solution T ′ ⊆ V \ T for I such that either

• T ′ contains a vertex of F \ T , or

• T ′ contains an important T0 − ({t} ∪ (T \ T0)) separator of G+ for some non-empty T0 ⊆ T .

Proof. Let T ′ be any shadowless solution for I and let T0 be the subset of T belonging to the last
strongly connected component of G \ T ′; by Property 1 of Lemma 5.2, T0 is nonempty.

We consider two cases: either there is a T0 − S− path in G \ T ′ or not. First assume that there
is a path from T0 to a vertex u ∈ S− in G \T ′. Clearly, u ∈ C`, since all vertices of T0 belong to C`

24

and no edge from C` can go to previous strongly connected components. Consider any edge from S
that has u as its starting point, say (u, v) ∈ S. By Property 3 of Lemma 5.2, we know that v ∈ T ′.
Observe that v is a k-critical vertex witnessed by u, T0, and T ′, since |T ′| ≤ k, by definition of u,
there is a path from T0 to u in G \T ′; and by Property 3 of Lemma 5.2, no edge of S is traversable
from T0. Consequently, by the property of the set F , we know that v ∈ T ′∩F 6= ∅ and the theorem
holds.

Now we assume that no vertex of S− is reachable from T0 in G\T ′. By the definition of T0, the
set T ′ is a T0− (T \T0) separator in G, hence we infer that T ′ is a T0− ({t}∪ (T \T0)) separator in
G+. Let T ∗ be the subset of T ′ reachable from T0 without going through any other vertices of T ′.
Then T ∗ is clearly a T0−({t}∪(T \T0)) separator in G+. Let T ∗∗ be the minimal T0−({t}∪(T \T0))
separator contained in T ∗. If T ∗∗ is an important T0− ({t}∪ (T \T0)) separator, then we are done,
as T ′ itself contains T ∗∗.

Otherwise, there exists an important T0 − ({t} ∪ (T \ T0)) separator T ∗∗∗ that dominates T ∗∗,
i.e., |T ∗∗∗| ≤ |T ∗∗| and R+

G+\T ∗∗(T0) ⊂ R+
G+\T ∗∗∗(T0). Now we claim that T ′′ = (T ′ \ T ∗∗) ∪ T ∗∗∗

is a solution for the instance (G,S, T, k) of Disjoint Subset-DFVS Compression. If we show
this, then we are done, as |T ′′| ≤ |T ′| and T ′′ contains the important T0− ({t}∪ (T \T0)) separator
T ∗∗∗.

Suppose T ′′ is a not a solution for the instance (G,S, T, k) of Disjoint Subset-DFVS Com-
pression. We have |T ′′| ≤ |T ′| ≤ k (as , |T ∗∗∗| ≤ |T ∗∗|) and T ′′ ∩ T = ∅ (as T ∗∗∗ is an important
T0−({t}∪(T \T0)) separator of G+, hence disjoint from T). Therefore, the only possible problem is
that there is an S-closed-walk inG\T ′′ passing through some vertex v ∈ T ∗∗\T ∗∗∗; in particular, this
implies that there is a v−S− walk in G\T ′′. Since T ∗∗ is a minimal T0−({t}∪(T \T0)) separator and
R+

G+\T ∗∗(T0) ⊂ R
+
G+\T ∗∗∗(T0), we have (T ∗∗ \ T ∗∗∗) ⊆ R+

G+\T ′′(T0), implying v ∈ R+
G+\T ′′(T0). This

gives a T0−S− walk via v in G\T ′′, a contradiction as T ′′ contains an (important) T0−({t}∪(T \T0))
separator by construction.

Theorem 5.5 tells us that there is always a minimum solution which either contains some critical
vertex of F or an important T0 − ({t} ∪ (T \ T0)) separator of G+ where T0 is a non-empty subset
of T . In the former case, we branch into |F | instances, in each of which we put one vertex of F
to the solution, generating 2O(|T |+k) instances with reduced budget. Next we can assume that the
solution does not contain any vertex of F and we try all 2|T | − 1 choices for T0. For each guess of
T0 we enumerate at most 4k important T0 − ({t} ∪ (T \ T0)) separators of size at most k in time
O∗(4k) as given by Lemma 3.8. This gives the branching algorithm described in Algorithm 2.

6 Disjoint Subset-DFVS Compression: Summary of Algorithm

Lemma 4.6 and the Branch algorithm together combine to give a bounded search tree FPT
algorithm for Disjoint Subset-DFVS Compression described in Algorithm 3.

We then repeatedly perform Steps 1 and 2. Note that for every instance, one execution of steps
1 and 2 gives rise to 2O(k2) log2 n instances such that for each instance, either we know that the
answer is NO or the budget k has decreased, because we have assumed that from each vertex of T
one can reach the set S−, and hence each important separator is non-empty. Therefore, considering
a level as an execution of Step 1 followed by Step 2, the height of the search tree is at most k.
Each time we branch into at most 2O(k2) log2 n directions (as |T | is at most k+ 1). Hence the total

number of nodes in the search tree is
(

2O(k2) log2 n
)k

.

Lemma 6.1. For every n and k ≤ n, we have (log n)k ≤ (2k log k)k + n
2k

(the logs are to base 2)

25

Algorithm 2: Branch

Input: An instance I = (G,S, T, k) of Disjoint Subset-DFVS Compression.
Output: A new set of 2O(|T |+k) instances of Disjoint Subset-DFVS Compression
where the budget k is reduced.

1: for every vertex v ∈ F \ T found by Theorem 5.4 do
2: Create a new instance Iv = (G \ v, S, T, k − 1) of Disjoint Subset-DFVS Compression.
3: for every non-empty subset T0 of T : do
4: Use Lemma 3.8 to enumerate all the at most 4k important T0 − ({t}− ∪ (T \ T0)) separators

of size at most k in G+.
5: Let the important separators be B = {B1, B2, . . . , Bm}.
6: for each i ∈ [m] do
7: Create a new instance IT0,i = (G \Bi, S, T, k − |Bi|) of Disjoint Subset-DFVS

Compression.

Algorithm 3: FPT Algorithm for Subset-DFVS

Step 1: For a given instance I = (G,S, T, k), use Theorem 3.6 to obtain a set of instances

{Z1, Z2, . . . , Zt} where t = 2O(k2) log2 n and Lemma 4.6 implies

• If I is a no-instance, then all the reduced instances Gj = G/Zj are no-instances for
all j ∈ [t]

• If I is a yes-instance, then there is at least one i ∈ [t] such that there is a solution T ∗

for I which is a shadowless solution for the reduced instance Gi = G/Zi.

At this step we branch into 2O(k2) log2 n directions.

Step 2 : For each of the instances obtained from the above step, we run the Branch

algorithm to obtain a set of 2O(k+|T |) instances where in each case either the answer is NO,
or the budget k is reduced. We solve these instances recursively and return YES if at least
one of them returns YES.

Proof. If logn
1+log logn ≥ k, then n ≥ (2 log n)k. Otherwise we have logn

1+log logn < k and then (4k log k) ≥
(2 log n) as follows: 2k log k ≥ 2 logn log k

1+log logn . Now 2 logn log k
1+log logn ≥ log n ⇔ 2 log k ≥ 1 + log log n ⇔ k2 ⇔

2 log n. But, k2

2 logn = logn
2(1+log logn)2

which is greater than 1 for n ≥ 22
7
.

The total number of nodes in the search tree is
(

2O(k2) log2 n
)k

=
(

2O(k2)
)k

(log2 n)k =

(2O(k3))(log2 n)k ≤ (2O(k3))
(

(2k log k)k + n
2k

)2
≤ 2O(k3)n2.

We then check the leaf nodes and see if there are any S-closed-walks left even after the budget
k has become zero. If the graph in at least one of the leaf nodes is S-closed-walk free, then the
given instance is a yes-instance. Otherwise it is a no-instance. This gives an O∗(2O(k3)) algorithm
for Disjoint Subset-DFVS Compression. By Lemma 2.3, we have an O∗(2O(k3)) algorithm for
the Subset-DFVS problem.

26

7 Conclusion and Open Problems

In this paper we gave the first fixed-parameter algorithm for Directed Subset Feedback Ver-
tex Set parameterized by the size of the solution. Our algorithm used various tools from the FPT
world such as iterative compression, bounded-depth search trees, random sampling of important
separators, etc. We also gave a general family of problems for which we can do random sampling
of important separators and obtain a set which is disjoint from a minimum solution and covers its
shadow. We believe this general approach will be useful for deciding the fixed-parameter tractabil-
ity status of other problems in directed graphs, where we do not know that many techniques unlike
undirected graphs.

The next natural question is whether Subset-DFVS has a polynomial kernel or can we rule
out such a possibility under some standard assumptions? The recent developments [12, 30, 29] in
the field of kernelization may be useful in answering this question. In the field of exact exponential
algorithms, Razgon [41] gave an O∗(1.9977n) algorithm for DFVS which was used by Chitnis et
al. [10] to give an O∗(1.9993n) algorithm for the more general Subset-DFVS problem. It would
be interesting to improve either of this algorithms.

Acknowledgements

We thank Marcin Pilipczuk for pointing out a missing case in an earlier version of the algorithm.

References

[1] Bafna, V., Berman, P., Fujito, T.: A 2-Approximation Algorithm for the Undirected Feedback
Vertex Set Problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)

[2] Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized Algorithms for the Loop Cutset Problem.
J. Artif. Intell. Res. (JAIR) 12, 219–234 (2000)

[3] Bodlaender, H.L.: On Disjoint Cycles. In: WG. pp. 230–238 (1991)

[4] Bonsma, P., Lokshtanov, D.: Feedback Vertex Set in Mixed Graphs. In: WADS. pp. 122–133
(2011)

[5] Cao, Y., Chen, J., Liu, Y.: On Feedback Vertex Set: New Measure and New Structures. In:
SWAT. pp. 93–104 (2010)

[6] Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex
set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)

[7] Chen, J., Liu, Y., Lu, S.: An Improved Parameterized Algorithm for the Minimum Node
Multiway Cut Problem. Algorithmica 55(1), 1–13 (2009)

[8] Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the
directed feedback vertex set problem. J. ACM 55(5) (2008)

[9] Chitnis, R.H., Cygan, M., Hajiaghayi, M.T., Marx, D.: Directed subset feedback vertex set is
fixed-parameter tractable. In: ICALP (1). pp. 230–241 (2012)

[10] Chitnis, R.H., Fomin, F.V., Lokshtanov, D., Misra, P., Ramanujan, M.S., Saurabh, S.: Faster
exact algorithms for some terminal set problems. In: IPEC. pp. 150–162 (2013)

27

[11] Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-Parameter Tractability of Directed Multiway
Cut Parameterized by the Size of the Cutset. SIAM J. Comput. 42(4), 1674–1696 (2013)

[12] Cygan, M., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Clique Cover and Graph
Separation: New Incompressibility Results. TOCT 6(2), 6 (2014)

[13] Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.:
Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time. In:
FOCS. pp. 150–159 (2011)

[14] Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On multiway cut parameterized
above lower bounds. TOCT 5(1), 3 (2013)

[15] Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex set is
fixed-parameter tractable. SIAM J. Discrete Math. 27(1), 290–309 (2013)

[16] Dehne, F., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An O(2O(k)n3) FPT
Algorithm for the Undirected Feedback Vertex Set Problem. Theory Comput. Syst. 41(3), 479–
492 (2007)

[17] Downey, R.G., Fellows, M.R.: Fixed-Parameter Tractability and Completeness I: Basic Re-
sults. SIAM J. Comput. 24(4), 873–921 (1995)

[18] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer-Verlag (1999), 530 pp.

[19] Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating Minimum Feedback Sets and
Multi-Cuts in Directed Graphs. In: IPCO. pp. 14–28 (1995)

[20] Even, G., Naor, J., Zosin, L.: An 8-Approximation Algorithm for the Subset Feedback Vertex
Set Problem. SIAM J. Comput. 30(4), 1231–1252 (2000)

[21] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag (2006), 493 pp.

[22] Fomin, F.V., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative compression and
exact algorithms. Theor. Comput. Sci. 411(7-9), 1045–1053 (2010)

[23] Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-
parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci.
72(8), 1386–1396 (2006)

[24] Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-Parameter Algorithms for
Cluster Vertex Deletion. In: LATIN. pp. 711–722 (2008)

[25] Kakimura, N., Kawarabayashi, K., Kobayashi, Y.: Erdös-pósa property and its algorithmic
applications: parity constraints, subset feedback set, and subset packing. In: SODA. pp. 1726–
1736 (2012)

[26] Kanj, I.A., Pelsmajer, M.J., Schaefer, M.: Parameterized Algorithms for Feedback Vertex Set.
In: IWPEC. pp. 235–247 (2004)

[27] Karp, R.M.: Reducibility Among Combinatorial Problems. In: Complexity of Computer Com-
putations. pp. 85–103 (1972)

28

[28] Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Fixed-parameter tractability of
multicut in directed acyclic graphs. In: ICALP (1). pp. 581–593 (2012)

[29] Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial kernel for
odd cycle transversal. In: SODA. pp. 94–103 (2012)

[30] Kratsch, S., Wahlström, M.: Representative Sets and Irrelevant Vertices: New Tools for Ker-
nelization. In: FOCS. pp. 450–459 (2012)

[31] Lokshtanov, D., Marx, D.: Clustering with local restrictions. Inf. Comput. 222, 278–292 (2013)

[32] Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster
parameterized algorithms using linear programming. ACM Transactions on Algorithms 11(2),
15 (2014)

[33] Lokshtanov, D., Ramanujan, M.S.: Parameterized Tractability of Multiway Cut with Parity
Constraints. In: ICALP (1). pp. 750–761 (2012)

[34] Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3), 394–406
(2006)

[35] Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of
the cutset. SIAM J. Comput. 43(2), 355–388 (2014)

[36] Mehlhorn, K.: Data Structures and Algorithms 2: Graph Algorithms and NP-completeness.
Springer (1984)

[37] Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and Near-Optimal Derandomization. In:
FOCS. pp. 182–191 (1995)

[38] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)

[39] Raman, V., Saurabh, S., Subramanian, C.R.: Faster Fixed Parameter Tractable Algorithms
for Undirected Feedback Vertex Set. In: ISAAC. pp. 241–248 (2002)

[40] Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for
finding feedback vertex sets. ACM Transactions on Algorithms 2(3), 403–415 (2006)

[41] Razgon, I.: Computing Minimum Directed Feedback Vertex Set in O(1.9977n). In: ICTCS.
pp. 70–81 (2007)

[42] Razgon, I., O’Sullivan, B.: Almost 2-SAT is fixed-parameter tractable. J. Comput. Syst. Sci.
75(8), 435–450 (2009)

[43] Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4),
299–301 (2004)

[44] Seymour, P.D.: Packing Directed Circuits Fractionally. Combinatorica 15(2), 281–288 (1995)

29

