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Abstract. Given a graph G and an integer k, the FEEDBACK VERTEX SET (FVS)
problem asks if there is a vertex set T of size at most k that hits all cycles in the
graph. Bodlaender (WG ’91) gave the first fixed-parameter algorithm for FVS
in undirected graphs. The fixed-parameter tractability status of FVS in directed
graphs was a long-standing open problem until Chen et al. (STOC ’08) showed
that it is fixed-parameter tractable by giving an 4kk!nO(1) algorithm. In the subset
versions of this problems, we are given an additional subset S of vertices (resp.
edges) and we want to hit all cycles passing through a vertex of S (resp. an edge
of S). Indeed both the edge and vertex versions are known to be equivalent in the
parameterized sense. Recently the SUBSET FEEDBACK VERTEX SET in undi-
rected graphs was shown to be FPT by Cygan et al. (ICALP ’11) and Kakimura
et al. (SODA ’12). We generalize the result of Chen et al. (STOC ’08) by showing
that SUBSET FEEDBACK VERTEX SET in directed graphs can be solved in time
22O(k)

nO(1), i.e., FPT parameterized by size k of the solution. By our result, we
complete the picture for feedback vertex set problems and their subset versions
in undirected and directed graphs.
The technique of random sampling of important separators was used by Marx and
Razgon (STOC ’11) to show that UNDIRECTED MULTICUT is FPT and was gen-
eralized by Chitnis et al. (SODA ’12) to directed graphs to show that DIRECTED

MULTIWAY CUT is FPT. In this paper we give a general family of problems
(which includes DIRECTED MULTIWAY CUT and DIRECTED SUBSET FEED-
BACK VERTEX SET among others) for which we can do random sampling of
important separators and obtain a set which is disjoint from a minimum solu-
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tion and covers its “shadow”. We believe this general approach will be useful for
showing the fixed-parameter tractability of other problems in directed graphs.

1 Introduction

The FEEDBACK VERTEX SET (FVS) problem has been one of the most extensively
studied problems in the parameterized complexity community. Given a graph G and
an integer k, it asks if there is a set T of size at most k which hits all cycles in G.
FVS in both undirected and directed graphs was shown to be NP-hard by Karp [18]. A
generalization of the FVS problem is the SUBSET FEEDBACK VERTEX SET (SFVS)
problem: given a subset S ⊆ V (resp. S ⊆ E), find a set T of size at most k such that T
hits all cycles passing through a vertex of S (resp. an edge of S). It is easy to see that
S =V (resp. S = E) gives the FVS problem.

As compared to undirected graphs, FVS behaves differently on digraphs. In partic-
ular the trick of replacing each edge of an undirected graph G by arcs in both directions
does not work: every feedback vertex set of the resulting digraph is a vertex cover of G
and vice versa. Any other simple transformation does not seem possible either and thus
the directed and undirected versions are very different problems. This is reflected in
the best known approximation ratio for the directed versions as compared to the undi-
rected problems: FVS in undirected graphs has an 2-approximation [1] while FVS in
directed graphs has an O(log |V | log log |V |)-approximation [13,24]. For SFVS in undi-
rected graphs there is an 8-approximation [14] while the best-known approximation in
directed graphs is O(min{log |V | log log |V |, log2 |S|}) [13].

Rather than finding approximate solutions in polynomial time, one can look for
exact solutions in time that is superpolynomial, but still better than the running time
obtained by brute force solutions. In both the directed and the undirected versions of
the feedback vertex set problems, brute force can be used to check in time nO(k) if a
solution of size at most k exists: one can go through all sets of size at most k. Thus the
problem can be solved in polynomial time if the optimum is assumed to be small. In the
undirected case, we can do significantly better: since the first FPT algorithm for FVS
in undirected graphs by Bodlaender [3] almost 21 years ago, there have been a number
of papers [2,5,6,17] giving faster algorithms and the current fastest algorithm runs in
O∗(3k) time [10] (the O∗ notation hides all factors which are polynomial in size of
input). That is, undirected FVS is fixed-parameter tractable parameterized by the size
of the cutset we remove. Recall that a problem is fixed-parameter tractable (FPT) with
a particular parameter p if it can be solved in time f (p)nO(1), where f is an arbitrary
function depending only on p; see [12,15,22] for more background. For digraphs, the
fixed-parameter tractability status of FVS was a long-standing open problem (almost
16 years) until Chen et al. [7] resolved it by giving an O∗(4kk!) algorithm. This was
recently generalized by Bonsma and Lokshtanov [4] who gave a O∗(47.5kk!) algorithm
for FVS in mixed graphs, i.e., graphs having both directed and undirected edges.

In the more general SUBSET FEEDBACK VERTEX SET problem, given an additional
subset S of vertices and we want to find a set T of size at most k that hits all cycles pass-
ing through a vertex of S. In the edge version we are given a subset S ⊆ E(G) and we
want to hit all cycles passing through an edge of S. The vertex and edge versions are in-
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deed known to be equivalent in the parameterized sense in both undirected and directed
graphs. Recently Cygan et al. [11] and independently Kakimura et al. [16] have shown
that SUBSET FEEDBACK VERTEX SET in undirected graphs is FPT parameterized by
the size of the solution. Our main result is that SUBSET FEEDBACK VERTEX SET in
digraphs is also fixed-parameter tractable parameterized by the size of the solution:

Theorem 1. (main result) SUBSET FEEDBACK VERTEX SET (SUBSET-DFVS) in di-
rected graphs can be solved in O∗(22O(k)

) time.

Our techniques. As a first step, we use the standard technique of iterative com-
pression [23] to argue that it is sufficient to solve the compression version of SUBSET-
DFVS, where we assume that a solution T of size k+ 1 is given in the input and we
have to find a solution of size k. Our algorithm for the compression problem is inspired
by the algorithm of Marx and Razgon [21] for undirected MULTICUT and Chitnis et
al. [8] for DIRECTED MULTIWAY CUT. We define the “shadow” of a solution X as
those vertices that are disconnected from T (in either direction) after the removal of
X . Our goal is to ensure that there is a solution whose shadow is empty, as finding
such a shadowless solution can be a significantly easier task. For this purpose, we use
the technique of “random sampling of important separators,” which was introduced in
[21] for undirected graphs and was generalized to directed graphs in [8]. We present
this approach here in generic way that can be used for the following general family of
problems:

Finding an F-transversal for some T -connected F
Input : A directed graph G = (V,E), a positive integer k, a set T ⊆ V and a set
F = {F1,F2, . . . ,Fq} of subgraphs such that F is T -connected, i.e., ∀ i ∈ [q] each
vertex of Fi can reach some vertex of T by a walk completely contained in Fi and
is reachable from some vertex of T by a walk completely contained in Fi.
Parameter : k
Question : Does there exist an F-transversal W ⊆ V with |W | ≤ k, i.e., a set W
such that Fi∩W 6= /0 for every i ∈ [q]?

It is easy to see that the above family includes DIRECTED MULTIWAY CUT (take
T as the set of terminals and F as the set of all walks between different terminals)
and the compression version of SUBSET-DFVS (take T as the solution that we want
to compress and F as set of all S-closed-walks). For this family of problems, we can
invoke the random sampling of important separators technique and obtain a set which is
disjoint from a minimum solution and covers its shadow. Given such a set, we can use
(some problem specific variant of) the “torso operation” to find an equivalent instance
that has a shadowless solution. Therefore, we can focus on the simpler task of finding a
shadowless solution. We believe this will be a useful opening step in the design of FPT
algorithms for other transversal and cut problems on digraphs.

In the case of undirected MULTICUT [21], if there was a shadowless solution, then
the problem could be reduced to an FPT problem called ALMOST 2SAT. In the case of
DIRECTED MULTIWAY CUT [8], if there was a solution whose shadow is empty, then
the problem could be reduced to the undirected version which was known to be FPT.
For SUBSET-DFVS, the situation is a bit more complicated. As mentioned above, we
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first use the technique of iterative compression to reduce the problem to an instance
where we are given a solution T and we want to find a disjoint solution of size at most
k. We define the “shadows” with respect to the solution T that we want to compress
whereas in [8], the shadows were defined with respect to the terminal set T . The “torso”
operation we define in this paper is specific to the SUBSET-DFVS problem and differs
from the one defined in [8]. Even after ensuring that there is a solution T ′ whose shadow
is empty, we are not done unlike in [8]. We then analyze the structure of the graph G\T ′

and use “pushing” to branch on some important separators. Then for each branch, we
need to do the whole process of random sampling of important separators to find a
solution whose shadow is empty. This is followed again by branching on important
separators. We repeat this two-step process until the budget k becomes zero.

2 Preliminaries

Observe, that a directed graphs contains no cycles if and only if it contains no closed-
walks, for this reason throughout the article we use the term closed-walks, since it is
sometimes easier to show a closed walk and avoid discussion whether it is a simple
cycle or not. A feedback vertex set is a set of vertices that hits all the closed-walks of
the graph.

Definition 2. (feedback vertex set) Let G be a directed graph. A set T ⊆ V (G) is a
feedback vertex set of G if G\T does not contain any closed-walks.

This gives rise to the DIRECTED FEEDBACK VERTEX SET (DFVS) problem where
we are given a directed graph G and we want to find if G has a feedback vertex set of
size at most k. DFVS was shown to be FPT by Chen et al. [7], closing a long-standing
open problem in the parameterized complexity community.

In this paper we consider a generalization of the DFVS problem where given a set
S⊆V (G), we ask if there exists a vertex set of size≤ k that hits all closed-walks passing
through S.

SUBSET DIRECTED FEEDBACK VERTEX SET (SUBSET-DFVS)
Input : A directed graph G = (V,E), a set S⊆V (G) and a positive integer k.
Parameter : k
Question : Does there exist a set T ⊆ V (G) with |T | ≤ k such that G \T has no
closed walk containing a vertex of S?

It is easy to see that SUBSET-DFVS is a generalization of DFVS by setting S =
V (G). We also define an equivalent variant of SUBSET-DFVS where the set S is a
subset of edges. First we define a special type of closed-walks:

Definition 3. (S-closed-walk) Let G = (V,E) be a digraph and S ⊆ E(G). A closed
walk (starting and ending at same vertex) C in G is said to be a S-closed-walk if it
contains an edge from S.
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EDGE SUBSET DIRECTED FEEDBACK VERTEX SET (EDGE-SUBSET-
DFVS)
Input : A directed graph G = (V,E), a set S⊆ E(G) and a positive integer k.
Parameter : k
Question : Does there exist a set T ⊆ V (G) with |T | ≤ k such that G \T has no
S-closed-walks?

2.1 Iterative Compression

We now use the technique of iterative compression introduced by Reed et al. [23]. It
has been used to obtain faster FPT algorithms for various problems [6,7,21]. In the first
step we transform the SUBSET-DFVS problem into the following problem:

SUBSET-DFVS REDUCTION
Input : A directed graph G = (V,E), a set S⊆ E(G), a positive integer k and a set
T ⊆V such that G\T has no S-closed-walks .
Parameter : k+ |T |
Question : Does there exist a set T ′ ⊆V (G) with |T ′| ≤ k such that G\T ′ has no
S-closed-walks?

Lemma 4. [?]4 (power of iterative compression) SUBSET-DFVS can be solved by
O(n) calls to an algorithm for the SUBSET-DFVS REDUCTION problem.

Now we transform the SUBSET-DFVS REDUCTION problem into the following
problem whose only difference is that the subset feedback vertex set in the output must
be disjoint from the one in the input:

DISJOINT SUBSET-DFVS REDUCTION
Input : A directed graph G = (V,E), a set S⊆ E(G), a positive integer k and a set
T ⊆V such that G\T has no S-closed-walks.
Parameter : k+ |T |
Question : Does there exist a set T ′ ⊆V (G) with |T ′| ≤ k such that T ∩T ′ = /0 and
G\T ′ has no S-closed-walks?

Lemma 5. [?] (adding disjointness) SUBSET-DFVS REDUCTION can be solved by
O(2|T |) calls to an algorithm for the DISJOINT SUBSET-DFVS REDUCTION problem.

From Lemmas 4 and 5, an FPT algorithm for DISJOINT SUBSET-DFVS REDUC-
TION translates into an FPT algorithm for SUBSET-DFVS with an additional blowup
factor of O(2|T |n).

3 Covering the Shadow of a Solution

The purpose of this section is to present the “random sampling of important separators”
technique used in [8] for DIRECTED MULTIWAY CUT in a generalized way that applies
to SUBSET-DFVS as well. The technique consists of two steps:

4 The proofs of the results labeled with ? have been deferred to the full version of the paper.
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1. First find a set Z small enough to be disjoint from a solution X (of size ≤ k) but
large enough to cover the “shadow” of X .

2. Then define a “torso” operation which uses the set Z to reduce the problem instance
in such a way that X becomes a shadowless solution.

In this section, we define a general family of problems for which Step 1 can be
efficiently performed. The general technique to execute Step 1 is very similar to what
was done for DIRECTED MULTIWAY CUT [8] and so we defer most of the proofs to
the full version of the paper. In Section 4, we show how Step 2 can be done for the
specific problem of DISJOINT SUBSET-DFVS REDUCTION. First we start by defining
shadows:

Definition 6. (separator) Let G = (V,E) be a directed graph. Given two disjoint non-
empty sets X ,Y ⊆ V we call a set W of vertices as an X −Y separator if W is disjoint
from X ∪Y and there is no walk from X to Y in G \W. A set W is a minimal X −Y
separator if no proper subset of W is an X−Y separator.

Definition 7. (shadow) Let G be graph and W ⊆V (G). Then for v ∈V (G) we say that
v is in the “forward shadow” fG,T (W ) of W (with respect to T ), if W is a T −{v}
separator in G. Similarly, we say that v is in the “reverse shadow” rG,T (W ) of W (with
respect to T ), if W is a {v}−T separator in G.

That is, we can imagine T as a light source with light spreading on the directed
edges. The forward shadow of W is the set of vertices that remain dark if the set W
blocks the light. In the reverse shadow, we imagine that light is spreading on the edges
backwards. We abuse the notation slightly and write v−T separator instead of {v}−T
separator. We also drop G and T from the subscript if they are clear from the context.
Note that W itself is not in the shadow of W (as a T − v or v−T separator needs to be
disjoint from T and v), that is, W and fG,T (W )∪ rG,T (W ) are disjoint.

Let G = (V,E) be a directed graph and T ⊆ V (G). Consider F = {F1,F2, . . . ,Fq}
which is a set of subgraphs of G. We define the following property:

Definition 8. (T-connected) Let F = {F1,F2, . . . ,Fq} be a set of subgraphs of G. Then
F is said to be T -connected if ∀ i ∈ [q] , each vertex of the subgraph Fi can reach some
vertex of T by a walk completely contained in Fi and is reachable from some vertex of
T by a walk completely contained in Fi.

For a set F of subgraphs of G, a transversal is a set of vertices which hits each subgraph
in F . We note that the subgraphs in F are given implicitly to us.

Definition 9. (F-transversal) LetF = {F1,F2, . . . ,Fq} be a set of subgraphs of G. Then
W is said to be an F-transversal if ∀ i ∈ [q] we have Fi∩W 6= /0.

The main theorem of this section is the following:

Theorem 10. [?](randomized covering of the shadow) Let T ⊆V (G). In O∗(4k) time,
we can construct a set Z ⊆ V (G) such that for any set of subgraphs F which is T -
connected, if there exists an F-transversal of size ≤ k, then the following holds with
probability 2−2O(k)

: there is an F-transversal X of size ≤ k satisfying
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1. X ∩Z = /0.
2. Z covers the shadow of X.

We also prove the following derandomized version of Theorem 10:

Theorem 11. [?](deterministic covering of the shadow) Let T ⊆V (G). In O∗(22O(k)
)

time, we can construct a set {Z1,Z2, . . . ,Zt} where t = 22O(k)
log2 n such that for any set

of subgraphs F which is T -connected, if there exists an F-transversal of size ≤ k, then
there is an F-transversal X of size ≤ k such that for at least one i ∈ [t] we have

1. X ∩Zi = /0.
2. Zi covers the shadow of X.

In DIRECTED MULTIWAY CUT, T was the set of terminals and the set F was the
set of all walks from one vertex of T to another vertex of T . In SUBSET-DFVS , the set
T is the solution that we want to compress and F is the set of all closed S-walks passing
through some vertex of T .

We say that an F-transversal T ′ is shadowless if f (T ′)∪ r(T ′) = /0. Note that if T ′

is a shadowless solution, then in the graph G \T ′, each vertex is reachable from some
vertex of T and can reach some vertex of T . In Section 5 we will see how we can
make progress in DISJOINT SUBSET-DFVS REDUCTION if there exists a shadowless
solution. So we would like to transform the instance in such a way that ensures the
existence of a shadowless solution, by taking the torso (Section 4) and make progress
by using the BRANCH algorithm from Section 5.

4 Reducing the Instance by Torso

We use the algorithm of Theorem 11 to construct a set Z of vertices that we want to get
rid of. The second ingredient of our algorithm is an operation that removes a set of ver-
tices without making the problem any easier. This transformation can be conveniently
described using the operation of taking the torso of a graph. From this point onwards
in the paper, we do not follow [8]. In particular, the torso operation is problem-specific.
For DISJOINT SUBSET-DFVS REDUCTION, we define it as follows:

Definition 12. (torso) Let (G,S,T,k) be an instance of DISJOINT SUBSET-DFVS RE-
DUCTION and C⊆V (G). The graph torso(G,C) has vertex set C and there is (directed)
edge (a,b) in torso(G,C) if there is an a→ b walk in G whose internal vertices are not
in C. Furthermore, we add the edge (a,b) to S if there is an a→ b walk in G which
contains an edge from S and whose internal vertices are not in C.

In particular, if a,b ∈C and (a,b) is a directed edge of G, then torso(G,C) contains
(a,b) as well. Thus torso(G,C) is a supergraph of the subgraph of G induced by C. The
following lemma shows that the torso operation preserves S-closed-walks inside C.

Lemma 13. [?] (torso preserves S-closed-walks) Let G be a directed graph and C ⊆
V (G). Let G′= torso(G,C),v∈C and W ⊆C. Then G\W has an S-closed-walk passing
through v if and only if G′ \W has an S-closed-walk passing through v.
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If we want to remove a set Z of vertices, then we create a new instance by taking
the torso on the complement of Z:

Definition 14. Let I = (G,S,T,k) be an instance of DISJOINT SUBSET-DFVS RE-
DUCTION and Z ⊆V (G)\T . The reduced instance I/Z = (G′,S,T, p) is defined as

– G′ = torso(G,V (G)\Z)
– S is modified as specified in Definition 12.

The following lemma states that the operation of taking the torso does not make the
DISJOINT SUBSET-DFVS REDUCTION problem easier for any Z ⊆ V (G) \ T in the
sense that any solution of the reduced instance I/Z is a solution of the original instance
I. Moreover, if we perform the torso operation for a Z that is large enough to cover
the shadow of some solution T ∗ and also small enough to be disjoint from T ∗, then T ∗

becomes a shadowless solution for the reduced instance I/Z.

Lemma 15. [?] (creating a shadowless instance) Let I = (G,S,T,k) be an instance of
DISJOINT SUBSET-DFVS REDUCTION and Z ⊆V (G)\T .

1. If I is a no-instance, then the reduced instance I/Z is also a no-instance.
2. If I has solution T ′ with fG,T (T ′)∪ rG,T (T ′) ⊆ Z and T ′ ∩ Z = /0, then T ′ is a

shadowless solution of I/Z.

For every Zi in the output of Theorem 11, we use the torso operation to remove the
vertices in Zi. We prove that this procedure is safe by showing the following:

Lemma 16. [?] Let I = (G,S,T,k) be an instance of DISJOINT SUBSET-DFVS RE-
DUCTION. Let the sets in the output of Theorem 11 be Z1,Z2, . . . ,Zt . For every i ∈ [t],
let Gi be the reduced instance G/Zi.

1. If I is a no-instance, then Gi is also a no-instance for every i ∈ [t].
2. If I is a yes-instance, then there exists a solution T ∗ of I which is a shadowless

solution of some G j for some j ∈ [t].

5 Finding a Shadowless Solution

Consider an instance (G,S,T,k) of DISJOINT SUBSET-DFVS REDUCTION. First, let
us assume that from each vertex of T , we can reach an edge of S, since otherwise we
can clearly remove such a vertex from the set T , without violating the assumption that
G \ T has no S-closed walk. Next, we branch on all 22O(k)

log2 n choices for Z taken
from {Z1,Z2, . . . ,Zt} (given by Theorem 11) and build a reduced instance I/Z for each
choice of Z. By Lemma 15, if I is a no-instance then I/Z j is a no-instance for each
j ∈ [t]. If I is a yes-instance, then by Lemma 16, there is at least one i ∈ [t] such that I
has a solution T ′ which is a solution, and in fact a shadowless solution, for the reduced
instance I/Zi.

So for the reduced instance I/Zi we know that each vertex in G \ T ′ can reach
some vertex of T and can be reached from a vertex of T . Since T ′ is a solution for the
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Fig. 1. We arrange the strong components of G\T ′ in topological order so that the only possible
direction of edges between the strong components is as shown by the blue arrow. We will claim
later that the last component C` must contain a non-empty subset T0 of T and further that no
edge of S can be present within C`. This allows us to make some progress as we shall see in
Theorem 21

instance (G,S,T,k) of DISJOINT SUBSET-DFVS REDUCTION, we know that G \ T ′

does not have any S-closed-walks. Consider a topological ordering say C1,C2, . . . ,C` of
the strong components of G \T ′, i.e., there can be an edge from Ci to C j only if i < j.
We illustrate this in Figure 1.

Definition 17. (starting points of S) Let S− be the set of starting points of edges in S,
i.e., S− = {u | (u,v) ∈ S}.

Lemma 18. [?] (properties of C`) Let C` be the last strong component in the topological
ordering of G\T ′ (refer to Figure 1). Then

1. C` contains a non-empty subset T0 of T .
2. No edge of S is present within C`.
3. S− is disjoint from C`.

Since T0 is the subset of T present in C` and only edges between strong components
can be from left to right, we have that there are no T0− (T \T0) walks in G\T ′. Along
with the third claim of Lemma 18, this implies that the solution T ′ contains a T0−(S−∪
(T \T0)) separator. We now define a special type of separators:

Definition 19. (important separator) Let G be a digraph and let X ,Y ⊆ V be two
disjoint non-empty sets. A minimal X −Y separator W is called an important X −Y
separator if there is no X−Y separator W ′ with |W ′| ≤ |W | and R+

G\W (X)⊂ R+
G\W ′(X),

where R+
A (X) is the set of vertices reachable from X in A.

For any X ,Y ⊆ V (G), the following lemma (proved in [8]) gives an upper bound the
number of important X−Y separators of size at most k:

Lemma 20. [?](number of important separators) Let X ,Y ⊆V (G) be disjoint sets in
a directed graph G. Then for every k≥ 0 there are at most 4k important X−Y separators
of size at most k. Furthermore, we can enumerate all these separators in time O∗(4k).
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Algorithm 1 BRANCH

Input: An instance I = (G,S,T,k) of DISJOINT SUBSET-DFVS REDUCTION.
Output: A new set of 2O(k+|T |) instances of DISJOINT SUBSET-DFVS REDUCTION where the
budget k is reduced.
1: for every non-empty subset T0 of T : do
2: Use Lemma 20 to enumerate all the at most 4k important T0− (S− ∪ (T \T0)) separators

of size at most k.
3: Let the important separators be B = {B1,B2, . . . ,Bm}.
4: for each i ∈ [m] do
5: Create a new instance IT0,i = (G \Bi,S,T,k− |Bi|) of DISJOINT SUBSET-DFVS RE-

DUCTION.

By “pushing”, we have the following theorem:

Theorem 21. [?] (pushing) Either T ′ contains an important T0− (S− ∪ (T \T0)) sep-
arator or there is another solution T ′′ of the instance (G,S,T,k) such that |T ′′| ≤ |T ′|
and T ′′ contains an important T0− (S−∪ (T \T0)) separator.

Theorem 21 tells us that there is always a minimum solution which contains an
important T0 − (S− ∪ (T \ T0)) separator where T0 is a non-empty subset of T . This
gives 2|T |− 1 choices for T0. For each guess of T0 we enumerate all the at most 4k

important T0− (S− ∪ (T \T0)) separators of size at most k in time O∗(4k) as given by
Lemma 20. This gives the following natural branching algorithm:

6 FPT Algorithm for DISJOINT SUBSET-DFVS REDUCTION

Lemma 16 and the BRANCH algorithm together combine to give a bounded-search-tree
FPT algorithm for DISJOINT SUBSET-DFVS REDUCTION as follows:

FPT Algorithm for SUBSET-DFVS
Step 1: At the first step, for a given instance I = (G,S,T,k), use Theorem 11 to

obtain a set of instances {Z1,Z2, . . . ,Zt} where 22O(k)
log2 n and Lemma 16 implies

– If I is a no-instance, then all the reduced instances G j =G/Z j are no-instances
for all j ∈ [t]

– If I is a yes-instance, then there is at least one i∈ [t] such that there is a solution
T ∗ for I which is a shadowless solution for the reduced instance Gi = G/Zi.

So at this step we branch into 22O(k)
log2 n directions.

Step 2 : For each of the instances obtained from the above step, we run the
BRANCH algorithm to obtain a set of 2O(k+|T |) instances where in each case either
the answer is NO, or the budget k is reduced.
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We then repeatedly perform Steps 1 and 2. Note that for every instance, one exe-
cution of steps 1 and 2 gives rise to 22O(k)

log2 n instances such that for each instance,
either we know that the answer is NO or the budget k has decreased, because we have
assumed that from each vertex of T one can reach the set S−, and hence each impor-
tant separator is non-empty. Therefore, considering a level as an execution of Step 1
followed by Step 2, the height of the search tree is at most k. Each time we branch into
at most 22O(k)

log2 n directions (as |T | is at most k+1). Hence the total number of nodes

in the search tree is
(

22O(k)
log2 n

)k
.

Lemma 22. [?] For every n and k ≤ n, we have (logn)k ≤ (2k logk)k + n
2k

So the total number of nodes in the search tree is
(

22O(k)
log2 n

)k
=
(

22O(k)
)k
(log2 n)k =

(22O(k)
)(log2 n)k ≤ (22O(k)

)
(
(2k logk)k + n

2k

)2
≤ 22O(k)

n2. We then check the leaf nodes
and see if there are any S-closed-walks left even after the budget k has become zero. If
the graph at least one of the leaf nodes is S-closed-walk free, then the given instance is a
yes-instance. Otherwise it is a no-instance. This gives an O∗(22O(k)

) algorithm for DIS-
JOINT SUBSET-DFVS REDUCTION. By Lemma 4, we have an O∗(22O(k)

) algorithm
for the SUBSET-DFVS problem.

7 Conclusion and Open Problems

In this paper we gave the first fixed-parameter algorithm for DIRECTED SUBSET FEED-
BACK VERTEX SET parameterized by the size of the solution. Our algorithm used var-
ious tools from the FPT world such as iterative compression, bounded-depth search
trees, random sampling of important separators, etc. We also gave a general family of
problems for which we can do random sampling of important separators and obtain a set
which is disjoint from a minimum solution and covers its shadow. We believe this gen-
eral approach will be useful for deciding the fixed-parameter tractability status of other
problems in digraphs where we do not know that much techniques unlike undirected
graphs.

The next natural question is whether SUBSET-DFVS has a polynomial kernel or
can we rule out such a possibility under some standard assumptions? The recent devel-
opments [9,19,20] in the field of kernelization may be useful in answering this ques-
tion. Another question is to try and reduce the complexity of our algorithm to single
exponential. In the field of exact exponential algorithms, Razgon gave a O(1.9977n)
algorithm for DFVS. It would be interesting to break the trivial 2nnO(1) barrier for
SUBSET-DFVS.
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