
Fixed-Parameter Tractability of Directed Multiway Cut Parameterized
by the Size of the Cutset

Rajesh Chitnis∗ MohammadTaghi Hajiaghayi† Dániel Marx‡

Abstract
Given a directed graph G, a set of k terminals and an integer p,
the DIRECTED VERTEX MULTIWAY CUT problem asks if there
is a set S of at most p (nonterminal) vertices whose removal
disconnects each terminal from all other terminals. DIRECTED

EDGE MULTIWAY CUT is the analogous problem where S is a
set of at most p edges. These two problems indeed are known to
be equivalent. A natural generalization of the multiway cut is the
multicut problem, in which we want to disconnect only a set of k
given pairs instead of all pairs. Marx (Theor. Comp. Sci. 2006)
showed that in undirected graphs multiway cut is fixed-parameter
tractable (FPT) parameterized by p. Marx and Razgon (STOC
2011) showed that undirected multicut is FPT and directed multicut
is W[1]-hard parameterized by p. We complete the picture here by
our main result which is that both DIRECTED VERTEX MULTIWAY

CUT and DIRECTED EDGE MULTIWAY CUT can be solved in time
22O(p)

nO(1), i.e., FPT parameterized by size p of the cutset of the
solution. This answers an open question raised by Marx (Theor.
Comp. Sci. 2006) and Marx and Razgon (STOC 2011). It follows
from our result that DIRECTED MULTICUT is FPT for the case of
k = 2 terminal pairs, which answers another open problem raised in
Marx and Razgon (STOC 2011).

1 Introduction
Ford and Fulkerson [7] gave the classical result finding a
minimum cut the separates two terminals s and t back in
1956. A natural and well-studied generalization of the min-
imum s− t cut problem is MULTIWAY CUT, in which given
a graph G = (V,E) and a set of terminals {s1,s2, . . . ,sk},
the task is to find a minimum subset of vertices or edges
whose deletion disconnects all the terminals from one an-
other. Dahlhaus et al. [4] showed the edge version in undi-

∗Supported in part by a Google Faculty Research Award, an ONR Young
Investigator Award, a NSF CAREER Award and a DARPA BAA grant.
Department of Computer Science , University of Maryland at College Park,
USA, email: rchitnis@cs.umd.edu

†Supported in part by a Google Faculty Research Award, an ONR Young
Investigator Award, a NSF CAREER Award and a DARPA BAA grant.
Department of Computer Science , University of Maryland at College Park,
USA. email: hajiagha@cs.umd.edu

‡Institut für Informatik, Humboldt-Universität zu Berlin, Germany, and
Computer and Automation Research Institute, Hungarian Academy of
Sciences (MTA SZTAKI), Budapest, Hungary. email: dmarx@cs.bme.hu

rected graphs is APX-complete for k ≥ 3. For the edge ver-
sion Karger et al. [10] gave the current best known approx-
imation ratio of 1.3438 for general k. The vertex version of
the problem is known to be at least as hard as the edge ver-
sion, and the current best approximation ratio is 2− 2

k [8].
The problem behaves very differently on directed

graphs. Interestingly, for directed graphs, the edge and ver-
tex versions turn out to be equivalent. Garg,Vazirani and
Yannakakis [8] showed that computing a minimum multi-
way cut in directed graphs is NP-hard and MAX SNP-hard
already for k = 2. They also give an approximation algo-
rithm with ratio 2 log k, which was improved to ratio 2 later
by Naor and Zosin [15].

Rather than finding approximate solutions in polyno-
mial time, one can look for exact solutions in time that is su-
perpolynomial, but still better than the running time obtained
by brute force solutions. For example, Dahlhaus et al. [4]
showed that undirected MULTIWAY CUT can be solved in
time nO(k) on planar graphs, which can be an efficient so-
lution if the number of terminals is small. On the other
hand, on general graphs the problem becomes NP-hard al-
ready for k = 3. In both the directed and the undirected
version, brute force can be used to check in time nO(p) if
a solution of size at most p exists: one can go through all
sets of size at most p. Thus the problem can be solved in
polynomial time if the optimum is assumed to be small. In
the undirected case, significantly better running time can be
obtained: the vertex version of the problem can be solved
in time O∗(4p) [2, 9], while the edge version can be solved
in time O∗(2p) [18] (the O∗ notation hides all factors which
are polynomial in size of input). That is, undirected MUL-
TIWAY CUT is fixed-parameter tractable parameterized by
the size of the cutset we remove. Recall that a problem is
fixed-parameter tractable (FPT) with a particular parameter
p if it can be solved in time f (p)nO(1), where f is an arbi-
trary function depending only on p; see [5, 6, 16] for more
background. Our main result is that the directed version of
MULTIWAY CUT is also fixed-parameter tractable:

THEOREM 1.1. (main result) DIRECTED VERTEX MUL-
TIWAY CUT and DIRECTED EDGE MULTIWAY CUT can be
solved in O∗(22O(p)

) time.

Note that the hardness result of Garg et al. [8] shows that in



the directed case the problem is nontrivial (in fact, NP-hard)
even for k = 2 terminals; our result holds without any bound
on the number of terminals. The question was first asked
explicitly in [12] and was also stated as an open problem in
[13]. Our result shows in particular that directed multiway
cut is solvable in polynomial time if the size of the optimum
solution is O(log logn), where n is the number of vertices in
the digraph.

A more general problem is MULTICUT: Here the in-
put contains a set {(s1, t1), . . . ,(sk, tk)} of k pairs, and the
task is to break every path from si to its corresponding ti
by the removal of at most p vertices. Very recently, it was
shown that undirected MULTICUT is FPT parameterized by
p [1, 13], but the directed version is unlikely to be FPT as
it is W[1]-hard [13] with this parameterization. However,
in the special case of k = 2 terminal pairs, there is a simple
reduction from DIRECTED MULTICUT to DIRECTED MUL-
TIWAY CUT, thus our result shows that the latter problem
is FPT parameterized by p for k = 2. Let us briefly sketch
the reduction (Note that the reduction we sketch works only
for the variant of DIRECTED MULTICUT which allows the
deletion of terminals. Marx and Razgon [13] asked about
the FPT status of this variant which is in fact equivalent
to the one which does not allow deletion of the terminals):
Let (G,T, p) be a given instance of DIRECTED MULTICUT
and let T = {(s1, t1),(s2, t2)}. We construct an equivalent in-
stance of DIRECTED MULTIWAY CUT as follows: Graph G′

is obtained by adding two new vertices s, t to the graph and
adding the four edges s→ s1, t1→ t, t → s2, and t2→ s. It
is easy to see that the DIRECTED MULTIWAY CUT instance
(G′,{s, t}, p) is equivalent to the original DIRECTED MUL-
TICUT instance.1

COROLLARY 1.1. DIRECTED MULTICUT with k= 2 can be
solved in time O∗(22O(p)

).

The complexity of the case k = 3 remains an interesting open
problem.

Our techniques. Our algorithm for DIRECTED MUL-
TIWAY CUT is inspired by the algorithm of Marx and Raz-
gon [13] for undirected MULTICUT. In particular we use
the technique of “random sampling of important separators”
introduced in [13] and try to ensure that there is a solution
whose “isolated part” is empty. However, DIRECTED MUL-
TIWAY CUT behaves in a significantly different way than
MULTICUT: at the same time, we are dealing with a much
easier and a much harder situation. The first step in [13] is
to reformulate the problem in a way that the solution has to

1G has a si→ ti path for some i if and only if G′ has a s→ t or t→ s path.
This is because G has a s1→ t1 path if and only if G′ has a s→ t path and G
has a s2→ t2 path if and only if G′ has a t→ s path. This property of paths
also holds after removing some vertices/edges and thus the two instances
are equivalent.

be a multiway cut of a certain set W of vertices; the tech-
nique of iterative compression allows us to reduce the orig-
inal problem to this new version. As MULTIWAY CUT is
already defined in terms of finding a multiway cut, this step
is not necessary in our case. Furthermore, in [13], after en-
suring that there is a solution whose “isolated part” is empty,
the problem is reduced to ALMOST-2SAT (Given a 2SAT
formula and an integer k, is there an assignment satisfying
all but k of the clauses ?) This reduction works only if ev-
ery component has at most two “legs”; a delicate branching
algorithm is given to ensure this property. In the case of DI-
RECTED MULTIWAY CUT, the situation is much simpler: if
there is a solution whose “isolated part” is empty, then the
problem can be reduced to the undirected version and the
known undirected algorithms can be used [2, 9].

On the other hand, the fact that we are dealing with a
directed graph makes the problem significantly harder (re-
call that DIRECTED MULTICUT is W[1]-hard, thus it is ex-
pected that not every undirected argument generalizes to the
directed case). After defining a proper notion of directed im-
portant separators, the non-trivial interaction amongst two
kinds of “shadows” forces us to do the random sampling
of important separators in two independent steps. In [13],
the basic version of random sampling gives a running time
that is double exponential in p; a more complicated sam-
pling process allowed to bring down the running time from
O∗(22O(p)

) to O∗(2O(p3)). Directed graphs have a notion of
weak versus strong connectivity and this difference does not
allow us to extend the more complicated version of sampling
to directed graphs. Therefore, it remains an open question
if single-exponential running time can be achieved for DI-
RECTED MULTIWAY CUT.

2 Preliminaries
A multiway cut is a set of edges/vertices that separate the
terminal vertices from each other:

DEFINITION 2.1. (multiway cut) Let G be a directed graph
and let T = {t1, t2, . . . , tk} ⊆V (G) be a set of terminals.

1. S⊆V (G) is a vertex multiway cut of (G,T ) if G\S does
not have a path from si to s j for any i 6= j.

2. S⊆ E(G) is a edge multiway cut of (G,T ) if G\S does
not have a path from si to s j for any i 6= j.

In the edge case, it is straightforward to define the problem
we are trying to solve:

DIRECTED EDGE MULTIWAY CUT
Input : A directed graph G, an integer p and a set of
terminals T .
Output : A multiway cut S⊆ E(G) of (G,T ) of size at
most p or “NO” if such a multiway cut does not exist.



In the vertex case, there is a slight technical issue in the
definition of the problem: are the terminal vertices allowed
to be deleted? We focus here on the version of the problem
where the vertex multiway cut we are looking for has to
be disjoint from the set of terminals. More generally, we
define the problem in such a way that the graph has some
distinguished vertices which cannot be included as part
of any separator (and we assume that every terminal is a
distinguished vertex). This can be modeled by considering
weights on the vertices of the graph: weight of ∞ on
each distinguished vertex and 1 on every non-distinguished
vertex. We only look for solutions of finite weight. From
here on, for a graph G = (V,E) we will denote by V ∞(G) the
set of distinguished vertices of G with the meaning that these
distinguished vertices cannot be part of any separator, i.e., all
separators we consider are of finite weight. In fact, for any
separator we can talk interchangeably about size or weight
as these notions are the same since each vertex of separator
has weight 1.

The main focus of the paper is the following vertex
version, where we require T ⊆V ∞(G), i.e., terminals cannot
be deleted:

DIRECTED VERTEX MULTIWAY CUT
Input : A directed graph G, an integer p, a set of
terminals T and a set V ∞ ⊇ T of distinguished vertices.
Output : A multiway cut S ⊆ V (G)\V ∞(G) of (G,T )
of size at most p or “NO” if such a multiway cut does
not exist.

We note that if we want to allow the deletion of the
terminal vertices, then it is not difficult to reduce the problem
to the version defined above. For each terminal t we
introduce a new vertex t ′ and we add the directed edges (t, t ′)
and (t ′, t). Let the new graph be G′ and let T ′ = {t ′ | t ∈ T}.
Then there is a clear bijection between vertex multiway cuts
which can include terminals in the instance (G,T, p) and
vertex multiway cuts which cannot include terminals in the
instance (G′,T ′, p).

Furthermore, the vertex and edge versions of DIRECTED
MULTIWAY CUT defined above are known to be equivalent.
For sake of completeness, we prove the equivalence in Ap-
pendix A. Henceforth we will refer to DIRECTED VERTEX
MULTIWAY CUT as DIRECTED MULTIWAY CUT.

The crucial idea in the algorithm of [13] for undirected
MULTICUT is to get rid of the “isolated part” of the solution
S. We use a similar concept here, but we use the term
shadow, as it is more expressive for directed graphs.

DEFINITION 2.2. (separator) Let G = (V,E) be a directed
graph and V ∞ ⊇ T be the set of distinguished vertices. Given
two disjoint non-empty sets X ,Y ⊆ V we call a set S of
vertices as a X−Y separator if

1. S is disjoint from X ∪Y ,

2. S is disjoint from V ∞(G), and

3. There is no path from X to Y in G\S.

Set S is a minimal X−Y separator if no proper subset of S is
an X−Y separator.

DEFINITION 2.3. (shadow) Let G be graph and T be a set
of terminals. Let S ⊆ V (G) \V ∞(G) be a subset of vertices.
Then for v ∈V (G) we say that

1. v is in the “forward shadow” fG,T (S) of S (with respect
to T ), if S is an T −{v} separator in G, and

2. v is in the “reverse shadow” rG,T (S) of S (with respect
to T ), if S is an {v}−T separator in G.

That is, we can imagine T as a light source with light
spreading on the directed edges. The forward shadow is the
set of vertices that remain dark if the set S blocks the light. In
the reverse shadow, we imagine that light is spreading on the
edges backwards. We abuse the notation slightly and write
v−T separator instead of {v}−T separator. We also drop G
and T from the subscript if they are clear from the context.
Note that S itself is not in the shadow of S (as a T − v or
v−T separator needs to be disjoint from T and v), that is, S
and fG,T (S)∪ rG,T (S) are disjoint.

3 Overview of our Algorithm
We say that a solution S of DIRECTED MULTIWAY CUT is
shadowless if f (S)∪ r(S) = /0. If S is a shadowless solution,
then for each vertex v in G \ S, there is a t1 → v path and a
v→ t2 path for some t1, t2 ∈ T . As S is a solution, it is not
possible that t1 6= t2: this would give a t1→ t2 path in G\S.
Therefore, if S is a shadowless solution, then each vertex in
the graph G\S belongs to the strongly connected component
of exactly one terminal.

Our algorithm exploits a simple observation: if S is a
shadowless solution for the DIRECTED MULTIWAY CUT in-
stance, then S is also a solution for the underlying undirected
MULTIWAY CUT instance. That is, S separates the terminals
from each other not only in the directed graph G, but also in
the underlying undirected graph obtained by forgetting the
orientation of the edges. Indeed, we have observed in the
previous paragraph that every vertex is in the strongly con-
nected component of some terminal and a directed edge be-
tween the strongly connected components of t1 and t2 would
imply the existence of either a t1→ t2 or a t2→ t1 path. We
state this in the following lemma:

LEMMA 3.1. If (G,T, p) has a shadowless solution S, then
S is also a solution for the instance (G∗,T, p) where G∗ is
the underlying undirected graph of G.



Tt_1t
_t₁ 
t₁ 
1 
t₁ 
 

t₂ 

tk 

C
1
 

C
2
 

C
k
 

S 

f(S) 

r(S) 

Figure 1: For a set S we let f (S),r(S) denote the forward,
reverse shadows respectively. Let t = {t1, t2, . . . , tk} and for
every i∈ [k] let Ci be the strong component containing ti. Let
C = ∪k

i=1Ci. By definition, in G \ S there can only be paths
from f(S) to any C and from C to r(S). There cannot be paths
from C into f (S) or from r(S) into C. Also there can only
be paths from f (S) into r(S). From the figure it is clear that
if r(S)∪ f (S) = /0 then S is a solution of the given instance
(and also of the underlying undirected instance).

Lemma 3.1 shows that if we can transform the instance
in a way that ensures the existence of a shadowless solution,
then we can reduce the problem to undirected MULTIWAY
CUT and use the known algorithms for that problem [2, 9,
12].

Our transformation is based on two ingredients: ran-
dom sampling of important separators and reduction of the
instance using the torso operation. These techniques were
used [13] for the undirected MULTICUT problem. In Sec-
tion 4, we review these tools and adapt them for directed
graphs.

Random sampling of important separators. In order
to reduce the problem to a shadowless instance, we need a
set Z that has the following property:

There is a solution S∗ such that Z covers the
shadow of S∗, but Z is disjoint from S∗. (*)

Of course, when we are trying to construct this set Z, we do
not know anything about the solutions of the instance and
in particular we have no way of checking if a given set Z
satisfies this property. Nevertheless, we use a randomized
procedure that creates a set Z and we give a lower bound
on the probability that Z satisfies the requirements. For the
construction of this set Z, we use a very specific probabil-
ity distribution that was introduced in [13]. This probabil-
ity distribution is based on randomly selecting “important
separators” and taking the union of their shadows. At this
point, we can consider the sampling as a black-box function

RandomSet(G,T, p) that returns a random subset Z ⊆ V (G)
according to a probability distribution that satisfies certain
properties. The precise description of this function and the
properties of the distribution it creates is described in Sec-
tion 4.2 (see Theorem 4.1). The randomized selection can
be derandomized: the randomized selection can be turned
into a deterministic algorithm that returns a bounded number
of sets such that at least one of them satisfies the required
property. To make the description of the algorithm simpler,
we focus on the randomized version of the algorithm in this
section.

Torsos. We use the function RandomSet(G,T, p) to
construct a set Z of vertices that we want to get rid of.
The second ingredient of our algorithm is an operation that
removes a set of vertices without making the problem any
easier. This transformation can be conveniently described
using the operation of taking the torso of a graph. We define
this operation as follows:

DEFINITION 3.1. (torso) Let G be a directed graph and let
C ⊆V (G). The graph torso(G,C) has vertex set C and there
is (directed) edge (a,b) in torso(G,C) if there is an a→ b
path in G whose internal vertices are not in C.

In particular, if a,b ∈C and (a,b) is a directed edge of
G, then torso(G,C) contains (a,b) as well. Thus torso(G,C)
is a supergraph of the subgraph of G induced by C. The
following lemma shows that the torso operation preserves
separation inside C.

LEMMA 3.2. (torso preserves separation) Let G be a di-
rected graph and C ⊆ V (G). Let a,b ∈C, G′ = torso(G,C)
and S⊆C. Then G\S has an a→ b path if and only if G′ \S
has an a→ b path.

Proof. Let P be a path from a to b in G. Suppose P is disjoint
from S. Then P contains vertices from C and V (G)\C. Let
u,v be two vertices of C such that every vertex of P between
u and v is from V (G)\C. Then by definition there is an edge
(u,v) in torso(G,C). Using such edges we can modify P to
obtain a a→ b path that lies completely in torso(G,C) but
avoids S.

Conversely suppose P′ is an a→ b path in torso(G,C)
and it avoids S⊆C. If P′ uses an edge (u,v) /∈ E(G) then this
means that there is a u→ v path P′′ whose internal vertices
are not in C. Using such paths we modify P to get an a→ b
path P0 that only uses edges from G. Since S ⊆ C we have
that the new vertices on the path are not in S and so P0 avoids
S.

If we want to remove a set Z of vertices, then we create
a new instance by taking the torso on the complement of Z:

DEFINITION 3.2. Let I = (G,T, p) be an instance of DI-
RECTED MULTIWAY CUT and Z ⊆ V (G) \T . The reduced
instance I/Z = (G′,T ′, p) is defined as



• G′ = torso(G,V (G)\Z)

• T ′ = T

The following lemma states that the operation of taking
the torso does not make the DIRECTED MULTIWAY CUT
problem easier for any Z ⊆ V (G) \ T in the sense that any
solution of the reduced instance I/Z is a solution of the
original instance I. Moreover, if we perform the torso
operation for a Z that is large enough to cover the shadow
of some solution S∗ but at the same time small enough to be
disjoint from S∗, then S∗ remains a solution for the reduced
instance I/Z and in fact it is a shadowless solution for I/Z.
Therefore, our goal is to randomly select a set Z in a way
that we can bound the probability that Z satisfies Property
(*) defined above for some hypothetical solution S∗.

LEMMA 3.3. (creating a shadowless instance) Let I =
(G,T, p) be an instance of DIRECTED MULTIWAY CUT and
Z ⊆V (G)\T .

1. If I has no solution then I/Z also has no solution.

2. If I has solution S with fG,T (S) ∪ rG,T (S) ⊆ Z and
S∩Z = /0, then S is a shadowless solution of I/Z.

Proof. Let G′ be the graph torso(G,V (G) \ Z) and let C =
V (G) \ Z. To prove the first statement, suppose that S′ ⊆
V (G′) is a solution for I/Z. We show that S′ is also a solution
for I. Suppose to the contrary that ∃x,y ∈ T such that there
is an x→ y path P in G \ S′. As x,y ∈ T and Z ⊆ V (G) \T ,
we have that x,y ∈C. Then by Lemma 3.2, there is an x→ y
path in G′ \S′, which is a contradiction as S′ is a solution of
I/Z.

For the second statement, let S be a solution of I with
S ∩ Z = /0 and fG,T (S) ∪ rG,T (S) ⊆ Z. We claim S is a
solution of I/Z as well. Suppose that ∃ x′,y′ ∈ T ′(= T )
such that G′ \ S has an x′ → y′ path. As x′,y′ ∈ V (G) \ Z,
Lemma 3.2 implies G\S also has an x′→ y′ path, which is a
contradiction as S is a solution of I.

We claim that rG′,T (S) = /0. Assume to the contrary that
there exists w ∈ rG′,T (S) (note that we have w ∈ V (G′), i.e.,
w /∈ Z). So S is a w− T separator in G′, i.e., there is no
w−T path in G′ \S. Lemma 3.2 gives that there is no w−T
path in G \ S, i.e., w ∈ rG,T (S). But rG,T (S) ⊆ Z and so we
have w ∈ Z which is a contradiction. Thus rG,T (S) ⊆ Z in
G implies that rG′,T (S) is empty in I/Z. The argument for
fG′,T (S) = /0 is analogous.

The algorithm. The description of our algorithm is
given in Algorithm 1. Due to the delicate way separators
behave in directed graphs, we construct the set Z in two
phases, calling the function RandomSet twice. Our aim is
to show that there is a solution S such that we can give a
lower bound on the probability that Z1 covers rG1,T (S) and

Algorithm 1 FPT ALGORITHM FOR DIRECTED MULTI-
WAY CUT

Input: An instance I1 = (G1,T, p) of DIRECTED
MULTIWAY CUT.

1. Let Z1 = RandomSet(G1,T, p).

2. Let G2 be obtained from G1 by reversing the
orientation of every edge and setting the weight of
every vertex of Z1 to infinity (i.e.,
V ∞(G2) =V ∞(G1)∪Z1).

3. Let Z2 = RandomSet(G2,T, p).

4. Let Z = Z1∪Z2.

5. Let G3 = torso(G1,V (G)\Z).

6. Let G∗3 be the underlying undirected graph of G3.

7. Solve the undirected instance (G∗3,T, p).

• If S is a solution: return S.

• If there is no solution: return “NO”.

Z2 covers fG1,T (S). Note that the graph G2 obtained in Step
2 depends on the set Z1 returned in Step 1 (as we made the
weight of every vertex in Z1 infinite), thus the distribution of
the second random sampling depends on the result Z1 of the
first random sampling. This means that we cannot make the
two calls in parallel.

We use the torso operation to remove the vertices in Z =
Z1 ∪Z2 (Step 5), and then solve the undirected MULTIWAY
CUT instance obtained by disregarding the orientation of
the edges. For this purpose, we can use the algorithms of
[2, 9] that solve the undirected problem in time O∗(4p).
Note that the algorithm for undirected MULTIWAY CUT
in [9] explicitly considers the variant where we have a set
of distinguished vertices which cannot be deleted.

In Section 5, we analyze the algorithm and prove that it
is a correct randomized algorithm by showing the following:

LEMMA 3.4. (correctness of the algorithm) Let I be an
instance of DIRECTED MULTIWAY CUT.

1. If I is a no-instance, then Algorithm 1 returns “NO”.

2. If I is a yes-instance, then Algorithm 1 returns a solu-
tion S of I with probability 22−O(p)

.

The first claim of Lemma 3.4 is easy to see: a solu-
tion S of the undirected instance (G∗3,T, p) returned by Algo-
rithm 1 is clearly a solution of the directed instance (G3,T, p)
as well, and therefore it is also a solution of (G1,T, p) (by
Lemma 3.2(1), the torso operation does not make the prob-
lem easier by creating new solutions). By Lemma 3.3(2),



the second claim of Lemma 3.4 can be proved by show-
ing that if I1 is a yes-instance, then there exists a solu-
tion S∗ such that Z satisfies the two requirements Z ∩ S = /0
and fG1,T (S)∪ rG1,T (S) ⊆ Z with suitable probability. Sec-
tion 5 is devoted to the proof of this claim. The proof re-
quires a deeper analysis of the structure of optimum so-
lutions and the probability distribution behind the function
RandomSet(G,T, p).

Derandomization. In Section 4.3, we present a deter-
ministic variant of the function RandomSet(G,T, p) that, in-
stead of returning a random set Z, returns a deterministic
set Z1, . . . , Zt of O∗(22O(p)

) sets. Instead of bounding the
probability that the random set Z has Property (*) with some
probability, we prove that at least one Zi always satisfy the
property. Therefore, in Steps 1 and 3 of Algorithm 1, we
can replace RandomSet with this deterministic variant, and
branch on the choice of one Zi from the returned sets. By
the properties of the deterministic algorithm, if I1 is a yes-
instance, then one of the branches finds a correct solution for
I1. The branching increases the running time only by a fac-
tor of (O∗(22O(p)

))2 and therefore the total running time is
O∗(22O(p)

).

4 Important separators and random sampling
This section reviews the notion of important separators and
the random sampling technique introduced in [13]. As [13]
used these concepts for undirected graphs and we need them
for directed graphs, we give a self-contained presentation
without relying on earlier work.

4.1 Important separators Marx [12] introduced the con-
cept of important separators to deal with the UNDIRECTED
MULTIWAY CUT problem. Since then it has been used im-
plicitly or explicitly in [2, 3, 11, 13, 17] in the design of
fixed-parameter algorithms. In this section, we define and
use this concept in the setting of directed graphs. Roughly
speaking, an important separator is a separator of small size
that is maximal with respect to the set of vertices on one side.

DEFINITION 4.1. (important separator) Let G be a di-
rected graph and let X ,Y ⊆V be two disjoint non-empty sets.
A minimal X −Y separator S is called an important X −Y
separator if there is no X −Y separator S′ with |S′| ≤ |S|
and R+

G\S(X)⊂ R+
G\S′(X), where R+

A (X) is the set of vertices
reachable from X in A.

In undirected graphs, an upper bound of 4p on the
number of important X −Y separators of size at most p was
given in [2] for any sets X ,Y . In Appendix B, we show
that the same bound holds for important separators even in
directed graphs.

LEMMA 4.1. (number of important separators) [?]2 Let
X ,Y ⊆V (G) be disjoint sets in a directed graph G. Then for
every p≥ 0 there are at most 4p important X−Y separators
of size at most p. Furthermore, we can enumerate all these
separators in time O∗(4p).

For ease of notion, we define the following set of
important separators:

DEFINITION 4.2. (impsep) Given a instance (G,T, p) of
DIRECTED MULTIWAY CUT, a set of vertices is called
“impsep” if it is an important v−T separator of size at most
p in G for some vertex v in V (G)\T .

It follows from Lemma 4.1 that the total number of impseps
in an instance is at most 4p · |V (G)| and we can enumerate
all of them in time O∗(4p).

We now define a special type of shadows which we use
later for the random sampling:

DEFINITION 4.3. (exact shadow) Let G be a directed graph
and T ⊆ V (G) a set of terminals. Let S ⊆ V (G)\V ∞(G) be
a set of vertices. Then for v ∈V (G) we say that

1. v is in the “exact reverse shadow” of S (with respect to
T ), if S is a minimal v−T separator in G, and

2. v is in the “exact forward shadow” of S (with respect to
T ), if S is a minimal T − v separator in G.

The exact reverse shadow of S is a subset of the reverse
shadow of S: roughly speaking, it contains a vertex v only
if every vertex of S can be reached from v. This slight
difference between the shadow and the exact shadow will
be crucial in the analysis of the algorithm (Section 5).

The random sampling described in Section 4.2 (Theo-
rem 4.1) randomly selects impseps and creates a subset by
taking the union of the exact reverse shadows of the impseps.
The following lemma will be used to give an upper bound on
the probability that a vertex is covered by the union.

LEMMA 4.2. Let z be any vertex. Then there are at most 4p

impseps in G which contain z in their exact reverse shadows.

For the proof of Lemma 4.2, we need to establish first the
following:

LEMMA 4.3. If S is an impsep and v is in the exact reverse
shadow of S, then S is an important v−T separator.

Proof. Let w be the witness that S is an impsep, i.e., S is an
important w−T separator in G. Let v be any vertex in the
exact reverse shadow of S, which means that S is a minimal
v− T separator in G. Suppose that S is not an important
v−T separator. Then there exists a v−T separator S′ such

2Proofs of results labeled with ? have been moved to the appendix.



that |S′| ≤ |S| and R+
G\S(v) ⊂ R+

G\S′(v). We will arrive to a
contradiction by showing that R+

G\S(w)⊂ R+
G\S′(w), i.e., S is

not a important w−T separator.
First, we claim that S′ is an (S \ S′) − T separator.

Suppose that there is a path P from some x ∈ S \S′ to T that
is disjoint from S′. As S is a minimal v−T separator, there
is a path Q from v to x whose internal vertices are disjoint
from S. Furthermore, R+

G\S(v) ⊂ R+
G\S′(v) implies that the

internal vertices of Q are disjoint from S′ as well. Therefore,
concatenating Q and P gives a path from v to T that is disjoint
from S′, contradicting the fact that S′ is a v−T separator.

We show that S′ is a w− T separator and its existence
contradicts the assumption that S is an important w− T
separator. First we show that S′ is a w−T separator. Suppose
that there is a w−T path P disjoint from S′. Path P has to go
through a vertex y ∈ S \ S′ (as S is a w−T separator). Thus
by the previous claim, the subpath of P from y to T has to
contain a vertex of S′, a contradiction.

Finally, we show that R+
G\S(w) ⊆ R+

G\S′(w). As S 6= S′

and |S′| ≤ |S|, this will contradict the assumption that S
is an important w− T separator. Suppose that there is a
vertex z ∈ R+

G\S(w)\R+
G\S′(w) and consider a path w− z path

that is fully contained in R+
G\S(v), i.e., disjoint from S. As

z 6∈ R+
G\S′(v), path Q contains a vertex q ∈ S′ \ S. Since

S′ is a minimal v− T separator, there is a v− T path that
intersects S′ only in q. Let P be the subpath of this path from
q to T . If P contains a vertex r ∈ S, then the subpath of P
from r to T contains no vertex of S′ (as z 6= r is the only
vertex of S′ on P), contradicting our earlier claim that S′ is a
(S \ S′)−T separator. Thus P is disjoint from S, and hence
the concatenation of the subpath of Q from w to q and the
path P is a w−T path disjoint from S, a contradiction.

We note that this is the point where it is crucial to
distinguish between “reverse shadow” and “exact reverse
shadow”: Lemma 4.3 (and hence Lemma 4.2) does not
remain true if we remove the word exact.

Lemma 4.2 easily follows from Lemma 4.3. Let J be
an impsep such that z is in the exact reverse shadow of
J. By Lemma 4.3, J is an important z− T separator. By
Lemma 4.1, there are at most 4p important z−T separators
and so z belongs to at most 4p exact reverse shadows.

4.2 Random sampling In this section, we adapt the ran-
dom sampling of [13] to directed graphs. We try to present it
in a self-contained way that might be useful for future appli-
cations.

Roughly speaking, we want to select a random set Z
such that for every (S,Y ) where Y is in the reverse shadow
of S, the probability that Z is disjoint from S but contains Y
can be bounded from below. We can guarantee such a lower
bound only if (S,Y ) satisfies two conditions. First, it is not

enough that Y is in the shadow of S (or in other words, S is an
Y −T separator), but S should contain important separators
separating the vertices of Y from T (see Theorem 4.1 for
the exact statement). Second, a vertex of S cannot be in the
reverse shadow of other vertices of S, this is expressed by the
following technical definition:

DEFINITION 4.4. (thin) Let G be a directed graph and T ⊆
V (G) a set of terminals. We say that a set S ⊆ V (G) is thin
in G if there is no v ∈ S such that v belongs to the reverse
shadow of S\ v with respect to T .

THEOREM 4.1. (random sampling) There is an algorithm
RandomSet(G,T, p) that produces a random set Z ⊆V (G)\
T in time O∗(4p) such that the following holds. Let S be a
thin set with |S| ≤ p, and let Y be a set such that for every
v ∈ Y there is a important v−T separator S′ ⊆ S. For every
such pair (S,Y ), the probability that the following two events
both occur is at least 22−O(p)

:

1. S∩Z = /0, and

2. Y ⊆ Z.

Proof. The algorithm RandomSet(G,T, p) first enumerates
every impsep of size at most p; let X be the set of all exact
reverse shadows of these impseps. By Lemma 4.1, the size
of X is O∗(4p) and can be constructed in time O∗(4p). Let
X ′ be the subset of X where each element from X ′ occurs
with probability 1

2 independently at random. Let Z be the
union of the exact reverse shadows in X ′. We claim that the
set Z satisfies the requirement of the theorem.

Let us fix a pair (S,Y ) as in the statement of the theorem.
Let X1,X2, . . . ,Xd ∈X be the exact reverse shadows of every
impsep that is a subset of S. As |S| ≤ p, we have d ≤ 2p. By
assumption that S is thin, we have X j∩S= /0 for every j∈ [d].
Now consider the following events:

(E1) Z∩S = /0

(E2) X j ⊆ Z ∀ j ∈ [d]

Note that (E2) implies that Y ⊆ Z. Our goal is to show that
both events (E1) and (E2) occur with probability 22−O(p)

.
Let A = {X1,X2, . . . ,Xd} and B = {X ∈X | X ∩S 6= /0}.

By Lemma 4.2, each vertex of S is contained in at most 4p

exact reverse shadows of impseps. Thus |B| ≤ |S| ·4p≤ p ·4p.
If no exact reverse shadow from B is selected, then event
(E1) holds. If every exact reverse shadow from A is selected,
then event (E2) holds. Thus the probability that both (E1)
and (E2) occur is bounded from below by the probability
of the event that every element from A is selected and no
element from B is selected. Note that A and B are disjoint: A
contains only sets disjoint from S, while B contains only sets



intersecting S. Therefore, the two events are independent and
the probability that both events occur is at least(1

2

)2p(
1− 1

2

)p·4p

= 2−2O(p)

4.3 Derandomization We now derandomize the process
of choosing exact reverse shadows in Theorem 4.1 using the
technique of splitters. A (n,r,r2)-splitter is a family of func-
tions from [n]→ [r2] such that ∀M⊆ [n] with |M|= r, at least
one of the functions in the family is injective on M. Naor,
Schulman and Srinivasan [14] give an explicit construction
of an (n,r,r2)-splitter of size O(r6log(r)log(n)).

In the proof of Theorem 4.1, a random subset of a
universe X of size n0 = |X | ≤ 4p · |V (G)| is selected. We
argued that for a fixed S, there is a collection A ⊆ X of
a≤ 2p sets and a collection B⊆X of b≤ p ·4p sets such that
if every set in A is selected and no set in B is selected, then
events (E1) and (E2) hold. Instead of the selecting a random
subset, we construct several subsets such that at least one of
them satisfies both (E1) and (E2). Each subset is defined by
a pair (h,H), where h is a function in an (n0,a+b,(a+b)2)-
splitter family and H is a subset of [(a+b)2] of size a (there

are
(
(a+b)2

a

)
=

(
(2p + p4p)2

2p

)
= 22O(p)

such sets H). For

a particular choice of h and H, we select those exact shadows
S ∈X into X ′ for which h(S) ∈ H. The size of the splitter
family is O

(
(a+ b)6 log(a+ b) log(n0)

)
= 2O(p) log |V (G)|

and the number of possibilities for H is 22O(p)
. Therefore, we

construct 22O(p) · log |V (G)| subsets of X .
By the definition of the splitter, there is a function h

that is injective on A∪B, and there is a subset H such that
h(L) ∈ H for every set L in A and h(M) 6∈ H for every set M
in B. For such an h and H, the selection will ensure that (E1)
and (E2) hold. Thus at least one of the constructed subsets
has the required properties, which we had to show.

5 Analysis of the algorithm
The goal of this section is to show the correctness of Algo-
rithm 1 by proving Lemma 3.4. The first claim of Lemma 3.4
is easy to see:

LEMMA 5.1. Any set S returned by Algorithm 1 is a solution
of I. Consequently, if I is a no-instance, then the algorithms
returns “NO”.

Proof. Suppose that Algorithm 1 returns as set S, which is a
solution of the undirected instance (G∗3,T, p). Clearly, S is a
solution of the directed instance I/Z = (G3,T, p) as well. By
Lemma 3.3(1), if I has no solution, then I/Z has no solution
either, a contradiction.

To prove the second claim of Lemma 3.4, we show that
if I is a yes-instance, then there exists a solution S∗ for I1 that
remains a solution of the undirected (G∗3,T, p) as well with
probability 22−O(p)

.
Suppose that for some solution S∗, the following two

properties hold:

1. Z∩S∗ = /0 and

2. rG1,T (S
∗)∪ fG1,T (S

∗)⊆ Z.

Then Lemma 3.3(2) implies that S∗ is a shadowless solution
of I/Z = (G3,T, p). It follows by Lemma 3.1 that S∗ is a
solution of the undirected instance (G∗3,T, p) as well. Thus
our goal is to prove the existence of a solution S∗ for which
we can give a lower bound on the probability that these two
events occur.

For choosing S∗, we need the following definition:

DEFINITION 5.1. (shadow-maximal solution) A solution S
for an instance (G,T, p) is minimal if no proper subset of S is
a solution. A minimal solution S is called shadow-maximal
if rG,T (S)∪ fG,T (S)∪S is inclusion-wise maximal among all
minimal solutions.

For the rest of the proof, let us fix S∗ to be a shadow-
maximal solution of instance I1 = (G1,T, p) such that
|rG1,T (S

∗)| is maximum possible among all shadow-maximal
solutions. We bound the probability that Z ∩ S∗ = /0 and
rG1,T (S

∗)∪ fG1,T (S
∗) ⊆ Z. More precisely, we bound the

probability that all of the following four events occur:

1. Z1∩S∗ = /0,

2. rG1,T (S
∗)⊆ Z1,

3. Z2∩S∗ = /0, and

4. fG1,T (S
∗)⊆ Z2.

That is, the first random selection takes care of the reverse
shadow, the second takes care of the forward shadow, and
none of Z1 or Z2 hits S∗. Note that it is somewhat counter-
intuitive that we choose an S∗ for which the shadow is large:
intuitively, it seems that the larger the shadow is, the less
likely that it is fully covered by Z. However, we need this
maximality property in order to bound the probability that
Z∩S∗ = /0.

We want to invoke Theorem 4.1 to bound the probability
that Z1 covers Y = rG1,T (S

∗) and Z1∩S∗ = /0. First, we need
to ensure that S∗ is a thin set, but this follows easily from the
fact that S∗ is a minimal solution:

LEMMA 5.2. If S is a minimal solution for a DIRECTED
MULTWAY CUT instance (G,T, p), then no v ∈ S is in the
reverse shadow of some S′ ⊆ S\{v}.



Proof. We claim that S\{v} is also a solution, contradicting
the minimality of S. Suppose that there is a path P from
t1 ∈ T to t2 ∈ T , t1 6= t2 that intersects S only in v. Consider
the subpath of P from v to t2. As v is in r(S′), the set S′

is a v− T separator. Thus P goes through S′ ⊆ S \ {v}, a
contradiction.

More importantly, if we want to use Theorem 4.1 with
Y = rG1,T (S

∗), then we have to make sure that for every
vertex v of rG1,T (S

∗), there is an important v−T separator
that is a subset of S∗. The “pushing argument” of Lemma 5.3
shows that if this is not true for some v, then we can modify
the solution in a way that increases the size of the reverse
shadow. The choice of S∗ ensures that no such modification
is possible, thus S∗ contains an important separator for every
v.

LEMMA 5.3. (pushing) Let S be a solution of a DIRECTED
MULTIWAY CUT instance (G,T, p). For every v ∈ r(S),
either there is an S1 ⊆ S which is an important v − T
separator, or there is a solution S′ such that

1. |S′| ≤ |S|,

2. r(S)⊂ r(S′),

3. (r(S)∪ f (S)∪S)⊆ (r(S′)∪ f (S′)∪S′).

Proof. Let S0⊆ S be the subset of S reachable from v without
going through any other vertices of S. Then S0 is clearly
a v− T separator. Let S1 be the minimal v− T separator
contained in S0. If S1 is an important v− T separator,
then we are done as S itself contains S1. Otherwise, there
exists an important v− T separator S′1, i.e., |S′1| ≤ |S1| and
R+

G\S1
(v) ⊂ R+

G\S′1
(v). Now we show S′ = (S \ S1)∪ S′1 is a

solution for the multiway cut instance. Note that S′1 ⊆ S′ and
|S′| ≤ |S|.

First we claim that r(S) ∪ (S \ S′) ⊆ r(S′). Suppose
that there is a path P from β to T in G \ S′ for some β ∈
r(S)∪ (S \ S′). If β ∈ r(S), then path P has to go through
a vertex β ′ ∈ S. As β ′ is not in S′, it has to be in S \ S′.
Therefore, by replacing β with β ′, we can assume in the
following that β ∈ S\S′⊆ S1\S′1. By minimality of S1, every
vertex of S1 ⊆ S0 has an incoming edge from some vertex
in R+

G\S(v). This means that there is a vertex α ∈ R+
G\S(v)

such that (α,β ) ∈ E(G). Since R+
G\S(v)⊂ R+

G\S′(v), we have
α ∈ R+

G\S′(v), implying that there is a v→ α path in G \ S′.
The edge α → β also survives in G\S′ as α ∈ R+

G\S′(v) and
β ∈ S1 \ S′1. By assumption, we have a path in G \ S′ from
β to some t ∈ T . Concatenating the three paths we obtain a
v→ t path in G\S′ which contradicts the fact that S′ contains
an (important) v−T separator S′1. Since S 6= S′ and |S|= |S′|,
the set S1 \S′1 is non-empty. Thus r(S)⊂ r(S′) follows from
the claim r(S)∪ (S\S′)⊆ r(S′).

Suppose now that S′ is not a solution for the multiway
cut instance. Then there is a t1→ t2 path P in G\S′ for some
t1, t2 ∈ T , t1 6= t2. As S is a solution for the multiway cut
instance, P must pass through a vertex β ∈ S\S′ ⊆ r(S′) (by
the claim in the previous paragraph), a contradiction. Thus
S′ is also a minimum solution.

Finally, we show that r(S)∪ f (S)∪S⊆ r(S′)∪ f (S′)∪S′.
We know that r(S)∪ (S \ S′) ⊆ r(S′). Thus it is sufficient
to consider a vertex vertex v ∈ f (S) \ r(S). Suppose that
v 6∈ f (S′) and v 6∈ r(S′): there are paths P1 and P2 in G \ S′,
going from T to v and from v to T , respectively. As v ∈
f (S), path P1 intersects S, i.e., it goes through a vertex of
β ∈ S\S′ ⊆ r(S′). However, concatenating the subpath of P1
from β to v and the path P2 gives a path from β ∈ r(S′) to T
in G\S′, a contradiction.

Note that if S is a shadow-maximal solution, then solu-
tion S′ in Lemma 5.3 is also shadow-maximal. Therefore, by
the choice of S∗, applying Lemma 5.3 on S∗ cannot produce a
shadow-maximal solution S′ with rG1,T (S

∗)⊂ rG1,T (S
′), and

hence S∗ contains an important v− T separator for every
v ∈ rG1,T (S). Thus by Theorem 4.1 for Y = rG1,T (S

∗), we
get:

LEMMA 5.4. With probability at least 22−O(p)
, both

rG1,T (S
∗)⊆ Z1 and Z1∩S∗ = /0 occur.

In the following, we assume that the events in
Lemma 5.4 occur. Our next goal is to bound the probabil-
ity that Z2 covers fG1,T (S

∗). Note that S∗ is a solution also
of the instance (G2,T, p): the vertices in S∗ remained finite
(as Z1∩S∗ = /0 by Lemma 5.4), and reversing the orientation
of the edges does not change the fact that S∗ is a solution.
Solution S∗ is a shadow-maximal solution also in (G2,T, p):
Definition 5.1 is insensitive to reversing the orientation of
the edges and making some of the weights infinite can only
decrease the set of potential solutions. Furthermore, the for-
ward shadow of S∗ in G2 is same as the reverse shadow of
S∗ in G1, that is, fG2,T (S

∗) = rG1,T (S
∗). Therefore, assuming

that the events in Lemma 5.4 occur, every vertex of fG2,T (S
∗)

has infinite weight in G2. We show that now it holds that
S∗ contains an important v− T separator in G2 for every
v ∈ rG2,T (S

∗) = fG1,T (S
∗):

LEMMA 5.5. If S is a shadow-maximal solution for a DI-
RECTED MULTIWAY CUT instance (G,T, p) and every ver-
tex of f (S) is infinite, then S contains an important v− T
separator for every v ∈ r(S).

Proof. Suppose to the contrary that there exists v∈ r(S) such
that S does not contain an important v−T separator. Then
by Lemma 5.3, there is a another shadow-maximal solution
S′. As S is shadow-maximal, it follows that r(S)∪ f (S)∪S =
r(S′)∪ f (S′)∪S′. Therefore, the nonempty set S′ \S is fully
contained in r(S)∪ f (S)∪S. However it cannot contain any



vertex of f (S) (as they are infinite by assumption) and cannot
contain any vertex of r(S) (as r(S)⊂ r(S′)), a contradiction.

Recall that S∗ is a shadow-maximal solution also in
(G2,T, p). In particular, S∗ is a minimal solution for G2
and so by Lemma 5.2 we have that S∗ is thin in G2 also.
Thus Theorem 4.1 can be used (with Y = rG2,T (S

∗)) to bound
the probability that rG2,T (S

∗) ⊆ Z2 and Z2 ∩ S∗ = /0. As the
reverse shadow rG2,T (S

∗) in G2 is the same as the forward
shadow fG1,T (S

∗) in G1, we have

LEMMA 5.6. Assuming the events in Lemma 5.4 occur, with
probability at least 22−O(p)

both fG1,T (S
∗)⊆ Z2 and Z2∩S∗=

/0 occur.

Therefore, with probability (22−O(p)
)2, the set Z1 ∪ Z2

covers fG1,T (S
∗)∪ rG1,T (S

∗) and it is disjoint from S∗. By
Lemma 3.2, this means that S∗ is a shadowless solution of
I/(Z1∪Z2). It follows by Lemma 3.1 that S∗ is a solution of
the undirected instance (G∗3,T, p).

LEMMA 5.7. With probability 22−O(p)
, S∗ is a shadowless

solution of (G3,T, p) and a solution of the undirected in-
stance (G∗3,T, p).

In summary, with probability 22−O(p)
, Algorithm 1 returns a

set S, which is a solution of I by Lemma 5.1. This completes
the proof of Lemma 3.4(2).

References

[1] N. Bousquet, J. Daligault, and S. Thomassé. Multicut is FPT.
In STOC, pages 459–468, 2011.

[2] J. Chen, Y. Liu, and S. Lu. An improved parameterized
algorithm for the minimum node multiway cut problem.
Algorithmica, 55(1):1–13, 2009.

[3] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A
fixed-parameter algorithm for the directed feedback vertex set
problem. J. ACM, 55(5), 2008.

[4] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and
M. Yannakakis. The complexity of multiway cuts. In STOC,
1992. pages 241-251.

[5] R. G. Downey and M. R. Fellows. Parameterized Complexity.
Springer-Verlag, 1999. 530 pp.

[6] J. Flum and M. Grohe. Parameterized Complexity Theory.
Springer-Verlag, 2006. 493 pp.

[7] L. Ford and D. Fulkerson. Maximal flow through a network.
Canad. J. Math., 8:399–404, 1956.

[8] N. Garg, V. Vazirani, and M. Yannakakis. Multiway cuts in
directed and node weighted graphs. In ICALP, 1994. pages
487-498.

[9] S. Guillemot. FPT algorithms for path-transversal and cycle-
transversal problems. Discrete Optimization, 8(1):61–71,
2011.

[10] D. Karger, P. Klein, C. Stein, M. Thorup, and N. Young.
Rounding algorithms for a geometric embedding of minimum
multiway cut. In STOC, 1999. pages 668-678.

[11] D. Lokshtanov and D. Marx. Clustering with local restric-
tions. In ICALP (1), pages 785–797, 2011.

[12] D. Marx. Parameterized graph separation problems. Theor.
Comput. Sci., 351(3):394–406, 2006.

[13] D. Marx and I. Razgon. Fixed-parameter tractability of
multicut parameterized by the size of the cutset. In STOC,
pages 469–478, 2011.

[14] J. Naor, L. Schulman, and A. Srinivasan. Splitters and near-
optimal derandomization. In FOCS, 1995. pages 182-191.

[15] J. Naor and L. Zosin. A 2-approximation algorithm for the
directed multiway cut problem. In FOCS, 1997. pages 548-
553.

[16] R. Niedermeier. Invitation to Fixed-Parameter Algorithms.
Oxford University Press, 2006. 312 pp.

[17] I. Razgon and B. O’Sullivan. Almost 2-SAT is fixed-
parameter tractable. J. Comput. Syst. Sci., 75(8):435–450,
2009.

[18] M. Xiao. Simple and improved parameterized algorithms for
multiterminal cuts. Theory Comput. Syst., 46(4):723–736,
2010.

A Equivalence of DIRECTED VERTEX MULTIWAY
CUT and DIRECTED EDGE MULTIWAY CUT

We first show how to solve the vertex version using the edge
version. Let (G,T, p) be a given instance of DIRECTED
VERTEX MULTIWAY CUT and let V ∞(G) be the set of
distinguished vertices. We construct an equivalent instance
(G′,T ′, p) of DIRECTED EDGE MULTIWAY CUT as follows.
Let V ′ = {v′,v′′ | v ∈ V (G)} and u′ = u′′ for all u ∈ V ∞(G).
The idea is that all incoming/outgoing edges to v in G will
now be incoming/outgoing to v′,v′′ respectively. For every
vertex v ∈ V (G) \V ∞(G) add an edge (v′,v′′) to G′. Let us
call these as Type I edges. For every edge (x,y) ∈ E(G) add
(p+ 1) parallel (x′′,y′) edges. Let us call these as Type II
edges. Define T ′ = {v′ | v ∈ T}. Note that the number of
terminals is preserved. We have the following lemma:

LEMMA A.1. DIRECTED VERTEX MULTIWAY CUT an-
swers YES if and only if DIRECTED EDGE MULTIWAY CUT
answers YES.

Proof. Suppose G has a vertex multiway cut say S of size at
most p. Then the set S′ = {(v′,v′′) | v ∈ S} is clearly a edge
multiway cut for G′ and |S′|= |S| ≤ p.

Suppose G′ has an edge multiway cut say S′ of size at
most p. Note that it does not help to pick in S any edges
of Type II as each edge has (p+ 1) parallel copies and our
budget is p. So let S = {v | (v′,v′′) ∈ S′}. Then S is a vertex
multiway cut for G and |S| ≤ |S′| ≤ p.

We now show how to solve the edge version using the
vertex version. Let (G,T, p) be a given instance of DI-
RECTED EDGE MULTIWAY CUT. We construct an equiva-



lent instance (G′,T ′, p) of DIRECTED VERTEX MULTIWAY
CUT as follows. For each vertex u∈V (G)\T , create a set Cu
which contains u along with p other copies of u. For t ∈ T
we let Ct = {t}. For each edge (u,v) ∈ E(G) create a ver-
tex βuv. Add edges (x,βuv) for all x ∈Cu and (βuv,y) for all
y ∈Cv. Define T ′ =

⋃
t∈T Ct = T . Let V ∞(G′) = T ′

LEMMA A.2. DIRECTED EDGE MULTIWAY CUT answers
YES if and only if DIRECTED VERTEX MULTIWAY CUT
answers YES.

Proof. Suppose G has an edge multiway cut say S of size at
most p. Then the set S′ = {βuv | (u,v)∈ S} is clearly a vertex
multiway cut for G′ and |S′|= |S| ≤ p.

Suppose G′ has a vertex multiway cut say S′ of size
at most p. Note that it does not help to pick in S any
vertices from the Cz of any vertex z∈V (G)\T as each vertex
has (p+ 1) equivalent copies and our budget is p. So let
S = {(u,v) | βuv ∈ S′}. Then S is a edge multiway cut for G
and |S| ≤ |S′| ≤ p.

B Proofs omitted from Section 4
For the proof of Lemma 4.1, we need to establish first some
properties of separators.

LEMMA B.1. Let G be a directed graph and S be an impor-
tant X−Y separator. Then

1. For every v ∈ S, the set S \ v is an important X −Y
separator in the graph G\ v.

2. If S is an X ′−Y separator for some X ′ ⊃ X, then S is
also an important X ′−Y separator.

Proof.
1. Suppose S\ v is not a minimal X−Y separator in G\ v.

Let S0 ⊂ S\v be a X−Y separator in G\v. Then S0∪v
is a X −Y separator in G but S0 ∪ v ⊂ S which contra-
dicts the fact that S is a minimal X −Y separator in G.
Now suppose ∃ S′ such that |S′| ≤ |S \ v| = |S|− 1 and
R+
(G\v)\(S\v)(X) ⊂ R+

(G\v)\S′(X). But R+
(G\v)\(S\v)(X) =

R+
G\S(X) as deleting v from graph is equivalent to delet-

ing it as part of the separator. Similarly R+
(G\v)\S′(X) =

R+
G\(S′∪v)(X). Therefore R+

G\S(X) ⊂ R+
G\(S′∪v)(X) and

also |S′ ∪ v| = |S′|+ 1 ≤ |S| which contradicts the fact
that S is an important X−Y separator.

2. Let S′ be a witness that S is not important X ′ − Y
separator in G. Then |S′| ≤ |S| and S′ is also an X −Y
separator. But S is important X − Y separator and
hence is also inclusion-wise minimal. Thus S′ * S, i.e.,
S′ \ S 6= /0. Now the claim is ∃ s′ ∈ S′ \ S such that
s′ ∈ R+

G\S(X). If we show this then s′ ∈ R+
G\S(X) ⊆

R+
G\S(X

′) ⊂ R+
G\S′(X

′) which is a contradiction as s′ ∈

S′. So let us prove the claim. If any X → Y path
P contains a vertex of S′ before reaching a vertex of
S then we are done. So suppose every X → Y path
reaches S before S′. Then we have R+

G\S(X)⊂ R+
G\S′(X)

which contradicts the fact that S is an important X −Y
separator as |S′| ≤ |S|.

We need the following claim about submodularity of
the function which is size of the out-neighborhood of a set.
Recall that a function f : 2U → N∪{0} is submodular if for
all A,B⊆U we have f (A)+ f (B)≥ f (A∪B)+ f (A∩B).

LEMMA B.2. (submodularity) Let G=(V,E) be a directed
graph. For A⊆V , let N+(A) be the out-neighborhood of set
A, i.e., all the vertices in G\A which have an incoming edge
from some vertex in A. Then the function γ(A) = |N+(A)| is
submodular.

Proof. Let L= γ(A)+γ(B) and R= γ(A∪B)+γ(A∩B). For
any vertex x ∈V we have following four possibilities:

1. x /∈ N+(A) and x /∈ N+(B)
In this case, x contributes 0 to both L and R.

2. x ∈ N+(A) and x /∈ N+(B)
In this case, x contributes 1 to L. Clearly x /∈N+(A∩B) .
Also x∈N+(A∪B) only if x /∈B and so x can contribute
at most 1 to R.

3. x /∈ N+(A) and x ∈ N+(B)
In this case, x contributes 1 to L. Clearly x /∈N+(A∩B) .
Also x∈N+(A∪B) only if x /∈A and so x can contribute
at most 1 to R.

4. x ∈ N+(A) and x ∈ N+(B)
In this case, x contributes 2 to both L and R.

In all four cases the contribution of x to L is always greater
equal its contribution to R and hence L ≥ R, i.e., γ is
submodular.

We also require the following claim which gives a
general family of X−Y separators.

LEMMA B.3. If X ⊆ Z and Y ∩Z = /0, then the set N+(Z) is
an X−Y separator.

Proof. We have X ⊆ Z and Z∩Y = /0. By definition of N+,
we have N+(Z) is Z−Y separator and hence also a X −Y
separator.



Proof of Lemma 4.1

Proof. To prove Lemma 4.1, we show by induction on
2p−λ that the number of important X−Y separators of size
at most p is upper bounded by 22p−λ where λ is the size
of smallest X −Y separator. Note that if 2p− λ < 0, then
λ > 2p≥ p and so there is no (important) X−Y separator of
size at most p. If 2p−λ = 0, then λ = 2p. Now if p= 0 then
λ = p = 0 and the empty set is the unique important X −Y
separator of size at most p. If p > 0 then λ = 2p > p and
so there is no important X −Y separator of size at most p.
So we have checked the base case for induction. From now
on, the induction hypothesis states that for any disjoint sets
X ′,Y ′ ⊆ V (G), any k such that (2k− β ) < (2p− λ ) where
β is the size of smallest X ′−Y ′ separator we have that the
number of important X ′−Y ′ separators of size at most k is
upper bounded by 22k−β .

Recall that R+
G\S(X) is the vertices reachable from X in

G\S. Now we prove a claim about uniqueness of minimum
size separator whose “reach” is inclusion-wise maximal.

LEMMA B.4. There is a unique X −Y separator S∗ of size
λ such that R+

G\S∗(X) is inclusion-wise maximal.

Proof. Suppose to the contrary that there are two separators
S′ and S′′ of size λ such that R+

G\S′(X) and R+
G\S′′(X) are in-

comparable and inclusion-wise maximal. By Lemma B.2,
γ is submodular and hence γ

(
R+

G\S′(X)
)
+ γ

(
R+

G\S′′(X)
)
≥

γ

(
R+

G\S′(X) ∪ R+
G\S′′(X)

)
+ γ

(
R+

G\S′(X) ∩ R+
G\S′′(X)

)
. By

definition we have γ(R+
G\S′(X)) = λ = γ(R+

G\S′′(X)). Let
Z =R+

G\S′(X)∩R+
G\S′′(X). Then X ⊆ Z and Z∩Y = /0 as S′,S′′

are both X −Y separators. By Lemma B.3, N+
(

R+
G\S′(X)∩

R+
G\S′′(X)

)
is a X −Y separator and hence γ

(
R+

G\S′(X) ∩

R+
G\S′′(X)

)
≥ λ which implies γ

(
R+

G\S′(X)∪R+
G\S′′(X)

)
≤

λ . Let U = R+
G\S′(X)∪R+

G\S′′(X). By similar reasoning we

have X ⊆U and U ∩Y = /0. So N+
(

R+
G\S′(X)∪R+

G\S′′(X)
)

is also a X − Y separator. But we had γ

(
R+

G\S′(X) ∪

R+
G\S′′(X)

)
≤ λ which implies N+

(
R+

G\S′(X)∪R+
G\S′′(X)

)
is

also a minimum separator which contradicts the maximality
of R+

G\S′(X) and R+
G\S′′(X).

Let S∗ be the unique minimum separator given by
Lemma B.4. The following claim shows that every impor-
tant separator is “behind” this separator:

LEMMA B.5. For every important X −Y separator S, we
have R+

G\S∗(X)⊆ R+
G\S(X).

Proof. Suppose this is not true for some S, then by sub-
modularity of γ we have γ

(
R+

G\S∗(X)
)
+ γ

(
R+

G\S(X)
)
≥

γ

(
R+

G\S∗(X) ∪ R+
G\S(X)

)
+ γ

(
R+

G\S∗(X) ∩ R+
G\S(X)

)
. By

definition, γ(R+
G\S∗(X)) = λ . As before N+

(
R+

G\S∗(X) ∩

R+
G\S(X)

)
is an X −Y separator and hence γ

(
R+

G\S∗(X)∩

R+
G\S(X)

)
≥ λ . This implies γ

(
R+

G\S(X)
)
≥ γ

(
R+

G\S∗(X)∪

R+
G\S(X)

)
which contradicts the assumption that S is im-

portant X −Y separator as N+
(

R+
G\S∗(X)∪ R+

G\S(X)
)

is a

X −Y separator not larger than S but R+
G\S∗(X)∪R+

G\S(X) is
a proper superset of R+

G\S(X). Therefore, for every important
separator S the set R+

G\S(X) contains R+
G\S∗(X).

Let v ∈ S∗ be an arbitrary vertex. Note that λ > 0 and so
S∗ is not empty. Any important X −Y separator S of size
at most p either contains v or not. If S contains v, then
by Lemma B.1 (1), the set S \ {v} is an important X −Y
separator in G \ v of size at most p′ := p− 1. As v /∈ X ,
the size λ ′ of the minimum X −Y separator in G \ v is at
least λ − 1. Therefore 2p′−λ ′ < 2p−λ and the induction
hypothesis implies that there are at most 22p′−λ ′ ≤ 22p−λ−1

important X −Y separators of size p′ in G \ v. Hence there
are at most 22p−λ−1 important X −Y separators of size at
most p in G that contain v.

Now let us bound number of important X−Y separators
not containing v. By minimality of S∗, v has an in-neighbor
in R+

G\S∗(X). For every important X −Y separator S, we
have shown that R+

G\S∗(X) ⊆ R+
G\S(X). As v /∈ S and v has

an in-neighbor in R+
G\S∗(X), even R+

G\S∗(X)∪{v} ⊆ R+
G\S(X)

holds. Let X ′ = R+
G\S∗(X) ∪ {v}. Then S is an X ′ − Y

separator as R+
G\S∗(X)∪{v} ⊆ R+

G\S(X). Since X ⊆ X ′ and
S is important X −Y separator, by Lemma B.1 (2), S is in
fact an important X ′−Y separator. Now there cannot exist
an X ′ −Y separator of size λ as such a set S would be a
X−Y separator of size λ in G as well with R+

G\S∗(X)∪{v}⊆
R+

G\S(X) which contradicts the maximality of R+
G\S∗(X). So

the minimum size λ ′ of an X ′ −Y separator in G is > λ .
By the induction hypothesis, the number of important X ′−Y
separators of size at most p in G is at most 22p−λ ′ ≤ 22p−λ−1.
Hence there are at most 22p−λ−1 important X−Y separators
of size at most p in G that do not contain v.

Adding the bounds in the two cases, we get the required
bound of 22p−λ .

An algorithm for enumerating all the at most 4p impor-
tant separators follows from the proof. First find a mini-
mum X −Y separator S′ in polynomial time. Then for every
w /∈ R+

G\S′(X), check in polynomial time if there is an X −Y
separator of size λ which does not contain any vertex from
R+

G\S′(X)∪w. This process will take us to the unique X −Y
separator S∗ of size λ such that R+

G\S∗(X) is inclusion-wise
maximal. In the last step we branch on whether vertex v∈ S∗



is in the important separator or not, and recursively find all
possible important separators for both cases.


