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FIXED-PARAMETER TRACTABILITY OF DIRECTED MULTIWAY
CUT PARAMETERIZED BY THE SIZE OF THE CUTSET∗

RAJESH CHITNIS† , MOHAMMADTAGHI HAJIAGHAYI† , AND DÁNIEL MARX‡

Abstract. Given a directed graph G, a set of k terminals, and an integer p, the Directed

Vertex Multiway Cut problem asks whether there is a set S of at most p (nonterminal) vertices
whose removal disconnects each terminal from all other terminals. Directed Edge Multiway Cut

is the analogous problem where S is a set of at most p edges. These two problems are indeed known
to be equivalent. A natural generalization of the multiway cut is the Multicut problem, in which
we want to disconnect only a set of k given pairs instead of all pairs. Marx [Theoret. Comput.
Sci., 351 (2006), pp. 394–406] showed that in undirected graphs Vertex/Edge Multiway cut is
fixed-parameter tractable (FPT) parameterized by p. Marx and Razgon [Proceedings of the 43rd
ACM Symposium on Theory of Computing, 2011, pp. 469–478] showed that undirected Multicut

is FPT and Directed Multicut is W[1]-hard parameterized by p. We complete the picture here
by our main result, which is that both Directed Vertex Multiway Cut and Directed Edge

Multiway Cut can be solved in time 22
O(p)

nO(1), i.e., FPT parameterized by size p of the cutset
of the solution. This answers an open question raised by the aforementioned papers. It follows from
our result that Directed Edge/Vertex Multicut is FPT for the case of k = 2 terminal pairs,
which answers another open problem raised by Marx and Razgon.
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1. Introduction. Ford and Fulkerson [11] gave the classical result on finding
a minimum cut that separates two terminals s and t in 1956. A natural and well-
studied generalization of the minimum s−t cut problem is Multiway Cut, in which,
given a graph G and a set of terminals {s1, s2, . . . , sk}, the task is to find a minimum
subset of vertices or edges whose deletion disconnects all the terminals from one
another. Dahlhaus et al. [8] showed that the edge version in undirected graphs is
APX-complete for k ≥ 3. For the edge version Karger et al. [15] gave the current
best known approximation ratio of 1.3438 for general k. The vertex version of the
problem is known to be at least as hard as the edge version, and the current best
approximation ratio is 2− 2

k [13].

The problem behaves very differently on directed graphs. Interestingly, for di-
rected graphs, the edge and vertex versions turn out to be equivalent. Garg, Vazirani,
and Yannakakis [13] showed that computing a minimum multiway cut in directed
graphs is NP-hard and MAX SNP-hard already for k = 2. They also give an approx-
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Table 1

Summary of FPT results for Undirected Multiway Cut. Note that the O∗ notation hides
all factors which are polynomial in the size of the input.

Problem Running time Paper
Vertex version Nonconstructive FPT Roberston and Seymour [24, 25]

O∗(4p
3
) Marx [18]

O∗(4p) Chen, Liu, and Lu [2]

O∗(4p) Guillemot [14]

O∗(2p) Cygan et al. [7]

Edge version O∗(2p) Xiao [26]

imation algorithm with ratio 2 log k, which was later improved to ratio 2 by Naor
and Zosin [20].

Rather than finding approximate solutions in polynomial time, one can look for
exact solutions in time that is superpolynomial but still better than the running
time obtained by brute force solutions. For example, Dahlhaus et al. [8] showed that
undirected Multiway Cut can be solved in time nO(k) on planar graphs, which can
be an efficient solution if the number of terminals is small. On the other hand, on
general graphs the problem becomes NP-hard already for k = 3. In both the directed
and the undirected version, brute force can be used to check in time nO(p) whether a
solution of size at most p exists: one can go through all sets of size at most p. Thus
the problem can be solved in polynomial time if the optimum is assumed to be small.
In the undirected case, significantly better running time can be obtained: the current
fastest algorithms run in O∗(2p) time for both the vertex version [7] and the edge
version [26] (the O∗ notation hides all factors which are polynomial in size of input).
That is, undirected Multiway Cut is fixed-parameter tractable parameterized by
the size of the cutset we remove. Recall that a problem is fixed-parameter tractable
(FPT) with a particular parameter p if it can be solved in time f(p)nO(1), where f
is an arbitrary function depending only on p; see [9, 10, 22] for more background.
We give a brief summary of the race for faster FPT algorithms for Undirected

Multiway Cut in Table 1.
Our main result is that the directed version of Multiway Cut is also FPT.
Theorem 1.1 (main result). Directed Vertex Multiway Cut and Di-

rected Edge Multiway Cut can be solved in O∗(22
O(p)

) time.
Note that the hardness result of Garg, Vazirani, and Yannakakis [13] shows that in

the directed case the problem is nontrivial (in fact, NP-hard) even for k = 2 terminals;
our result holds without any bound on the number of terminals. The question was
first asked explicitly in [18] and was also stated as an open problem in [19]. Our result
shows in particular that directed multiway cut is solvable in polynomial time if the
size of the optimum solution is O(log logn), where n is the number of vertices in the
digraph.

A more general problem is Multicut: the input contains a set {(s1, t1), . . . ,
(sk, tk)} of k pairs, and the task is to break every path from si to its corresponding
ti by the removal of at most p vertices. Very recently, it was shown that undirected
Multicut is FPT parameterized by p [1, 19], but the directed version is unlikely to
be FPT as it is W[1]-hard [19] with this parameterization. However, in the special
case of k = 2 terminal pairs, there is a simple reduction from Directed Multicut

to Directed Multiway Cut; thus our result shows that the latter problem is FPT
parameterized by p for k = 2. Let us briefly sketch the reduction. (Note that the
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reduction we sketch works only for the variant of Directed Multicut which allows
the deletion of terminals. Marx and Razgon [19] asked about the FPT status of
this variant which is in fact equivalent to the one which does not allow deletion of
the terminals.) Let (G, T, p) be a given instance of Directed Multicut, and let
T = {(s1, t1), (s2, t2)}. We construct an equivalent instance of Directed Multiway

Cut as follows: graph G′ is obtained by adding two new vertices s, t to the graph
and adding the four edges s → s1, t1 → t, t → s2, and t2 → s. It is easy to see that
the Directed Multiway Cut instance (G′, {s, t}, p) is equivalent to the original
Directed Multicut instance.1

Corollary 1.2. Directed Multicut with k = 2 can be solved in time
O∗(22

O(p)

).

The complexity of the case k = 3 remains an interesting open problem.

Our techniques. Our algorithm for Directed Multiway Cut is inspired by
the algorithm of Marx and Razgon [19] for undirected Multicut. In particular we
use the technique of “random sampling of important separators” introduced in [19]
and try to ensure that there is a solution whose “isolated part” is empty. However,
Directed Multiway Cut behaves in a significantly different way than Multicut:
at the same time, we are dealing with a much easier and a much harder situation. The
first step in [19] is to reformulate the problem in such a way that the solution has to
be a multiway cut of a certain set W of vertices; the technique of iterative compression
allows us to reduce the original problem to this new version. As Multiway Cut is
already defined in terms of finding a multiway cut, this step is not necessary in our
case. Furthermore, in [19], after ensuring that there is a solution whose “isolated
part” is empty, the problem is reduced to Almost-2SAT. (Given a 2SAT formula
and an integer k, is there an assignment satisfying all but k of the clauses?) This
reduction works only if every component has at most two “legs”; a delicate branching
algorithm is given to ensure this property. In the case of Directed Multiway Cut,
the situation is much simpler: if there is a solution whose “isolated part” is empty,
then the problem can be reduced to the undirected version, and then we can use the
current fastest undirected algorithm [7], which runs in O∗(2p) time.

On the other hand, the fact that we are dealing with a directed graph makes the
problem significantly harder (recall that Directed Multicut is W[1]-hard param-
eterized by p; thus it is expected that not every undirected argument generalizes to
the directed case). After defining a proper notion of directed important separators,
the nontrivial interaction among two kinds of “shadows” forces us to do the random
sampling of important separators in two independent steps, and the analysis becomes
more delicate.

Independent and follow-up work. The fixed-parameter tractability of Multicut

in undirected graphs parameterized only by the size of the cutset was shown indepen-
dently by Marx and Razgon [19] and Bousquet, Daliault, and Thomassé [1]. Marx
and Razgon [19] also showed that Directed Multicut is W[1]-hard parameterized
by the size of the cutset. The technique of random sampling of important separators
introduced in [19] is a crucial element of our algorithm. A very different application
of this technique was given by Lokshtanov and Marx [17] in the context of clustering
problems.

1G has an si → ti path for some i if and only if G′ has an s → t or t → s path. This is because
G has an s1 → t1 path if and only if G′ has an s → t path, and G has an s2 → t2 path if and only
if G′ has a t → s path. This property of paths also holds after removing some vertices/edges, and
thus the two instances are equivalent.
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The preliminary version of this paper adapted the framework of random sampling
of important separators to directed graphs and showed the fixed-parameter tractabil-
ity of Directed Multiway Cut parameterized by the size of the cutset. This
framework was later used by Kratsch et al. [16] to show the fixed-parameter tractabil-
ity of Directed Multicut on directed acyclic graphs and by Chitnis et al. [4] to
show the fixed-parameter tractability of Subset Directed Feedback Vertex Set.
The latter paper improved the randomized sampling process to make the algorithms
more efficient; in particular, this improvement results in an O∗(2O(p2)) algorithm for
Directed Multiway Cut. The question of existence of a polynomial kernel for
Directed Multiway Cut was answered negatively by Cygan et al. [6], who showed
that Directed Multiway Cut (even for two terminals) does not have a polynomial
kernel unless NP ⊆ coNP/poly and the polynomial hierarchy collapses to the third
level. An interesting open question is the complexity of Directed Multicut for
k = 3 or with combined parameters k and p.

2. Preliminaries. A multiway cut is a set of edges/vertices that separate the
terminal vertices from each other.

Definition 2.1 (multiway cut). Let G be a directed graph, and let T = {t1, t2, . . . ,
tk} ⊆ V (G) be a set of terminals.

1. S ⊆ V (G) is a vertex multiway cut of (G, T ) if G \ S does not have a path
from ti to tj for any i �= j.

2. S ⊆ E(G) is a edge multiway cut of (G, T ) if G \ S does not have a path
from ti to tj for any i �= j.

In the edge case, it is straightforward to define the problem that we want to solve,
as follows.

Directed Edge Multiway Cut

Input: A directed graph G, an integer p, and a set of terminals T .
Output: A multiway cut S ⊆ E(G) of (G, T ) of size at most p or “NO” if such a
multiway cut does not exist.

In the vertex case, there is a slight technical issue in the definition of the problem:
are the terminal vertices allowed to be deleted? We focus here on the version of the
problem where the vertex multiway cut we are looking for has to be disjoint from the
set of terminals. More generally, we define the problem in such a way that the graph
has some distinguished vertices which cannot be included as part of any separator
(and we assume that every terminal is a distinguished vertex). This can be modeled
by considering weights on the vertices of the graph: weight of∞ on each distinguished
vertex and 1 on every nondistinguished vertex. We look only for solutions of finite
weight. From here on, for a graph G we will denote by V∞(G) the set of distinguished
vertices of G with the meaning that these distinguished vertices cannot be part of any
separator; i.e., all separators we consider are of finite weight. In fact, for any separator
we can talk interchangeably about size or weight as these notions are the same since
each vertex of separator has weight 1.

The main focus of the paper is the following vertex version, where we require
T ⊆ V ∞(G); i.e., terminals cannot be deleted.

Directed Vertex Multiway Cut

Input: A directed graph G, an integer p, a set of terminals T and a set V ∞ ⊇ T of
distinguished vertices.
Output: A multiway cut S ⊆ V (G) \ V ∞(G) of (G, T ) of size at most p or “NO” if
such a multiway cut does not exist.
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We note that if we want to allow the deletion of the terminal vertices, then it is not
difficult to reduce the problem to the version defined above. For each terminal t we
introduce a new vertex t′, and we add the directed edges (t, t′) and (t′, t). Let the
new graph be G′, and let T ′ = {t′ | t ∈ T }. Then there is a clear bijection between
vertex multiway cuts which can include terminals in the instance (G, T, p) and vertex
multiway cuts which cannot include terminals in the instance (G′, T ′, p).

The two versions Directed Vertex Multiway Cut and Directed Edge

Multiway Cut defined above are known to be equivalent. For the sake of complete-
ness, we prove the equivalence in section 2.1. In the remaining part of the paper, we
concentrate on finding an FPT algorithm for Directed Vertex Multiway Cut,
which we henceforth call Directed Multiway Cut for brevity.

2.1. Equivalence of vertex and edge versions of Directed Multiway Cut.
We first show how to solve the vertex version using the edge version. Let (G, T, p) be
a given instance of Directed Vertex Multiway Cut, and let V ∞(G) be the set of
distinguished vertices. We construct an equivalent instance (G′, T ′, p) of Directed

Edge Multiway Cut as follows. Let the set V ′ contain two vertices vin, vout for
every v ∈ V (G)\V∞(G) and a single vertex uin = uout for every u ∈ V∞(G). The idea
is that all incoming/outgoing edges of v in G will now be incoming/outgoing edges of
vin and vout, respectively. For every vertex v ∈ V (G)\V ∞(G), add an edge (vin, vout)
to G′. Let us call these Type I edges. For every edge (x, y) ∈ E(G), add (p + 1)
parallel (xout, yin) edges. Let us call these Type II edges. Define T ′ = {vin | v ∈ T }.
Note that the number of terminals is preserved. We have the following lemma.

Lemma 2.2. (G, T, p) is a yes-instance of Directed Vertex Multiway Cut

if and only if (G′, T ′, p) is a yes-instance of Directed Edge Multiway Cut.

Proof. Suppose G has a vertex multiway cut, say S, of size at most p. Then the
set S′ = {(vin, vout) | v ∈ S} is clearly an edge multiway cut for G′ and |S′| = |S| ≤ p.

Suppose G′ has an edge multiway cut, say S′, of size at most p. Note that it does
not help to pick in S any edges of Type II as each edge has (p+1) parallel copies and
our budget is p. So let S = {v | (vin, vout) ∈ S′}. Then S is a vertex multiway cut for
G and |S| ≤ |S′| ≤ p.

We now show how to solve the edge version using the vertex version. Let (G, T, p)
be a given instance of Directed Edge Multiway Cut. We construct an equivalent
instance (G′, T ′, p) of Directed Vertex Multiway Cut as follows. For each vertex
u ∈ V (G) \ T , create a set Cu which contains u along with p other copies of u. For
t ∈ T we let Ct = {t}. For each edge (u, v) ∈ E(G) create a vertex βuv. Add edges
(x, βuv) for all x ∈ Cu and (βuv, y) for all y ∈ Cv. Define T ′ =

⋃
t∈T Ct = T . Let

V ∞(G′) = T ′

Lemma 2.3. (G, T, p) is a yes-instance of Directed Edge Multiway Cut if
and only if (G′, T ′, p) is a yes-instance of Directed Vertex Multiway Cut.

Proof. Suppose G has an edge multiway cut, say S, of size at most p. Then the
set S′ = {βuv | (u, v) ∈ S} is clearly a vertex multiway cut for G′ and |S′| = |S| ≤ p.

Suppose G′ has a vertex multiway cut, say S′, of size at most p. Note that it does
not help to pick in S any vertices from the Cz of any vertex z ∈ V (G) \ T as each
vertex has (p+1) equivalent copies and our budget is p. So let S = {(u, v) | βuv ∈ S′}.
Then S is a edge multiway cut for G and |S| ≤ |S′| ≤ p.

2.2. Separators and shadows. The crucial idea in the algorithm of [19] for
(the vertex version of) undirected Multicut is to get rid of the “isolated part” of
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Fig. 1. For every vertex v ∈ f(S), the set S is a T − v separator. For every vertex w ∈ r(S),
the set S is a w − T separator. For every vertex y ∈ f(S) ∩ r(S), the set S is both a T − y and a
y − T separator. Finally for every z ∈ V (G) \ [S ∪ r(S) ∪ f(S) ∪ T ], there are both z − T and T − z
paths in the graph G \ S. Note that every such vertex z belongs to a strongly connected component
of G \ S containing T and there are no edges between these components.

the solution S. We use a similar concept here, but we use the term shadow, as it is
more expressive for directed graphs.

Definition 2.4 (separator). Let G be a directed graph, and let V ∞(G) ⊇ T be
the set of distinguished (“undeletable”) vertices. Given two disjoint nonempty sets
X,Y ⊆ V , we call a set S ⊆ V \ (X ∪Y ∪V ∞) an X−Y separator if there is no path
from X to Y in G \ S. A set S is a minimal X − Y separator if no proper subset of
S is an X − Y separator.

Note that here we explicitly define the X − Y separator S to be disjoint from X
and Y .

Definition 2.5 (shadows). Let G be a graph, and let T be a set of terminals.
Let S ⊆ V (G) \ V ∞(G) be a subset of vertices.

1. The forward shadow fG,T (S) of S (with respect to T ) is the set of vertices v
such that S is a T − {v} separator in G.

2. The reverse shadow rG,T (S) of S (with respect to T ) is the set of vertices v
such that S is a {v} − T separator in G.

The shadow of S (with respect to T ) is the union of fG,T (S) and rG,T (S).

That is, we can imagine T as a light source with light spreading on the directed
edges. The forward shadow is the set of vertices that remain dark if the set S blocks
the light, hiding v from T ’s sight. In the reverse shadow, we imagine that light is
spreading backwards on the edges. We abuse the notation slightly and write v − T
separator instead of {v} − T separator. We also drop G and T from the subscript if
they are clear from the context. Note that S itself is not in the shadow of S (as, by
definition, a T − v or v − T separator needs to be disjoint from T and v); that is, S
and fG,T (S) ∪ rG,T (S) are disjoint. See Figure 1 for an illustration.

3. Overview of our algorithm. We say that a solution S of Directed Mul-

tiway Cut is shadowless (with respect to T ) if f(S) = r(S) = ∅. The following
lemma shows the importance of shadowless solutions for Directed Multiway Cut.
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Fig. 2. A shadowless solution S for a Directed Multiway Cut instance. Every vertex of G\S
is in the strongly connected component of some terminal ti. There are no edges between the strongly
connected components of the terminals ti; thus S is also a solution of the underlying Undirected

Multiway Cut instance.

Clearly, any solution of the underlying undirected instance (where we disregard the
orientation of the edges) is a solution for Directed Multiway Cut cut. The con-
verse is not true in general: a solution of the directed problem is not always a solution
of the undirected problem. However, the following lemma shows that the converse
statement is true for shadowless solutions of the directed instance.

Lemma 3.1. Let G∗ be the underlying undirected graph of G. If S is a shadowless
solution for an instance (G, T, p) of Directed Multiway Cut, then S is also a
solution for the instance (G∗, T, p) of Undirected Multiway Cut.

Proof. If S is a shadowless solution, then for each vertex v in G \ S, there is a
t1 → v path and a v → t2 path for some t1, t2 ∈ T . As S is a solution, it is not
possible that t1 �= t2: this would give a t1 → t2 path in G \ S. Therefore, if S is
a shadowless solution, then each vertex in the graph G \ S belongs to the strongly
connected component of exactly one terminal. A directed edge between the strongly
connected components of ti and tj would imply the existence of either a ti → tj or
a tj → ti path, which contradicts the fact that S is a solution of the Directed

Multiway Cut instance. Hence the strongly connected components of G \ S are
exactly the same as the weakly connected components of G \ S; i.e., S is also a
solution for the underlying instance of Undirected Multiway Cut.

An illustration of Lemma 3.1 is given in Figure 2. Lemma 3.1 shows that if we can
transform the instance in a way that ensures the existence of a shadowless solution,
then we can reduce the problem to undirected Multiway Cut and use the O∗(4p)
algorithm for that problem due to Guillemot [14] which can handle the case when there
are some distinguished vertices similar to what we consider. Our transformation is
based on two ingredients: random sampling of important separators and reduction of
the instance using the torso operation. These techniques were introduced by Marx
and Razgon [19] for the undirected Multicut problem. In section 4, we review these
tools and adapt them for directed graphs.

Random sampling of important separators. As a first step in reducing the problem
to a shadowless instance, we need a set Z that has the following property:

There is a solution S∗ such that Z contains the shadow of S∗, but Z(*)
is disjoint from S∗.

If we have a set Z that satisfies property (*), we modify the instance in a way that
removes the set Z. The modification is done such that S∗ remains a solution of the
reduced instance; in fact, it becomes a shadowless solution. This means that the
problem can be solved by Lemma 3.1. This process of getting rid of the set Z in an
appropriate way is accomplished by the torso operation defined below.
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c1

c2

c3

c1

c2

c3

c4
c4

G torso(G,C)

Fig. 3. Let C = {c1, c2, c3, c4}. In the graph torso(G, C) the edges (c4, c3) and (c4, c2) carry
over from G. The new edges (shown by dotted arrows) that get added because of the torso operation
are (c1, c3) and (c2, c3).

Unfortunately, when we are trying to construct the set Z, we do not know any-
thing about the solutions of the instance, and in particular we have no way of checking
whether a given set Z satisfies property (*). Nevertheless, we use a randomized proce-
dure that creates a set Z, and we give a lower bound on the probability that Z satisfies
property (*). For the construction of this set Z, we use a very specific probability
distribution that was introduced in [19]. This probability distribution is based on ran-
domly selecting “important separators” and taking the union of their shadows. At this
point, we can consider the sampling as a black-box function “RandomSet(G, T, p)”
that returns a random subset Z ⊆ V (G) according to a probability distribution that
satisfies certain properties. The precise description of this function and the properties
of the distribution it creates is described in section 4.2 (see Theorem 4.10). The ran-
domized selection can be derandomized: the randomized selection can be turned into
a deterministic algorithm that returns a bounded number of sets such that at least
one of them satisfies the required property (section 4.3). To make the description of
the algorithm simpler, we focus on the randomized algorithm in this section.

Torsos. We use the function RandomSet(G, T, p) to construct a set Z of vertices
that we want to get rid of. However we must be careful: when getting rid of the set
Z we should ensure that the information relevant to Z is captured in the reduced
instance. This is exactly accomplished by the torso operation which removes a set
of vertices without making the problem any easier. We formally define this operation
as follows.

Definition 3.2 (torso). Let G be a directed graph, and let C ⊆ V (G). The
graph torso(G,C) has vertex set C, and there is a (directed) edge (a, b) in torso(G,C)
if there is an a → b path in G whose internal vertices are not in C.

See Figure 3 for an example of the torso operation. Note that if a, b ∈ C and
(a, b) is a directed edge of G, then torso(G,C) contains (a, b) as well. Thus G[C],
which is the graph induced by C in G, is a subgraph of torso(G,C). The following
lemma shows that the torso operation preserves separation inside C.

Lemma 3.3 (torso preserves separation). Let G be a directed graph, and let
C ⊆ V (G). Let G′ = torso(G,C) and S ⊆ C. For a, b ∈ C \ S, the graph G \ S has
an a → b path if and only if G′ \ S has an a → b path.
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Proof. Let P be a path from a to b in G. Suppose P is disjoint from S. Then P
contains vertices from C and V (G) \C. Let u, v be two vertices of C such that every
vertex of P between u and v is from V (G) \ C. Then by definition there is an edge
(u, v) in torso(G,C). Using such edges, we can modify P to obtain an a → b path
that lies completely in torso(G,C) but avoids S.

Conversely, suppose that P ′ is an a → b path in torso(G,C) and avoids S ⊆ C.
If P ′ uses an edge (u, v) /∈ E(G), then this means that there is a u → v path P ′′

whose internal vertices are not in C. Using such paths, we modify P to get an a → b
path P0 that uses only edges from G. Since S ⊆ C, we have that the new vertices on
the path are not in S and so P0 avoids S.

If we want to remove a set Z of vertices, then we create a new instance by taking
the torso on the complement of Z.

Definition 3.4. Let I = (G, T, p) be an instance of Directed Multiway Cut

and Z ⊆ V (G) \ T . The reduced instance I/Z = (G′, T ′, p) is defined as

• G′ = torso(G, V (G) \ Z),
• T ′ = T .

The following lemma states that the operation of taking the torso does not make
the Directed Multiway Cut problem easier for any Z ⊆ V (G) \ T in the sense
that any solution of the reduced instance I/Z is a solution of the original instance I.
Moreover, if we perform the torso operation for a Z that is large enough to contain
the shadow of some solution S∗ but at the same time small enough to be disjoint
from S∗, then S∗ remains a solution for the reduced instance I/Z and in fact is a
shadowless solution for I/Z. Therefore, our goal is to randomly select a set Z in such
a way that we can bound the probability that Z satisfies property (*) defined above
for some hypothetical solution S∗.

Lemma 3.5 (creating a shadowless instance). Let I = (G, T, p) be an instance of
Directed Multiway Cut and Z ⊆ V (G) \ T .

1. If S is a solution for I/Z, then S is also a solution for I.
2. If S is a solution for I such that fG,T (S)∪ rG,T (S) ⊆ Z and S ∩Z = ∅, then

S is a shadowless solution for I/Z.

Proof. Let G′ be the graph torso(G, V (G) \Z). To prove the first part, suppose
that S ⊆ V (G′) is a solution for I/Z and S is not a solution for I. Then there are
terminals t1, t2 ∈ T such that there is a t1 → t2 path P in G \ S. As t1, t2 ∈ T and
Z ⊆ V (G)\T , we have that t1, t2 ∈ V (G)\Z. In fact, we have t1, t2 ∈ (V (G)\Z)\S.
Lemma 3.3 implies that there is a t1 → t2 path in G′ \ S, which is a contradiction as
S is a solution for I/Z.

For the second part of the lemma, let S be a solution for I such that S ∩ Z = ∅
and fG,T (S)∪rG,T (S) ⊆ Z. We want to show that S is a shadowless solution for I/Z.
First we show that S is a solution for I/Z. Suppose to the contrary that there are
terminals x′, y′ ∈ T ′(= T ) such that G′ \S has an x′ → y′ path. As x′, y′ ∈ V (G) \Z,
Lemma 3.3 implies that G \S also has an x′ → y′ path, which is a contradiction as S
is a solution of I.

Finally, we show that S is shadowless in I/Z; i.e., rG′,T (S) = ∅ = fG′,T (S). We
prove only that rG′,T (S) = ∅: the argument for fG′,T (S) = ∅ is analogous. Assume
to the contrary that there exists w ∈ rG′,T (S) (note that we have w ∈ V (G′), i.e.,
w /∈ Z). So S is a w − T separator in G′; i.e., there is no w − T path in G′ \ S.
Lemma 3.3 gives that there is no w − T path in G \ S; i.e., w ∈ rG,T (S). But
rG,T (S) ⊆ Z, and so we have w ∈ Z, which is a contradiction. Thus rG,T (S) ⊆ Z in
G implies that rG′,T (S) = ∅.
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Algorithm 1. FPT Algorithm for Directed Multiway Cut.

Input: An instance I1 = (G1, T, p) of Directed Multiway Cut.

1: Let Z1 = RandomSet(G1, T, p).
2: Let G2 = (G1)rev. {Reverse the orientation of every edge.}
3: Let V ∞(G2) = V ∞(G1) ∪ Z1. {Set weight of every vertex of Z1 to ∞.}
4: Let Z2 = RandomSet(G2, T, p).
5: Let Z = Z1 ∪ Z2.
6: Let G3 = torso(G1, V (G) \Z). {Get rid of Z.}
7: Solve the underlying undirected instance (G∗

3, T, p) of Multiway Cut.
8: if (G∗

3, T, p) has a solution S then
9: return S

10: else
11: return “NO”

The algorithm. The description of our algorithm is given in Algorithm 1. Recall
that we are trying to solve a version of Directed Multiway Cut where we are given
a set V ∞ of distinguished vertices which are undeletable, i.e., have infinite weight.

Due to the delicate way separators behave in directed graphs, we construct the
set Z in two phases, calling the function RandomSet twice. Our aim is to show that
there is a solution S such that we can give a lower bound on the probability that
Z1 contains rG1,T (S) and Z2 contains fG1,T (S). Note that the graph G2 obtained
in step 2 depends on the set Z1 returned in step 1 (as we made the weight of every
vertex in Z1 infinite); thus the distribution of the second random sampling depends
on the result Z1 of the first random sampling. This means that we cannot make the
two calls in parallel.

We use the torso operation to remove the vertices in Z = Z1 ∪ Z2 (step 5),
and then solve the undirected Multiway Cut instance obtained by disregarding the
orientation of the edges. For this purpose, we can use the algorithm of Guillemot
[14] that solves the undirected problem in time O∗(4p). Note that the algorithm for
undirected Multiway Cut in [14] explicitly considers the variant where we have a
set of distinguished vertices which cannot be deleted.

The following two lemmas show that Algorithm 1 is a correct randomized algo-
rithm. One direction is easy to see: the algorithm has no false positives.

Lemma 3.6. Let I1 = (G1, T, p) be an instance of Directed Multiway Cut.
If Algorithm 1 returns a set S, then S is a solution for I1.

Proof. Any solution S of the undirected instance (G∗
3, T, p) returned by Algo-

rithm 1 is clearly a solution of the directed instance (G3, T, p) as well. By Lemma 3.5(1)
the torso operation does not make the problem easier by creating new solutions.
Hence S is also a solution for I1 = (G1, T, p).

The following lemma shows that if the instance has a solution, then the algorithm
finds one with certain probability.

Lemma 3.7. Let I1 = (G1, T, p) be an instance of Directed Multiway Cut.
If I1 is a yes-instance of Directed Multiway Cut, then Algorithm 1 returns a set

S which is a solution for I with probability at least 2−2O(p)

.

By Lemma 3.5(2), we can prove Lemma 3.7 by showing that if I1 is a yes-instance,
then there exists a solution S∗ such that Z satisfies the two requirements Z∩S = ∅ and
fG1,T (S) ∪ rG1,T (S) ⊆ Z with suitable probability. This requires a deeper analysis
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of the structure of optimum solutions and the probability distribution behind the
function RandomSet(G, T, p). Hence we defer the proof of Lemma 3.7 to section 5.

Derandomization. In section 4.3, we present a deterministic variant ofRandom-
Set(G, T, p), which, instead of returning a random set Z, returns a deterministic set

Z1, . . . , Zt of O∗(22
O(p)

) sets. Instead of bounding the probability that the random
set Z has the required property with some probability, we prove that at least one
Zi always satisfies the property. Therefore, in steps 1 and 3 of Algorithm 1, we can
replace RandomSet with this deterministic variant and branch on the choice of one
Zi from the returned sets. By the properties of the deterministic algorithm, if I1 is a
yes-instance, then Z has property (*) in at least one of the branches and therefore the
algorithm finds a correct solution for I1. The branching increases the running time

only by a factor of (O∗(22
O(p)

))2 and therefore the total running time is O∗(22
O(p)

).

4. Important separators and random sampling. This section reviews the
notion of important separators and the random sampling technique introduced by
Marx and Razgon [19]. As [19] used these concepts for undirected graphs and we
need them for directed graphs, we give a self-contained presentation without relying
on earlier work.

4.1. Important separators. Marx [18] introduced the concept of important
separators to deal with the Undirected Multiway Cut problem. Since then it
has been used implicitly or explicitly in, e.g., [2, 3, 17, 19, 23] in the design of fixed-
parameter algorithms. In this section, we define and use this concept in the setting
of directed graphs. Roughly speaking, an important separator is a separator of small
size that is maximal with respect to the set of vertices on one side.

Definition 4.1 (important separator). Let G be a directed graph, and let X,Y ⊆
V be two disjoint nonempty sets. A minimal X−Y separator S is called an important
X − Y separator if there is no X − Y separator S′ with |S′| ≤ |S| and R+

G\S(X) ⊂
R+

G\S′(X), where R+
A(X) is the set of vertices reachable from X in A.

Let X,Y be disjoint sets of vertices of an undirected graph. Then for every p ≥ 0
it is known [2, 18] that there are at most 4p important X − Y separators of size at
most p for any sets X,Y . The next lemma shows that the same bound holds for
important separators even in directed graphs.

Lemma 4.2 (number of important separators). Let X,Y ⊆ V (G) be disjoint sets
in a directed graph G. Then for every p ≥ 0 there are at most 4p important X − Y
separators of size at most p. Furthermore, we can enumerate all these separators in
time O(4p · p(|V (G) + |E(G)|)).

The proof of Lemma 4.2 is long and follows the same techniques as the proof
in undirected graphs (see, e.g., [19, 17]). Therefore, it is deferred to Appendix A to
maintain the flow of the main result. For ease of notation, we now define the following
collection of important separators.

Definition 4.3. Given an instance (G, T, p) of Directed Multiway Cut, the
set Ip contains the set S ⊆ V (G) if S is an important v−T separator of size at most
p in G for some vertex v in V (G) \ T .

Remark 4.4. It follows from Lemma 4.2 that |Ip| ≤ 4p · |V (G)| and we can
enumerate the sets in Ip in time O∗(4p).

We now define a special type of shadows which we use later for the random
sampling.

Definition 4.5 (exact shadows). Let G be a directed graph and T ⊆ V (G) a set
of terminals. Let S ⊆ V (G) \ V ∞(G) be a set of vertices. Then for v ∈ V (G) we say



DIRECTED MULTIWAY CUT IS FPT 1685

Fig. 4. S is a minimal X − Y separator, but it is not an important X − T separator as S′
satisfies |S′| = |S| and R+

G\S(X) = X ⊂ X ∪ S = R+
G\S′(X). In fact it is easy to check that the

only important X − T separator of size 3 is S′. If p ≥ 2, then the set {z1, z2} is in Ip since it is
an important x1 − T separator of size 2. Finally, x1 belongs to the “exact reverse shadow” of each
of the sets {w1, w2}, {w1, z2}, {w2, z1}, and {z1, z2} since they are all minimal x1 − T separators.
However x1 does not belong to the exact reverse shadow of the set S as it is not a minimal x1 − T
separator.

that
1. v is in the “exact reverse shadow” of S (with respect to T ) if S is a minimal

v − T separator in G, and
2. v is in the “exact forward shadow” of S (with respect to T ) if S is a minimal

T − v separator in G.
We refer the reader to Figure 4 for examples of Definitions 4.1, 4.3, and 4.5. The

exact reverse shadow of S is a subset of the reverse shadow of S: it contains a vertex v
only if every vertex w ∈ S is “useful” in separating v, that is, vertex w can be reached
from v, and T can be reached from w. This slight difference between the shadow and
the exact shadow will be crucial in the analysis of the algorithm (see section 5 and
Remark 4.8).

The random sampling described in section 4.2 (Theorem 4.10) randomly selects
members of Ip and creates a subset of vertices by taking the union of the exact reverse
shadows of the selected separators. The following lemma will be used to give an upper
bound on the probability that a vertex is covered by the union.

Lemma 4.6. Let z be any vertex. Then there are at most 4p members of Ip which
contain z in their exact reverse shadows.

For the proof of Lemma 4.6, first we need to establish the following.
Lemma 4.7. If S ∈ Ip and v is in the exact reverse shadow of S, then S is an

important v − T separator.
Proof. Let w be the witness that S is in Ip, i.e., S is an important w−T separator

in G. Let v be any vertex in the exact reverse shadow of S, which means that S is a
minimal v − T separator in G. Suppose that S is not an important v − T separator.
Then there exists a v − T separator S′ such that |S′| ≤ |S| and R+

G\S(v) ⊂ R+
G\S′(v).

We will arrive to a contradiction by showing that R+
G\S(w) ⊂ R+

G\S′(w), i.e., S is not
an important w − T separator.
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First, we claim that S′ is an (S \ S′) − T separator. Suppose that there is a
path P from some x ∈ S \ S′ to T that is disjoint from S′. As S is a minimal v − T
separator, there is a path Q from v to x whose internal vertices are disjoint from S.
Furthermore, R+

G\S(v) ⊂ R+
G\S′(v) implies that the internal vertices of Q are disjoint

from S′ as well. Therefore, concatenating Q and P gives a path from v to T that is
disjoint from S′, contradicting the fact that S′ is a v − T separator.

We show that S′ is a w−T separator and its existence contradicts the assumption
that S is an important w − T separator. First we show that S′ is a w − T separator.
Suppose that there is a w − T path P disjoint from S′. Path P has to go through a
vertex y ∈ S \S′ (as S is a w−T separator). Thus by the previous claim, the subpath
of P from y to T has to contain a vertex of S′, a contradiction.

Finally, we show that R+
G\S(w) ⊆ R+

G\S′(w). As S �= S′ and |S′| ≤ |S|, this will

contradict the assumption that S is an important w − T separator. Suppose that
there is a vertex z ∈ R+

G\S(w) \ R+
G\S′(w), and consider a w − z path that is fully

contained in R+
G\S(v), i.e., disjoint from S. As z �∈ R+

G\S′(v), path Q contains a vertex

q ∈ S′ \S. Since S′ is a minimal v−T separator, there is a v−T path that intersects
S′ only in q. Let P be the subpath of this path from q to T . If P contains a vertex
r ∈ S, then the subpath of P from r to T contains no vertex of S′ (as z �= r is the
only vertex of S′ on P ), contradicting our earlier claim that S′ is an (S \ S′) − T
separator. Thus P is disjoint from S, and hence the concatenation of the subpath of
Q from w to q and the path P is a w−T path disjoint from S, a contradiction.

Lemma 4.6 easily follows from Lemma 4.7. Let J be a member of Ip such that z
is in the exact reverse shadow of J . By Lemma 4.7, J is an important z−T separator.
By Lemma 4.2, there are at most 4p important z − T separators of size at most p,
and so z belongs to at most 4p exact reverse shadows.

Remark 4.8. It is crucial to distinguish between “reverse shadow” and “exact
reverse shadow”: Lemma 4.7 (and hence Lemma 4.6) does not remain true if we
remove the word “exact.” Consider the following example (see Figure 5). Let a1,
. . . , ar be vertices such that there is an edge going from every ai to every vertex of
T = {t1, t2, . . . , tk}. For every 1 ≤ i ≤ r, let bi be a vertex with an edge going from bi
to ai. For every 1 ≤ i < j ≤ r, let ci,j be a vertex with two edges going from ci,j to
ai and aj . Then every set {ai, aj} is in Ip, since it is an important ci,j −T separator.
This means that every bi is in the reverse shadow of r− 1 members of Ip, namely the
sets {aj, aii} for 1 ≤ i �= j ≤ r. However, bi is in the exact reverse shadow of exactly
one member of Ip, the set {ai}.

4.2. Random sampling. In this section, we adapt the random sampling of [19]
to directed graphs. We try to present it in a self-contained way that might be useful
for future applications.

Roughly speaking, we want to select a random set Z such that for every pair (S, Y )
where Y is in the reverse shadow of S, the probability that Z is disjoint from S but
contains Y can be bounded from below. We can guarantee such a lower bound only if
(S, Y ) satisfies two conditions. First, it is not enough that Y is in the shadow of S (or
in other words, S is an Y − T separator), but S should contain important separators
separating the vertices of Y from T (see Theorem 4.10 for the exact statement).
Second, a vertex of S cannot be in the reverse shadow of other vertices of S; this is
expressed by the following technical definition.

Definition 4.9 (thin). Let G be a directed graph and T ⊆ V (G) a set of ter-
minals. We say that a set S ⊆ V (G) is thin in G if there is no v ∈ S such that v
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Fig. 5. An illustration of Remark 4.8 in the special case when k = 3 = r.

belongs to the reverse shadow of S \ v with respect to T .

Refer to Figure 4. The set S is thin because for every 1 ≤ i ≤ 3 the vertex wi

does not belong to the reverse shadow of the set S \ {wi}. However the set S ∪ S′

is not thin since (S ∪ S′) \ {w1} is a w1 − T separator, and hence w1 belongs to the
reverse shadow of (S ∪ S′) \ {w1}.

Theorem 4.10 (random sampling). There is an algorithm RandomSet(G, T, p)
that produces a random set Z ⊆ V (G)\T in time O∗(4p) such that the following holds.
Let S be a thin set with |S| ≤ p, and let Y be a set such that for every v ∈ Y there is
an important v− T separator S′ ⊆ S. For every such pair (S, Y ), the probability that

the following two events both occur is at least 2−2O(p)

:

1. S ∩ Z = ∅, and
2. Y ⊆ Z.

Algorithm 2. RandomSet(G, T, p).

1: Enumerate every member of Ip. {See Remark 4.4.}
2: Let X be the set of exact reverse shadows of members of Ip.
3: Take a random X ′ ⊆ X by choosing each element with probability 1

2 , indepen-
dently at random.

4: Let Z be the union of the exact reverse shadows in X ′.
5: return Z

Proof. We claim that Algorithm 2 for RandomSet(G, T, p) satisfies the require-
ments. The algorithm RandomSet(G, T, p) first enumerates the collection Ip; let X
be the set of all exact reverse shadows of these sets. By Remark 4.4, the size of X
is O∗(4p), and it can be constructed in time O∗(4p). Now we show that the set Z
satisfies the requirement of the theorem.

Fix a pair (S, Y ) as in the statement of the theorem. Let X1, X2, . . . , Xd ∈ X be
the exact reverse shadows of every member of Ip that is a subset of S. As |S| ≤ p,
we have d ≤ 2p. By assumption that S is thin, we have Xj ∩ S = ∅ for every j ∈ [d].
Now consider the following events:

(E1) Z ∩ S = ∅.
(E2) Xj ⊆ Z for every j ∈ [d].
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Note that (E2) implies that Y ⊆ Z. Our goal is to show that both events (E1) and

(E2) occur with probability 2−2O(p)

.
Let A = {X1, X2, . . . , Xd} and B = {X ∈ X | X ∩ S �= ∅}. By Lemma 4.6, each

vertex of S is contained in the exact reverse shadow of at most 4p members of Ip.
Thus |B| ≤ |S| · 4p ≤ p · 4p. If no exact reverse shadow from B is selected, then event
(E1) holds. If every exact reverse shadow from A is selected, then event (E2) holds.
Thus the probability that both (E1) and (E2) occur is bounded from below by the
probability of the event that every element from A is selected and no element from
B is selected. Note that A and B are disjoint: A contains only sets disjoint from S,
while B contains only sets intersecting S. Therefore, the two events are independent,
and the probability that both events occur is at least

(
1

2

)2p(
1− 1

2

)p·4p
= 2−2O(p)

.

4.3. Derandomization. We now derandomize the process of choosing exact
reverse shadows in Theorem 4.10 using the technique of splitters. An (n, r, r2)-splitter
is a family of functions from [n] → [r2] such that for all M ⊆ [n] with |M | = r, at least
one of the functions in the family is injective on M . Naor, Schulman, and Srinivasin
[21] give an explicit construction of an (n, r, r2)-splitter of size O(r6 · log r · log n).

Theorem 4.11 (deterministic sampling). There exists a randomized algorithm

RandomSet(G, T, p) that produces t = 22
O(p)

subsets Z1, . . . , Zt of V (G) \ T in time

O∗(22
O(p)

) such that the following holds. Let S be a thin set with |S| ≤ p, and let Y
be a set such that for every v ∈ Y there is an important v − T separator S′ ⊆ S. For
every such pair (S, Y ), there is at least one 1 ≤ i ≤ t with

1. S ∩ Zi = ∅, and
2. Y ⊆ Zi.

Proof. In the proof of Theorem 4.10, a random subset of a universe X of size
n0 = |X | ≤ 4p · |V (G)| is selected. We argued that for a fixed S, there are a collection
A ⊆ X of a ≤ 2p sets and a collection B ⊆ X of b ≤ p · 4p sets such that if every set
in A is selected and no set in B is selected, then events (E1) and (E2) hold. Instead
of selecting a random subset, we construct several subsets such that at least one of
them satisfies both (E1) and (E2). Each subset is defined by a pair (h,H), where h
is a function in an (n0, a+ b, (a+ b)2)-splitter family and H is a subset of [(a+ b)2] of

size a (there are ( (a+b)2

a
) = ( (2

p+p4p)2

2p
) = 22

O(p)

such sets H). For a particular choice

of h and H , we select those exact shadows S ∈ X into X ′ for which h(S) ∈ H . The
size of the splitter family is O((a + b)6 · log(a+ b) · log(n0)) = 2O(p) · log |V (G)|, and
the number of possibilities for H is 22

O(p)

. Therefore, we construct 22
O(p) · log |V (G)|

subsets of X .
By the definition of the splitter, there is a function h that is injective on A ∪ B,

and there is a subset H such that h(L) ∈ H for every set L in A and h(M) �∈ H for
every set M in B. For such an h and H , the selection will ensure that (E1) and (E2)
hold. Thus at least one of the constructed subsets has the required properties, which
is what we wanted to show.

5. Proof of Lemma 3.7. The goal of this section is to complete the proof of
correctness of Algorithm 1 by proving Lemma 3.7. Note that Lemma 3.6 was proved
in section 3.

To prove Lemma 3.7, we show that if I is a yes-instance, then there exists a
solution S∗ for I1 that remains a solution of the undirected (G∗

3, T, p) as well with
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probability at least 2−2O(p)

. Suppose that for some solution S∗, the following two
properties hold:

1. Z ∩ S∗ = ∅, and
2. rG1,T (S

∗)
⋃
fG1,T (S

∗) ⊆ Z.

Then Lemma 3.5(2) implies that S∗ is a shadowless solution of I/Z = (G3, T, p). It
follows by Lemma 3.1 that S∗ is a solution of the undirected instance (G∗

3, T, p) as
well. Thus our goal is to prove the existence of a solution S∗ for which we can give a
lower bound on the probability that these two events occur.

For choosing S∗, we need the following definition.

Definition 5.1 (shadow-maximal solution). Let (G, T, p) be a given instance of
Directed Multiway Cut. An inclusionwise minimal solution S is called shadow-
maximal if rG,T (S)

⋃
fG,T (S)

⋃
S is inclusionwise maximal among all minimal solu-

tions.

For the rest of the proof, let us fix S∗ to be a shadow-maximal solution of instance
I1 = (G1, T, p) such that |rG1,T (S

∗)| is maximum possible among all shadow-maximal
solutions. We now give a lower bound on the probability that Z ∩ S∗ = ∅ and
rG1,T (S

∗)
⋃
fG1,T (S

∗) ⊆ Z. More precisely, we give a lower bound on the probability
that all of the following four events occur:

1. Z1 ∩ S∗ = ∅,
2. rG1,T (S

∗) ⊆ Z1,
3. Z2 ∩ S∗ = ∅, and
4. fG1,T (S

∗) ⊆ Z2.

That is, the first random selection takes care of the reverse shadow, the second takes
care of the forward shadow, and neither of Z1 or Z2 hits S∗. Note that it is somewhat
counterintuitive that we choose an S∗ for which the shadow is large: intuitively, it
seems that the larger the shadow is, the less likely that it is fully covered by Z.
However, we need this maximality property in order to give a lower bound on the
probability that Z ∩ S∗ = ∅.

We want to invoke Theorem 4.10 to obtain a lower bound on the probability that
Z1 contains Y = rG1,T (S

∗) and Z1 ∩ S∗ = ∅. First, we need to ensure that S∗ is a
thin set, but this follows easily from the fact that S∗ is a minimal solution.

Lemma 5.2. If S is a minimal solution for a Directed Multiway Cut instance
(G, T, p), then no v ∈ S is in the reverse shadow of some S′ ⊆ S \ {v}.

Proof. We claim that S \ {v} is also a solution, contradicting the minimality of
S. Suppose that there is a path P from t1 ∈ T to t2 ∈ T , t1 �= t2, that intersects S
only in v. Consider the subpath of P from v to t2. As v is in r(S′), the set S′ is a
v − T separator. Thus P goes through S′ ⊆ S \ {v}, a contradiction.

More importantly, if we want to use Theorem 4.10 with Y = rG1,T (S
∗), then we

have to make sure that for every vertex v of rG1,T (S
∗), there is an important v − T

separator that is a subset of S∗. The “pushing argument” of Lemma 5.3 shows that
if this is not true for some v, then we can modify the solution in a way that increases
the size of the reverse shadow. The choice of S∗ ensures that no such modification is
possible; thus S∗ contains an important separator for every v.

Lemma 5.3 (pushing). Let S be a solution of a Directed Multiway Cut

instance (G, T, p). For every v ∈ r(S), either there is an Sv ⊆ S which is an important
v − T separator, or there is a solution S′ such that

1. |S′| ≤ |S|,
2. r(S) ⊂ r(S′),
3. (r(S)

⋃
f(S)

⋃
S) ⊆ (r(S′)

⋃
f(S′)

⋃
S′).
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Proof. Let S0 ⊆ S be the subset of S reachable from v without going through
any other vertices of S. Then S0 is clearly a v − T separator. Let Sv be the minimal
v − T separator contained in S0. If Sv is an important v − T separator, then we are
done as S itself contains Sv. Otherwise, there exists an important v − T separator
S′
v, i.e., |S′

v| ≤ |Sv|, and R+
G\Sv

(v) ⊂ R+
G\S′

v
(v). Now we show that S′ = (S \Sv)

⋃
S′
v

is a solution for the multiway cut instance. Note that S′
v ⊆ S′ and |S′| ≤ |S|.

First we claim that r(S)
⋃
(S \ S′) ⊆ r(S′). Suppose that there is a path P from

β to T in G \ S′ for some β ∈ r(S)
⋃
(S \ S′). If β ∈ r(S), then path P has to go

through a vertex β′ ∈ S. As β′ is not in S′, it has to be in S \ S′. Therefore, by
replacing β with β′, we can assume in the following that β ∈ S \ S′ ⊆ Sv \ S′

v. By
minimality of Sv, every vertex of Sv ⊆ S0 has an incoming edge from some vertex in
R+

G\S(v). This means that there is a vertex α ∈ R+
G\S(v) such that (α, β) ∈ E(G).

Since R+
G\S(v) ⊆ R+

G\S′(v), we have α ∈ R+
G\S′(v), implying that there is a v → α

path in G\S′. The edge α → β also survives in G\S′ as α ∈ R+
G\S′(v) and β ∈ Sv\S′

v.

By assumption, we have a path in G \ S′ from β to some t ∈ T . Concatenating the
three paths, we obtain a v → t path in G \ S′ which contradicts the fact that S′

contains an (important) v − T separator S′
v. Since S �= S′ and |S| = |S′|, the set

Sv \S′
v is nonempty. Thus r(S) ⊂ r(S′) follows from the claim r(S)

⋃
(S \S′) ⊆ r(S′).

Suppose now that S′ is not a solution for the multiway cut instance. Then there
is a t1 → t2 path P in G \ S′ for some t1, t2 ∈ T , t1 �= t2. As S is a solution for the
multiway cut instance, P must pass through a vertex β ∈ S \S′ ⊆ r(S′) (by the claim
in the previous paragraph), a contradiction. Thus S′ is also a minimum solution.

Finally, we show that r(S)
⋃
f(S)

⋃
S ⊆ r(S′)

⋃
f(S′)

⋃
S′. We know that

r(S)
⋃
(S \ S′) ⊆ r(S′). Thus it is sufficient to consider a vertex v ∈ f(S) \ r(S).

Suppose that v �∈ f(S′) and v �∈ r(S′): there are paths P1 and P2 in G \ S′, going
from T to v and from v to T , respectively. As v ∈ f(S), path P1 intersects S, i.e., it
goes through a vertex of S \S′ ⊆ r(S′); let β be the last such vertex on P1. Now con-
catenating the subpath of P1 from β to v and the path P2 gives a path from β ∈ r(S′)
to T in G \ S′, a contradiction.

Note that if S is a shadow-maximal solution, then solution S′ in Lemma 5.3 is also
shadow-maximal. Therefore, by the choice of S∗, applying Lemma 5.3 on S∗ cannot
produce a shadow-maximal solution S′ with rG1,T (S

∗) ⊂ rG1,T (S
′), and hence S∗

contains an important v−T separator for every v ∈ rG1,T (S). Thus by Theorem 4.10
for Y = rG1,T (S

∗), we get the following lemma.

Lemma 5.4. With probability at least 2−2O(p)

, both rG1,T (S
∗) ⊆ Z1 and Z1∩S∗ =

∅ occur.

In the following, we assume that the events in Lemma 5.4 occur. Our next goal
is to give a lower bound on the probability that Z2 contains fG1,T (S

∗). Note that
S∗ is a solution also of the instance (G2, T, p): the vertices in S∗ remain finite (as
Z1 ∩ S∗ = ∅ by the assumptions of Lemma 5.4), and reversing the orientation of the
edges does not change the fact that S∗ is a solution. Solution S∗ is a shadow-maximal
solution also in (G2, T, p): Definition 5.1 is insensitive to reversing the orientation
of the edges, and making some of the weights infinite can only decrease the set of
potential solutions. Furthermore, the forward shadow of S∗ in G2 is the same as the
reverse shadow of S∗ in G1; that is, fG2,T (S

∗) = rG1,T (S
∗). Therefore, assuming

that the events in Lemma 5.4 occur, every vertex of fG2,T (S
∗) has infinite weight in

G2. Now we show that S∗ contains an important v − T separator in G2 for every
v ∈ rG2,T (S

∗) = fG1,T (S
∗).
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Lemma 5.5. If S is a shadow-maximal solution for a Directed Multiway Cut

instance (G, T, p) and every vertex of f(S) is infinite, then S contains an important
v − T separator for every v ∈ r(S).

Proof. Suppose to the contrary that there exists v ∈ r(S) such that S does not
contain an important v−T separator. Then by Lemma 5.3, there is another shadow-
maximal solution S′. As S is shadow-maximal, it follows that r(S)

⋃
f(S)

⋃
S =

r(S′)
⋃
f(S′)

⋃
S′. Therefore, the nonempty set S′ \ S is fully contained in r(S)

⋃
f(S)

⋃
S. However it cannot contain any vertex of f(S) (as they are infinite by

assumption) and cannot contain any vertex of r(S) (as r(S) ⊂ r(S′)), which is a
contradiction.

Recall that S∗ is a shadow-maximal solution also in (G2, T, p). In particular, S∗

is a minimal solution for G2 and so by Lemma 5.2 we have that S∗ is thin in G2 also.
Thus Theorem 4.10 can be used (with Y = rG2,T (S

∗)) to obtain a lower bound on the
probability that rG2,T (S

∗) ⊆ Z2 and Z2 ∩ S∗ = ∅. As the reverse shadow rG2,T (S
∗)

in G2 is the same as the forward shadow fG1,T (S
∗) in G1, we can state the following

lemma.

Lemma 5.6. Assuming the events in Lemma 5.4 occur, with probability at least

2−2O(p)

both fG1,T (S
∗) ⊆ Z2 and Z2 ∩ S∗ = ∅ occur.

Therefore, Lemmas 5.4 and 5.6 imply that with probability at least (2−2O(p)

)2, the
set Z1

⋃
Z2 contains fG1,T (S

∗)
⋃
rG1,T (S

∗), and it is disjoint from S∗. Lemma 3.5(2)
implies that S∗ is a shadowless solution of I/(Z1

⋃
Z2). It follows from Lemma 3.1

that S∗ is a solution of the undirected instance (G∗
3, T, p).

Lemma 5.7. With probability at least 2−2O(p)

, S∗ is a shadowless solution of
(G3, T, p) and a solution of the undirected instance (G∗

3, T, p).

In summary, with probability at least 2−2O(p)

Algorithm 1 returns a set S which
is a solution of I by Lemma 3.6. This completes the proof of Lemma 3.7.

Appendix A. Bound on the number of important separators (proof of
Lemma 4.2). For the proof of Lemma 4.2, first we need to establish some simple
properties of important separators, which will allow us to use recursion.

Lemma A.1. Let G be a directed graph, and let S be an important X−Y separator.
Then the following hold:

1. For every v ∈ S, the set S \ v is an important X − Y separator in the graph
G \ v.

2. If S is an X ′ − Y separator for some X ′ ⊃ X, then S is also an important
X ′ − Y separator.

Proof.

1. Suppose S \ v is not a minimal X − Y separator in G \ v. Let S0 ⊂ S \ v
be an X − Y separator in G \ v. Then S0 ∪ v is an X − Y separator in
G, but S0 ∪ v ⊂ S holds, which contradicts the fact that S is a minimal
X − Y separator in G. Now suppose that there exists an S′ ⊆ V (G) \ v
such that |S′| ≤ |S \ v| = |S| − 1 and R+

(G\v)\(S\v)(X) ⊂ R+
(G\v)\S′(X).

Noting that (G \ v) \ (S \ v) = G \ S and (G \ v) \ S′ = G \ (S′ ∪ v), we get
R+

G\S(X) ⊂ R+
G\(S′∪v)(X). As |S′ ∪ v| = |S′| + 1 ≤ |S|, this contradicts the

fact that S is an important X − Y separator.
2. As S is an inclusionwise minimal X − Y separator, it is an inclusionwise

minimal X ′ − Y separator as well. Let S′ be a witness that S is not an
important X ′ − Y separator in G; i.e., S′ is an X ′ − Y separator such that
|S′| ≤ |S| and R+

G\S(X
′) ⊂ R+

G\S′(X ′). We claim first that R+
G\S(X) ⊆
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R+
G\S′(X). Indeed, if P is any path from X and fully contained in R+

G\S(X),

then P is disjoint from S′; otherwise vertices of P ∩ S′ are in R+
G\S(X

′),
but not in R+

G\S′(X
′), a contradiction. Next we show that the inclusion

R+
G\S(X) ⊂ R+

G\S′(X) is proper, contradicting that S is an important X −Y

separator. As |S′| ≤ |S|, there is a vertex v ∈ S \ S′. Since S is a minimal
X−Y separator, it has an in-neighbor u ∈ R+

G\S(X) ⊆ R+
G\S′(X). Now v ∈ S

and v �∈ S′ imply that v ∈ R+
G\S′(X) \R+

G\S(X), a contradiction.

Next we show that the size of the out-neighborhood of a vertex set is a submodular
function. Recall that a function f : 2U → N ∪ {0} is submodular if for all A,B ⊆ U
we have f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

Lemma A.2 (submodularity). The function γ(A) = |N+(A)| is submodular.
Proof. Let L = γ(A) + γ(B) and R = γ(A ∪ B) + γ(A ∩ B). To prove L ≥ R

we show that for each vertex x ∈ V its contribution to L is at least as much as its
contribution to R. Suppose that the weight of x is w (in our setting, w is either 1 or
∞, but submodularity holds even if the weights are arbitrary). The contribution of x
to L or R is either 0, w, or 2w. We have the following four cases:

1. x /∈ N+(A) and x /∈ N+(B).
In this case, x contributes 0 to L. It contributes 0 to R as well: every vertex
in N+(A ∩B) or in N+(A ∪B) is either in N+(A) or in N+(B).

2. x ∈ N+(A) and x /∈ N+(B).
In this case, x contributes w to L. To see that x does not contribute 2w to
R, suppose that x ∈ N+(A∪B) holds. This implies x /∈ A∪B, and therefore
x ∈ N+(A ∩ B) can be true only if x ∈ N+(A) and x ∈ N+(B), which is a
contradiction. Therefore, x contributes only w to R.

3. x /∈ N+(A) and x ∈ N+(B).
This is symmetric to the previous case.

4. x ∈ N+(A) and x ∈ N+(B).
In this case, x contributes 2w to L, and can in any case contribute at most
2w to R.

In all four cases the contribution of x to L is always greater than or equal to its
contribution to R, and hence L ≥ R; i.e., γ is submodular.

Recall that R+
G\S(X) is the set of vertices reachable fromX in G\S. The following

claim will be useful for the use of submodularity.
Lemma A.3. Let G be a directed graph. If S1, S2 are X − Y separators, then

both of the sets N+(R+
G\S1

(X)
⋃
R+

G\S2
(X)) and N+(R+

G\S1
(X)

⋂
R+

G\S2
(X)) are also

X − Y separators.
Proof. 1. Let R∩ = R+

G\S1
(X)

⋂
R+

G\S2
(X) and S∩ = N+(R∩). As S1 and S2 are

disjoint from X and Y by definition, we have that X ⊆ R∩ and Y is disjoint from
R∩. Therefore, every path P from X to Y has a vertex u ∈ R∩ followed by a vertex
v �∈ R∩, and therefore v ∈ S∩. As this holds for every path P , the set S∩ is an X − Y
separator.

2. The argument is the same with the sets R∪ = R+
G\S1

(X)
⋃
R+

G\S2
(X) and

S∪ = N+(R∪).
Now we prove the well-known fact that there is a unique minimum size separator

whose “reach” is inclusionwise maximal.
Lemma A.4. There is a unique X − Y separator S∗ of minimum size such that

R+
G\S∗(X) is inclusionwise maximal.

Proof. Let λ be the size of a smallest X − Y separator. Suppose to the contrary
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that there are two separators S1 and S2 of size λ such that R+
G\S1

(X) and R+
G\S2

(X)

are incomparable and inclusionwise maximal. Let R1 = R+
G\S1

(X), R2 = R+
G\S2

(X),

R∩ = R1 ∩R2, and R∪ = R1 ∪R2. By Lemma A.2, γ is submodular and hence

(1) γ(R1) + γ(R2) ≥ γ(R∪) + γ(R∩).

As N+(R1) ⊆ S1 and N+(R2) ⊆ S2, the left-hand side is at most 2λ (in fact, as S1

and S2 are minimal X−Y separators, it can be seen that the left-hand side is exactly
2λ). By Lemma A.3, both the sets N+(R∩) and N+(R∪) are X − Y separators.
Therefore, the right-hand side is at least 2λ. This implies that equality holds in (1)
and in particular |N+(R∪)| = λ; i.e., N+(R∪) is also a minimum X − Y separator.
As R1, R2 ⊆ R∪, every vertex of R1 and every vertex of R2 are reachable from X in
G \ N+(R∪). This contradicts the inclusionwise maximality of the reach of S1 and
S2.

Let S∗ be the unique X − Y separator of minimum size given by Lemma A.4.
The following lemma shows that every important X − Y separator S is “behind” this
separator S∗.

Lemma A.5. Let S∗ be the unique X − Y separator of minimum size given by
Lemma A.4. For every important X−Y separator S, we have R+

G\S∗(X) ⊆ R+
G\S(X).

Proof. Note that the condition trivially holds for S = S∗. Lemma A.4 implies
that the only important X − Y separator of minimum size is S∗.

Suppose there is an important X − Y separator S �= S∗ such that R+
G\S∗(X) �

R+
G\S(X). Let R = R+

G\S(X), R∗ = R+
G\S∗(X), R∩ = R ∩R∗, and R∪ = R ∪R∗. By

Lemma A.2, γ is submodular and hence

(2) γ(R∗) + γ(R) ≥ γ(R∪) + γ(R∩).

As N+(R∗) ⊆ S∗, we have that the first term on the left-hand side is at most |S∗| = λ.
By Lemma A.3, the set N+(R∩) is an X − Y separator; hence the second term on
the right-hand side is at least λ. It follows that |N+(R∪)| ≤ |N+(R)| ≤ |S|. Since
R∗ � R by assumption, we have R ⊂ R∪. By Lemma A.3, N+(R∪) is also an X − Y
separator, and we have seen that it has size at most |S|. Furthermore, R ⊂ R∪
implies that any vertex reachable from X in G\S is reachable in G\N+(R∪) as well,
contradicting the assumption that S is an important separator.

Now we finally have all the required tools to prove Lemma 4.2.
Proof of Lemma 4.2. Let λ be the size of a smallest X − Y separator. To prove

Lemma 4.2, we show by induction on 2p − λ that the number of important X − Y
separators of size at most p is upper bounded by 22p−λ. Note that if 2p − λ < 0,
then λ > 2p ≥ p and so there is no (important) X − Y separator of size at most p.
If 2p − λ = 0, then λ = 2p. Now if p = 0, then λ = p = 0, and the empty set is
the unique important X − Y separator of size at most p. If p > 0, then λ = 2p > p,
and hence there is no important X − Y separator of size at most p. Thus we have
checked the base case for induction. From now on, the induction hypothesis states
that if X ′, Y ′ ⊆ V (G) are disjoint sets such that λ′ is the size of a smallest X ′ − Y ′

separator and p′ is an integer such that (2p′ − λ′) < (2p − λ), then the number of
important X ′ − Y ′ separators of size at most p′ is upper bounded by 22p

′−λ′
.

Let S∗ be the unique X − Y separator of minimum size given by Lemma A.4.
Consider an arbitrary vertex v ∈ S∗. Note that λ > 0, and so S∗ is not empty. Any
important X−Y separator S of size at most p either contains v or not. If S contains v,
then by Lemma A.1(1), the set S \{v} is an important X−Y separator in G\v of size
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Algorithm 3. ImpSep(G,X, Y, p).

Input: A directed graph G, disjoint sets X,Y ⊆ V , and an integer p.
Output: A collection of X − Y separators that is a superset of all important X − Y
separators of size at most p in G.

1: Find the minimum X − Y separator S∗ of Lemma A.4.
2: Let λ = |S′|.
3: if p < λ then
4: return ∅
5: else
6: Pick any arbitrary vertex v ∈ S∗.
7: Let S1 = ImpSep(G \ {v}, X, Y, p− 1).
8: Let S ′

1 = {v ∪ S | S ∈ S1}.
9: Let X ′ = R+

G\S∗(X) ∪ {v}.
10: Let S2 = ImpSep(G,X ′, Y, p).
11: return S ′

1 ∪ S2

at most p′ := p− 1. As v /∈ X ∪Y ∪V ∞, the size λ′ of the minimum X−Y separator
in G \ v is at least λ− 1. Therefore, 2p′ − λ′ = 2(p− 1)−λ′ = 2p− (λ′ +2) < 2p− λ.
The induction hypothesis implies that there are at most 22p

′−λ′ ≤ 22p−λ−1 important
X − Y separators of size p′ in G \ v. Hence there are at most 22p−λ−1 important
X − Y separators of size at most p in G that contain v.

Now we give an upper bound on the number of important X − Y separators not
containing v. By minimality of S∗, vertex v has an in-neighbor in R+

G\S∗(X). For

every important X − Y separator S, Lemma A.5 implies R+
G\S∗(X) ⊆ R+

G\S(X). As

v /∈ S and v has an in-neighbor in R+
G\S∗(X), even R+

G\S∗(X)
⋃{v} ⊆ R+

G\S(X) holds.

Therefore, setting X ′ = R+
G\S∗(X)

⋃{v}, the set S is also an X ′ − Y separator. Now

Lemma A.1(2) implies that S is in fact an important X ′ − Y separator. Since S is
an X − Y separator, we have |S| ≥ λ. We claim that in fact |S| > λ: otherwise
|S| = |S∗| = λ and R+

G\S∗(X)
⋃{v} ⊆ R+

G\S(X), contradicting the fact that S∗ is an

important X−Y separator. So the minimum size λ′ of an X ′−Y separator in G is at
least λ+1. By the induction hypothesis, the number of important X ′− Y separators
of size at most p in G is at most 22p−λ′ ≤ 22p−λ−1. Hence there are at most 22p−λ−1

important X − Y separators of size at most p in G that do not contain v.
Adding the bounds in the two cases, we get the required upper bound of 22p−λ.

An algorithm for enumerating all of the at most 4p important separators follows from
the above proof. First, we can find a maximum X − Y flow in time O(p(|V (G)| +
|E(G)|)) using at most p rounds of the Ford–Fulkerson algorithm, where n and m
are the number of vertices and edges of G. It is well known that the separator S∗ of
Lemma A.4 can be deduced from the maximum flow in linear time by finding those
vertices from which Y cannot be reached in the residual graph [12]. Pick any arbitrary
vertex v ∈ S∗. Then we branch on whether vertex v ∈ S∗ is in the important separator
or not, and we recursively find all possible important separators for both cases. The
formal description is given in Algorithm 3. Note that this algorithm enumerates a
superset of all important separators: by our analysis above, every important separator
appears in either S′

1 or S2, but there is no guarantee that all of the separators in these
sets are important. Therefore, the algorithm has to be followed by a filtering phase
where we check for each returned separator whether or not it is important. Observe
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that S is an important X − Y separator if and only if S is the unique minimum
R+

G\S(X) − Y separator. As the size of S is at most p, this can be checked in time

O(p(|V (G)| + |E(G)|)) by finding a maximum flow and constructing the residual
graph. The search tree has at most 4p leaves, and the work to be done in each node is
O(p(|V (G)|+ |E(G)|)). Therefore, the total running time of the branching algorithms
is O(4p · p(|V (G)| + |E(G)|)) and returns at most 4p separators. This is followed by
the filtering phase, which takes time O(4p · p(|V (G)| + |E(G)|)).
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