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Abstract

We study the minimum interval deletion problem, which

asks for the removal of a set of at most k vertices to make

a graph on n vertices into an interval graph. We present

a parameterized algorithm of runtime 10k · nO(1) for this

problem, thereby showing its fixed-parameter tractability.

1 Introduction

A graph is an interval graph if its vertices can be as-
signed to intervals of the real line such that there is
an edge between two vertices if and only if their cor-
responding intervals intersect. Interval graphs are the
natural models for DNA chains in biology and many
other applications, among which the most cited ones
include jobs scheduling in industrial engineering [2] and
seriation in archeology [20]. Motivated by pure con-
templation of combinatorics and practical problems of
biology respectively, Hajós [16] and Benzer [3] indepen-
dently initiated the study of interval graphs.

Interval graphs are a proper subset of chordal
graphs. After more than half century of intensive inves-
tigation, the properties and the recognition of interval
and chordal graphs are well understood (e.g., [4]). More
generally, many NP-hard problems (coloring, maximum
independent set, etc.) are known to be polynomial-time
solvable when restricted to interval and chordal graphs.
Therefore, one would like to generalize these results to
graphs that do not belong to these classes, but close
to them in the sense that they have only a few “er-
roneous”/“missing” edges or vertices. As a first step
in understanding such generalizations, one would like
to know how far the given graph is from the class and
to find the erroneous/missing elements. This leads us
naturally to the area of graph modification problems,
where given a graph G, the task is to apply a minimum
number of operations on G to make it a member of
some prescribed graph class F . Depending on the oper-
ations allowed, we can consider, e.g., completion (edge
addition), edge deletion, and vertex deletion versions of
these problems. Recall that a graph class F is heredi-
tary if any induced subgraph of a graph G in F is also
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in F ; interval graphs and chordal graphs, among oth-
ers, are hereditary. For such graph classes, the vertex
deletion version can be considered as the most robust
variant, which in some sense encompasses both edge ad-
dition and edge deletion: if G can be made a member
of F by k1 edge additions and k2 edge deletions, then
it can be also made a member of F by deleting at most
k1 + k2 vertices (e.g., by deleting one endvertex of each
added/deleted edge).

Unfortunately, most of these graph modification
problems are computationally hard: for example, a
classical result of Lewis and Yannakakis [23] shows
that the vertex deletion problem is NP-hard for every
nontrivial and hereditary class F , and according to
Lund and Yannakakis [24], they are also MAX SNP-
hard. Therefore, early work of Kaplan et al. [17] and
Cai [6] focused on the fixed-parameter tractability of
graph modification problems. Recall that a problem,
parameterized by k, is fixed-parameter tractable (FPT)
if there is an algorithm with runtime f(k) ·nO(1), where
f is a computable function depending only on k [12].
In the special case when the desired graph class F
can be characterized by a finite number of forbidden
(induced) subgraphs, then fixed-parameter tractability
of such a problem follows from a basic bounded search
tree algorithm [17, 6]. However, many important graph
classes, such as forests, bipartite graphs, and chordal
graphs have minimal obstructions of arbitrary large size
(cycles, odd cycles, and holes, respectively). It is much
more challenging to obtain fixed-parameter tractability
results for such classes, see results, e.g., on bipartite
graphs [29, 19], planar graphs [26, 18], acyclic graphs
[8, 10], and minor-closed classes [1, 13].

For interval graphs, the fixed-parameter tractability
of the completion problem was raised as an open ques-
tion by Kaplan et al. [17] in 1994, to which a positive
answer with a k2k · nO(1) time algorithm was given by
Villanger et al. [31] in 2007. In this paper, we answer
the complementary question on vertex deletion:

Theorem 1.1. (Main result) There is a 10k · nO(1)

time algorithm for deciding whether or not there is a set
of at most k vertices whose deletion makes an n-vertex
graph G an interval graph.

Related work. Let us put our result into context.



Interval graphs form a subclass of chordal graphs, which
are graphs containing no induced cycle of length greater
than 3 (also called holes). In other words, the minimal
obstruction for being a chordal graph might be holes of
arbitrary length, hence infinitely many of them. Even
so, chordal completion (to make a graph chordal
by the addition of at most k edges) can still be solved
by a bounded search tree algorithm by observing that
a large hole immediately implies a negative answer to
the problem [17, 6]. No such simple argument works
for chordal deletion (to make the graph chordal
by removing at most k edges/vertices) and its fixed-
parameter tractability was procured by a completely
different and much more complicated approach [25, 9].

It is known that a graph is an interval graph if and
only if it is chordal and does not contain a structure
called “asteroidal triple” (AT for short), i.e., three
vertices such that each pair of them is connected by a
path avoiding neighbors of the third one [22]. Therefore,
in the graph modification problems related to interval
graphs, one has to destroy not only all holes, but all
ATs as well. The interval completion problem
was shown to be FPT by Villanger et al. [31]. Their
algorithm first destroys all holes by the same bounded
search tree technique as in chordal completion.
This step is followed by a delicate analysis of the ATs
and a complicated branching step to break them in the
resulting chordal graph.

A subclass of interval graphs that received attention
is the class of unit interval graphs: graphs that can be
represented by intervals of unit length. Interestingly,
this class coincides with proper interval graphs, which
are those graphs that have a representation with no
interval containing another one. It is known that
unit interval graphs can be characterized as not having
holes and other three specific forbidden subgraphs, thus
graph modification problems related to unit interval
graphs are very different from those related to interval
graphs, where the minimal obstructions include an
infinite family of ATs [30].

Our techniques. Even though both chordal
deletion and interval completion seem related
to interval deletion, our algorithm is completely
different from the published algorithms for these two
problems. The algorithm of Marx [25] for chordal
deletion is based on iterative compression, identifying
irrelevant vertices in large cliques, and the use of
Courcelle’s Theorem on a bounded treewidth graph;
none of these techniques appears in the present paper.

Villanger et al. [31] used a simple bounded search
tree algorithm to try every minimal way of completing
all the holes; therefore, one can assume that the input
graph is chordal. ATs in a chordal graph are known

to have the property of being shallow, and in a minimal
witness of an AT, every vertex of the triple is simplicial.
This means that the algorithm of [31] can focus on
completing such ATs (see also [7]). On the other hand,
there is no similar upper bound known on the number
of minimal ways of breaking all holes by removing
vertices, and it is unlikely to exist. Therefore, in a
sense, interval deletion is inherently harder than
interval completion: in the former problem, we have
to deal with two types of forbidden structures, holes and
shallow ATs, while in the second problem, only shallow
ATs concern us. Indeed, we spend significant effort in
the present paper to make the graph chordal; the main
part of the proof is understanding how holes interact
and what the minimal ways of breaking them are.

The main technical idea to handle holes is develop-
ing a reduction rule based on the modular decomposi-
tion of the graph and analyzing the structural properties
of reduced graphs. It turns out that the holes remain-
ing in a reduced graph interact in a very special way
(each hole is fully contained in the closed neighborhood
of any other hole). This property allows us to prove
that the number of minimal ways of breaking the holes
is polynomially bounded, and thus a simple branching
step can reduce the problem to the case when the graph
is chordal. As another consequence of our reduction
rule, we can prove that this chordal graph already has
a structure close to interval graphs (it has a clique tree
that is a caterpillar). We can show that in such a chordal
graph, ATs interact in a well-behaved way and we can
find a set of 10 vertices such that there always exists a
minimum solution that contains at least one of these 10
vertices. Therefore, we can complete our algorithm by
branching on the deletion of one of these vertices.

Motivation. Many classical graph-theoretic prob-
lems can be formulated as graph deletion to special
graph classes. For instance, vertex cover, feedback
vertex set, cluster vertex deletion, and odd
cycle transversal can be viewed as vertex deletion
problems where the class F is the class of all empty
graphs, forests, cluster graphs (i.e., disjoint union of
cliques), and bipartite graphs, respectively. Thus the
study of graph modification problems related to impor-
tant graph classes can be seen as a natural extension of
the study of classical combinatorial problems. In light
of the importance of interval graphs, it is not surpris-
ing that there are natural combinatorial problems that
can be formulated as, or computationally reduced to in-
terval deletion, and then our algorithm for inter-
val deletion can be applied. For instance, Thm. 1.1
has recently been used as a subroutine to solve the maxi-
mum consecutive ones sub-matrix problem and the
minimum convex bipartite deletion problem [27].



2 Outline

Before embarking upon a presentation of our algorithm
in full details, let us describe the main steps at a high
level. We say that a set Q ⊂ V (G) is an interval deletion
set to a graph G if G − Q is an interval graph. An
interval deletion set Q is minimum if there is no interval
deletion set strictly smaller than |Q|, and it is minimal
if no proper subset Q′ ⊂ Q is an interval deletion set.
A set X of vertices is called a minimal forbidden set if
X does not induce an interval graph but every proper
subset X ′ ⊂ X does; the subgraph G[X] is called a
minimal forbidden induced subgraph. Clearly, set Q is
an interval deletion set if and only if it intersects every
minimal forbidden set. Our goal is to find an interval
deletion set of size at most k. For technical reasons, it
will be convenient to define the problem as follows:

Given a graph G and an integer k, return

• if an interval deletion set of size ≤ k exists, a
minimum interval deletion set Q ⊂ V (G);

• otherwise, “NO.”

PHASE 1: Preprocessing. The first phase of the al-
gorithm applies two reduction rules exhaustively. They
either simplify the instance or branch into a constant
number of instances with strictly smaller parameter
value. The first reduction rule is straightforward: we
destroy every forbidden set of size at most 10.

Reduction 1. [Small forbidden sets]
Given an instance (G, k) and a minimal forbidden set
X of no more than 10 vertices, we branch into |X|
instances, (G− v, k − 1) for each v ∈ X.

A graph on which Reduction 1 cannot be applied
is called prereduced. It can be checked in polynomial
time whether Reduction 1 is applicable by enumerating
every set X of size at most 10 (as discussed in §4, it is
possible to do this more efficiently, but optimizing the
exponent of n in the running time is not the focus of
the paper).

The second reduction rule is less obvious and more
involved. Recall that a subset M of vertices forms a
module if each vertex in M has the same neighbors
outside M [15]. A module M of G is nontrivial if
1 < |M | < |V (G)|. We observe (see §4.2) that a minimal
forbidden set X of at least 5 vertices is either fully
contained in a module M or contains at most one vertex
of M . Moreover, if X ∩M = {x}, then replacing x by
any other vertex x′ ∈ M \ {x} in X results in another
minimal forbidden set. This permits us to branch on
modules, as described in the following reduction rule.

Reduction 2. [Main] Let I = (G, k) be an instance
where the graph G is prereduced, and a nontrivial
module M that does not induce a clique.

1. If every minimal forbidden set is contained in M ,
then return the instance (G[M ], k).

2. If no minimal forbidden set is contained in M , then
return the instance (GM , k), where GM is obtained
from G by inserting edges to make G[M ] a clique.

3. Otherwise, we solve three instances: I1 = (G −
M,k− |M |), I2 = (G[M ], k− 1), and I3 = (G′, k−
1), where G′ is obtained from G by adding a clique
M ′ of (k + 1) vertices, connecting every pair of
vertices u ∈ M ′ and v ∈ N(M), and deleting
M ; letting Q1, Q2, and Q3 be the solutions of
these instances respectively, we return the smaller
of Q1∪M and Q2∪Q3 (“NO” when |Q2∪Q3| > k).

That is, in the third case we branch into two directions:
the solution is obtained either as the union of M and the
solution of I1, or as the union of solutions of I2 and I3.
The two branches correspond to the two cases where the
solution fully contains M or only a minimum interval
deletion set to G[M ] (i.e., Q2), respectively. Note that
in the second branch, it can be shown that Q3 is disjoint
from M ′; hence Q2 ∪ Q3 is indeed a subset of V (G).
Moreover, we have to clarify what the behavior of the
reduction is if one or more of Q1, Q2, and Q3 are “NO.”
If Q2 or Q3 is “NO,” then we define Q2∪Q3 to be “NO”
as well. If one of Q1 and Q2∪Q3 is “NO,” we return the
other one; if both of them are “NO,” we return “NO”
as well.

A graph on which neither reduction rule applies
is called reduced ; in such a graph, every nontrivial
module induces a clique. In §4, we prove the correctness
of the reductions rules and that it can be checked in
polynomial time if a reduction rule is applicable. Hence
after exhaustive application of the reductions, we may
assume that the graph is reduced.

The reductions are followed by a comprehensive
study on reduced graphs that yields two crucial com-
binatorial statements. The first statement is on ATs
that are witnessed by a minimal forbidden induced sub-
graph different from a hole. Of such an AT {x, y, z}, we
say that x is the shallow terminal if the defining path
(for the AT) between y and z is strictly longer than the
other two defining paths. We prove the shallow terminal
x is simplicial in G, i.e., N(x) induces a clique.

Theorem 2.1. [Shallow terminals] All shallow ter-
minals in a reduced graph are simplicial.

We say that two holes are congenial to each other if
each vertex of one hole is a neighbor of the other hole.
It turns out that



Theorem 2.2. [Congenial holes] All holes in a re-
duced graph are congenial to each other.

PHASE 2: Breaking holes. A consequence of
Thm. 2.2 is that if a vertex v is in a hole, then N [v]
intersects every hole and thus makes a hole cover.
Intuitively, this suggests that a minimal hole cover
has to be very local in a certain sense. Indeed, by
relating minimal hole covers in the reduced graph to
minimal separators in the subgraph G − N [v], we are
able to establish a quadratic bound on the number of
minimal hole covers, and more importantly, a cubic time
algorithm for constructing them.

Theorem 2.3. [Hole covers] Every reduced graph of
n vertices contains at most n2 minimal hole covers, and
they can be enumerated in O(n3) time.

Any interval deletion set must be a hole cover, and
thus contains a minimal hole cover. This allows us to
branch into at most n2 instances, in each of which the
input graph is chordal. Note that this branching step is
applied only once; hence only a polynomial factor will
be induced in the running time.
PHASE 3: Breaking ATs. As all the holes have
been broken, the graph is already chordal at the onset
of the third phase. It should be noted that, however,
the graph might not be reduced, as new nontrivial non-
clique modules can be introduced with the deletion of
a hole cover in Phase 2. In principle, we could rerun
the reductions of Phase 1 to obtain a reduced instance,
but there is no need to do so at this point. The
properties that we need in this phase are that graph
is prereduced, chordal, and every shallow terminal is
simplicial (Thm. 2.1). We give a name to such graphs
and compare it with previously defined notions here.

• A graph is prereduced if Reduction 1 does not apply.

• A prereduced graph is reduced if Reduction 2 does
not apply.

• A prereduced graph is nice if it is chordal and every
shallow terminal in it is simplicial.

While both reduced graphs and nice graphs are
prereduced, they are incomparable to each other. As
only vertex deletions are applied after Phase 1, in the
remainder of this algorithm the graph is an induced
subgraph of that in a previous step. In other words,
once a hereditary property is obtained after Phase
1, it remains true thereafter. It is easy to verify
that the three defining properties of nice graphs are
all hereditary. On the one hand, after the end of
Phase 1, a reduced graph is prereduced by definition,
and according to Thm. 2.1, every shallow terminal in it

is simplicial. On the other hand, Phase 2 destroys all
holes and the chordal property is obtained. Therefore,
the graph becomes nice after Phase 2 and will remain
nice till the end of our algorithm.

By definition, the removal of all simplicial vertices
from a nice graph breaks all ATs, thereby yielding an
interval graph. This implies that a nice graph has a very
special structure: It has a clique tree decomposition
where the tree is a caterpillar, i.e., a path with degree-
1 vertices attached to it. In other words, all vertices
other than the shallow terminals can be arranged in
a linear way, which greatly simplifies the examination
of interactions between ATs. As a consequence, we
can select an AT that is minimal in a certain sense,
and single out 10 vertices such that there must exist a
minimum interval deletion set destroying this AT with
one of these 10 vertices. We can thereby safely branch
on removing one of these 10 vertices.

Theorem 2.4. [Nice graphs] There is a 10k · nO(1)

time algorithm for interval deletion on nice graphs.

Putting together these steps (see Fig. 1), the fixed-
parameter tractability of interval deletion follows.

Proof. (of Thm. 1.1) The algorithm described in Fig. 1
solves the problem by making recursive calls to itself,
or calling the algorithm of Thm. 2.4 O(n2) times. In
the former case, at most 10 recursive calls are made, all
with parameter value at most k − 1. In the latter case,
the running time is 10k · nO(1). It follows that the total
running time of the algorithm is 10k · nO(1). 2

We point out that in a straightforward implementation,
the constant hidden behind the big-Oh in the exponent
of n is 9. We proclaim that we have no intention
of optimizing this part, as it will make the algorithm
more complicated and hence blur the focus, which is
unnecessary.

The paper is organized as follows. §3 recalls some
basic facts. §4 presents the details of the first phase.
The next four sections are devoted to the proofs of
Thms. 2.1–2.4. §§5 and 6 put shallow terminals and
congenial holes under thorough examination, and prove
Thms. 2.1 and 2.2, respectively. §7 fully characterizes
minimal hole covers in reduced graphs and proves
Thm. 2.3. §8 presents the algorithm that destroys ATs
in nice graphs and proves Thm. 2.4. §9 closes this paper
by some possible improvement and new directions.

3 Preliminaries

We write u ∼ y (u 6∼ y) as a shorthand for the fact that
a pair of vertices x and y is adjacent (nonadjacent). By
v ∼ X we mean v is adjacent to at least one vertex of



Algorithm Interval-Deletion(G, k)

input: a non-interval graph G and a positive integer k
output: a minimum interval deletion set Q ⊂ V (G) of size ≤ k or “NO.”

1 Reduction 1: Let U be a minimal forbidden set of at most 10 vertices;

branch on deleting one vertex of U .
\\ the graph will then be prereduced and remains so hereafter;

2 Reduction 2: Let M be a nontrivial module of G not inducing a clique.

2.1 if all minimal forbidden sets of G are contained in M then
return Interval-Deletion(G[M ], k).

2.2 else if no minimal forbidden set is contained in M then

return Interval-Deletion(GM , k), where edges are inserted to make G[M ] a clique.
2.3 else branch into three instances I1, I2, I3;

\\ now the graph is reduced;
3 use the algorithm of Thm. 2.3 to enumerate the at most n2 minimal hole covers of G.

\\ the graph will then be nice and remains so hereafter;

4 for each minimal hole cover HC do
use the algorithm of Thm. 2.4 to solve (G−HC, k − |HC|);

5 return the smallest solution obtained, or “NO” if all solutions are “NO.”

Figure 1: Outline of algorithm for interval deletion

the set X, and we say X ∼ Y if v ∼ X for at least one
vertex v ∈ Y . Two vertex sets X and Y are completely
connected if x ∼ y for each pair of x ∈ X and y ∈ Y .
The notation NU (v) (NU [v]) stands for the (closed)
neighborhood of v in the set U , i.e., NU (v) = N(v)∩U
(NU [v] = N [v] ∩ U), regardless of whether v ∈ U or
not. For a graph G, we denote by |G| the cardinality
of V (G), and sometimes it is customary to write v ∈ G
rather than v ∈ V (G).

Chordal graphs admit several important and related
characterizations. A set S of vertices separates x and
y, or called an x-y separator if there is no x-y path in
the subgraph G − S, and minimal x-y separator if no
proper subset of S separates x and y. For any pair
of vertices x and y, a minimal x-y separator is also
called a minimal separator. A graph is chordal if and
only if each minimal separator in it induces a clique
[11]. A vertex is simplicial if its neighbors induce a
clique. A nontrivial chordal graph contains at least two
simplicial vertices, and there is at least one simplicial
vertex in each connected component after the removal
of any separator.

A tree T whose nodes are the maximal cliques of
a graph G is a (maximal) clique tree of G if it satisfies
the following conditions: any pair of adjacent nodes Ki

and Kj defines a minimal separator that is Ki ∩ Kj ;
for any vertex x ∈ V , the maximal cliques containing x
correspond to a subtree of T . A graph is chordal if and
only if it has such a clique tree. A clique tree of a graph
G will be denoted by T (G), or T when the graph G is
clear from the context. Without distinguishing the node
in a clique tree and the maximal clique in the graph G
corresponding to it, we use K to denote both. A set of

vertices is a minimal separator of G if and only if it is
the intersection of Ki and Kj , denoted by Si,j , for some
edge KiKj in T [5]. To be precise, Si,j is a minimal
x-y separator for any pair of vertices x ∈ Ki \Kj and
y ∈ Kj \Ki. Since there are at most n maximal cliques
in a chordal graph of n vertices [11], a clique tree T is
simpler than G, and commonly considered as a compact
representation of G.

All aforementioned properties also apply to interval
graphs, where are chordal. Moreover, Fulkerson and
Gross [14] showed that each interval graph has a clique
tree that is a path.

4 Reduction rules and branching

This section discusses the reduction rules described in
§2 in more details.

4.1 Forbidden induced subgraphs Three vertices
form an asteroidal triple, AT for short, if each pair of
them is connected by a path that avoids the neighbor-
hood of the third one. We use asteroidal witness (AW)
to refer to a minimal induced subgraph that is not a
hole and contains an AT but none of its proper induced
subgraphs does. It should be easy to check that an
AW contains precisely one AT, and its vertices are the
union of these three defining paths for this triple; the
three defining vertices will be called terminals of this
AW. It can be observed from Fig. 2 that the three ter-
minals are the only simplicial vertices of this AW and
they are nonadjacent to each other. Lekkerkerker and
Boland [22] observed that a graph is an interval graph if
and only if it is chordal and contains no AW, and more



importantly, proved the following characterization.

Theorem 4.1. ([22]) A minimal non-interval graph is
either a hole or an AW depicted in Fig. 2.

Some remarks are in order. First, it is easy to
verify that a hole of 6 or more vertices witnesses an AT
(specifically, any three nonadjacent vertices from it) and
is minimal, but following convention, we only refer to it
as a hole, while reserve the term AW for graphs listed
in Fig. 2. Second, the set of AWs depicted in Fig. 2
are not a literal copy of the original list in [22], which
contains neither net nor tent. We single out nets and
tents, which can be viewed as †-AWs with d = 2 and
‡-AWs with d = 1, respectively, for the convenience of
later presentation. To avoid ambiguities, in this paper
we explicitly require the length of the longest defining
path of a †-AW and a ‡-AW to be at least 4 (i.e., d ≥ 3)
and 3 (i.e., d ≥ 2) respectively. Third, each of the
four subgraphs in the first row of Fig. 2 consists of a
constant number, 6 or 7, of vertices, and thus can be
easily located and disposed of by standard enumeration.
For the purpose of the current paper, we are mainly
concerned with the two kinds of AWs in the second row,
whose sizes are unbounded. In the three paths defining
a †-AW (‡-AW resp.), two of them have length exactly
3 (2 resp.), and the third strictly larger than 3 (2 resp.).
Among the three terminals, the one at distance 3 in a †-
AW or 2 in a ‡-AW to both other terminals is called the
shallow terminal, whose neighbor(s) are the center(s).
The other two terminals are called base terminals, and
other vertices are called base vertices. The whole set
of base vertices is called the base; we point out that
base terminals are not a part of the base. Note that the
defining path between base terminals is strictly longer
than the other two defining paths; and base vertices are
the inner vertices of this path. We use (s : c : l, B, r)
((s : c1, c2 : l, B, r) resp.) to denote the †-AW (‡-AW
resp.) with shallow terminal s, center c (centers c1 and
c2 resp.), base terminals l, r, and base B = {b1, . . . , bd}.
For the sake of notational convenience, we will also use
b0 and bd+1 to refer to the base terminals l and r,
respectively. The center(s) and base vertices are called
non-terminal vertices.

In time O(n5), we can find a small minimal forbid-
den set of at most 10 vertices or assert its nonexistence
as follows. For a hole, we guess three consecutive ver-
tices {h1, h2, h3}, and then search for a shortest h1-h3

path in G − (N [h2] \ {h1, h3}). For an AW, we guess
three pairwise nonadjacent vertices {t1, t2, t3}, and for
i = 1, 2, 3, search for a shortest path between other two
terminals in G − N [ti]. As such Reduction 1 can be
applied in polynomial time, and after its exhaustive ap-
plication, the graph is prereduced. By definition, any

AW in a prereduced graph contains at least 11 vertices,
which rules out long claws, whipping tops, nets, and
tents. Furthermore, the base of a †-AW (‡-AW resp.)
in a prereduced graph contains at least 7 (6 resp.) ver-
tices.

The following structural observations are immediate
from the definition of prereduced graphs. They arise
frequently in what follows, and hence we collect them
here for later reference. Proofs of marked propositions
are left for the full version.

Proposition 4.1. (?) Let P = (v0 . . . vp) be a chord-
less path of length p in a prereduced graph, and u be
adjacent to every inner vertex of P .

(1) If p ≥ 4 and u is also adjacent to v0 and vp, then
N [v`] ⊆ N [u] for every 2 ≤ ` ≤ p− 2.

(2) If p ≥ 3 and u is also adjacent to v0 and vp, then
N [v`] ∩N [v`+1] ⊆ N [u] for every 1 ≤ ` ≤ p− 2.

(3) If p ≥ 4, then N [v`]\ (N(v1)∪N(vp−1)) ⊆ N [u] for
every 2 ≤ ` ≤ p− 2.

Let X be a nonempty set of vertices. A vertex v is a
common neighbor of X if it is adjacent to every vertex
x ∈ X. We denote by N̂(X) the set of all common
neighbors of X. It is easy to verify that in a prereduced
graph, at least one of X and N̂(X) induces a clique, as

otherwise two nonadjacent vertices in N̂(X), together
with two nonadjacent vertices in X, will induce a 4-
hole. In particular, we have the following proposition.

Proposition 4.2. Let X be a set of vertices of a
prereduced graph that induces either a hole, an AW, or
a path of length at least 2. Then N̂(X) induces a clique.

4.2 Modular decomposition A subset M of ver-
tices forms a module of G if all vertices in M have the
same neighborhood outside M . In other words, for any
pair of vertices u, v ∈ M and vertex x 6∈ M , u ∼ x if
and only if v ∼ x. The set V (G) and all singleton vertex
sets are modules, called trivial. A brief inspection shows
that no graph in Fig. 2 has any nontrivial modules and
this is true also for holes of length greater than 4:

Proposition 4.3. Let M be a module. If a minimal
forbidden set X contains more than 4 vertices, then
either X ⊆M or |M ∩X| ≤ 1.

Indeed, the only minimal forbidden set of size no
more than 4 is a 4-hole, of which the pair of nonadjacent
vertices might belong to a module. This observation
allows us to prove the following statement, which is the
main combinatorial reason behind the correctness of the
branching in Reduction 2:
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Figure 2: Minimal asteroidal witnesses in a chordal graph (terminals are marked as squares).

Theorem 4.2. (?) Let M be a module of a prereduced
graph G. A minimum interval deletion set to G contains
either all vertices of M , or only a minimum interval
deletion set to G[M ].

We are now ready to prove the correctness of
Reduction 2 and explain its application.

Lemma 4.1. Reduction 2 is correct, and it can be
checked in polynomial time whether Reduction 2 (and
which case of it) is applicable.

Proof. The correctness of the reduction is clear in case 1:
removing the vertices of V (G) \M does not make the
problem any easier, as these vertices do not participate
any minimal forbidden set.

In case 2, the correctness of the reduction follows
from the fact that G and GM have the same set of
minimal forbidden sets. Note that a clique is an interval
graph, and more importantly, the insertion of edges to
make M a clique neither breaks the modularity of M nor
introduces any new 4-hole; thus Prop. 4.3 is applicable
for GM . As M induces an interval graph in both G and
GM , if X is a minimal forbidden set in G or GM , then
Prop. 4.3 implies that X contains at most one vertex of
M . In other words, the insertion of edges has no effect
on any minimal forbidden set, which means that Q is an
interval deletion set to G if and only if it is an interval
deletion set to GM .

The correctness of case 3 can be argued using
Thm. 4.2, which states the two possibilities of any
interval deletion set to G with respect to M . In
particular, the two branches of case 3 correspond to
these two cases. The first branch is straightforward:
we simply remove all vertices of M from the graph and
solve the instance I1 = (G − M,k − |M |). It is the
second branch (where we assume M 6⊆ Q) that needs
more explanation. Recall that by construction of I3,
the set M ′ is a module of G′ and induces an interval

graph. It is clear that either solution Q2 or Q3 is “NO”
will rule out the existence of an interval deletion set of
G that does not fully contain M . Hence we may assume
Q2 and Q3 are minimum interval deletion sets of I2 and
I3, respectively; and Q = Q2 ∪Q3. Note that both |Q2|
and |Q3| are no more than k − 1.

Claim 1. Set Q is an interval deletion set of G.

Proof. Suppose that there is a minimal forbidden set X
disjoint from Q. It cannot be fully contained in M , as
Q2 ⊆ Q is an interval deletion set of G[M ]. Then by
Prop. 4.3, X contains exactly one vertex x of M and
X ′ = X \ {x} ∪ {x′} is also a minimal forbidden set
of G′ for any x′ ∈ M ′. As Q3 is an interval deletion
set of G′ disjoint from M ′, it has to contain a vertex of
X ′\{x′} = X \{x}. Now it remains to show Q ⊂ V (G),
which is equivalent to Q3 ∩ M ′ = ∅. According to
Thm. 4.2, if Q3 intersects M ′, then it must contain all
(k + 1) vertices in M ′,1 and then has size strictly larger
than k; a contradiction. y

Claim 2. Set Q is not larger than the smallest interval
deletion set Q′ satisfying M 6⊆ Q′.

Proof. Suppose that Q′ is an interval deletion set of G
of size at most k with M 6⊆ Q′; let Q′2 = Q′ ∩M and
Q′3 = Q′ \M . We claim that Q′2 and Q′3 are interval
deletion sets of I2 and I3, respectively. First, we argue
that Q′2 and Q′3 are not empty; hence both of them has
size at most k−1. The assumption that G[M ] is not an
interval graph implies Q′2 6= ∅. By assumption, M 6⊆ Q′,
thus there is a vertex x ∈ M \ Q′. Now Q′3 = ∅ would
imply that G− (M \ {x}) is an interval graph, that is,
there is no minimal forbidden set containing only one

1Indeed, min(k + 1, |N(M)|) vertices will suffice for our book-

keeping purpose, and an alternative way to this is to add only one
vertex but mark it as “forbidden.”



vertex of M , and it follows that we should have been in
Case 1. Since |Q′2| ≤ k−1, it is clear that Q′2 is a solution
of instance I2 = (G[M ], k − 1). The only way Q′3 is not
a solution of I3 is that there is a minimal forbidden set
X containing a vertex of the (k+1)-clique introduced to
replace M . As this (k+ 1)-clique is a module, Prop. 4.3
implies that X contains exactly one vertex y of this
clique. But in this case X ′ = X \ {y} ∪ {x} (where x is
a vertex of M \ Q′) is a minimal forbidden set disjoint
from Q′, a contradiction. Thus |Q| ≤ |Q′| follows from
the fact that both Q2 and Q3 are minimum. y

As a consequence of Claim 2, if |Q| > k, then there
cannot be an interval deletion set of size no more than
k that does not fully include M . This finishes the proof
of the correctness of Reduction 2.

On the applicability of Reduction 2, we first search
for a nontrivial module that does not induce a clique.
If such a module M is found, then Reduction 2 is
applicable, and it remains to figure out which case
should apply by checking the conditions in order. To
check whether case 1 holds, we need to check if there
is a minimal forbidden set X not contained in M . By
Prop. 4.3, such an X, if exists, contains at most one
vertex x from M ; and x can be replaced by any other
vertex of M . Therefore, it suffices to pick any vertex
x ∈ M , and test in linear time whether G − (M \ {x})
is an interval graph. If it is not an interval graph, then
there is an minimal forbidden set X not contained in
M (as it contains at most one vertex of M). Otherwise,
G− (M \{x}) is an interval graph for every x ∈M , and
there is no such X; hence case 1 holds. To check whether
case 2 holds, observe that the condition “there is no
minimal forbidden set contained in M” is equivalent to
saying that G[M ] is an interval graph, which can be
checked in linear time. In all remaining cases, we are in
case 3. 2

5 Shallow terminals

This section proves Thm. 2.1 by showing that each
shallow terminal is contained in a nontrivial module
whose neighborhood induces a clique. As Reduction 2
cannot be applied, this module induces a clique, which
means that all vertices in this module are simplicial.
Recall that an AW in a prereduced graph G has to be
a †- or ‡-AW. Let us start from a thorough scrutiny of
neighbors of its shallow terminal, which, by definition,
is disjoint from the base and base terminals.

Lemma 5.1. Let W be an AW in a prereduced graph.
Every common neighbor x of the base B is adjacent to
the shallow terminal s.

Proof. The center(s) of W are also common neighbors of
B, and hence according to Prop. 4.2, they are adjacent

to x. Suppose, for contradiction, x ∈ N̂(B) \ N(s).
If W is a †-AW, then there is (see the first row of
Fig. 6) • a whipping top {s, c, l, b1, x, bd, r} centered at
c when x ∼ l, r; • a net {s, c, l, b1, r, x} when x ∼ r
but x 6∼ l (similarly for x ∼ l but x 6∼ r); or • a
†-AW {s : c : l, b1xbd, r} when x 6∼ l, r. If W is
a ‡-AW, then there is (see the second row of Fig. 6)
• a tent {x, c1, b1, s, bd, c2} when x ∼ l, r; • a ‡-AW
(s : c1, c2 : l, b1x, r) when x ∼ r but x 6∼ l (similarly for
x ∼ l but x 6∼ r); or • a ‡-AW (s : c1, c2 : l, b1xbd, r)
when x 6∼ l, r. As none of these structures can exist in
a prereduced graph, this proves this lemma. 2

Lemma 5.2. Let W be an AW in a prereduced graph G,
and x is adjacent to the shallow terminal s of W .

(1) Then x is also adjacent to the center(s) of W
(different from x).

(2) Classifying x with respect to its adjacency to the
base B of W , we have the following categories:

(full) x is adjacent to every base vertex.
Then x is also adjacent to every vertex in
N(s) \ {x}.

(partial) x is adjacent to some, but not all base
vertices.
Then there is an AW whose shallow terminal
is s, one center is x, and base is a proper sub-
path of B.

(none) x is adjacent to no base vertex.
Then x is adjacent to neither base terminals,
and thus replacing the shallow terminal of W
by x makes another AW.

Proof. Assume to the contrary of statement (1), x 6∼ c
if W is a †-AW or (without loss of generality) x 6∼ c2 if
W is a ‡-AW. If x ∼ bi for some 1 ≤ i ≤ d then there
is a 4-hole (xscbix) or (xsc2bix) (See Fig. 7(a)). Hence
we may assume x 6∼ B. (See Fig. 7(b,c,d,e).) There
is • a 5-hole (xscb1lx) or (xscbdrx) if W is a †-AW,
and x ∼ l or x ∼ r, respectively; • a 5-hole (xsc2b1lx)
or 4-hole (xsc2rx) if W is a ‡-AW, and x ∼ l or x ∼ r,
respectively; • a long-claw {x, s, c, b1, l, bd, r} if W is a †-
AW and x 6∼ l, r; • a net {x, s, l, c1, r, c2} if W is a ‡-AW
and x 6∼ c1, l, r; or • a whipping top {r, c2, s, x, c1, l, b1}
centered at c2 if W is a ‡-AW and x 6∼ l, r, but x ∼ c1.
Neither of these cases is possible, and thus statement
(1) is proved.

For statement (2), let us handle category “none”
first. Note that x, nonadjacent to B, cannot be a center
of W . If x ∼ l, then there is a 4-hole (xcb1lx) or
(xc2b1lx) when W is a †-AW or ‡-AW, respectively.
A symmetric argument will rule out x ∼ r. Now
that x is adjacent to the center(s) but neither base
terminals nor base vertices of W , then (x : c : l, B, r)



q = p + 1 q = p + 2 q > p + 2

†-AW

p = 0 4-hole tent ‡-AW
(Fig.8a) (xcb1lx)∗ {l, x, s, c, b2, b1} (s : x, c : l, b1 . . . bq−1, bq)∗∗

p = 1 whipping top net †-AW
(Fig.8b8c) {l, b1, x, s, c, b3, b2}∗∗∗ {l, b1, s, x, b3, b2} (s : x : l, b1 . . . bq−1, bq)∗∗

p > 1 long-claw1 net †-AW
(Fig.8d8e) {bp−2, bp−1, bp, s, x, bp+2, bp+1} {bp−1, bp, s, x, bq , bq−1} (s : x : bp−1, bp . . . bq−1, bq)

‡-AW

p = 0 4-hole tent ‡-AW
(xc2b1lx)∗ {l, x, s, c2, b2, b1} (s : x, c2 : l, b1 . . . bq−1, bq)∗∗

p = 1 whipping top net †-AW
{l, b1, x, s, c2, b3, b2}∗∗∗ {l, b1, s, x, b3, b2} (s : x : l, b1 . . . bq−1, bq)∗∗

p > 1 long-claw net †-AW
{bp−2, bp−1, bp, s, x, bp+2, bp+1} {bp−1, bp, s, x, bq , bq−1} (s : x : bp−1, bp . . . bq−1, bq)

∗ : The vertex x is in category “none.”

∗∗ : The vertex x would be in category “full” if q = d + 1.
∗ ∗ ∗ : A 4-hole (xbpbp+1bp+2x) would be introduced if x ∼ bp+2;

Table 1: Structures used in the proof of Lem. 5.2 (category “partial”)

((x : c1, c2 : l, B, r) resp.) makes another †-AW (‡-AW
resp.).

Assume now that x is in category “full.” Suppose
the contrary and x 6∼ v for some v ∈ N(s) \ {x}. We
have already proved in statement (1) that v and x are
adjacent to the center(s) of W (different from them). In
particular, if one of v and x is a center, then they are
adjacent. Therefore, we can assume that v and x are
not centers. If v ∼ bi for some 1 ≤ i ≤ d, then there is a
4-hole (xsvbix). Otherwise, v 6∼ B, and it is in category
“none.” Let W ′ be the AW obtained by replacing s in
W by v; then x ∼ v follows from Lem. 5.1.

Finally, assume that x is in category “partial,” that
is, x ∼ B, but x 6∼ bi for some 1 ≤ i ≤ d. In this case,
we construct the claimed AW as follows. As the case
x 6∼ l but x ∼ r is symmetric to x ∼ l but x 6∼ r, it is
ignored in the following, i.e., we assume that x ∼ r only
if x ∼ l. Let p be the smallest index such that x ∼ bp,
and q be the smallest index such that p < q ≤ d + 1
and x 6∼ bq (q exists by assumptions). See Table 1 for
the structures for †-AW and ‡-AW respectively (see also
Fig. 8).2

As the graph is prereduced and contains no small
forbidden induced subgraph, it is immediate from Ta-
ble 1 that the case q > p + 2 holds; otherwise there
always exists a small forbidden induced subgraphṪhis
completes the categorization of vertices in N(s) \ T . 2

2We omit the figure for ‡-AWs: For a ‡-AW (s : c1, c2 : l, B, r),
we are only concerned with the relation between center c2 and

B ∪ {l}, which is the same as the relation between c and B ∪ {l}
in a †-AW.

The proof of our main result of this section is
an inductive application of Lem. 5.2. To avoid the
repetition of the essentially same argument for †-AWs
and ‡-AWs, especially for the interaction between AWs,
we use a generalized notation to denote both. We will
uniformly use c1, c2 to denote center(s) of an AW, and
while the AW under discussion is a †-AW, both c1 and
c2 refer to the only center. As long as we do not use the
adjacency of c1 and l, c2 and r, or c1 and c2 in any of
the arguments, this unified (abused) notation will not
introduce inconsistencies.

Theorem 5.1. Let W be a †- or ‡-AW in a prereduced
graph G with shallow terminal s and base B. Let
C = N(s) ∩ N(B) and let M be the vertex set of the
connected component of G − C containing s. Then M
is completely connected to C, and G[C] is a clique.

Proof. Denote by W = (s : c1, c2 : l, B, r), where
c1 = c2 when W is a †-AW. Let x and y be any
pair of vertices such that x ∈ C and y ∈ M . By
definition, G[M ] is connected, and there is a chordless
path P = (v0 . . . vp) from v0 = s to vp = y in G[M ]. We
claim that P 6∼ B. It holds vacuously if p = 1 and then
y ∼ s; hence we assume p > 1. Suppose the contrary
and let q be the smallest index such that vq ∼ B. This
means that every vi with i < q is in category “none”
of Lem. 5.2(2). Therefore, applying Lem. 5.2(1,2) on
vi and AW (vi−1 : c1, c2 : l, B, r) inductively for
i = 1, . . . , q − 1, we conclude that there is an AW
Wi = (vi : c1, c2 : l, B, r) for each i < q. One more
application of Lem. 5.2(1) shows that vq is adjacent to
the center(s) of Wq−1 as well. If vq is adjacent to all



vertices of B, i.e., in the category “full” with respect
to every Wi, then Lem. 5.2(2) on vq and Wq−1 implies
that vq is adjacent to vq−2 ∈ N(vq−1), contradicting the
assumption that P is chordless. Otherwise (the category
“partial”), according to Lem. 5.2(2), there is another
AW W ′ = (vq−1 : c′1, c

′
2 : l′, B′, r′), where B′ ⊂ B, and

vq ∈ {c′1, c′2}. Now an application of Lem. 5.2(1) on vq
and W ′ shows that vq is adjacent to vq−2 ∈ N(vq−1),
again a contradiction. From these contradictions we can
conclude P 6∼ B. Applying Lem. 5.2 inductively on vi+1

and Wi = (vi : c1, c2 : l, B, r), we get an AW with the
same centers for every 0 ≤ i ≤ p.

As x is adjacent to both s and B, it cannot be in
category “none” with respect to W . We now separate
the discussion based on whether x is in the category
“full” or “partial.” Suppose first that x is in the
category “full”; as x ∈ N(s), Lem. 5.2(1) implies that
x ∼ c1, c2. Then applying Lem. 5.2(2) inductively,
where i = 1, . . . , p, on vertex x and Wi−1 we get that
x ∼ vi for every i ≤ p; in particular, x ∼ vp (= y).
Suppose now that x is in in category “partial.” Then by
Lem. 5.2(2), there is an AW W ′0 = (v0 : c′1, c

′
2 : l′, B′, r′),

where B′ ⊂ B, and x ∈ {c′1, c′2}. As P 6∼ B, we
have that vi 6∼ B′ for any 0 ≤ i ≤ p, i.e., vi is in
category “none” with respect to W ′0. Therefore, by an
inductive application of Lem. 5.2(2) on the vertex vi and
AW W ′i−1 = (vi−1 : c′1, c

′
2 : l′, B′, r′) for i = 1, . . . , p,

we conclude that there is an AW W ′p = (vp : c′1, c
′
2 :

l′, B′, r′), from which x ∼ y follows immediately.
Now we show the second assertion. For any pair

of vertices x and y in C, we apply Lem. 5.2 on x
and W ; by definition, x ∼ B and thus cannot be in
category “none.” If x is in category “full” with respect
to W , then Lem. 5.2(2) implies that x is adjacent to
y ∈ N(s). Otherwise, if x is in category “partial” with
respect to W , then Lem. 5.2(2) implies that there is
an AW W ′ = (s : c′1, c

′
2 : l′, B′, r′) where B′ ⊂ B and

x ∈ {c′1, c′2}. Therefore, by Lem. 5.2(1) on the vertex
y ∈ N(s) and W ′, we get that y ∼ c′1, c

′
2 and hence

x ∼ y. This completes the proof. 2

We remark that the set C is an M -B separator.
Now Thm. 2.1 follows from Thm. 5.1: the set M
containing s is in a module whose neighborhood is a
clique, hence every vertex in M is simplicial.

6 Long holes

This section proves Thm. 2.2 by showing that the holes
in a reduced graph are pairwise congenial. During the
study of vertices of a hole, their indices become very
subtle. To simplify the presentation, we will frequently
apply a common technique, that is, to number the
vertices of a hole starting from a vertex of special

interest for the property at hand. Needless to say,
indexing two adjacent vertices in a hole will determine
the indices of all the vertices in the hole, as well as the
ordering used to transverse the hole.

We start from two simple facts on the relations
between vertices and holes, from which we derive the
relations between two holes, and finally generalize them
to multiple holes.

Proposition 6.1. (?) For any vertex v and hole H
of a prereduced graph, NH [v] are consecutive in H.
Moreover, either NH [v] = H or |NH [v]| < |H| − 7.

Recall that N̂(H) is the set of all common neighbors
of the hole H. If 3 < |NH [v]| < |H|, then we can use v
as a shortcut for the inner vertices of the path induced
by NH [v] to obtain another hole that is strictly shorter
than H.

Corollary 6.1. Let H be a shortest hole. If v 6∈
N̂(H), then NH [v] ≤ 3.

Note that each hole H in a prereduced graph
contains at least 11 vertices. If v ∈ N̂(H), then
on any five consecutive vertices of the hole H and v,
Prop. 4.1(1) applies, which implies that v is dominating
in the closed neighborhood of H.

Corollary 6.2. Let H be a hole in a prereduced graph.
If v ∈ N̂(H), then v is adjacent to all vertices in
N [H] \ {v}.

So far we characterized neighbors of holes in a pre-
reduced graph: Any vertex v is adjacent to a (possibly
empty) set of consecutive vertices of a hole H; if v is
adjacent to all vertices of H, then it is also adjacent
to every neighbor of H. From these facts we now de-
rive the relations between holes. Following is the most
crucial concept of the section:

Definition 6.1. Two holes H1 and H2 are called con-
genial (to each other) if each vertex of one hole is a
neighbor of the other hole, that is, H1 ⊆ N [H2] and
H2 ⊆ N [H1].

We remark that every hole is congenial to itself by
definition. The definition is partially motivated by:

Proposition 6.2. Let H be a set of holes all congenial
to H. For each v ∈ H, every hole in H intersects N [v].

Since a vertex in a hole cannot be a common
neighbor of it, Cor. 6.2 and the definition of congenial
holes immediately imply:

Corollary 6.3. For any pair of congenial holes H1

and H2 in a prereduced graph, N̂(H1) = N̂(H2).
Moreover, no vertex of H1 (H2 resp.) is a common
neighbor of H2 (H1 resp.).
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Figure 3: Adjacency of non-congenial holes (u−1 6∼ H2)

We analyze next the relation between two non-
congenial holes. It turns out that if not all vertices of a
hole H1 are adjacent to another hole H2, then, as shown
in the following lemma, every vertex of H1 is adjacent
to either all or none of the vertices of H2.

Lemma 6.1. Let H1 and H2 be two adjacent holes in a
prereduced graph. If H1 6⊆ N [H2], then each neighbor of
H2 in H1 is a common neighbor of H2, i.e., NH1

[H2] ⊆
N̂(H2); in particular, H1 and H2 are disjoint.

Proof. Let u be any vertex in NH1
[H2], which is

nonempty by assumption, and let P be the maximal
path in H1 with the property that u ∈ P ⊆ NH1

[H2];
denote by p the number of vertices of P . Note that some
vertices of P can belong to H2 (in particular, u can be
in H2). Observe that p < |H1|, as by assumption, H1 is
not contained in N [H2]. Numbering the vertices in H1

such that P = u0 . . . up−1 (the ordering of H1 is imma-
terial when p = 1 and then u1 can be either neighbor
of u0 in H1), the selection of P means ui ∼ H2 for
each 0 ≤ i < p, and u−1, up 6∼ H2 (it is immaterial
whether u−1 = up or not). In the following, we show

that both ends of P belong to N̂(H2), which induces a
clique (Prop. 4.2). Thus either u0 = up−1 (i.e., p = 1)
or u0 and up−1 are adjacent (i.e., p = 2); in either case,

we have u ∈ {u0, up−1} ⊆ N̂(H2). This proves the first
assertion, and the second assertion ensues, as otherwise
their common vertices will be common neighbors of H2,
which is not possible.

Note that u0 6∈ H2, as otherwise u−1 is also adja-
cent to H2, contradicting the maximality of P . Sim-

ilarly, u−1, u−2 6∈ H2. If u0 has a unique neigh-
bor v in H2, then the subgraph induced by u−1, u0

and five consecutive H2 vertices centered at v is a
long claw (see Fig. 3a). Now we consider the case
2 ≤ |NH2 [u0]| ≤ |H2| − 7 (Prop. 6.1), and number
the vertices of H2 such that NH2

[u0] = {v1, v2 . . . , vq}.
Note that |NH2

[u0]| ≤ |H2| − 7 implies that v0 6=
vq+1. If u−2 is adjacent to v0, v1, vq, or vq+1, then
there is a hole (u−2u−1u0v1v0u−2), (u−2u−1u0v1u−2),
(u−2u−1u0vqu−2), or (u−2u−1u0vqvq+1u−2), respec-
tively. Otherwise, u−2 6∼ {v0, v1, vq, vq+1}, then there
is a net {u−1, u0, v0, v1, vq+1, vq} when |NH2

(u0)| =
2, or long claw {u−2, u−1, u0, v0, v1, vq+1, vq} when

|NH2(u0)| > 2 (see Fig. 3b). This proves u0 ∈ N̂(H2),
and with a symmetric argument we can also prove
up−1 ∈ N̂(H2). 2

We are now ready to establish the transitivity of the
congenial relation. The reflexivity and symmetry of this
relation are clear from definition; therefore congenial
holes form an equivalence class.

Lemma 6.2. Let H, H1, and H2 be three holes in a
prereduced graph G. If both H1 and H2 are congenial to
H, then H1 and H2 are congenial.

Proof. According to Cor. 6.3, N̂(H1) = N̂(H) =

N̂(H2). If H1 and H2 are adjacent, then they have
to be congenial, as otherwise Lem. 6.1 implies that
one of them contains a common neighbor of the other,
hence a common neighbor of all three holes, which is
impossible. Assume hence H1 6∼ H2. Let h be any
vertex in H, and we number the vertices of H1 and
H2 such that NH1

[h] = {u1, . . . , up} and NH2
[h] =

{v1, . . . , vq}. Prop. 6.1 implies that u0 6= up+1 and
v0 6= vp+1. Note that h is adjacent to some but not
all vertices of both H1 and H2. There is • a long-
claw {v1, h, u−1, u0, u1, u2, u3} when p = 1; • a net
{v1, h, u0, u1, u3, u2} when p = 2; or • a long-claw
{v0, v1, u0, u1, h, up, up+1} when p ≥ 3. 2

To prove Thm. 2.2, we show that if there are
two holes that are not congenial, then one of them is
contained in a nontrivial module. This is impossible in
a reduced graph, where every nontrivial module induces
a clique. We construct this nontrivial module with
the help of the following lemma, which shows that the
common neighbors form a separator.

Lemma 6.3. Let H be a hole that is the shortest among
all the holes congenial to it in a prereduced graph G.
Then N̂(H)separates N [H] \ N̂(H) from V (G) \N [H].

Proof. Suppose to the contrary, N [H] \ N̂(H) and

V (G) \ N [H] are still connected in G − N̂(H), then



there are two adjacent vertices u and v such that u ∈
N [H] \ N̂(H) and v ∈ V (G) \N [H]. Note that u 6∈ H,
and we have two adjacent vertices only one of which
is adjacent to part of the hole H. Depending on the
number of neighbors of u in H, we have either a long
claw (when |NH(u)| = 1), a net (when |NH(u)| = 2),
or a †-AW of size 7 (when |NH(u)| = 3), none of which
cannot exist in a prereduced graph. On the other hand,
if |NH(u)| > 3 then we can use u to find another hole
H ′ that is strictly shorter than H; it is surely congenial
to H, which contradicts the assumption. 2

Proof. (of Thm. 2.2) Suppose, for contradicts, that not
all holes are congenial to each other. By Lem. 6.2, being
congenial is an equivalence relation. Hence there are two
equivalence classes of holes, from each of which we pick
a shortest one; let them be H1 and H2. Assume without
loss of generality that H2 has a vertex v not in N [H1].

Lem. 6.3 implies that N̂(H1) separates N [H1] \ N̂(H1)

and V (G) \ N [H1]. Either N̂(H1) = ∅ and then
G is disconnected where N [H1] induces a connected

component (v 6∈ N [H1]); or N̂(H1) is the neighbor of
N [H1] and they are completely connected (Cor. 6.2).

In either case, the set N [H1] \ N̂(H1) is a nontrivial
module that does not induce a clique. Reduction 2 is
thus applicable and the graph is not reduced. 2

7 Hole covers

A set of vertices is called a hole cover of a graph G if
it intersects every hole in G, and the removal of any
hole cover makes the graph chordal. A hole cover is
minimal if any proper subset of it is not a hole cover.
Any interval deletion set makes a hole cover of the input
graph, and thus contains a minimal hole cover. The goal
of this section is to prove Thm. 2.3, that is, to provide a
polynomial bound on the number of minimal hole covers
in a reduced graph and give a polynomial time algorithm
to find all of them.

To simplify the task, observe that no minimal hole
cover contains a vertex that is not in any hole.

Proposition 7.1. Let H be the set of all holes in a
reduced graph G, and G0 be the subgraph induced by⋃

H∈HH. A set HC of vertices is a minimal hole cover
of G if and only if it is a minimal hole cover of G0.

In this section we will focus on the subgraph G0

induced by the union of all holes in the reduced graph
G. The subgraph G0 has the same set of holes as G, and
they remain pairwise congenial. Moreover, each vertex
of G0 is in the closed neighborhood of each hole H of
G0, which means G0 is connected.

Proposition 7.2. (?) The subgraph G0 − HC is an
interval graph for each hole cover HC of G0.

In particular, by Prop. 6.2, the subgraph G0−N [v]
is an interval graph for each vertex v of G0. This
suggests that G0 might be a circular-arc graph. Recall
that circular-arc graphs are a natural generalization of
interval graphs, and they can be represented by arcs
of a circle. In other words, G0 can be obtained by
gluing the ends of an interval graph together, whereupon
minimal hole covers of G0, except those containing ends
vertices glued, coincide with minimal separators of the
underlying interval graph.

In what follows we prove a series of claims on how
the neighborhood of a vertex v of a hole H1 looks like
in another hole H2. The first statement is a paraphrase
of Cor. 6.3:

Corollary 7.1. No vertex v of G0 can be a common
neighbor of any hole in G0.

Therefore, by definition of congenial holes and
Prop. 6.1, we can assume that for every v ∈ V (G0) and
hole H, we have that NH [v] is a proper nonempty subset
of H and its vertices induce a path in H. Fixing any
ordering of the vertices in H, we can denote two ends of
the path as beginH(v) and endH(v) respectively; when
NH [v] contains both h0 and h|H|−1, we number vertices
of NH [v] as {h−p, . . . , h0, . . . , hq} where both p and q are
nonnegative, and then beginH(v) = −p, endH(v) = q.

Proposition 7.3. Let u, v be a pair of adjacent ver-
tices of G0. Their closed neighborhoods in any hole H
intersect, and NH [u] ∪NH [v] 6= H.

Proof. If either or both of u and v belong to H, then the
first assertion holds vacuously and the second assertion
follows from Prop. 6.1. Hence we assume u, v 6∈ H. We
number vertices of H such that NH [u] = {h0, . . . , h`1};
the order can be either way if |NH [u]| = 1, i.e., `1 = 0.
Let then {h`2 , . . . , h`3} = NH [v].

Suppose first, for contradiction, NH [u] ∩ NH [v] =
∅; we may assume then both `2 and `3 are positive,
i.e., `1 < `2 ≤ `3 < |H|. If `3 ≥ |H| − 3, then
(uvh`3 . . . h|H|u) is a hole of length at most 6. Oth-
erwise, (uu1h`2 . . . h`1u) is a hole not congenial to H:
in particular, the vertex h|H|−2 in H is nonadjacent to
it. In either case, we end with a contradiction; hence
NH [u] and NH [v] must intersect.

Suppose to the contrary of the second assertion,
NH [u]∪NH [v] = H. Then v is adjacent to every vertex
in (h`1+1h`1+2 · · ·h|H|−1). Prop. 6.1 and Cor. 7.1 imply
6 < `1 < |H| − 6. If v 6∼ h`1 , then (uh`1h`1+1vu) is
a 4-hole. A symmetric argument applies when v 6∼ h0.
Now suppose v is adjacent to both h0 and h`1 , then



(uh`1h`1+1 · · ·h|H|−1h0u) is a hole and v is a common
neighbor of it (contradicting Cor. 7.1). None of the
cases is possible, which proves this assertion. The proof
is now completed. 2

Lemma 7.1. Let H and H1 be two holes in G0. For any
vertex ui ∈ H1, both NH [ui−1] and NH [ui+1], where
ui−1 and ui+1 are neighbors of ui in H1, contains at
least one end of NH [ui].

Proof. By symmetry, it suffices to show that it holds
for NH [ui+1]. If NH [ui] does not contain NH [ui+1] as
a proper subset, then it follows from Prop. 7.3. Hence
we may assume NH [ui+1] ⊂ NH [ui]. Here we show a
stronger statement, that is, for any pair of vertices u, v
such that NH [v] = {h1, · · · , h`} and {h0, · · · , h`+1} ⊆
NH [u], it always holds that N [v] ⊂ N [u]. Noting that
ui+1 necessarily has a neighbor that is nonadjacent to
ui (they are both in H1), this lemma ensues.

Note that NH [v] is nonempty and thus |NH [u]| ≥ 3.
Consider first that u or v is in H. If u ∈ H, then
Nh[v] = {u}, and it follows from Prop. 7.3. Assume
now u 6∈ H; the argument below holds regardless of
whether v ∈ H or not. Let x be any vertex in N [v]
different from {h0, h`+1}. According to Prop. 7.3, NH [x]
must intersect {h1, · · · , h`}. On the other hand, it
is nonadjacent to {h0, h`+1}; otherwise (h0uvxh0) or
(h`+1uvxh0) is a 4-hole, which is impossible. Therefore,
NH [x] is also a subset of {h1, · · · , h`}, and the statement
follows from Prop. 4.1 (the path is taken as NH [u] as
well as its processor and successor). 2

Minimal hole covers of G0 are captured by

Lemma 7.2. Any minimal hole cover of G0 induces a
clique.

Proof. Suppose to the contrary, there is a minimal hole
cover HC that contains two nonadjacent vertices u and
v. By the minimality of HC, there are two holes H1 and
H2 such that HC ∩H1 = {u} and HC ∩H2 = {v}. In
particular, u 6∈ H2 and v 6∈ H1. We number the vertices
of H1 such that NH1

[v] = {u1, u2, · · · , up}. The union of
NH2 [u1] and NH2 [up] is consecutive set of vertices in H2:
they both contain v, and, by Prop. 6.1, are consecutive
in H2. We number the vertices of H2 such that u1 ∼ v1
and NH2

[u1] ∪NH2
[up] = {v1, . . . , vq}.

Claim 3. At least one vertex of H2 is adjacent to
neither u1 nor up.

Proof. The claim follows from Prop. 7.3 when p = 2;
hence we may assume p > 2, which means u1 6∼ up (note
that u0 6= up+1). Suppose NH2 [u1]∪NH2 [up] = H2, then

u1 up

uj

u`1 u`2

u

H1

v

v1 vq

vi

H2

Figure 4: In two congenial holes each covered by a single
vertex, there is an uncovered hole.

by Prop. 6.1, we have 7 < |NH2
[u1]| < |H2| − 7, which

means at least one end of the path induced by NH2
[u1]

is not adjacent to v. Without loss of generality, let it
be vi where i = endH2 [u1]; noting that by assumption
vi+1 ∼ up, there is either a 4-hole (vu1viupv) (if vi ∼ up)
or a 5-hole (vu1vivi+1upv) (if vi 6∼ up). y

In what follows we show the existence of a hole in
G − HC, which contradicts the assumption that HC
is a hole cover and thus proves this lemma. Denote
by P1 = (u1u2 . . . up) and P2 = (vqvq+1 . . . v0v1). By
definition u 6∈ P1; to show v 6∈ P2 it suffices to rule out
the possibility that v ∈ {v1, vq}, as by the numbering of
H2, v is in {v1, v1, . . . , vq}. According to Lem. 7.1, the
two neighbors of v in H2 are adjacent to either u1 or up;
however, by the claim, neither v0 nor vq+1 is adjacent
to u1 or up. We now argue that each inner vertex vi of
P2 is not adjacent to P1 (see the thick edges in Fig. 4).
Suppose to the contrary, vi is adjacent to P1. Noting
that vi 6∼ u1, vi 6∼ up, and u1 6= up+1, Prop. 4.1(3)
applies, and we can conclude vi ∼ v, which is impossible.
(It is immaterial whether vi ∈ H1 or not.) Now we
construct the hole in G−HC as follows. Claim 1 implies
that the length of P2 is at least 2. If u1 ∼ vq, then
(u1P2u1) is such a hole. Otherwise by assumption we
have up ∼ vq. Let `1 = max{i|ui ∼ v1 and 0 ≤ i ≤ p},
and `2 = min{i|ui ∼ vq and `1 ≤ i ≤ p}. Then
(u`1u`2P2u`1) will be such a hole (see the solid hole
Fig. 4). 2

Recall that any hole in a reduced graph contains



more than 10 vertices, while a minimal hole cover is a
clique and hence local. We can easily derive

Lemma 7.3. For any minimal hole cover HC of G0 and
any shortest hole H, there is a vertex v ∈ H such that
NG0

[v] 6∼ HC.

Proof. We show this by construction. By Cors. 6.1 and
7.1, each vertex in G0 has at most 3 neighbors in H.
By Lem. 7.2, HC is a clique and hence |H ∩HC| ≤ 2.
We number the vertices of H in a way that h0 ∈ HC
and h1 6∈ HC, and claim that v = h5 is the asserted
vertex. Suppose to the contrary, NG0

[h5] and HC are
adjacent, then there is an h0-h5 path P of length at
most 3 and all its inner vertices belong to G0. The case
P = h0vh5 is impossible, as by Prop. 6.1 and Cor. 6.1,
v is adjacent to at most 3 consecutive vertices in H.
Now we may assume P = h0v1v2h5, and examine the
neighbors of v1 and v2 in H. By Cor. 6.1, we have
endH(v1) ≤ 2 and beginH(v2) ≥ 3. This means that
there is a hole (v1hihi+1 . . . hjv2v1), where i = endH(v1)
and j = beginH(v2), of length at least 4 and at most 8.

2

We now relate minimal hole covers of G0 to minimal
separators in some interval subgraphs. In one direction
of the proof, we need the following claim. Observe that
in an interval representation of a connected interval
graph, the union of all the intervals also forms an
interval. Similarly, if there is a point p in the real line
such that there are intervals not containing p both to
the left and to the right of p, then the set of intervals
containing p is a clique separator.

Proposition 7.4. Let v be a vertex in an interval
graph G. If v is not adjacent to any simplicial vertex,
then N [v] is a separator of G.

Proof. We consider an interval representation of G.
Without loss of generality, we assume that no two
intervals have the same ends. Denote by x the interval
with the smallest right end, and y the interval with
the largest left end. It is easy to see that x and y
are simplicial. If x ∼ y, then the graph is a complete
graph (every interval contains the interval between the
left end of y and the right end of x); thus every vertex
is adjacent to a simplicial vertex, and the assertion is
vacuously true. Therefore, we can assume x 6∼ y, and
let p be an arbitrary point in interval v. By assumption
v is not adjacent to x or y, which means that x is to
the left of p and y is to the right of p. As every interval
that contains p is in N [v], in the subgraph G − N [v]
that contains x and y, no interval contains p; hence x
and y are disconnected. In other words, N [v] is an x-y
separator. 2

According to Lem. 7.3, every minimal hole cover
satisfies the condition in the following lemma; hence the
lemma applies to all of them. Note that G0 −NG0 [v] is
the same as G0 −N [v].

Lemma 7.4. Let v be a vertex in a shortest hole H of
G0, and X induce a clique nonadjacent to NG0 [v]. Set
X forms a minimal hole cover of G0 if and only if X is
a minimal separator of G0 −N [v].

Proof. It suffices to show that X is a hole cover of G0

if and only if it is a separator of G0 −N [v].
⇒ Clearly, each connected component in G0−N [v]

contains a neighbor of N [v]. As X is not adjacent to
N [v], the set X cannot fully contain a component of
G0−N [v], which implies that the number of connected
components of G0 − N [v] − X is no less than that of
G0 − N [v]. Therefore, if G0 − N [v] is not connected,
then neither is G0 − N [v] − X, and X makes a trivial
separator for G0 − N [v]. In the following argument of
this direction we may assume G0 − N [v] is connected,
and it suffices to show that G0 − N [v] − X is not
connected. By Prop. 7.2, G0−X is an interval subgraph;
as G0 itself contains no simplicial vertex, any vertex x
that is simplicial in G0 − X must be a neighbor of X:
otherwise NG0−X(x) = NG0

(x) and cannot be a clique.
As N [v] is not adjacent to X by assumption, v is not
adjacent to any simplicial vertex of the interval graph
G0−X. Therefore, according to Prop. 7.4, the removal
of N [v] disconnects G0 −X. This finishes the proof of
the “only if” direction.
⇐ Let us start from a close scrutiny of G0 −N [v].

According to Prop. 6.1, the removal of N [v] transforms
each hole into a path of length at least 7; In particular,
let P be the path induced by H\NH [v]. In the argument
to follow, we show that ends of each such path are
connected to the ends of P respectively; the further
removal of X separates each path into at most two sub-
paths; hence if there is a hole disjoint from X, then the
path left by it is able to connect every sub-path and
thereby every vertex, which is impossible.

We number the vertices of H such that v = v0;
hence NH [v] = {v−1, v0, v1} and the ends of P are v−2
and v2. Let H2 be another hole, and P2 be the path left.
First of all, we show that the two ends of P2 are adjacent
to {v1, v2} and {v−1, v−2}, respectively. Number the
vertices of H2 such that NH2

[v] = {h1, . . . , hp}; hence
the ends of P2 are h0 and hp+1. By Cor. 6.1, NH [h1] ⊂
{v−2, v−1, v0, v1, v2}, and according to Prop. 7.3, h0 is
adjacent to either {v1, v2} or {v−1, v−2}; a symmetric
argument works for hp+1. To show they cannot be
adjacent to the same end of P , note

• By Lem. 7.1, h0 and hp+1 cannot be both adjacent
to v1.



• Suppose h0 and hp+1 are both adjacent to v2,
then v2 6∈ H2, and we can apply Prop. 4.1 on v2,
v0, and path (h−1h0h1 . . . hphp+1hp+2) to conclude
v0 ∼ v2, which is impossible.

• Suppose h0 and hp+1 are adjacent to v1 and v2,
respectively. Without loss of generality, h0 ∼ v1
and hp+1 ∼ v2. Clearly hp 6= v2 as they have
different adjacencies to v0; likewise, hp+1 6= v1 and
hp+1 6= v2. We exclude hp = v1: then p = 1
by h0 ∼ v1, and v0 ∼ h0 by Lem. 7.1, which
contradicts the numbering of H2. Then hp ∼ v2,
as otherwise there is a hole (v2v1v0hphp+1v2) or
(v2v1hphp+1v2); likewise, hp ∼ v1. It follows that,
by Cor. 6.1, hp 6∼ v−1, and p > 1. On the
other hand, h0 6∼ v−1, as otherwise there is a
hole (h0v−1v0v1h0). We can apply Prop. 4.1 on
v1, v−1, and path (h−1h0h1 . . . hpvp+1) to conclude
v−1 ∼ v1, which is impossible.

A symmetric argument works for {v−1, v−2}, hence we
may assume without loss of generality, hp+1 ∼ {v1, v2},
and then h0 ∼ {v−1, v−2}. Let `1 be the smallest index
such that `1 > p and h`1 ∈ N [v2]; for its existence,
observe that `1 = p + 1 if hp+1 ∈ N [v2], otherwise by
Lem. 7.1, hendH2

(v1) must be in N [v2]. By construction,
every vertex in {hp+1 . . . , h`1} is adjacent to N [v],
thereby no in X. Symmetrically, we can define `2 to
be the largest index such that `2 ≤ 0 and h`2 ∈ N [v−2].

The argument above applies to every hole in G0,
from which we can also identify such a path. If X
intersects every such path, then it makes a hole cover,
and we are done; hence we assume otherwise. Let H1 be
a hole disjoint from X, and P1 be the path induced by
H1 \NH1 [v]. As for each path left from a hole, X does
not intersect either of its ends, and as X is a clique,
after the removal of X, it either remains intact, or is
separated into two sub-paths. The two sub-paths are
adjacent to either v−2 or v2. On the other hand, both
v−2 and v2 are adjacent to P1. Therefore, all vertices
are connected, contradicting the assumption that X is
a separator of G0 −N [v]. This finishes the proof. 2

We are now ready to prove Thm. 2.3.

Proof. (of Thm. 2.3) Let G0 be induced by the union of
the holes of G. On the one hand, according to Lems. 7.3
and 7.4, each minimal hole cover of G corresponds to a
minimal separator of G0 − N [v] for some vertex v of
a shortest hole H. On the other hand, there are at
most n minimal separators in G0−N [v] for each vertex
v ∈ H, which implies a quadratic bound for the total
number of minimal hole covers of G. To enumerate
them, we try every vertex v ∈ H and enumerate all
minimal separators of G0 −N [v]. 2

8 Caterpillar decompositions

This section proves Thm. 2.4 by providing the claimed
algorithm for interval deletion on nice graphs. Re-
call that a nice graph is chordal and contains no small
AW, and every shallow terminal in a nice graph is sim-
plicial; nice graphs are hereditary. Our algorithm finds
an AW satisfying a certain minimality condition, from
which we can construct a set of 10 vertices that in-
tersects some minimum interval deletion set. Hence it
branches on deleting one of these 10 vertices. The set of
all shallow terminals, denoted by ST (G), can be found
in polynomial time as follows. For each triple of vertices,
we check whether or not they forms the terminals for an
AW. If yes, then one of them is necessarily shallow. The
following lemma ensures that all shallow terminals can
be found as such.

Proposition 8.1. (?) In a nice graph, all AWs with
the same set of terminals have the same shallow termi-
nal.

It should be noted that this does not rule out the pos-
sibility of a vertex being a base terminal of an AW and
the shallow terminal of another AW If this happens,
these AWs necessarily have at least one different termi-
nal. Recall that by Thm. 2.1, every vertex in ST (G) is
simplicial in G. For each †- or ‡-AW, its shallow termi-
nal is in ST (G) by definition, its base terminals might
or might not be in ST (G), and all non-terminal vertices
cannot be in ST (G) (as they are not simplicial). From
Lem. 5.2 we can derive

Proposition 8.2. Let s be a shallow terminal in a nice
graph. There is an AW of which every base vertex is
adjacent to all vertices of N(s) \ ST (G).

Proof. Let W be an AW with shallow terminal s and
shortest possible base. Applying Lem. 5.2 on any vertex
x ∈ N(s) \ ST (G) and W , it cannot be in category
“partial” by the minimality of W . Vertex x cannot
be in category “none” either, otherwise x is a shallow
terminal, contradicting x ∈ N(s) \ ST (G). Thus every
vertex in N(s) \ ST (G) is in category “full.” 2

Now that the graph is chordal, it makes sense to
discuss its clique tree, which shall be the main structure
of this section. No generality will be lost by assuming
G is connected. Since no inner vertex of a shortest path
can be simplicial, the removal of simplicial vertices will
not disconnect a connected graph; hence G− ST (G) is
a connected interval graph. This observation suggests a
clique tree of G with a very nice structure. A caterpillar
(tree) is a tree that consists of a central path and all
other vertices are leaves connected to it.



Proposition 8.3. (?) In polynomial time we can build
a clique tree T for a connected nice graph G such that

• T is a caterpillar;

• every shallow terminal of G appears only in one leaf
node of T ; and

• every other vertex appears in some node of the
central path (possibly leaf nodes as well) of T .

Within a caterpillar decomposition, we number the
nodes in the central path as K0,K1, . . . . By Prop. 8.3
and the definition of clique trees, each vertex not in
ST (G) is contained in some consecutive nodes of the
central path. For each vertex v 6∈ ST (G), we denote
by first(v) and last(v) the smallest and, respectively,
largest indices of nodes that contain v. In any †-
or ‡-AW, every vertex of the base is non-simplicial,
hence belongs to the central path of the caterpillar
decomposition. By assumption, d = |B| ≥ 3 and
b1 6∼ bd; as a result, the nodes that contain b1 and bd are
disjoint. When numbering the vertices of the base, we
follow the convention that last(b1) < first(bd), i.e.,
base B goes “from left to right.” Given a numbering of
the base, the base terminals l and r can be distinguished
from each other based on their adjacency with b1 and
bd. Similarly, in the case of a ‡-AW, the centers c1 and
c2 can be distinguished from each other, as they have
different adjacency relations with l and r.

By observing the adjacencies and nonadjacencies
between vertices of an AW and their possible positions
in an interval representation of G−ST (G), the following
is straightforward and hence stated here without proof.
In order to avoid pointless repetition, we are again using
the same generalized notation for both †- and ‡-AW as
stipulated in §4.

Proposition 8.4. For any chordless path B that is
disjoint from ST (G) and has length ≥ 2, it holds that

first(bi) ≤ last(bi−1) < first(bi+1) ≤ last(bi) < first(bi+2).

Nodes that contain non-terminal vertices of an AW
appear consecutively in the central path of T . We would
like to identify a minimum set of consecutive nodes
whose union contains all non-terminal vertices of the
AW.

Definition 8.1. We define ^[p, q] =
⋃

p≤i≤q Ki

for a pair of indices p ≤ q, and ^(W ) =
^[last(b1), first(bd)] for an AW W . Set ^(W ) will be
referred to as the container of W , and we say it is mini-
mal if there exists no AW W ′ such that ^(W ′) ⊂ ^(W ).

Let us observe that every base vertex of W appears
in ^(W ) and no shorter subsequence of nodes contain

every base vertex. Moreover, the following proposition
shows that the centers also appear in ^(W ) (recall that

N̂(B) is the set of common neighbors of B and every

center is in N̂(B)).

Proposition 8.5. Klast(b1) ∩Kfirst(bd) = N̂(B).

Proof. By definition, a vertex of the left side is in Ki

for every last(b1) ≤ i ≤ first(bd), and thus belongs

to N̂(B). On the other hand, if a vertex v does not
belong to the left side, then either first(v) > last(b1)
or last(v) < last(bd), which implies v 6∼ b1 or v 6∼ bd
respectively. In either case, we have v 6∈ N̂(B). 2

In §6, we considered holes of the shortest length
and observed that a vertex sees either all or at most 3
vertices in such a hole. Here for an AW whose container
is minimal and base consists of the inner vertices of
a shortest l-r path specified below, we can observe an
analogous statement about the number of base vertices
a vertex can see.

Definition 8.2. Let W = (s : c1, c2 : l, B, r) be an
AW in a nice graph such that ^(W ) is minimal. We
say B is a short base if (lBr) is a shortest l-r path in

the subgraph induced by
(
^(W ) \ N̂(B)

)
∪ {l, r}.

The following lemma shows that if the base is not
short, then we can get an AW with a shorter base. In
particular, this implies that a vertex of ^(W ) \ N̂(B)
can see at most 3 consecutive vertices of the base.

Lemma 8.1. Let W = (s; c1, c2; l, B, r) be an AW such
that ^(W ) is minimal. Then there is an W ′ such that
^(W ′) = ^(W ) and W has a short base.

Proof. We show that if (lP r) is a chordless l-r path in

the subgraph induced by
(
^(W ) \ N̂(B)

)
∪ {l, r}, then

we can replace the base B of W by P to obtain another
AW WP = (s : c1, c2 : l, P, r). Clearly the center(s)

of W belong to N̂(B), thereby adjacent to every other
vertex in ^(W ), and hence to P . It is also easy to

verify that no vertex in ^(W ) \ N̂(B) is adjacent to
s: if such a vertex exists, then Lem. 5.2 classifies it
as “partial” with respect to W , hence there is another
AW W ′ such that B′ ⊂ B and ^(W ′) ⊂ ^(W ), which
contradicts the minimality of ^(W ). Therefore, Wp

is indeed an AW. Letting b′1 and b′d′ be the first and,
respectively, last vertices of P , the selection of P implies
last(b′1) ≥ last(b1) and first(b′d′) ≤ first(bd), hence
^(WP ) ⊆ ^(W ); as the latter is already minimal, they
must be equal. Therefore, if the base of W is not short,
then we can find another AW with the same container
and shorter base. Applying this argument repeatedly
will eventually procure an AW with the same container
and having a short base. 2
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Figure 5: Non-terminal vertices of a leftmost minimal
AW, represented by intervals.
base terminals are dashed as they might be in ST (G);
possible vertices in another AW are dotted.

With all pertinent definitions and observations, we
are now ready to present the main lemma of this
section which justifies our branching rule. Without an
upper bound on the number of vertices in an AW—
in particular, the length of its base can be arbitrarily
long—trying each vertex in it cannot be done in FPT
time. Thus we have to avoid most but a (small)
constant number of base vertices to procure the claimed
algorithm. To further decrease the number of vertices
we need to consider, observing that the central path
of the caterpillar decomposition has a linear structure,
we start from the leftmost minimal container. By
definition, minimal containers cannot properly contain
each other, and thus the one with smallest begin-index
also has the smallest end-index. In particular, the
leftmost minimal container is unique, though it might be
observed by more than one AWs, and can be identified
in polynomial time. With this additional condition, if
another AW intersects ^(W ), it has to come “from the
right.”

Let W be an AW of leftmost minimal container and
having a short base. We claim that there is a minimum
interval deletion set that breaks W in a canonical way:
it contains either one of a constant number of specific
vertices of W , or a specific minimum separator (details
are given below) breaking the base of W . Therefore, by
branching into a constant number of directions, we can
guess one vertex of this interval deletion set. Lem. 8.2
below presents this result in a way that allows us to
branch into at most 14 directions; using this lemma
would result in a 14k · nO(1) time algorithm. With
further technical work, the number of branches can be
reduced to 10, which is needed to achieve the running
time 10k · nO(1) claimed in Thm. 1.1. The proof of this
improvement is deferred to the full version: we believe
that the underlying ideas are easier to understand in
the simplified proof below, and it is already sufficient to
establish fixed-parameter tractability.

For each last(b1) ≤ i < first(bd−1), let us define
Si = Ki ∩ Ki+1 to be the ith separator. Note that Si

contains N̂(B) as a proper subset.

Lemma 8.2. Let T be a caterpillar decomposition of a
nice graph G, and W = (s : c1, c2 : l, B, r) be an AW
in G such that (1) ^(W ) is minimal; (2) B is a short
base; and (3) first(bd) is the smallest among all AWs.

Let ` be the minimum index such that last(b2) ≤
` < first(bd−5) and the cardinality of S` is minimum
among {Si|last(b2) ≤ i < first(bd−5)}. There is a
minimum interval deletion set to G that either contains
one of the 13 vertices

VB = {s, c1, c2, l, b1, b2, bd−5, bd−4, bd−3, bd−2, bd−1, bd, r},

or the whole set X = S` \N , where N = N̂(B).

Proof. We prove by construction. Let Q be any mini-
mum interval deletion set; we may assume Q ∩ VB = ∅,
and X 6⊆ Q, as otherwise Q satisfies the asserted condi-
tion and we are finished. We claim Q′ = (Q \ VI) ∪X,
where VI = ^[last(b3), first(bd−6)]\N , is the desired
interval deletion set, which fully contains X in particu-
lar. By definition of VI , any vertex z ∈ VI is adjacent
to some vertex bi for 4 ≤ i ≤ d − 7, then as B is short
and z 6∈ N , we have

first(b2) ≤ last(b1) < first(z)

≤ last(z) < first(bd−4) ≤ last(bd−5).(8.1)

As G is chordal, all minimal forbidden induced
subgraphs in G are AWs. To show that Q′ makes an
interval deletion set to G, it suffices to argue that if
there exists an AW W ′ avoiding Q′ then we can also
find an AW, not necessarily the same as W ′, avoiding Q.
Suppose W ′ = (s′ : c′1, c

′
2 : l′, B′, r′) is an AW in G−Q′.

By the construction of Q′, this AW must intersect VI\X;
let u ∈ W ′ ∩ (VI \X). Clearly, u can neither be s′, as
u 6∈ ST (G), nor r′, as otherwise according to Prop. 8.4,
first(b′d′) < first(u) < first(bd), contradicting the
selection of W . The following claim further rules out
the possibility that u ∈ {c′1, c′2}.

Claim 4. For each vertex v ∈ ^[0, first(bd−2)] \ N ,
we have last(v) < first(bd), and v 6∼ ST (G).

Proof. By definition, if v is adjacent to B, then v ∼ bi
for some i ≤ d − 3. If v ∼ bd, then B is not a short
base, as there would be a a shorter (not necessarily
chordless) l-r path (l, . . . , bi, v, bd, r). Therefore, v 6∼ bd
and it follows that last(v) < first(bd). Suppose to
the contrary of the second assertion, v is adjacent to
the shallow terminal x of some AW W1. We apply
Lem. 5.2(2) on v and W1. As v 6∈ ST (G), it has
to be in categories “full” or “partial.” In either case,
there exists an AW whose base is fully contained in
^[first(v), last(v)], contradicting the selection of W .

y



Therefore, either u = l′ or u ∈ B′. Now we focus on
the chordless path l′B′r′, which we shall refer to by P ′,
and how it reaches u when going from r′ to l′. Recall
that every vertex of B′ appears in the central path of
the caterpillar decomposition.

Claim 5. B′ ∩N = ∅.

Proof. Suppose the contrary and let x be a vertex
in B′ ∩ N . By definition of N and (8.1), we have
first(x) < first(u) ≤ last(u) < last(x). Then
every neighbor of u, which is not in ST (G) according
to Claim 4, is thus adjacent to x. As x and u are both
in the chordless path P ′, vertex u has to be one end
of it. More specifically, u = l′ and x = b′1. A further
consequence is that u is the only vertex in W ′ ∩VI : the
argument above applies to any vertex u′ ∈W ′∩VI , and
thus u′ = l′ = u.

Now we show, for any vertex w in X \ Q, which
is nonempty by assumption, it has the same neighbors
as u in W ′, and hence (s′ : c′1, c

′
2 : w,B′, r′) is an AW

in G − Q, contradicting the assumption that Q is an
interval deletion set to G. Observe that any vertex in
N is adjacent to both u and w.

• The assumption w 6∈ N implies w 6∼ s.

• By the selection of W , we have last(c′i) ≥
first(b′d) ≥ first(bd) for both i = 1, 2. If c′i,
where i = 1 or 2, is adjacent to one of u and w,
then (8.1) implies first(c′i) < last(bd−5); as B is
short, c′i must be in N , and then adjacent to both
u and w.

• Vertex b′1 (= x) is in N , hence adjacent to w.

• By definition, b′3 ∼ b′2 and b′3 6∼ b′1(∈ N) imply
last(b′2) ≥ first(b′3) > last(b′1) ≥ first(bd).
On the other hand, b′2 6∼ u implies b′2 6∈ N . Then
as B is short, first(b′2) > last(bd−5). Therefore,
from (8.1) we can conclude that first(b′i) >
last(w) for 2 ≤ i ≤ d′ + 1, and thus w 6∼ b′i. y

Claim 6. c′2 ∈ N .

Proof. As u = b′i for some 0 ≤ i ≤ d′, Prop. 8.4
and (8.1) imply first(b′1) (≤ last(l′)) ≤ last(u) <
last(bd−5). By Claim 5, b′1 is not in N and adjacent to
at most 3 vertices of B; thus last(b′1) < first(bd−2) ≤
last(bd−3). On the other hand, by the selection of W ,
we have last(c′2) ≥ first(b′d) ≥ first(bd). Therefore,
c′2 is adjacent to at least 4 vertices of B and is in N . y

From Claim 6 we can conclude c′2 ∼ u and then
u ∈ B′. By Prop. 8.4, first(b′1) ≤ first(u) <
first(bd−4). Then from Claim 4 and the fact l′ ∼ b′1,
it can be inferred that l′ 6∈ ST (G). Now last(l′)
is defined, and last(l′) < first(c′2) ≤ last(b1);

the selection of W implies first(b′d′) ≥ first(bd).
Therefore, the l′-b′d′ path l′B′ has to go through X,
and we end with a contradiction. This verifies that Q′

is an interval deletion set to G, and it remains to show
that Q′ is minimum, from which the lemma follows.

Claim 7. |Q′| ≤ |Q|.

Proof. It will suffice to show that Q∩VI makes a b2-bd−5
separator in G−N , and then the claim ensues as

|Q′| = |Q \ VI |+ |X| ≤ |Q \ VI |+ |Q ∩ VI | = |Q|.

Suppose to the contrary, there is a chordless b2-bd−5
path P . We can extend P into an l-r path P+ =
(lb1Pbd−4bd−3bd−2bd−1bdr), which is disjoint from Q
and N . Within P+ there is a chordless l-r path (lB1r).
By assumption, {s, c1, c2} ∩ Q = ∅; every vertex in B1

satisfies the condition Claim 4, and hence nonadjacent
to s. Thus, (s : c1, c2 : l, B1, r) is an AW in G − Q,
which is impossible. 2

As shown in Lem. 8.3, set VB can be further
improved to contain 9 vertices, and hence we only need
to fork into 10 branches.

Lemma 8.3. (?) Let T be a caterpillar decomposition
of a nice graph G, and W = (s : c1, c2 : l, B, r) be an
AW in G such that (1) ^(W ) is minimal; (2) B is a
short base; and (3) first(bd) is the smallest among all
AWs.

Let ` be the minimum index such that last(b1) ≤
` < first(bd−2) and the cardinality of S` is minimum
among {Si|last(b1) ≤ i < first(bd−2)}. There is a
minimum interval deletion set to G that either contains
one of the 9 vertices

VB = {s, c1, c2, l, b1, bd−2, bd−1, bd, r},

or the whole set X = S` \N , where N = N̂(B).

To complete the proof of Thm. 2.4, we need one last
piece of the jigsaw, i.e., to find the AW required by
Lem. 8.3.

Proof. (of Thm. 2.4) Based on Lem. 8.3, it suffices to
show how to find such an AW, and then the standard
branching will deliver the claimed algorithm. For any
triple of vertices {x, y, z} and pair of indices {p, q}
for the nodes in the central path of the caterpillar
decomposition, we can check whether or not there is an
AW W whose terminals are {x, y, z} and non-terminal
vertices are fully contained in ^[p, q]. Therefore, in
O(n6) time we are able to find the correct terminals
and indices, from which the short base B can also be
easily constructed. This finishes the construction of the
AW required by Lem. 8.3. 2



9 Concluding remarks

We have classified interval deletion to be FPT by
presenting a ck · nO(1) algorithm with c = 10. The
constant c might be improvable, and let us have a brief
discussion on how to achieve this. The current constant
10 comes from Reduction 1 and Thm. 2.4. The constant
in Reduction 1 is not tight, and it can be replaced by
8. We choose the current number for the convenience
for later argument; for example, if we do not break
AWs of size 9 in preprocessing, then we have to use
a far more complicated proof for Prop. 8.1. In other
words, the real dominating step is to break ATs in nice
graphs, where we need to branch into 10 cases. As a
nice graph exhibits a linear structure, it might help to
apply dynamic programming here. To further lower the
constant c, we need to break small forbidden induced
subgraphs in a better way then the brute-force in our
algorithm. So a natural question is: Can it be c = 2?

It is known that chordal completion can be
solved in polynomial time if the input graph is a
circular-arc graph [21] while interval completion
remains NP-hard on chordal graphs [28]. It would
be interesting to inquire the complexity of interval
deletion on chordal graphs and other graph classes.
At least, can it be solved in polynomial time if the
input graph is nice, which, if positively answered,
would suggest that all the troubles are small forbidden
subgraphs.

As having been explored in [27], we would also
like to ask which other problems can be formulated
as or reduced to interval deletion and then solved
with our algorithm. Both practical and theoretical
consequences are worth further investigation.
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A Examples used in proofs
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Figure 6: x ∈ N̂(B) and s [Lem. 5.1].
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(e) x ∼ c1 but x 6∼ c2, l

Figure 7: x ∈ N(s) and centers [Lem. 5.2].
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Figure 8: Vertex x in category “partial” [Lem. 5.2].


