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Abstract
Graph modification problems are typically asked as follows: is there a set of k operations that
transforms a given graph to have a certain property. The most commonly considered operations
include vertex deletion, edge deletion, and edge addition; for the same property, one can define
significantly different versions by allowing different operations. We study a very general graph
modification problem which allows all three types of operations: given a graph G and integers
k1, k2, and k3, the chordal editing problem asks if G can be transformed into a chordal
graph by at most k1 vertex deletions, k2 edge deletions, and k3 edge additions. Clearly, this
problem generalizes both chordal vertex/edge deletion and chordal completion (also
known as minimum fill-in). Our main result is an algorithm for chordal editing in time
2O(k log k) · nO(1), where k := k1 + k2 + k3; therefore, the problem is fixed-parameter tractable
parameterized by the total number of allowed operations. Our algorithm is both more efficient
and conceptually simpler than the previously known algorithm for the special case chordal
deletion.
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1 Introduction

A graph is chordal if it contains no hole, that is, an induced cycle of at least four vertices.
After more than half century of intensive investigation, the properties and the recognition of
chordal graphs are well understood. Their natural structure earns them wide applications,
some of which might not seem to be related to graphs at first sight. During the study
of Gaussian elimination on sparse positive definite matrices, Rose [15, 16] formulated the
chordal completion problem, which asks for the existence of a set of at most k edges
whose insertion makes a graph chordal, and showed that it is equivalent to minimum fill-in.
Balas and Yu [1] proposed a heuristics algorithm for the maximum clique problem by first
finding a maximum (spanning) chordal subgraph. This is equivalent to the chordal edge
deletion problem, which asks for the existence of a set of at most k edges whose deletion
makes a graph chordal. Dearing et al. [5] observed that a maximum chordal subgraph can also
be used to find maximum independent set and sparse matrix completion. This observation
turns out to be archetypal: many NP-hard problems (coloring, maximum clique, etc.) are
known to be solvable in polynomial time when restricted to chordal graphs, and hence admit
a similar heuristics algorithm. Cai [3] considered the parameterized complexity of coloring
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problems on graphs close to certain graph classes. In particular, he asked as an open question
on the graphs that can be made chordal by the deletion of k vertices or edges, of which
the edge version was resolved by Marx [11] affirmatively. It should be noted that such a
coloring algorithm needs first the set of k vertices or edges. For chordal graphs, to find
them is equivalent to solving the chordal vertex/edge deletion problem. Though with
slightly different purpose, the inspiration behind [1, 5] and [3] are exactly the same.

All the three problems, unfortunately but understandably, are NP-hard [18, 13, 10].
Therefore, early work of Cai [2] and Kaplan et al. [8] focused on their parameterized
complexity. They proved that that the chordal completion problem can be solved in
time 4k · nO(1), implying that it is fixed-parameter tractable (FPT). Marx [12] showed that
the complementary deletion problems, both edge and vertex versions, are also FPT. Recently,
Fomin and Villanger [7] gave an algorithm for chordal completion with running time
kO(
√

k) · nO(1), that is, with subexponential dependence on k.
The three operations can be combined, and then the question becomes: can a graph be

made chordal by deleting at most k1 vertices and k2 edges and adding at most k3 edges.
This leads us to the chordal editing problem, which generalizes all three aforementioned
problems in a natural way. Note that chordal graphs are hereditary, hence it does not make
sense to add new vertices. The budgets for different operations are not transferable, as
otherwise it degenerates to chordal vertex deletion. Our main result establishes the
fixed-parameter tractability of chordal editing parameterized by k := k1 + k2 + k3.

I Theorem 1.1 (Main result). There is a 2O(k log k) · nO(1) time algorithm for deciding,
given an n-vertex graph G, whether there are a set V− of at most k1 vertices, a set E− of at
most k2 edges, and a set E+ of at most k3 non-edges, such that the deletion of V− and E−
and the addition of E+ make G a chordal graph.

As a corollary, we get a new FPT algorithm for the special case chordal deletion; our
algorithm is far simpler and faster than the algorithm of [12].

Related work. Observing that a large hole cannot be fixed by the insertion of a small
number of edges, it is easy to devise a bounded search tree algorithm for the chordal
completion problem [8, 2]. No such simple argument works for the deletion versions: the
removal of a single vertex/edge suffices to break a hole of an arbitrary length. The way
Marx [12] showed that this problem is FPT is to (1) prove that if the graph contains a large
clique, then we can identify an irrelevant vertex whose deletion does not change the problem;
and (2) observe that if the graph has no large cliques, then it has bounded treewidth, so
the problem can be solved by standard techniques, such as the application of Courcelle’s
Theorem. In contrast, our algorithm uses simple reductions and structural properties, which
reveal a better understanding of the chordal vertex deletion problem, and easily extend
to the more general chordal editing problem.

We remark that there were formulations that consider both edge operations, e.g., the
cluster editing problem [4], as well as the many problems studied by Natanzon et al. [13].
Their objective is to minimize the total number of edge operations, i.e., k2 + k3 in our
notation, which is slightly different from them. As a matter of fact, our problem formulation
is more general: if we can solve the version where the edge additions and edge deletions are
bounded separately, then we can try every combination of k2 and k3 where k2 + k3 satisfies
the given bound.

Our techniques. As a standard opening step, we use the iterative compression method
introduced by Reed et al. [14] and concentrate on the compression problem, where we are

STACS’14



216 Chordal Editing is Fixed-Parameter Tractable

equipped with a hole cover M . The subgraph G−M is chordal and hence admits a clique
tree decomposition. First, we break every short hole by simple branching. The main technical
idea appears in the way we break long holes. We use the clique decomposition to show that
the shortest hole H can be decomposed into a bounded number of segments, where the
internal vertices of each segment, as well as the part of the graph “close” to them behave in
a well-structured and simple way with respect to their interaction with M . To break H, we
have to break some of the segments, and the properties of the segments allow us to show
that we need to consider only a bounded number of canonical separators breaking these
segements. Therefore, we can branch on chosing one of these canonical separators and break
the hole using it, resulting in an FPT algorithm.

Notation. All graphs discussed in this paper shall always be undirected and simple. The
length |H| of a hole H is defined to be the number of edges in it; note that |H| = |V (H)|. If
a pair of vertices is adjacent, we say u ∼ v. By v ∼ X we mean v is adjacent to at least one
vertex of the set X. Two vertex sets X and Y are completely connected if x ∼ y for each
pair of x ∈ X and y ∈ Y . A vertex is simplicial if N(v) induce a clique. The notation NU (v)
stands for the neighbors of v in the set U , i.e., NU (v) = N(v) ∩ U , regardless of whether
v ∈ U or not. We use NH(v) as a shorthand for NV (H)(v).

A set S of vertices separates x and y, and is called an (x, y)-separator if there is no (x,
y)-path in the subgraph G− S; it is minimal if no proper subset of S separates x and y. A
graph is chordal if and only if every minimal separator in it induces a clique [6].

Let T be a tree whose nodes, called bags, correspond to the maximal cliques of a graph
G. With the customary abuse of notation, the same symbol K is used for a bag in T and
its corresponding maximal clique of G. Let T (x) denote the subgraph of T induced by all
bags containing x. The tree T is a clique tree of G if for any vertex x ∈ V (G), the subgraph
T (x) is connected. It is known that the intersection of any pair of adjacent bags Ki and
Kj of T makes a minimal separator; in particular, it is a separator for any pair of vertices
x ∈ Ki \Kj and y ∈ Kj \Ki. A vertex is simplicial if and only if it belongs to exactly one
maximal clique; thus, any non-simplicial vertex appears in some minimal separator(s) [9].

2 Outline of the algorithm

A subset V− ⊆ V (G) is called a hole cover of G if its deletion makes G chordal. We say
that (V−, E−, E+), where V− ⊆ V (G) and E− ⊆ E(G) and E+ ⊆ V (G)2 \E(G), is a chordal
editing set of G if the deletion of V− and E− and the addition of E+, applied successively,
make G chordal. Its size is defined to be the 3-tuple (|V−|, |E−|, |E+|), and we say that it is
smaller than (k1, k2, k3) if all of |V−| ≤ k1 and |E−| ≤ k2 and |E+| ≤ k3 hold true and at
least one inequality is strict. Note that since chordal graphs are hereditary, it does not make
sense to add new vertices. The main problem studied in the paper is formally defined as
follows.

chordal editing (G, (k1, k2, k3))
Input: A graph G and three nonnegative integers k1, k2, and k3.
Task: Either construct a chordal editing set (V−, E−, E+) of G that has size at most

(k1, k2, k3), or report that no such a set exists.

One might be tempted to define the editing problem by imposing a combined quota on
the total number of operations, i.e., a single parameter k = k1 + k2 + k3, instead of three
separate parameters. However, this formulation is computationally equivalent to chordal
deletion in a trivial sense, as vertex deletions are clearly preferable to both edge operations.
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0. return if G is chordal or one of k1, k2, and k3 becomes negative;
1. find a shortest hole H;
2. if H is shorter than k + 4 then guess a way to fix it; goto 0.
3. else decompose H into O(k3) segments;

guess a segment and break it;
4. goto 0.

Figure 1 Outline of our algorithm for chordal editing compression.

We use the technique of iterative compression: we define and solve a compression version
of the problem first and argue that this implies the fixed-parameter tractability of the
original problem. In the compression problem a hole cover M of bounded size is given in the
input, making the problem somewhat easier: as G−M is chordal, we have useful structural
information about the graph. Note that the definition below has a slightly technical (but
standard) additional condition, i.e., we are not allowed to delete a vertex in M .

chordal editing compression (G, M, (k1, k2, k3))
Input: A graph G, three nonnegative integers k1, k2, and k3, and a hole cover M of

G whose size is at most k1 + k2 + k3 + 1.
Task: Either construct a chordal editing set (V−, E−, E+) of G such that its size is

at most (k1, k2, k3) and V− is disjoint from M , or report that no such a set
exists.

The set M is called the modulator of this instance. We use k := k1 + k2 + k3 to denote
the total numbers of operations.

We sketch how the technique of iterative compression can be applied to use an algorithm
for chordal editing compression to solve chordal editing.

Let v1, v2, . . . , vn be an arbitrary ordering of V (G), and let Gi be the graph induced by
{v1, . . . , vi}. We try to find a chordal editing set of size (k1, k2, k3) for each Gi. Assume
that we have obtained a solution (V i

−, Ei
−, Ei

+) for Gi, then we can make a hole cover
Xi of Gi by taking V i

−, and an arbitrary endvertex from each edge in Ei
− ∪ Ei

+. Clearly,
Xi ∪ {vi+1} is a hole cover of Gi+1. By guessing the (possibly empty) set Xi

− of vertices of
a hypothetical solution that is in Xi ∪ {vi+1} and deleting them from Gi+1, we make an
instance of chordal editing compression where the graph is Gi+1−Xi

−, the modulator is
M i+1 := Xi∪{vi+1}\Xi

−, and the parameters are (k1−|Xi
−|, k2, k3). Then the compression

algorithm for chordal editing compression can be used to find a chordal editing set
disjoint from M i+1 for Gi+1 −Xi

−. If the answer is “NO,” then we can conclude that the
original instance is also “NO.” Otherwise the obtained solution, together with Xi

−, gives
the solution (V i+1

− , Ei+1
− , Ei+1

+ ) for Gi+1. We proceed to Gi+2, until we reach Gn which is
G. Hence the original problem is solved with at most n calls of the algorithm for chordal
editing compression.

The main part of this paper will be focused on an algorithm for chordal editing
compression. Its outline is described in Figure 1. We will endeavor to prove

I Theorem 2.1. chordal editing compression is solvable in time 2O(k log k) · nO(1).

Steps 1 and 2 are straightforward: we can find a shortest hole H in polynomial time,
and if |H| ≤ k + 3, then there are only O(k2) ways to fix it. To fix a hole of length
|H| ≥ k + 4 > k3 + 3, we need to delete at least one vertex or edge from it. As we shall see in
Section 3, such a hole can be divided into a bounded number of “segments” and the deletions
have to “break” at least one of the segments (i.e., delete one vertex or edge from it). In our
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case, breaking a segment means a strange mixed form of separation: we have to separate two
vertices by removing both edges and vertices. We study this notion of mixed separation on
chordal graphs in Section 4. Finally, we show in Section 5 that there is a bounded number of
canonical ways of breaking a segment and we may branch on choosing one segment and one
of the canonical ways of breaking it. This completes the proofs of Theorem 2.1 and 1.1.

3 Segments

We shall define a hierarchy of vertex sets V0, V1, and V2. Each set is a subset of the preceding
one, and all of them induce chordal subgraphs. Let A denote the set of common neighbors
of the shortest hole H found in step 1, and define AM = A ∩M and A0 = A \M . We can
assume that A induces a clique: if two vertices x, y ∈ A are nonadjacent, then together with
the two nonadjacent vertices v1 and v3 of H, they form a 4-hole (xv1yv3x). The following
observation follows from the fact that H is the shortest hole of G.

I Proposition 3.1. A vertex not in A is adjacent to at most three vertices of H and these
vertices have to be consecutive in H.

The first set is defined by V0 = V (G) \ (M ∪A). Note that {M , V0, A0} partitions V (G),
and H is disjoint from A0. Since |H| ≥ k + 4 > |M |, the hole H intersects both M and
V0. Every component of H −M is an induced path of G0, and there are at most |M | such
paths. Observing |M | = O(k), to decompose H into O(k3) segments as claimed, it suffices to
divide each of these paths into O(k2) parts. Let P denote such a path (v1v2 . . . vp). To avoid
triviality, we may assume p > 3; as a result and by Proposition 3.1, the distance between v1
and vp in G0 is at least 3. A further consequence is v1 6∼ vp.

Let G0 denote the chordal subgraph G[V0], and let T be a fixed clique tree for G0. We
take the unique path of bags P =(K1, . . . , Kq) that connects the disjoint subtrees T (v1)
and T (vp) in T , where K1 ∈ T (v1) and Kq ∈ T (vp). The condition p > 3 implies that q > 2.
The removal of K1 and Kq will separate T into a set of subtrees, one of which contains all
K` with 1 < ` < q; let T1 denote this nonempty subtree. The second set, V1, is defined to be
the union of all bags in T1 and {v1, vp}. By definition and observing that V1 fully contains
P , it induces a connected subgraph.

We then focus on bags in P and their union. (One may have judiciously observed that
vertices in bags of P induce an interval graph.) From the definition of clique tree, we can
infer that v1 and vp appear only in K1 and Kq respectively, while every internal vertex of
P appears in more than one bags of P. For every i with 1 ≤ i ≤ p, we denote by first(i)
(resp., last(i)) the smallest (resp., largest) index ` such that 1 ≤ ` ≤ q and vi ∈ K`, e.g.,
first(1) = last(1) = first(2) = 1 and last(p− 1) = first(p) = last(p) = q. As P is
an induced path, for each i with 1 < i < p, we have

first(i) ≤ last(i− 1) < first(i + 1) ≤ last(i). (1)

For 1 ≤ ` < q, we define S` := K`∩K`+1. For any pair of nonadjacent vertices vi, vj in P , (i.e.,
1 ≤ i < i+1 < j ≤ p,) all minimal (vi, vj)-separators are then {S` | last(i) ≤ ` < first(j)}.

The third set, V2, is defined to be the union of vertices in all induced (v1, vp)-paths in
G0. Since a vertex x is an internal vertex of an induced (v1, vp)-path of G0 if and only if it
is in some minimal (v1, vp)-separator of G0, we have (noting q > 2)

I Proposition 3.2. A vertex is in V2 \ {v1, vp} if and only if it appears in more than one
bags of P. Moreover, V2 \ {v1, vp} ⊆

⋃
1<`<q K`.
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The definition of V0 and G0 depend upon the hole H, while the definition of V1 and V2
depend upon both the hole H and the path P . In this paper, we are always concerned with
a particular path of a particular hole, which will be specified before the usage of V1 and V2.

The set V0 \ V1 is easily understood, and we now consider V1 \ V2. Given a pair of
nonadjacent vertices x, y ∈ V2, we say that x lies to the left (resp., right) of y if the bags of P
containing x have smaller (resp., greater) indices than those containing y. If an induced path
of G[V2] consists of three or more vertices, then its endvertices are nonadjacent and have a
left-right relation. This relation can be extended to all pairs of consecutive (and adjacent)
vertices x, y in this path, the one with smaller distance to the left endvertex of the path is
said to the left of the other. It is easy to verify that these two definitions are compatible.

I Lemma 3.3. For any component C of the subgraph induced by V1 \ V2, the set NV0(C)
induces a clique and there exists ` such that 1 < ` < q and NV0(C) ⊆ K`.

Proof. Consider a vertex x ∈ C, which is different from v1 and vp. Since x ∈ V1, it appears
in some bag of T1. Recall that the only bag of T1 that is adjacent to K1 is K2. Thus if x ∈ K1,
then it has to be in K2 as well, which is impossible as x 6∈ V2 (Proposition 3.2). Therefore,
x 6∈ K1; for the same reason, x 6∈ Kq. As a result, NV0(x) ⊆ V1, and then NV0(C) ⊆ V2.

It now suffices to show that NV0(C) induces a clique. Suppose that, for contradic-
tion, there is a pair of nonadjacent vertices x, y ∈ NV0(C). We can find an induced (v1,
vp)-path P ′ through x and y; without loss of generality, let x lie to the left of y, i.e.,
P ′ =(v1 · · ·x · · · y · · · vp). Let x′ and y′ be the first and last vertices in P ′ that are adjacent
to C, and (x′P ′′y′) be an induced path with all internal vertices from C. Note that x′ either
is x or lies to the left of x in P ′ and y′ either is y or lies to the right of y, which imply x′ 6∼ y′.
Thus (v1 · · ·x′P ′′y′ · · · vp) is an induced (v1, vp)-path through C, which is impossible. This
completes the proof. J

Such a component C is called a branch of P , and we say that it is near to vi ∈ P if
there is an ` with first(i) ≤ ` ≤ last(i) satisfying the condition of Lemma 3.3. Since a
component C is near to vi ∈ P if and only if NV0(C) ⊆ N [vi], and applying Proposition 3.1
on any vertex in NV0(C), we conclude that a branch is near to at most three vertices of P . If
a hole passes through C, then C has to be adjacent to M : by Lemma 3.3, NV0(C) is a clique,
thus a hole cannot enter and leave C both via NV0(C). The converse is not necessarily true:
some branch that is adjacent to M might still be disjoint from all holes, e.g., if N(C) is a
clique. This observation inspires us to generalize the definition of simplicial vertices to sets
of vertices.

I Definition 3.4. A set X of vertices is called simplicial in a graph G if N [X] induces a
chordal subgraph of G and N(X) induces a clique of G.

It is easy to verify that a simplicial set of vertices is disjoint from all holes. This suggests
that simplicial sets are irrelevant to chordal editing problem and we may never want to
add/delete edges incident to a vertex in a simplicial set. However, this is not true in general,
and we may need to add/delete such edges if N(X) was modified. As characterized by the
following lemma, this is the only reason for touching X in the solution: set X will only
concern us after N(X) has been changed. We say that a chordal editing set (V−, E−, E+)
edits a set X ⊂ V (G) of vertices if either V− contains a vertex of X or E− ∪E+ contains an
edge with at least one endpoint in X. We use a classic result of Dirac [6] stating that the
graph obtained by identifying two cliques of the same size from two chordal graphs is also
chordal.
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220 Chordal Editing is Fixed-Parameter Tractable

I Lemma 3.5. A minimal chordal editing set edits a simplicial set U only if it removes at
least one edge induced by N(U).

Proof. Let (V−, E−, E+) be a minimal editing set of G such that E− does not contain any
edge induced by N(U). We restrict the editing set to the subgraph G−U , i.e., we consider the
set (V− \U, E− \ (U ×V (G)), E+ \ (U ×V (G))), and let G′ be the graph obtained by applying
it to G. Clearly G′ −U = G−U is chordal, where N(U) \ V− induces a clique. Also chordal
is the subgraph of G′ induced by N [U ] \ V−. Both of them contain the clique N(U) \ V−.
Since G′ can be obtained from them by identifying N(U)\V−, it is also chordal. Then by the
minimality of (V−, E−, E+), it must be the same as (V−\U, E−\(U×V (G)), E+\(U×V (G))),
and this proves this lemma. J

Now we are ready to define segments of P , which are delimited by some special vertices
called junctions. By definition, a branch is simplicial in G0, but unnecessarily in G. We say
that a vertex w 6∈ K is adjacent to a bag K if w is adjacent to at least one vertex in K.

I Definition 3.6 (Segment). A vertex v ∈ P is called a junction (of P ) if (1) some bag K

that contains v is adjacent to M \AM ; (2) some branch near to v is adjacent to M \AM ;
(3) some branch near to v is not simplicial in G; or (4) NV2(v) is not completely connected
to A. A sub-path (vs · · · vt) of P is called a segment, denoted by [vs, vt], if vs and vt are the
only junctions in it.

We point out that the four types are not exclusive, and one junction might be in more
than one types. For a junction v of type (1) or (2), we say that the vertex in M \AM used
in its definition witnesses it.

I Remark. Informally speaking, for a junction v of type (1) or (2), there is a connection from
v to M \AM that is local to v in some sense; for a junction v of type (3) or (4), there is a
hole near to v, and its disposal might interfere with that of H. If another hole H ′ intersects
a segment [vs, vt], then H ′ has to go through the whole segment, or more specifically, it
necessarily enters and exits the segment via N [vs] and N [vt], respectively.

The definition of junction and segment extends to all paths of H−M . In polynomial time,
we can construct V0 for H and V1, V2 for each path P of H −M , from which all junctions
of H can be identified. For each path of H −M , the endvertices are adjacent to M \AM ,
hence junctions. As a result, every vertex in V (H) \M is contained in some segment, and in
each path of H −M , the number of segments is the number of junctions minus one.

We are now ready for the main result of this section that gives a cubic bound on the
number of segments of H. It should be noted the constants—both the exponent and the
coefficient—in the following statement are not tight, and the current values simplify the
argument significantly. Recall that a vertex not in A sees at most three vertices in H, and
they have to be consecutive.

I Theorem 3.7. If H contains more than |M | · (12k2 + 92k + 82) segments, then we can
either find a vertex that has to be in V−, or return “NO.”

Proof. We show that H contains at most |M | · (12k2 + 92k + 82) junctions. Recall that there
are at most |M | paths in H −M . To obtain a contradiction, we suppose that some path P of
H −M contains 12k2 + 92k + 82 junctions. Let us first attend to junctions of type (1) in P .

I Claim 1. Each w ∈M \AM witness at most 15 junctions of type (1).
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Proof. Suppose, for contradiction, that 15 vertices in H appears in some bag adjacent to
w; let X be this set of vertices. Assume first that X is consecutive. At most 3 of them
are adjacent to w, and they are consecutive in H. Thus, we can always pick 6 consecutive
vertices from X that are disjoint from NH(w); let them be {vi, . . . , vi+5}. By definition,
there are two vertices u1, u2 ∈ V0 ∩ N(w) such that u1 ∼ vi and u2 ∼ vi+5. It is easy to
verify that u2 6∼ vi+2 and u1 6∼ vi+3 and u1 6∼ u2. Therefore, we can find an induced (u1,
u2)-path with all interval vertices from {vi, . . . , vi+5}. The length of this path is at least 3,
and hence it makes a hole with w of length at most 9. Assume now that X is not consecutive
in P , then we can pick a pair of nonadjacent vertices vi, vj from X such that the v` 6∈ X

for every i < ` < j. There are two vertices u1, u2 ∈ V0 ∩ N(w) such that u1 ∼ vi and
u2 ∼ vj . It is easy to verify that (wu1vi · · · vju2w) is a hole. By assumption that |X| ≥ 15,
we have j − i ≤ |H| − 13. In either case, we end with a hole strictly shorter than H. The
contradictions prove this claim. y

I Claim 2. If some vertex w ∈M \AM witnesses 5k + 80 junctions of the first two types in
P , then we can return “NO.”

Proof. Let X be this set of junctions, we order them according to their indices in P and
group each consecutive five from the beginning. We omit groups that contain junctions of
type (1) witnessed by w, and in each remaining group, we pair the second and last vertices
in it. According to Claim 1, we end with at least k + 1 pairs, which we denote by (v`1 , vr1),
· · · , (v`k+1 , vrk+1), · · · .

For each pair (v`j
, vrj

), where 1 ≤ j ≤ k + 1, we construct a hole Hj as follows. By
definition, there is a branch C`j

(resp., Crj
) whose neighborhood in H is a proper subset of

{v`j−1, v`j
, v`j+1} (resp., {vrj−1, vrj

, vrj+1}). By the selection of the pair v`j
and vrj

(two
vertices of X have been skipped in between), they are nonadjacent, and rj−`j > 2. Therefore,
C`j

and Crj
are distinct and necessarily nonadjacent. Since C`j

induces a connected subgraph
and is adjacent to both w and {v`j−1, v`j , v`j+1}, we can find an induced (w, v`j+1)-path
P`j

with all internal vertices from C`j
∪ {v`j−1, v`j

}. Likewise, we can obtain an induced
(w, vrj−1)-path Prj with all internal vertices from Crj−1 ∪ {vrj , vrj+1}. These two paths P`j

and Prj
, together with (v`j+1 . . . vrj−1), make the hole Hj : we have `j + 1 < rj − 1; for each

`j + 1 ≤ s ≤ rj − 1, vs 6∼ w; and for each `j + 1 < s < rj − 1, vs 6∼ C`j
, Crj

. This hole goes
through w. This way we can construct k + 1 holes, and it can be easily verified that they
intersect only in w. Since we are not allowed to delete w, we cannot fix all these holes by at
most k operations. Thus we can return “NO.” y

If Claim 2 applies, then we are already done; otherwise, there are at most |M | · (5k + 80)
junctions of the first two types. We proceed by considering the set B of junctions that are
only of type (3) or (4) but not of the first two types. Its number is at least

(12k2 + 92k + 82)− (5k + 80) · |M | ≥ 7k2 + 7k + 1.

We order B according to their indices in P , and let bi denote the index of the ith vertex of
B in P . For each 0 ≤ i ≤ k(k + 1), we use the (7i + 3)th vertex of B to construct a hole Hi.
Then we argue that this collection of holes either allows us to identify a vertex that has to
be in the solution, or conclude infeasibility.

The first case is when there is a pair of nonadjacent vertices x ∈ NV2(vb7i+3) and
y ∈ A. In this case we can assume that x is adjacent to neither vb7i+1 nor vb7i+5 ; otherwise
(xvb7i+1yvb7i+3x) or (xvb7i+3yvb7i+5x) is a 4-hole, which contradicts the fact that H is the
shortest. In other words, x only appears in some bag between Klast(b7i+1) and Kfirst(b7i+5);
on the other hand, by definition of V2, it appears in at least two of these bags. There is thus
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an induced (vb7i+1 , vb7i+5)-path Pi via x in G[V2]. Starting from x, we traverse Pi to the left
until the first vertex x1 that is adjacent to y; the existence of such a vertex is ensured by the
fact that y ∼ vb7i+1 . Similarly, we find the first neighbor x2 of y in Pi to the right of x. Then
the sub-path of Pi between x1 and x2, together with y, gives the hole Hi. By construction,
no vertex of Hi − y is adjacent to vb7i

or vb7i+6 .
In the other case, some branch Ci near to vb7i+3 is not simplicial in G. By definition,

either the subgraph induced by N(Ci) is not a clique, or the subgraph induced by N [Ci] is not
chordal. Since vb7i+3 does not satisfy the conditions of type (1) and (2), N(Ci) ∩M ⊆ AM ,
i.e., N(Ci) \ V0 ⊆ A. On the other hand, according to Lemma 3.3, N(Ci) ∩ V0 induces a
clique. Therefore, there must be a pair of nonadjacent vertices x ∈ N(Ci) ∩ V0 and y ∈ AM .
As Ci is near to vb7i+3 , it must hold that x ∈ N(vb7i+3); this has already been discussed
in the previous case. Suppose now that N(Ci) induces a clique and there is a hole Hi in
N [Ci]. We have seen that N [Ci] ∩M = AM , thus this hole Hi intersects AM ; let w be a
vertex in V (Hi) ∩AM . If Hi is disjoint from A0, then no vertex in Hi \M can be adjacent
to vb7i or vb7i+5 . Otherwise, it contains some vertex u ∈ A0; noting that A induces a clique,
Hi ∩ A = {u, w}. Moreover, N(Ci) ∩ V2 is in the neighborhood of vb7i+3 and therefore
N(Ci) ∩ V2 and N(Cj) ∩ V2 are disjoint for i 6= j: the existence of a vertex x ∈ V2 adjacent
to both Ci and Cj would contradict Proposition 3.1 (noting that the distance of vb7i+3 and
vb7j+3 is greater than 2 on the hole H).

In sum, we have a set H of at least k(k + 1) + 1 distinct holes such that (1) each hole
in H contains at most one vertex of A0, and (2) the intersection of any pair of them is in
A. Recall that each hole has length at least k + 4, hence cannot be fixed by edge additions
only. If there is a u ∈ A0 contained in at least k + 1 holes of H, then we have to put u into
V−; otherwise we have to delete distinct elements (edges or vertices) to break different holes,
which is impossible. Now assume that no such a vertex u exists, then there must be k + 1
holes that intersect only in M , which allow us to return “NO.” J

4 Mixed separators in chordal graphs

Given a pair of nonadjacent vertices x, y of a graph, we say that a pair of vertex set VS

and edge set ES is a mixed (x, y)-separator if the deletion of VS and ES leaves x and y in
two different components; its size is defined to be (|VS |, |ES |). A mixed (x, y)-separator is
inclusive-wise minimal if there exists no other mixed (x, y)-separator (V ′S , E′S) such that
V ′S ⊆ VS and E′S ⊆ ES and at least one containment is proper.
I Lemma 4.1. Let x and y be a pair of nonadjacent vertices in a chordal graph F . For any
pair of nonnegative integers (a, b), we can find a mixed (x, y)-separator of size at most (a, b)
or asserts its nonexistence in time 3a+b+1 · |V (F )|O(1).

Another interpretation of this lemma is
I Corollary 4.2. Let x and y be a pair of nonadjacent vertices in a chordal graph F . For any
nonnegative integer a ≤ k1, in time 3k1+k2+1 · |V (F )|O(1) we can find the minimum number
b such that b ≤ k2 and there is a mixed (x, y)-separator of size (a, b) or assert that there is
no mixed (x, y)-separator of size (a, k2).

5 Proof of Theorem 2.1

We are now ready to put everything together and finish the analysis of the algorithm. We say
that a chordal editing set is minimum if there exists no chordal editing set with a smaller size.
Note that a segment is contained in a unique path of H −M , which determines V1 and V2.
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Proof of Theorem 2.1. Let (V ∗−, E∗−, E∗+) be a minimum chordal editing set of G of size no
more than (k1, k2, k3). We start from a closer look at how it breaks H; by Theorem 3.7, we
may assume that H contains O(k3) segments. There are three options for breaking H. In
the first case, V ∗− contains some junction, or E∗− contains some edge of H that is in M × V0.
In this case, we can branch on including one of these vertices or edges into the solution;
there are O(k3) of them. Otherwise, we need to delete an internal vertex or edge from some
segment. Let d = 2k + 4. In the second case, there is either (1) some i with s < i ≤ s + d

such that vi ∈ V ∗− or vi−1vi ∈ E∗−; or (2) some j with t − d ≤ j < t such that vj ∈ V ∗− or
vjvj+1 ∈ E∗−. In particular, if the segment to be broken satisfies t− s ≤ 2d, then we must be
in this case. If one of the two aforementioned cases is correct, then we can identify one vertex
or edge of the solution by branching. In total, there are O(k4) branches we need to try.

Henceforth, we assume that none of these two cases holds. We still have to delete at least
one vertex or edge from H; this vertex or edge must belong to some segment [vs, vt] with
t− s > 2d. For such a segment, we consider V1 and V2 corresponding to it. For any pair of
indices i, j with s ≤ i < i + 3 ≤ j ≤ t, we use U[i,j] to denote the union of the set of bags in
the nonempty subtree of T − {Klast(i), Kfirst(j)} that contains {Klast(i)+1, . . . , Kfirst(j)−1}
as well as {vi, vj}. Let G[i,j] be the subgraph induced by U[i,j].

I Claim 3. There must be some segment [vs, vt] such that vertices vs+d and vt−d are
disconnected in G[s,t] − V ∗− − E∗−.

Proof. We prove by contradiction. For a segment [vs, vt] with t− s ≤ 2d, the path (vs · · · vt)
remains intact in G− V ∗− −E∗−. Thus it suffices to consider segments [vs, vt] with t− s > 2d.
Let s′ = s + d and t′ = t− d. For such a segment, we can find an induced (vs, vt)-path P[s,t]
in G[s,t] − V ∗− − E∗−, which is also an (unnecessarily induced) path of G. This path has to
visit every bag K` with last(s) ≤ ` ≤ first(t). In other words, in the original graph G,
the path P[s,t] intersects every N [vi] with s < i ≤ s′. Since we delete at most k2 ≤ k edges
each of which is adjacent to a single vertex in the sub-path (vs · · · vs′), and (d− k2) ≥ k + 4,
there must be a vertex vs′′ with s′′ ≥ s + k + 4 that is not incident to any edge in E∗−. This
vertex is either in or adjacent to P[s,t] in G[s,t] − V ∗− − E∗−. Likewise, we can find a vertex
vt′′ with t′′ ≤ t− k − 4 that is in or adjacent to P[s,t] in G[s,t] − V ∗− − E∗−. We now change
the path into (vs · · · vs′′P ′vt′′ · · · vt), where P ′ is an induced (vs′′ , vt′′)-path with all internal
vertices from P[s,t].

Let s′′′ with s ≤ s′′′ ≤ s′′ be the smallest index such that vs′′′ is adjacent to P ′. We
argue that s′′′ ≥ s′′ − 2. Otherwise, the neighbor x of vs′′′ in P ′ (noting that it is not in
A) is to the left of vs′′ . Any path from vs′′′ to vt in G0 has to visit N [vs′′ ]. Since no edge
incident to vs′′ is deleted, the path P ′ has a chord, which is impossible. Similarly, let t′′′ with
t′′ ≤ t′′′ ≤ t be the greatest such that vt′′′ is adjacent to P ′, and we have t′′′ ≤ t′′ + 2. We
can take an induced (vs′′′ , vt′′′)-path of G− V ∗− − E∗− with all internal vertices from P ′, and
extend it by including (vs · · · vs′′′) and (vt′′′ · · · vt) to make a chordless (vs, vt)-path P ′[s,t] in
G− V ∗− − E∗−. The length of this path is at least 2(k + 4− 2) ≥ 2k3 + 4.

Therefore, for each segment [vs, vt] of H, we have obtained an induced (vs, vt)-path P ′[s,t]
in G− V ∗− − E∗−. Concatenating all these paths, as well as edges of H in M × V (G), we get
a cycle C. To verify that C is a hole, it suffices to verify that the internal vertices of P ′[s,t] is
disjoint and nonadjacent to other parts of C. On the one hand, no internal vertex of P ′[s,t] is
adjacent to M \ AM by definition (C is disjoint from A). On the other hand, all internal
vertices of P ′[s,t] appear in the subtree that contains Klast(s+4) in T −{Klast(s+3), Kfirst(t−3)},
while no vertex in the (vt, vs)-path in C does. This verifies that C is a hole of G− V ∗− −E∗−.
Since the length of C is longer than 2k3 + 4, there must be a hole after the addition of E∗+,
which contains at most k3 edges. This contradiction proves the claim. J
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In other words, (V ∗−, E∗−) contains some inclusive-wise minimal mixed ({vs, . . . , vs′},
{vt′ , . . . , vt})-separator (V ∗S , E∗S) in G[s,t]. The resulting graph obtained by deleting (V ∗S , E∗S)

from G[s,t] is characterized by the following claim.

I Claim 4. Let (VS , ES) be an inclusive-wise minimal mixed (vs′ , vt′)-separator in G[U[s′,t′]].
For any pair of indices s′′, t′′ with s ≤ s′′ ≤ s′ < t′ ≤ t′′ ≤ t, both X \ {vs′′} and Y \ {vt′′}
are simplicial in G′ = G−VS −ES , where X and Y be the components of G[s′′,t′′]−VS −ES

containing vs′′ and vt′′ , respectively.

Proof. It is easy to verify that NG′(X \ {vs′′}) ⊆ (Klast(s′′) ∩V2)∪A. The set Klast(s′′) ∩V2
is completely connected to A; otherwise s′′ + 1 is a junction, which is impossible. Let
X ′ = NG′ [X \ {vs′′}]; a vertex in X ′ is either in V2, some branch, or A. We now verify that
X ′ induces a chordal subgraph of G′, which means that X \ {vs′′} is simplicial in G′. Since
(VS , ES) is inclusive-wise minimal, no edge in ES is induced by X or Y . As a result, for
every branch C near to some vertex vi with s < i < t, C ∩X ′ is simplicial. On the other
hand, by definition of segments, V2 ∩X ′ is completely connected to A. Therefore, G′[X ′] is
chordal. A symmetric argument applies to Y \ {vt′′}. y

We consider the subgraph obtained from G by deleting (V ∗S , E∗S), i.e., G′ = G− V ∗S −E∗S .
Note that (V ∗− \ V ∗S , E∗− \ E∗S , E∗+) is a minimum chordal editing set of G′.

I Claim 5. For any mixed ({vs, . . . , vs′}, {vt′ , . . . , vt})-separator (V ∗S , E∗S) of size at most
(|V ∗S |, |E∗S |) in G[s,t], substituting (VS , ES) for (V ∗S , E∗S) in (V ∗−, E∗−, E∗+) gives another mini-
mum editing set to G.

Proof. We first argue the existence of some vertex vs′′ with s ≤ s′′ ≤ s′ such that E− contains
no edge induced by Klast(s′′). For each s′′ with s ≤ s′′ ≤ s′, since last(s′′) ≥ first(s′′ + 1)
and every vertex in them is adjacent to at most 3 vertices of H (Proposition 3.1), bags
Klast(s′′) and Klast(s′′+2) are disjoint. In particular, an edge cannot be induced by both
Klast(s′′) and Klast(s′′+2). Suppose that E− contains an edge induced by Klast(s′′) for each
s′′ with s ≤ s′′ < s′, then we must have |E−| > (s′−s)/2 ≥ k2, which is impossible. Likewise,
we have some vertex vt′′ with t′ ≤ t′′ ≤ t such that E− contains no edge induced by Klast(t′′).
By Claim 4, it follows that every vertex of U[s′′,t′′] is in a simplicial set of G − V ∗S − E∗S .
Since (V ∗− \ V ∗S , E∗− \E∗S , E∗+) is a minimum chordal editing set to G− V ∗S −E∗S , we have by
Lemma 3.5 that (V ∗− \ V ∗S , E∗− \ E∗S , E∗+) does not edit any vertex of U[s′′,t′′].

Suppose that there is a hole C in the graph obtained by applying ((V ∗− \ V ∗S ) ∪ VS , (E∗− \
E∗S) ∪ ES , E∗+) to G. By construction, C contains a vertex of U[s′,t′] ⊆ U[s′′,t′′]. However,
by Claim 4, every vertex of U[s′′,t′′] is in some simplicial set of G − VS − ES and, as
(V ∗− \ V ∗S , E∗− \ E∗S , E∗+) does not edit U[s′′,t′′], every such vertex is in a simplical set after
applying ((V ∗− \ V ∗S ) ∪ VS , (E∗− \E∗S) ∪ES , E∗+) to G. Thus no vertex of U[s′′,t′′] is on a hole,
a contradiction. y

For any segment [vs, vt], we can use Corollary 4.2 to find all possible sizes of minimum
mixed ({vs, . . . , vs′}, {vt′ , . . . , vt})-separator. There are at most k1 of them. By Claim 5,
one of them can be used to compose a minimum chordal editing set. In each iteration, we
branch into O(k4) instances to break a hole, and in each branch decreases k by at least 1.
The runtime is thus O(k)4k · nO(1) = 2O(k log k) · nO(1). This completes the proof. J
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