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ABSTRACT. The homomorphism problem for relational structures istestract way of formulating
constraint satisfaction problems (CSP) and various prodii@ database theory. The decision version
of the homomorphism problem received a lot of attention teriture; in particular, the way the
graph-theoretical structure of the variables and comganfluences the complexity of the problem
is intensively studied. Here we study the problem of enutivegall the solutions with polynomial
delay from a similar point of view. It turns out that the enuat®n problem behaves very differently
from the decision version. We give evidence that it is urjitbat a characterization result similar to
the decision version can be obtained. Nevertheless, we sbotrivial cases where enumeration can
be done with polynomial delay.

1. Introduction

Constraint satisfaction problems (CSP) form a rich classgirithmic problems with applica-
tions in many areas of computer science. We only mentiorbdatasystems, where CSPs appear
in the guise of the conjunctive query containment problechtae closely related problem of eval-
uating conjunctive queries. It has been observed by FedkVardi [14] that as abstract problems,
CSPs are homomorphism problems for relational structufdgorithms for and the complexity
of constraint satisfaction problems have been intenseigiestt (e.g. [20, 10, 4, 5]), not only for
the standard decision problems but also optimization emss{e.g. [3, 22, 23, 24]) and counting
versions (e.g. [6, 7, 8, 13]) of CSPs.

In this paper we study th@SP enumeration problerthat is, problem of computing all solutions
for a given CSP instance. More specifically, we are intedestethe question which structural
restrictions on CSP instances guarantee tractable entiomepmoblems. “Structural restrictions”
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are restrictions on the structure induced by the consgrantthe variables. Example of structural
restrictions is “every variable occurs in at most 5 constsdior “the constraints form an acyclic
hypergraph” This can most easily be made precise if we view CSPs as hompirismn problems:
Given two relational structure&, B, decide if there is a homomorphism frointo B. Here the
elements of the structure correspond to the variables of the CSP and the elements efrtieure

B correspond to the possible values. Structural restristéa restrictions on the structuke If A is

a class of structures, th&itP(.A, —) denotes the restriction of the general CSP (or homomorphism
problem) where the “left hand side” input structuteis taken from the classl. ECSP(A, —)
denotes the corresponding enumeration problem: Given éhaional structuress € A andB,
compute the set of all homomorphisms fraimto B. The enumeration problem is of particular
interest in the database context, where we are usually mpirderested in the question of whether
the answer to a query is nonempty, but want to compute aksuplthe answer. We will also briefly
discuss the correspondirsgarchproblem: Find a solution if one exists, deno®dSP (A, —).

It has been shown in [2] th&CSP(.A, —) can be solved in polynomial time if and only if the
number of solutions (that is, homomorphisms) for all instmis polynomially bounded in terms
of the input size and that this is the case if and only if thacitres in the classl have bounded
fractional edge cover number. However, usually we cannpeeixthe number of solutions to be
polynomial. In this case, we may ask which conditions.4muarantee thaECSP(.A, —) has a
polynomial delay algorithm. Aolynomial delay algorithnfior an enumeration problem is required
to produce the first solution in polynomial time and thenat®ely compute all solutions (each
solution only once), leaving only polynomial time betweem tsuccessive solutions. In particular,
this guarantees that the algorithms computes all solutiopslynomial total timethat is, in time
polynomial in the input size plus output size.

It is easy to see th&CSP(.A, —) has a polynomial delay algorithm if the cladshas bounded
tree width. It is also easy to see that there are clagbed unbounded tree width such that
ECSP(A, —) has a polynomial delay algorithm. It follows from our resuthat examples of such
classes are the class of all grids or the class of all compgletehs with a loop on every vertex. It
is known that the decision proble@SP(.A, —) is in polynomial time if and only if the cores of the
structures ind have bounded tree width [17] (provided the arity of the caists is bounded, and
under some reasonable complexity theoretic assumptigngpre of a relational structured is a
minimal substructured’ C A such that there is a homomorphism frofrto A’; minimality is with
respect to inclusion. It is easy to see that all cores of &tstre are isomorphic. Hence we usually
speak of “the” core of a structure. Note that the core of a @ial of any other bipartite graph with
at least one edge) is a single edge, and the core of a compégik gith all loops present (and of
any other graph with a loop) is a single vertex with a loop oifite core of a complete graph with
no loops is the graph itself. As a polynomial delay algoritttman enumeration algorithms yields
a polynomial time algorithm for the corresponding decigimwablem, it follows thattCSP (A, —)
can only have a polynomial delay algorithm if the cores ofdhlreictures in4 have bounded tree
width. Unfortunately, there are examples of clasgethat have cores of bounded tree width, but
for which ECSP (A, —) has no polynomial delay algorithm unless=FNP (see Example 3.2).

Our main algorithmic results show thBCSP (A, —) has a polynomial delay algorithm if the
cores of the structures id have bounded tree width and if, in addition, they can be reddh a
sequence of “small steps.” Aendomorphisnof a structure is a homomorphism of a structure to
itself. A retractionis an endomorphism that is the identity mapping on its imdgeery structure

The other type of restrictions studied in the literature @PGire “constraint language restrictions”, that is, retitms
on the structure imposed by the constraint relations ondheeg. An example of a constraint language restrictionlis “a
clauses of a SAT instance, viewed as a Boolean CSP, are Hursed".
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has a retraction to its core. However, in general, the only teamap a structure to its core may
be by collapsing the whole structure at once. As an examplgsider a path with a loop on both
endpoints. The core consists of a single vertex with a lodMoré precisely, the two cores are the
two endpoints with their loops.) The only endomorphism @ 8tructure to a proper substructure
maps the whole structure to its core. Compare this with atbathonly has a loop on one endpoint.
Again, the core is a single vertex with a loop, but now we cathethe core by a sequence of
retractions, mapping a path of lengtto a subpath of length — 1 and then to a subpath of length

n — 2 et cetera. We prove that il is a class of structures whose cores have bounded tree width
and can be reached by a sequence of retractions each of wilicimoves a bounded number of
vertices, theiCSP (A, —) has a polynomial delay algorithm.

We also consider more general sequences of retractionsdonmerphism from a structure to
its core. We say that a sequence of endomorphisms from dwsius, to a substructuréd; C Ay,
from A, to a substructurd\,, . .., to a structurd,, hasbounded widthf A,, and, for each < n, the
“difference betweer; andA; 1" has bounded tree width. We prove that if we are given a sexpien
of endomorphisms of bounded width together with the inputcstire A, then we can compute all
solutions by a polynomial delay algorithm. Unfortunatety,general we cannot compute such a
sequence of endomorphisms efficiently. We prove that evewiftih 1 it is NP-complete to decide
whether such a sequence exists.

Finally, we remark that our results are far from giving a ctetgclassification of the classéls
for which ECSP(A, —) has a polynomial delay algorithm and those classes for wihidbes not.
Indeed, we show that it will be difficult to obtain such a clfisation, because such a classification
would imply a solution to the notoriously op&SP dichotomy conjectuf Feder and Vardi [14]
(see Section 3 for details).

Due to space restrictions several proofs are omitted.

2. Preliminaries

Relational structures. A vocabularyr is a finite set ofrelation symbolsof specified arities. A
relational structureA overr consists of a finite sed called theuniverseof A and for each relation
symbol R € 7, say, of arityr, anr-ary relationR* C A”. Note that we require vocabularies and
structures to be finite. A structuee is asubstructureof a structureB if A C B and R* C RP for

all R € 7. We write A C B to denote tha# is a substructure d8 andA C B to denote thah is

a proper substructure oB, that is,A C B andA # B. A substructureh C B is inducedif for all

R € T, say, of arityr, we haveR® = RE N A". For a subsetl C B, we writeB[A] to denote the
induced substructure @ with universeA.

Homomorphisms. We often abbreviate tuplg&, ..., ax) by a. If f is a mapping whose domain
containsay, ..., a, we write f(a) to abbreviate(f(a1),..., f(ax)). A homomorphisnfrom a
relational structure\ to a relational structur® is a mappingp : A — B such that for allR € 7
and all tuplesa € R* we havep(a) € RE. A partial homomorphisnon C C Ato B is a
homomorphism of\[C] to B. It is sometimes useful when designing examples to excled&io
homomorphisms or endomorphisms. The simplest way to doishat use unary relations. For
example, ifR is a unary relation an¢s) € R* we say that has colorR. Now if b € B does not
have colorR then no homomorphism froh to B mapsa to b.

Two structuresA andB arehomomorphically equivalernt there is a homomorphism from
to B and also a homomaorphism frafto A. Note that if structured andA’ are homomorphically
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equivalent, then for every structuBethere is a homomorphism fromto B if and only if there is a
homomorphism fromd\’ to B; in other words: the instancé4, B) and(A’, B) of the decision CSP
are equivalent. However, the two instances may have vasthreht sizes, and the complexity of
solving the search and enumeration problems for them canbalgjuite different. Homomorphic
equivalence is closely related to the concept of the corestriature: A structurd\ is acoreif there

is no homomorphism fror to a proper substructure @éf. A core of a structuré\ is a substructure
A’ C A such that there is a homomorphism fr@oto A’ andA’ is a core. Obviously, every core
of a structure is homomorphically equivalent to the streetiWWe observe another basic fact about
cores:

Observation 2.1. Let A andB be homomorphically equivalent structures, and\eandB’ be cores
of A andB, respectively. Thed’ andB’ are isomorphic. In particular, all cores of a structérare
isomorphic. Therefore, we often speaktioé core ofA.

Observation 2.2. Itis easy to see that it is NP-hard to decide, given strustiire€ B, whetherA is
isomorphic to the core dB. (For an arbitrary graply, let A be a triangle an@® the disjoint union
of G with A. ThenA is a core ofB8 if and only if G is 3-colorable.) Hell and NeSetfil [19] proved
that it is co-NP-complete to decide whether a graph is a core.

Tree decompositions. A tree decompositioof a graphG is a pair(T, B), whereT is a tree and3
is a mapping that associates with every node V(T') a setB, C V(G) such that (1) for every
v € V(G) the set{t € V(T)|v € B;} is connected ir{’, and (2) for everye € E(G) there is a
t € V(T) such thake C B;. The setsB,, fort € V(T), are called thdagsof the decomposition. It
is sometimes convenient to have the tiéa a tree decomposition rooted; we always assume it is.
Thewidth of a tree decompositio(’, B) is max{|B;| | t € V(T')} — 1. Thetree widthof a graph
G, denoted by t(7), is the minimum of the widths of all tree decompositions-bf

We need to transfer some of the notions of graph theory tdrarpirelational structures. The
Gaifman graph(also known agprimal graph of a relational structuré\. with vocabularyr is the
graphG(A) with vertex setA and an edge betweenandb if a # b and there is a relation symbol
R € 1, say, of arityr, and a tupl€a, . ..,a,) € R® such thata,b € {ai,...,a,}. We can now
transfer graph-theoretic notions to relational structuta particular, a subsd® C A is connected
in a structureA if it is connected inG(A). A tree decompositionf a structureA can simply be
defined to be a tree-decomposition(éfA ). Equivalently, a tree decomposition &fcan be defined
directly by replacing the second condition in the definitidriree decompositions of graphs by (2")
foreveryR € 7 and(ay, ... ,a,) € R* thereis & € V(T) such that{ay, ...,a,} C B;. AclassC
of structures habounded tree widtif there is aw € N such that tWA) < w for all A € C. A class
C of structures habounded tree width modulo homomorphic equivaleihtigere is aw € N such
that everyA € C is homomorphically equivalent to a structure of tree widtimast w.

Observation 2.3. A structureA is homomaorphically equivalent to a structure of tree widtmast
w if and only if the core ofA has tree width at most.

The Constraint Satisfaction Problem. For two classesd and B of structures, th€onstraint Sat-
isfaction ProblemCSP(.A, B), is the following problem:

CSP(A, B)
Instance: A € A,B € B
Problem: Decide if there is a homomorphism frafnto B.
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The CSP is a decision problem. The variation of it we studyhis paper is the following
enumeration problem:

ECSP(A, B)
Instance: A € A,B € B
Problem: Output all the homomorphisms frofto B.

We shall also refer to the search proble&fi;SP (A, BB), in which the goal is to find one solution
to a CSP-instance or output ‘no’ if a solution does not exists

If one of the classesl, B is the class of all finite structures, then we denote the spmed-
ing CSPs byCSP(A, —), CSP(—, B) (respectively, ECSP(A, —), ECSP(—, B), SCSP(A, —),
SCSP(—, B)).

The decision CSP has been intensely studied. If a @fas§ structures has bounded arity
then CSP(C, —) is solvable in polynomial time if and only i has bounded tree width modulo
homomorphic equivalence [17]. If the arity 6fis not bounded, several quite general conditions on
a class of structures have been identified that guarantgagmulal time solvability ofCSP(C, —),
see, e.g.[16, 12, 18]. Problems of the fo@iiP(—,C) have been studied mostly in the case when
C is 1-element. Problems of this type are sometimes refeaednon-uniform It is conjectured
that every non-uniform problem is either solvable in polyra time or NP-complete (the so-called
Dichotomy Conjectune[14]. Although this conjecture is proved in several partie cases [20, 9,
10, 4], in its general form it is believed to be very difficult.

A search CSP is clearly no easier than the correspondingidegbroblem. While any non-
uniform search problefRCSP(—, C) is polynomial time reducible to its decision versioSP(—,C)
[11], nothing is known about the complexity of search prald&CSP(C, —) except the result we
state in Section 3. Paper [25] provides some initial resuitshe complexity of non-uniform enu-
merating problems.

3. Tractable structuresfor enumer ation

Since even an easy CSP may have exponentially many solutimshodel of choice for ‘easy’
enumeration problems is algorithms with polynomial delay][ An algorithm Alg is said to solve
a CSPwith polynomial delayWPD for short) if there is a polynomiagb(n) such that, for every
instance of size:, Alg outputs ‘no’ in a time bounded by(n) if there is no solution, otherwise it
generates all solutions to the instance such that no soligtioutput twice, the first solution is output
after at mosp(n) steps after the computation starts, and time between dimgutvo consequent
solutions does not exceedn ).

If a class of relational structuréshas bounded arity, the aforementioned result of Grohe [17]
imposes strong restrictions on enumeration problems BlEv&PD.

Observation 3.1. If a class of relational structurgswith bounded arity does not have bounded tree
width modulo homomorphic equivalence, the@'SP(C, —) is not WPD, unless PNP.

Unlike for the decision version, the converse is not truaurtsted tree width modulo homomor-
phic equivalence does not imply enumerability WPD.

Example 3.2. Let A; be the disjoint union of &-clique and a loop and lett = {A; | k£ >
1}. Clearly, the core of each graph i has bounded tree width (in fact, it is a single element),
henceCSP(A, —) is polynomial-time solvable. For an arbitrary graBhwithout loops, letB’
be the disjoint union of8 and a loop. It is clear that there is always a trivial homorhsm
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from A, (for anyk > 1) to B’ that maps everything into the loop. There exist homomorphis
different from the trivial one if and only i® contains ak-clique. Thus if we are able to check
in polynomial time whether there is a second homomorphismen tve are able to testlf has a
k-clique. Therefore, althougbSP(.A, —) andSCSP (A, —) are polynomial-time solvable, a WPD
enumeration algorithm fdEeCSP(.A, —) would imply P= NP.

It is not difficult to show thattCSP(C, —) is enumerable WPD i€ has bounded tree width.
For space restrictions we do not include a direct proof astéad we derive it from a more general
result in Section 4. Thus enumerability WPD has a differeattability criterion than the decision
version, and this criterion lies somewhere between boundsd width and bounded tree width
modulo homomorphic equivalence. Thus in order to ensuretligasolutions can be enumerated
WPD, we have to make further restrictions on the way the siraccan be mapped to its bounded
tree width core. The main new definition of the paper requihes the core is reached by “small
steps”™:

Let A be arelational structure with univerge We say that\ has a sequence of endomorphisms
of width & if there are subsetd = Ay D 41 D ... D A, # () and homomorphisme;, ..., ¢,
such that

(1) ¢, is a homomorphism from[A;_1] to A[A;],

(2) SDZ'(Aifl) =A;forl <i<mn;

(3) if G is the primal graph of\, then the tree width of7[A; \ A;;1] is at mostk for every

0<i<my

(4) the structure induced hy,, has tree width at most.

In Section 4, we show that enumeration {dr, B) can be done WPD if a sequence of bounded
width endomorphisms fak is given in the input. Unfortunately, we cannot claim tH&tSP(.A, —)
can be done WPD if every structure ihhas such a sequence, since we do not know how to find
such sequences efficiently. In fact, as we show in Sectidri$hard to check if a width-1 sequence
exists for a given structure. Furthermore, we show a clasghere every structure has a width-2
sequence, bdECSP(.A, —) cannot be done WPD, unlessPNP. This means that it is not possible
to get around the problem of not being able to find the seqeeficeexample, by finding sequences
with somewhat larger width or by constructing the sequent@nd the enumeration).

Thus having a bounded width sequence of endomorphisms ithaaight tractability crite-
rion. We then investigate a more restrictive notion, whaeekiound is not on the tree width of the
difference of the layers but on the number of elements in tfierdnces. However, in the rest of
the section, we give evidence that enumeration problemvalsiel WPD cannot be characterized in
simple terms relying on tree width. For instance, a desonptf search problems solvable in poly-
nomial time would imply a description of non-uniform deoisiproblems solvable in polynomial
time. This is shown via an analogous result for the searchiameiof the problem, which might be
of independent interest. B & B we denote the disjoint union of relational structuteandB.

Lemma3.3. LetB be a relational structure, which is a core, and &t be{A & B | A — B}. Then
CSP(—,B) is solvable in polynomial time if and only if so is the probl8@SP (Cg, —).

Proof. If the decision problen®SP(—, B) is solvable in polynomial time we can construct an algo-
rithm that given an instandg\, C) of CSP(Cg, —) computes a solution in polynomial time. Indeed,
asCSP(—, B) is solvable in polynomial time by the aforementioned resti[tL1] it is also polyno-
mial time to find a homomorphism from a given structur@®tprovided one exists. l& € Cg such a
homomorphismp exists by the definition afg. So our algorithms, first, finds some homomorphism
. Then it decides by brute force whether or not there existsnadmorphismy’ from B to C (note
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that this can be done in polynomial time for every fix®d If such a homomorphism does not exist
then we can certainly guarantee that there is no homomanpin@an A to C. Otherwise we obtain
a required homomorphism as follows: Lety(a) = ¢'(a) for a € B, andy(a) = ¢’ o ¢(a) for

a € A.

Conversely, assume that we have an algorithm Alg that findslwdien of any instance of
CSP(Cg, —) in polynomial time, sayp(n). We construct from it an algorithm that soléSP(—, B).
Given an instancéA, B) of CSP(—, B) we call algorithm Alg with inputh & B andB. Additionally
we count the number of steps performed by Alg in such a waywieattop if Alg has not finished
in p(n) steps. If Alg produces a correct answer then we have to betafletain from it a homo-
morphism fromA to B. If Alg’s answer is not correct or the clock reach€s) steps we know that
Alg failed. The only possible reason for that is that> B does not belong t6g, which implies that
A is not homomorphic t@®. [

In what follows we transfer this result to enumeration peoi$. Let4 be a class of relational
structures. The clasd’ consists of all structures built as follows: Takee A and add to ifA|
independent vertices.

Lemma3.4. Let. A be a class of relational structures. Th8Q'SP (A, —) is solvable in polynomial
time if and only ifECSP(A’, —) is solvable WPD.

Proof. If ECSP(A, —) is enumerable WPD, then for any structdrec A’ it takes time polynomial
in |A’| to find the first solution. Sinc4’ is only twice of the size of the corresponding structire
it takes only polynomial time to solVeCSP (A, —).

Conversely, given a structuee = A U I € A’, whereA € A andI is the set of independent
elements, and any structuBe The first homomorphism from’ to B can be found in polynomial
time, sinceSCSP(.A, —) is polynomial time solvable and the independent verticesbeamapped
arbitrarily. Let the restriction of this homomorphism omtobe ¢. Then while enumerating all
possible|B|/4! extensions of» we buy enough time to enumerate all homomorphisms ftota B
using brute force. n

4. Sequence of bounded width endomor phisms

In this section we show that for every fixéd all the homomorphisms from to B can be
enumerated with polynomial delay if a sequence of wikltehdomorphisms of\ is given in the
input. Given a sequencdy, ..., A, andyy, ..., v, as in the definition of a sequence of width
endomorphisms, we denatg 4;] by A,.

We will enumerate the homomorphisms fraxrio B by first enumerating the homomorphisms
from A, A,,_1, ... to B and then transforming them to homomorphisms frano B using the
homomorphismsp;. We obtain the homomorphisms frofy, by extending the homomorphism
from A;;, to the setAd; \ A;11; Lemma 4.1 below will be useful for this purpose. In order to
avoid producing a homomorphism multiple times, we need iatel classification (see definitions
of elementary homomorphisms and of the index of a homomsnphi

Lemmad4.l. LetA, B be relational structures and; C X, C A subsets, and lef, be a homomor-
phism fromA[X;] to B. For every fixed:, there is a polynomial-time algorithtHOMOMORPHISM
ExT(A,B, X1, X2, go) that decides whethey, can be extended to a homomorphism fi&fXs| to
B, if the tree width of induced subgragh| X» \ X;| of the Gaifman graph o is at mostk.
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The index of a homomorphismp from A to B is the largest such thatp can be written as
@ = 1 oyo...o0p for some homomorphisng from A, to B. In particular, ifp cannot be
written asp = 1 o (1, then the index ofp is 0. Observe that if the index of is at leastt, then
there is a uniqueb such thatp = v o ¢; o ... o p1: This follows from the fact thap; o ... o 1
is a surjective mapping from to A,, thus if¢’ and«)” differ on A;, theny’ o ¢; o ... 0 ¢y and
" o ppo... 0 differ on A. A homomorphismy from A; to B is elementary if it cannot be
written asy) = v’ o ;1. A homomorphism iseducibleif it is not elementary.

Lemma 4.2. If a homomorphism) from A; to B is elementary, thep = ) o ¢ 0o ... 0 1 has
index exactlyt. Conversely, if homomorphisg from A to B has indext and can be written as
@ =1 oy o...0p1,then the homomorphisg from A, to B is elementary.

Lemma 4.2 suggests a way of enumerating all the homomorghissm A to B: for ¢t =
0,...,n, we enumerate all the elementary homomorphisms f#grto B, and for each such homo-
morphisn), we computep = 1o p;0...01. To this end, we need the following characterization
of elementary homomorphisms:

Lemma4.3. A homomorphisny from A; to B is reducible if and only if
(1) ¥(z) = ¢¥(y) for everyz,y € A, with o1 (x) = ¢ir1(y), 1.€., for everyz € Ayiq, ()
has the same value for everyz with ;11 (z) = z, and
(2) the mapping defined by (z) := b, is a homomorphism from,,; to B.

Lemma 4.3 gives a way of testing in polynomial time whethelivery homomorphismy is
elementary: we have to test whether one of the two conditmaewiolated. We state this in a more
general form: we can test in polynomial time whether a paniappinggy, can be extended to an
elementary homomorphism, if the structure induced by the elements wherés not defined has
bounded tree width. We fix values every possible way in whighdonditions of Lemma 4.3 can
be violated and use éiMOMORPHISM-EXT to check whether there is an extension compatible with
this choice. In order to efficiently enumerate all the pdssiiolations of the second condition, the
following definition is needed:

Given a relation?® of arity », abad prefixis a tuple(by, . .., bs) € B* with s < r such that

(1) there is no tupléby, ..., bs, bsy1,...,b,) € R® foranyb,,q,...,b, € B, and

(2) thereis atupléby,...,bs 1,cs,Cov1,...,c) € RE for somec, ..., c,. € B.

If (b1,...,b,) ¢ RE, then there is a uniqué < s < r such that the tupléb,, ..., b,) is a
bad prefix: there has to be ansuch that(by, ..., bs) cannot be extended to a tuple 8f, but
(b1,...,bs—1) can.

Lemma 4.4. The relationR® has at mostR®| - (|B| — 1) - r bad prefixes, where is the arity of
the relation.

Lemma 4.5. Let X be a subset ofi; and letgy be a mapping fromX to B. For every fixedk,
there is a polynomial-time algorithLEMENTARY-EXT (¢, X, g¢ ) that decides whethej, can be
extended to an elementary homomorphism ffonto B, if the tree width of the structure induced
by A; — X is at mostk.

We enumerate the elementary homomorphisms in a specific defmed by the following
precedence relation. Letbe an elementary homomorphism fragxpto B and lety be an elemen-
tary homomorphism fron&\; to B for some; > i. Homomorphismy is the parentof ¢ (¢ is a
child of v) if ¢ restricted to4;; can be written ag o ¢; o ... o ;2. Ancestoranddescendant
relations are defined as the reflexive transitive closurb@parent and child relations, respectively.
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Note that an elementary homomorphism frémto B has exactly one parent for< n and a
homomorphism from\,, to B has no parent. Fix an arbitrary ordering of the elementd.ofor
0<i<nand0d <j <[4\ Aiq1, let A; ; be the union of4;;; and the firstj elements of
A; \A/L'Jrl. Note thatAw = Ai+1 andAi7|Ai\A A;.

Lemma4.6. Lety be a mapping from¥; ; to B that can be extended to an elementary homomor-
phism fromA; to B. Assume that a sequence of widtkendomorphisms is given fé. For every
fixedk, there is a polynomial-delay, polynomial-space algoritBhEMENTARY-ENUM (4, j, ) that
enumerates all the elementary homomorphisnis; diat extendg and all the descendants of these
homomorphisms.

it =

By calling ELEMENTARY-ENUM(n, 0, go ) (Wheregy is a trivial mapping froni) to B), we can
enumerate all the elementary homomorphisms. By the oklsamia Lemma 4.2, this means that
we can enumerate all the homomorphisms frbro B.

Theorem 4.7. For every fixedk, there is a polynomial-delay, polynomial-space algorittimat,
given structuresd, B, and a sequence of widthendomorphisms of, enumerates all the homo-
morphisms fronA to B.

Theorem 4.7 does not provide a complete description ofetaskstructures solvable WPD.

Corollary 4.8. There is a class4 of relational structures such that not all structures frofrhave
a sequence of width endomorphisms anBCSP (A, —) is solvable WPD.

Proof. Let A be the class of structures that are the disjoint union of p botd a core. Obviously,
SCSP(A, —) is polynomial time solvable. Therefore, by Lemma &SP (A’, —) is solvable with
polynomial delay. However, itis not hard to see tHatoes not have a sequence of endomorphisms
of bounded tree width. [

Furthermore, as we will see in the next section it is hard,dnegal, to find a sequence of
bounded width endomorphims. Still, we can find a sequenceddrmorphisms for a structuse if
we impose two more restrictions on such a sequence.

A retraction of a structureA is called ak-retraction if at mostk nodes change their value
according tap. A structure is &-coreif the only k-retraction is the identity. A-core of a structure
is anyk-core obtained by a sequencekefetractions.

Lemma 4.9. All k-cores of a structuré\ are isomorphic.

Lemma 4.9 amounts to say that when searching for a sequercestfactions converging to
a k-core we can use the greedy approach and include, as the pexben of such a sequence, any
k-retraction with required properties. With this in handsmwesv can apply Theorem 4.7.

Theorem 4.10. Letk > 0 be a positive integer and I€t be a class of structures such that the
core of every structure i@ has tree width at most. Then, the enumeration probleBCSP(C, —)
is solvable WPD.

Corallary 4.11. If C is a class of structures of bounded tree width tB&nSP(C, —) is solvable
WPD.
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5. Hardnessresults

The first result of this section shows that finding a sequeria@andomorphisms of bounded
width can be difficult even in simplest cases.

Theorem 5.1. It is NP-complete to decide if a structure has a sequencewidih retractions to
the core.

The second result shows tHACSP(.A, —) can be hard even if every structure.ihhas a se-
guence of width-2 endomorphisms. Note that this resultdsnmparable with Theorem 5.1, since
an enumeration algorithm (in theory) does not necessaale to compute an sequence of endo-
morphisms. We need the following lemma:

Lemma5.2. If G is a planar graph, then it is possible to find a partitioir;, V5) of its vertices in
polynomial time such tha¥[V;] and G[V;] have tree width at mo&t

Proposition 5.3. There is a classA of relational structures such that every structure frofrhas
a sequence of width 2 endomorphisms to the core, and suclthth@roblemECSP (A, —) is not
solvable WPD, unles® = N P.

Proof. Let A be a class of graphs built in the following way. Take a 3-calbde planar grapld:
and its partition(V7, V) according to Lemma 5.2. Using colorings we can ensure(thata core.
Then we take a disjoint union of this graph with a trian@léaving all the colors and a cogy; of
G[V1]. Let A denote the resulting structure.

CLAaIM 1. A has a sequence of width-2 endomorphisms.

Let ¢ be a 3-coloring ofG that is a homomorphism into the triangle, antithe bijective
mapping fromG; to G[V1]. Theny; is defined to act ag on G, asy’ on G and identically on
T. Endomorphismps is just the 3-coloring oy U GG; induced byy. The images ofp; andp, are
T U G[V4] andT, respectively, so all the conditions on a sequence of w2dtiomomorphisms are
easily checkable.

CLAIM 2. The RANAR GRAPH 3-COLORING PROBLEMis Turing reducible t&2CSP(A, —).

Given a planar grapli we find its partition(V;, V) and create a structurk, as described
above. Then we apply an algorithm that enumerates solutioFi§'SP (A, —) We may assume that
such an algorithm stops with some time bound regardlesshehét is 3-colorable or not. If the
algorithm succeeds we can now produce a 3-coloring.of [

6. Conjunctive queries

When making a query to a database one usually needs to oldaiesvof only those variables
(attributes) (s)he is interested in. In terms of homomaisi this can be translated as follows: For
relational structured,, B, and a subset” C A, we aim to list those mappings froin to B which
can be extended to a full homomorphism fréno B. In other words, we would like to enumerate
all the mappings fronY” to B that arise as the restriction of some homomorphism fono B.
Clearly, this problem significantly differs from the reguenumeration problem. A mapping from
Y to B can be extendible to a homomorphism in many ways, possitggrpolynomially many,
and an enumeration algorithm would list all of them. In thest@ase scenario it would list them
before turning to the next partial mapping. If this happémsdy destroy polynomiality of the delay
between outputting consecutive solutions.

In this section we treat thedNJUNCTIVE QUERY EVALUATION PROBLEM as follows.
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CQE(A, B)

Instance: A€ A, Be B, Y CA

Problem: Output all partial mappings fromy” to B ex-
tendible to a homomorphism fro to B.

We present two results, first one of them shows that the probIQE (A, —) is WPD whenA
is a class of structures of bounded tree width, the secondlaimas that, modulo some complexity
assumptions, in contrast to enumeration problems thisatdmngeneralized to structures with
cores of bounded tree width fér> 2.

Theorem 6.1. If A is a class of structures of bounded width tHeQE(.A, —) is solvable WPD.

Proof. We use Lemma 4.1 to show that algorithm CQB+BIDED-WIDTH of Figure 1 does the
job. Indeed, this algorithms backtracks only if outputs laitson. [

Theorem 6.1 does not generalize to classes of structuresekhmores have bounded width.

Example 6.2. Recall that the MILTICOLORED CLIQUE problem (cf. [15]) is formulated as fol-
lows: Given a humbek and a vertex;-colored graph, decide if the graph containg-elique all
vertices of which are colored different colors. This praobles W [1]-complete, i.e., has no time
f(k)n¢ algorithm for any functiory and constant, unless FPF¥ W1]. We reduce this problem to
CQE(A, —) whereA is the class of structures whose 2-cores are 2-elementiloieddrelow.

Let us consider relational structures with two binary and twaary relations. This structure
can be thought of as a graph whose vertices and edges havd tretwo colors, say, red and
blue, accordingly to which of the two binary/unary relagdhey belong to. Led, be the relational
structure with universéa, ..., ag, y1,...,yr}, Whereaq, ..., ar are red whiley, . . .,y are blue.
Then{as,...,a;} induces a red clique, that is evety, a; (i, j are not necessarily different) are
connected with a red edge, and eg¢hs connected ta; with a blue edge. It is not hard to see that
every pair of a red and blue vertices induces a 2-core of thistsire. Setd = {A | k € N}.

The reduction of the MLTICOLORED CLIQUE problem toCQE(.A, —) goes as follows. Given
a k-colored graphz = (V, E') whose coloring induces a partition &f into classesB;, ..., B.
Then we define structures, B and a se” C A. We setA = Ag, Y = {y1,...,yx}. Then let
B =V U{by,..., b}, the elements o are colored red and the induced substruci(ié] is the

Figure 1: Algorithm CQE-BUNDED-WIDTH
Input: Relational structured, B, andY = {Y1,...,Y;} C A
Output: A list of mappingsy: Y — B extendible to a homomorphism frofto B
Stepl setm =0,0=0,S; =B, € [m], complete=false
Step 2 whilenot completedo
Step2.1 if m < {thendo
Step2.1.1 search S,,+1 untilab € S,,+1 is found such that there exists a homomorphism extending
© U{ym+1 — b} andremove all members of5,,, ;1 preceding inclusive

Step2.1.2 if such & existsthen set ¢ := @ U {ym41 — b}, m :=m +1
Step2.1.3 ese
Step2.1.3.1 ifm#Othenset o = @1y, ..y} ANASyy1 := B,m:=m —1
Step 2.1.3.2 elseset complete:true
Step 2.2 esethendo
Step2.2.1  output ¢
Step2.2.2  set ¢ =Py, gy mi=L—1

endwhile
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graphG (without coloring) whose edges are colored also red. Bin@ll . . ., b, are made blue and
eachb; is connected with a blue edge with every vertex frém

It is not hard to see that any homomorphism mégs ..., a;} to V andY to {b,...,bx},
and that the number of homomorphisms that do not agreg does not exceedl*. Moreover,G
contains a-colored clique if and only if there is a homomorphism frénio B that mapsy” onto
{b1,...,bx}. If there existed an algorithm solvifgQE(.A, —) WPD, say, time needed to compute
the first and every consequent solution is bounded by a potiaie(n), then time needed to list all
solutions is at most*p(n). This means that MLTICOLORED CLIQUE is FPT, a contradiction.
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