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Abstract
In a constraint satisfaction problem (CSP) the goal is to find 
an assignment of a given set of variables subject to speci-
fied constraints. A global cardinality constraint is an addi-
tional requirement that prescribes how many variables 
must be assigned a certain value. We study the complexity 
of the problem CCSP(G), the CSP with global cardinality 
constraints that allows only relations from the set G. The 
main result of this paper characterizes sets G that give rise 
to problems solvable in polynomial time, and states that the 
remaining such problems are NP-complete.

1. CONSTRAINT PROBLEMS
1.1. Constraint satisfaction problem
Among formalisms unifying and classifying various com-
binatorial problems the Constraint Satisfaction Problem (or 
CSP) is one of the most successful ones. In this problem, we 
are given a set of variables and a collection of restrictions—
constraints—on the allowed combinations of values of the 
variables; the goal is to find an assignment to the variables 
so that all constraints are satisfied. Usually constraints are 
imposed on small sets of variables; thus, the CSP formalizes 
the idea of finding a global solution bound by local restric-
tions. The Sudoku puzzle gives a popular toy example of CSP. 
We need to assign values—numbers from 1 to 9—to vari-
ables—entries of the puzzle so that the values of variables in 
a row, column, or 3 × 3 block are different. Another toy exam-
ple whose CSP encoding is less obvious is the 8-Queen prob-
lem: place eight queens on a 8 × 8 chessboard so that they 
do not hit each other.15 To represent it as a CSP we consider 
the columns {a, b, c, d, e, f, g, h} (see Figure 1) as variables 
that can be assigned values from the set of rows, and the 
assigned value shows the position of a queen in this column.

Many combinatorial problems readily fall into this 
framework. For example, in the Graph 3-Coloring prob-
lem, the vertices of a given graph are variables to receive 
one of the three colors, and assignments are constrained 
by the requirement that adjacent vertices receive different 
colors. Thus, this problem is a CSP. The list of examples 
can be extended by other combinatorial problems like 
Satisfiability, problems in scheduling, temporal and spatial 
reasoning, and many others.

CSPs have been studied from both practical and theoreti-
cal perspectives. On the practical side, the expressive power 
of the CSP allows to model a wide range of real-world prob-
lems from planning24 and scheduling,35 frequency assign-
ment problems,17 to image processing,32 to programming 
language analysis,33 to natural language understanding.1 
A number of commercial and freeware solvers exist capable 

of solving a wide range of CSPs of nearly industrial scale, 
and methods of solving constraint problems are develop-
ing rapidly.15 On the theoretical side, researchers focus on 
several directions such as the complexity of CSPs prob-
lems, efficient algorithms for CSPs, where such algorithms 
exist, and connections of CSPs with other combinatorial 
problems.3, 8, 10, 13, 18, 21, 22, 26, 31, 34

1.2. Global constraints
The ‘pure’ CSP described above is sometimes not enough 
to model practical problems, as some constraints that have 
to be satisfied are not ‘local’ in the sense that they cannot 
be viewed as applied to only a limited number of variables. 
Constraints of this type are called global. Global constraints 
are very diverse; the current Global Constraint Catalog  
(see http://www.emn.fr/x-info/sdemasse/gccat/) lists 313 
types of such constraints. In this paper we focus on global 
cardinality constraints.6, 14

Some of the global constraints such as the surjectivity of a 
solution, that is, the requirement that all variables take dis-
tinct values (cf. the Sudoku puzzle), allow simulation by local 

The original version of this paper was published in the 
Proceedings of the 24th Annual IEEE Symposium on Logic 
in Computer Science (Los Angeles, CA, Aug. 11–14, 2009), 
419–428.
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Figure 1. The 8-Queen problem.
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is often called a constraint language. Same restrictions can 
be applied to problems with cardinality constraints. We use 
CCSP(G) to denote such problem.

Problems of the form CSP(G) and CCSP(G) span a wide 
range of combinatorial problems such as ones in Figure 3, 
and many others.
Graph 3-Coloring. Let  denote the disequality rela-
tion on a 3-element set, that is, the binary relation con-
taining all pairs (a, b) of elements from the set such that 
a ¹ b:

(Observe that we write pairs, and later longer tuples of ele-
ments vertically, so members of the relation are the columns 
of the matrix.) Then the 3-Coloring problem equals CSP(G3−

Col) where .
2-Satisfiability. Recall that a literal is a propositional 
variable or its negation. A disjunction of literals (of 2 liter-
als) is called a clause (a 2-clause). A propositional formula 
that is a conjunction of clauses (2-clauses) is said to be a 
conjunctive normal form, or a CNF (2-CNF) for short. In the 
2-Satisfiability problem, given a 2-CNF, the goal is to find an 
assignment to its variables that makes the formula true. If 
the set of variables of the CNF is V then every clause defines 
a constraint on a pair of variables that forbids exactly one 
combination of values. Let G2−SAT be the following set of 4 
binary relations, each of which omits a certain pair:

Then CSP(G2−SAT) represents 2-Satisfiability and it is known 
to be polynomial-time solvable.
3-Satisfiability. Analogously to 2-SAT, let G3−SAT be the 
set consisting of eight ternary relations on {0, 1}, each of 
which omits a certain triple. Then CSP(G3−SAT) represents 
3-Satisfiability and it is NP-complete.
Independent Set. An independent set in a graph is a set of 
vertices, no two of which are connected with an edge. In the 
Independent Set problem, given a graph and a natural num-
ber k, the question is whether or not there exists an indepen-
dent set of size k. Let

that is, RIS = excludes only (1, 1), and GIS = {RIS}. Now, to 
reduce Independent Set to the CSP the vertices of a given 
graph are treated as variables and the constraint RIS is 
imposed on every pair of adjacent vertices. For any solu-
tion of such CSP the variables (vertices) assigned 1 form 
an independent set in the graph. To express the restric-
tion on the size of an independent set we can use a car-
dinality constraint that requires that exactly k variables 

constraints. Surjectivity can be enforced by requiring that 
every two variables receive distinct values. However, some-
times it is not possible. In this paper we focus on one type 
of such ‘truly’ global constraints, cardinality constraints, that 
impose restrictions on the number of variables assigned 
certain values, see Figure 2. For instance, in the 3-Coloring 
problem, a cardinality constraint may require that at least 
half of the vertices of the graph are colored red.

1.3. Complexity of constraints
As the general CSP is NP-hard, the study of its complexity 
focuses on considering restricted versions of the problem. 
There are two principal ways to restrict the CSP, both of them 
can be applied to CSPs with cardinality constraints as well.

The first approach restricts the way constraints interact. 
The interaction of constraints can be represented by the 
primal graph whose vertices are variables, and two vertices 
are connected if and only if they belong to the scope of a 
constraint. This approach was motivated by the observation 
that if the primal graph is acyclic or close to acyclic in a well-
defined sense (has bounded treewidth), then CSP becomes 
polynomial-time solvable.20 Interestingly, attempts to char-
acterize conjunctive queries to databases that can be pro-
cessed efficiently led to the same question.26 After a series 
of recent breakthrough results21, 31 the structure of polyno-
mial-time solvable CSPs of this type is largely understood.

The second approach to restrict the CSP is to limit the 
allowed types of constraints. It can be expressed formally as 
follows. Let the possible values of variables in the problem 
be taken from a set D (the domain). In this paper, we always 
assume D to be finite. Then every constraint that can be 
imposed on a set of k variables is a list of all allowed com-
binations of values these variables can take simultaneously, 
that is, a k-ary relation on D. If now we fix a set G of such rela-
tions on D and allow constraints to be chosen only from G, 
we arrive to the problem denoted CSP(G). In this context, G 

Figure 2. Formal definition of CSP and CCSP.

CSP
Let D be a (finite) set (the domain). Every instance I = (V,C) of the 
problem CSP consists of:

•  a set V of variables, and
•  a set C of constraints. Every constraint is a pair 〈s, R〉, where

— �s = (v1, … , vk) is a tuple of variables from V, not necessarily 
distinct, and

— R is a k-ary relation over D.
A solution of I = (V, C) is a mapping j : V → D such that for any 
constraint 〈s, R〉, we have j (s) ∈ R.

CCSP
A global cardinality constraint for an instance I = (V,C) is a mapping 
p: D →  such that Sa ∈D p(a) = |V|. Solution j satisfies p if |j −1(a)| = 
p(a) for every a ∈ D. The question is whether or not there is a solution 
satisfying one of the given cardinality constraints.

CSP(G) and CCSP(G) 
Let G be a set (finite or infinite) of relations on D, called a constraint 
language. The problems CSP(G) and CCSP(G) include those instances 
of CSP and CCSP, respectively, that use only relations from G.
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are assigned 1. Therefore Independent Set is equivalent to 
CCSP(GIS). The Independent Set problem is well known to 
be NP-complete.

Despite such expressive power, problems of the form 
CSP(G) probably cannot capture all combinatorial prob-
lems. As is easily seen, all CSPs belong to the class NP. Some 
of them, such as 3-Coloring or 3-SAT are NP-complete, 
while others, for example, 2-SAT, belong to the class P, 
that is, solvable in polynomial time. If P ¹ NP, there is an 
infinite hierarchy of complexity classes between P and NP 
such that problems from different classes are not reduc-
ible to each other in a natural sense.28 However, all known 
problems CSP(G) turn out to be either in P or NP-complete. 
This phenomenon is known as complexity dichotomy.18 
The dichotomy phenomenon was first discovered by 
Schaefer34 for CSPs with 2-element domain, and was 
later confirmed in many particular cases.3, 7, 9 This caused 
Feder and Vardi to pose a conjecture, called the Dichotomy 
Conjecture, that every problem CSP(G) is either solvable 
in polynomial time or is NP-complete. The Dichotomy 
Conjecture remains open till now.

Remarkably, the phenomenon of complexity 

dichotomy extends inside P, although a weaker notion of 
reduction is needed for this. To date, only four complex-
ity classes and a series of very similar classes inside P are 
known such that CSP(G) can be complete in.2, 29 In some 
cases the lack of problems CSP(G) of intermediate com-
plexity is shown.29

In this paper, we report on a dichotomy theorem for CSPs 
with cardinality constraints. The next section describes a 
dynamic programming algorithm that solves CCSPs when-
ever it can be solved efficiently. In Section 3, we outline the 
algebraic approach to the CSP and CCSP and show how 
it can be used to formulate the dichotomy theorem for 
the CCSP. Finally, in Section 4 we present the main ideas 
behind the hardness result. A longer version of the paper 
can be found in.12

2. EASY CASES OF CCSP
2.1. Boolean CCSP
To gain some intuition we start with the Boolean CSP and 
CCSP, in which values are taken from the set {0, 1}. The 
dichotomy result for Boolean CSPs34 identifies six types of 
tractable relations, that is, those which give rise to a CSP 
solvable in polynomial time. Among these relations are 
those representable by a 2-CNF, solution spaces of systems 
of linear equations over the 2-element field, and some oth-
ers. If a constraint language G is not composed from rela-
tions of one of these six types, CSP(G) is NP-complete. For 
CCSPs, a dichotomy result was proved in Creignou et al.14 
The structure of tractable CCSPs is much simpler. Let R=2

 and 
R≠2

 denote the equality and disequality relations on {0, 1}. 
Then CCSP(G) is solvable in polynomial time if and only 
if every relation from G can be expressed by a conjunction 
of R=2

 and R≠2
 clauses, and the two constant constraints 0 

and 1. Otherwise the Bipartite Independent Set or Linear 
Equations problems can be reduced to CCSP(G), and the 
problem is NP-complete.

The polynomial-time solvable cases can be handled by 
a standard application of dynamic programming. Suppose 
that the instance is given by a set of binary equality/disequal-
ity clauses (see Figure 4 for a concrete example). Consider 
the graph formed by the binary clauses. There are at most 
two possible assignments for each connected component 
of the graph: setting the value of a variable uniquely deter-
mines the values of all the other variables in the component. 
Thus the problem is to select one of the two assignments for 
each component. Trying all possibilities would be exponen-
tial in the number of components. Instead, for i = 1, 2, …, 
we compute the set Pi of all possible pairs (x, y) such that 
there is a partial solution on the first i components contain-
ing exactly x zeros and exactly y ones. It is not difficult to see 
that Pi+1 can be efficiently computed if Pi is already known.

2.2. Generalizations
We generalize the results of Creignou et al.14 for arbi-
trary finite sets and arbitrary constraint languages. As 
usual, the characterization for arbitrary finite domains 
is significantly more complex and technical than for 
the 2-element domain. As a straightforward general-
ization of the 2-element case, we can observe that the 

Bipartite Independent Set.  We say that a graph is bipartite if the ver-
tices can be partitioned into two classes X and Y such that every edge 
connects a vertex of X and a vertex of Y. In the Bipartite Independent 
Set problem, we are looking for a independent set containing exactly 
kX vertices of X and kY vertices of Y. This problem is equivalent to a 
CCSP over the domain {0X, 0Y, 1X, 1Y} where each edge is represented 
by the binary relation

and we require kX variables with value 1X and kY variables with value 
1Y in the solution. Bipartite Independent Set is known to be NP-hard. 
The variant of the problem, where we require an independent set of 
size k in a bipartite graph (without specifying the number of vertices 
in each class) is polynomial-time solvable; however, this variant can-
not be expressed as a CCSP.

Linear Equations.  In the regular Linear Equations problem the 
question is, given a system of linear equations over a finite field, 
decide whether it is consistent or not. The version of this problem 
allowing global cardinality constraints asks whether such a system 
has a solution that assigns each of the elements from the field to 
a prescribed number of variables. While Linear Equations without 
cardinality constraints is polynomial-time solvable, cardinality con-
straints make it NP-complete,5 even if the variables are over the two 
element field and every equation is of the form x + y + z = 1. This 
means that CCSP({RODD−3}) is NP-complete, where

is the ternary relation satisfied by an odd number of 1s.

Figure 3. More examples of CSPs and CCSPs.
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problem is polynomial-time solvable if every relation can 
be expressed by graphs of bijective mappings. For a map-
ping j: A ® A, the graph of j is the binary relation consist-
ing of pairs of the form (a, j (a) ), a Î A. In this case, setting 
a single value in a component uniquely determines all 
the values in the component. Therefore, if the domain 
is D, then there are at most |D| possible assignments in 
each component, and the same dynamic programming 
technique can be applied (but this time the set Pi contains 
|D|-tuples instead of pairs).

One might be tempted to guess that the class described 
in the previous paragraph is the only class where CCSP 
is polynomial-time solvable. However, it turns out that 
there are more general tractable classes. First, suppose 
that the domain is partitioned into equivalence classes, 
and the binary constraints are mappings between the sets 
of equivalence classes. This means that the values in the 
same equivalence class are completely interchangeable. 
Thus it is sufficient to keep one representative from each 
class, and then the problem can be solved by the algo-
rithm sketched in the previous paragraph. Again, one 
might believe that this construction gives all the tracta-
ble classes, but the example in Figure 5 shows that there 
are more complicated constraint languages, where CCSP 

is polynomial-time solvable, but we have to do two-level 
dynamic programming on the subcomponents of each 
component. It is not difficult to make this example more 
complicated in such a way that we have to look at sub-
subcomponents and perform multiple levels of dynamic 
programming. This suggests that it would be difficult to 
characterize the tractable relations in a simple combina-
torial way.

2.3. Algorithm for the tractable CCSP problems
In this section, we present a general algorithm for solving 
CCSP. We prove our dichotomy theorem by showing that for 
every finite constraint language G, either this algorithm solves 
CCSP(G) in polynomial time, or CCSP(G) is NP-complete. In 
this section, we cannot give a full characterization of those 
constraint languages G for which the algorithm works: we 
postpone it to Section 3.3, as it can be done most conveniently 
using the algebraic tools introduced in the next section.

The first condition that we require is that every relation 
in G is defined by its binary projections. Formally, we say 
that r-ary relation R is 2-decomposable, if there are binary 
relations Rij (1 £ i < j £ r) such that (a1, …, ar) Î R if and only if 
(ai, aj) Î Rij for every 1 £ i < j £ r. For example, the relation R 
in Figure 5 is 2-decomposable, as it is shown by the relations

On the other hand, relation RODD−3 of Figure 3 is not 2-decom-
posable: all three of the corresponding relations R12, R13, R23 
contain the pair (0, 0), but tuple (0, 0, 0) is not in R.

If a constraint is 2-decomposable, then it can be expressed 
by a set of binary constraints. Thus in the following, we can 
assume that every constraint of the CCSP instance is binary.

The algorithm finds all cardinality constraints that 
are satisfied by solutions of the instance. First, given an 
instance, we make sure that every variable v is associated 
with a domain Dv that contains all the values that are useful 
for this variable. That is, if 〈(v, w), R〉 is a constraint, then Dv 
is exactly {x | (x, y) Î R}, or in other words, Dv is exactly the 
set of values that the pairs of R contain at the position corre-
sponding to v. This is achieved by the standard propagation 
algorithm, see, e.g., Freuder19.

A binary constraint 〈(v, w), R〉 is trivial if R = Dv × Dw, allowing 
any combination of values from the domains of v and w. Let G 
be the graph formed by the nontrivial binary constraints of the 
problem. If graph G is disconnected, then arbitrary satisfying 
assignments for the connected components can be combined 
to obtain a satisfying assignment for the instance. Therefore, 
the algorithm recurses on the problems induced by con-
nected components, and then merges the solutions using the 
same dynamic programming approach as for Boolean CCSP 
(Figure 4). If G is connected, the algorithm chooses an arbi-
trary variable v and tries to substitute every possible value of 
Dv into v. This way, we get |Dv| new instances and it is clear that 
the original problem has a solution satisfying a cardinality 

Example 1. Let G = {=2, ¹2} contain the binary equality and disequality 
relations. Consider the following instance of CCSP(G) with 15 variables 
and 13 constraints:

C1 C3 C4C2

Each component has exactly two satisfying assignments: either the 
“black” variables have value 0 and the “white” variables have value 
1, or vice versa. Let set Pi contain all possible pairs (x, y) such that 
the union of the first i components have a solution with x 0’s and y 
1’s. Then

  P1 = {(2, 3), (3, 2)}
  P2 = {(3, 5), (4, 4), (5, 3)}
  P3 = {(4, 7), (5, 6), (6, 5), (7, 4)}
  P4 = {(5, 10), (6, 9), (7, 8), (8, 7), (9, 6), (10, 5)}

If component Ci has bi black and wi white vertices, then clearly a pair 
(x, y) is in Ci if and only if either (x − bi, yi − wi) Î Pi − 1 or (x − wi, yi − bi) 
Î Pi − 1. This gives us an efficient way of computing Pi if Pi − 1 has been 
computed.

Figure 4. Using dynamic programming to solve Boolean CCSP with 
binary equalities and disequalities.
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constraint if and only if one of the new instances has such a 
solution. Thus in this case, the problem can be solved by recur-
sively solving |Dv| instances and taking the union of the set of 
cardinality constraints satisfied by these instances.

There is no question that the scheme described above 
finds every cardinality constraint satisfied by the instance. 
The only issue is whether the running time is polynomial: 
branching into |Dv| directions in the case when G is con-
nected can create an exponentially large recursion tree. We 
identify a useful special case that guarantees a polynomial 
bound on the size of the recursion tree. After substituting 
a value into v, we can rerun the propagation algorithm to 
reduce the domains of the variables by throwing away those 
values that are no longer useful. The key property that we 
require is the following:

Key Property: If G is connected, then no matter what 
value we substitute, propagation strictly decreases  
the domain of every variable.

If this property is true, then the algorithm has to terminate 
after at most |D| substitutions, and therefore the height of 
the recursion tree is at most |D|, which is constant for a fixed 
constraint language. This gives us a polynomial bound on 
the size of the recursion tree.

Are there constraint languages G for which the key prop-
erty described above holds? Yes, there are, for example, if 
every binary relation is the graph of a bijective mapping and 
G is connected, then substituting any value to a variable v 
decreases the domain of every other variable to a single ele-
ment. As mentioned earlier, it is not easy to give a simple 

combinatorial characterization of those sets G for which the 
algorithm works (in the next section, we characterize them 
in a more algebraic way). We can at least give some necessary 
conditions that show what kind of generalizations of map-
pings should we deal with.

Let R be a binary relation from a set A to set B, that is, 
R Í A × B. Relation R is said to be a thick mapping if when-
ever pairs (a, c), (a, d), (b, c) belong to R, the pair (b, d) 
also belongs to R. As is easily seen, any thick mapping R 
has two associated equivalence relations a and b on A and 
B, respectively, such that R can be thought of as a mapping 
from the set of equivalence classes of a to that of b.

To give some intuition why it is a problem if a relation is not 
a thick mapping, consider the relation R = {(a, c), (a, d), (b, c)}. 
Suppose that there are only two variables v, w and there is a sin-
gle constraint 〈(v, w), R〉. In this case, the domains are Dv = {a, 
b} and Dw = {c, d}. The constraint is nontrivial, thus the graph 
G is connected. But if we assign value a to variable v, then the 
domain size of w does not decrease: b and d are both possible. 
Thus for this relation, the algorithm does not have the prop-
erty that every substitution decreases every domain, and we 
cannot guarantee a polynomial bound on the recursion tree.

Unfortunately, requiring that every relation is a thick 
mapping is not sufficient for tractability, as thick map-
pings can interact with each other in a way that makes CCSP 
hard. Therefore in order to the problem CCSP(G) for a set G 
of thick mappings to be easy, more restrictions have to be 
imposed on G. Such a condition called noncrossing requires 
that if two thick mappings induce equivalence relations a 
and b on a certain set, then for any equivalence class C of a 
and a class D of b that are not disjoint, either C Í D or D Í C. 
We need even stronger conditions: not only relations from G 
must be noncrossing thick mappings, but also certain rela-
tions derived from them. A detailed explanation is given in 
the next section.

3. ALGEBRAIC APPROACH
One of the main difficulties in studying problems CSP(G) and 
CCSP(G) is: How can one describe or characterize a constraint 
language (possibly infinite)? A combinatorial characteriza-
tion is very often impossible, so two alternative approaches 
have been widely used, one through logic and another one 
through algebra. Here we use the algebraic one.

3.1. Primitive positive definitions
In a CSP, possible combinations of values of certain variables 
can be constrained even if there is no explicit constraint 
imposed on them, see Figure 6. That is, we can use the con-
straints in G to build “gadgets” that enforce a constraint 
relation on a certain set of variables. Note that, as in Figure 
6, the constraint relation expressed by the gadget does not 
necessarily belong to G. This means that for every constraint 
language G, there is a set of implicit constraints that do not 
belong to G, but can still be expressed by instances of CSP(G).

How can we characterize all the implicit constraints of 
a constraint language G? It turns out that the implicit con-
straints that can be expressed in instances of CSP(G) admit a 
simple logic representation. Treating relations in G as predi-
cates, one can construct logic formulas from them, and use 

Example 2. We claim that CCSP({R}) is polynomial-time solvable for 
the relation

Consider the graph on the variables where two variables are connect-
ed if and only if they appear together in a constraint. As in Figure 4,  
for each component, we compute a set containing all possible cardi-
nality vectors, and then use dynamic programming. In each compo-
nent, we have to consider only two cases: either every variable is in 
{1, 2, 3, 4, 5} or every variable is in {a, b, c, d, e}. If every variable of 
component K is in {1, 2, 3, 4, 5}, then R can be expressed by the unary 
constant relation 1, and the binary relation R' = {(2, 3), (4, 5)}. The bina-
ry relations partition component K into sub-components K1, … , Kt. Since 
R' is the graph of a mapping, there are at most 2 possible assignments 
for each sub-component. Thus we can use dynamic programming to 
compute the set of all possible cardinality vectors on K that use only 
the values in {1, 2, 3, 4, 5}. If every variable of K is in {a, b, c, d, e}, then 
R can be expressed as the unary constant relation c and the binary 
relation R" = {(a, b), (d, e)}. Again, binary relation R" partitions K into 
sub-components, and we can use dynamic programming on them. Ob-
serve that the sub-components formed by R' and the sub-components 
formed by R" can be different: in the first case, u and v are adjacent if 
they appear in the second and third coordinates of a constraint, while 
in the second case, u and v are adjacent if they appear in the first and 
second coordinates of a constraint.

Figure 5. A two-level dynamic programming algorithm for CCSP.
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these formulas to express other predicates (relations). The 
type of formulas that is just right for representing implicit 
constraints is called primitive positive. Primitive positive 
(pp-) formulas include predicates from G (atomic formu-
las) and the equality, conjunctions of atomic formulas, and 
existential quantifiers. Relations (or predicates) that can be 
expressed by using pp-formulas with predicates from G are 
said to be pp-definable in G.

Jeavons et al.23 proved that pp-definitions give rise to 
reductions between CSPs: If G and D are constraint lan-
guages on the same set such that D is finite and every 
relation in D is pp-definable in G, then CSP(D) is polyno-
mial-time reducible to CSP(G) (can be improved to loga-
rithmic-space reducibility). Thus, when proving hardness 
of CSPs one can use any relations pp-definable in the given 
constraint language. Very often ‘gadgets’ used in complex-
ity proofs can be expressed as pp-definitions, so primitive 
positive definitions generalize and unify gadget reductions.

In CSPs with cardinality constraints, it is not obvious 
that adding pp-definable relations to the constraint lan-
guage does not increase hardness. The difficulty is that 
introducing gadgets (like the one in Figure 6) means 
adding auxiliary variables, and the values appearing on 
these variables can affect the cardinality constraints. 
Nevertheless, we can show that adding a new constraint 
R′ to the constraint language of a CSP with cardinality 
constraints does not change the complexity if R′ is pp-
definable without using the equality relation. Relations 
expressible in such a weaker way are called pp-definable 
without equality. In fact, relations that are pp-definable in 
a certain G with or without equality can only be different by 
certain redundant parts that are not so important for con-
straint problems. Therefore, we can essentially assume 

that G is closed under pp-definitions, and hence we can 
use the algebraic framework discussed in more detail in 
the next section.

3.2. Polymorphisms and invariants
Although pp-definitions are helpful in hardness proofs, 
they do not resolve the main difficulty of studying the com-
plexity of CSPs, as they do not help much in describing 
constraint languages. However, pp-definitions provide a 
bridge to a tool that allows to do that. Polymorphisms can be 
viewed as a sort of extended symmetries of relations. Let R 
be a relation on some set D and f a function on the same set 
that may depend on more than one variable; let f be n-ary, 
that is, depends on n variables. The function f is a polymor-
phism of R if for any choice of tuples a–1, …, –an from R the 
tuple f (–a1, … ,–an) obtained by component-wise application 
of f also belongs to R. Relation R in this case is said to be 
an invariant of f. Polymorphisms and invariants naturally 
extend to constraint languages and functions: A function is 
a polymorphism of a constraint language if it is a polymor-
phism of every relation in it, and a relation is an invariant 
of a set of functions if it is an invariant of every function in 
the set. For constraint languages G, and set of functions C, 
by Pol G we denote the set of all polymorphisms of G, and 
Inv C the set of all invariants of C, see Figure 7.

Sets of the form Pol G and Inv C have a number of inter-
esting properties, see, e.g., Denecke and Wismath.16 For 
any set C of functions Inv C is a relational clone, that is, 
constraint language D such that every relation pp-definable 
in D also belongs to D. Therefore Jeavons’ result (and this 
paper’s analogous result) can be stated in terms of polymor-
phisms: If G and D are constraint languages on the same set 
such that D is finite and every polymorphism of G is also a 
polymorphism of D, then CSP(D) is polynomial-time reduc-
ible to CSP(G). For CCSP we only have to add the require-
ment that relations in D do not contain redundancies.

For any constraint language G the set Pol G is a clone, 
that is, a set of functions that contains the identity func-
tions, and closed under compositions. Clones have been a 
subject of intensive study in algebra for decades; the results 
of those studies are readily available to be applied to con-
straint problems.

Clearly, large constraint languages have few polymor-
phisms. Thus, a number of important properties of relations 
can be inferred merely from the existence of polymorphisms 
of certain types. A ternary function h on a set D is said to be 
majority function if h(x, x, y) = h(x, y, x) = h(y, x, x) = x for any 
x, y Î D. If a constraint language has a polymorphism that 
is a majority function, then the constraint language is 
2-decomposable. A ternary operation m is called Maltsev if 
m(x, y, y) = m(y, y, x) = x for any x, y Î D. Any binary relation hav-
ing a Maltsev polymorphism is a thick mapping, see Figure 8.

For regular CSPs, complexity questions are usually 
reduced one step further, to universal algebras and their 
varieties. Most of the strong complexity results about CSPs 
are obtained this way.3, 7, 9 Moreover, research on CSP com-
plexity have revolutionized certain fields of algebra, see, e.g., 
Barto and Kozik.4 For our result, however, we do not need 
more algebra than polymorphisms.

Example 3.8 Let G be a constraint language containing a single 
binary relation R over the set D = {0, 1, 2}, where R is given by R = 
{(0, 0), (0, 1), (1, 0), (1, 2), (2, 1), (2, 2)}. Consider the instance of CSP(G) 
with the set of variables {v1, v2, v3, v4} and set of constraints {C1, C2, 
C3, C4, C5}, where C1 = 〈(v1, v2), R〉, C2 = 〈(v1, v3), R〉, C3 = 〈(v2, v3), R〉, 
C4 = 〈(v2, v4), R〉, C5 = 〈(v3, v4), R〉. There is no explicit constraint on the 
pair (v1, v4). However, by considering all solutions to the instance, it 
can be shown that the possible pairs of values which can be taken  
by this pair of variables are precisely the elements of the relation 
R' = R È{(1, 1)}. Thus this instance can be considered as a “gadget” 
implementing R' using only the relations R.

C1

C3

C2 C5

C4

v2

v4

v3

v1

The relation R' can be expressed as the following primitive positive 
(pp-) definition:

R'(x, y) = ∃z, t(R(x, z)∧R(x, t)∧R(z, t)∧R(z, y)∧R(t, y) ).

Figure 6. Implicit constraints.
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3.3. Easy cardinality constraints: The full result
We can finally explain the main result in details. A function 
f is said to be conservative if it always equal to one of its argu-
ments. For instance, a ternary function f is conservative if 
f (a, b, c) Î {a, b, c} for any a, b, c. The main result can be 
stated compactly the following way:

Main Theorem Let G be a finite constraint language. If G 
has a majority polymorphism and has a conservative Maltsev 
polymorphism, then CCSP(G) is polynomial-time solvable. 
Otherwise, the problem is NP-complete.

We can show that if a constraint language G satisfies the 
conditions above, then the problem can be solved in poly-
nomial time by the algorithm presented in Section 2.3. Let D 
be the set of binary relations pp-definable in G. Since G has 
a majority polymorphism, it is 2-decomposable; hence, every 
constraint with a relation R Î G can be replaced with a collec-
tion of binary constraints, the ‘projections’ of R, which are pp-
definable in G and thus belong to D. Therefore we only need to 
verify that the Key Property (Section 2.3) always holds. Due to 
2-decomposability, G can be replaced with D. This constraint 
language has a Maltsev polymorphism, and this makes its 
relations thick mappings. Suppose now that the graph G of a 
problem from CCSP(D) is connected. For any two variables v, 
w the set of all allowed combinations of their values is a binary 
relation, denoted Rvw and an implicit constraint. Since D con-
tains all binary relations pp-definable in D, we have Rvw Î D. 
Thus Rvw is a thick mapping from Dv to Dw. The connectedness 
of G and the fact that all relations in D are noncrossing can 
be used to show that Rvw is a nontrivial thick mapping. Let a 
and b be equivalence relations it induces on Dv and Dw, respec-
tively. If we fix a value a Î Dv then the possible values of w are 
restricted to one equivalence class of b, a proper subset of Dw. 
As this is true for all variables w, the key property follows.

The Main Theorem also leads to a more combinatorial 
characterization of tractable problems CCSP(G): Such a 
problem is tractable if and only if G is 2-decomposable, and 
the binary relations pp-definable in G are noncrossing thick 
mappings.

What remains now is to show that otherwise the problem 
is hard.

4. HARD CSPS WITH CARDINALITY CONSTRAINTS
If one of the three conditions on a constraint language 
G (a) 2-decomposability, (b) all binary pp-definable rela-
tions are thick mappings, and (c) all such binary rela-
tions are  noncrossing does not hold, we show that either 
Bipartite Independent Set or Linear Equation is reducible 
to CCSP(G), thus showing that CCSP(G) is NP-complete. 
This part is technical, but we outline the intuition behind 
the technique.

Suppose first that a binary relation R is pp-definable in G, 
but is not a thick mapping. This means that for some a, b, 
c, d pairs (a, c), (a, d), (b, c) belong to R while (b, d) does not. 
If a, b, c, d are distinct values, then R contains a fragment 
that looks like RBIS. We exploit this fact to reduce Bipartite 
Independent Set to CCSP(G) and conclude NP-hardness in 
this case. In general, it is possible that some of a, b, c, d coin-
cide. However, a case analysis shows that reduction from 
Bipartite Independent Set is possible in all cases.

If there exist two thick mappings pp-definable in G that 
are not noncrossing, then there are also two equivalence 
relations with this property; denote them a and b. Since they 

All relations
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Figure 7. Pol and Inv.

Majority implies 2-decomposability.
Let R be a ternary relation and h a majority function, which is a poly-
morphism of R. We show that any triple (a, b, c) such that each of 
(a, b), (b, c), and (a, c) is extendible to a triple from R, belongs to R. 
This means the 2-decomposability of R in this case. By the assump-
tion, there are (a, b, z), (a, y, c), (x, b, c) Î R for some x, y, z. Since h is 
a majority polymorphism of R we have

and (a, b, c) belongs to R.
Maltsev implies thick mapping.
Let R be a binary relation and m its Maltsev polymorphism. We have 
to prove that for any (a, c), (a, d), (b, c) Î R the pair (b, d) also belong to 
R. It follows from a single application of the Maltsev polymorphism:

Linear equations.
As another example of a property of relations expressible by a poly-
morphism, we consider relations that are solution spaces of systems 
of linear equations over a finite field F. Then if a relation R has such 
representation it is an invariant of the affine function f(x, y, z) = x − y + 
z, where +, − are operations of the field F. Indeed, let A ⋅ x = b be the 
system defining R, and x, y, z Î R.
Then

A ⋅ f(x, y, z) = A ⋅ (x − y + z) = A ⋅ x − A ⋅ y + A ⋅ z = b.

In fact, the converse can also be shown: if R is invariant under f then 
it is the solution space of a certain system of linear equations.

Figure 8. Examples of polymorphism.
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are not noncrossing, some a-class and some b-class overlap, 
but are not subsets of one another. Hence for some a, b, c, 
we have (a, b) is in a but not in b, and (b, c) is in b but not in 
a. If we can restrict a and b onto {a, b, c} somehow, then 
the product of binary relations a ° b given by a pp-formula 
∃ z a(x, z) ∧ b(z, y), contains (a, a), (a, c), (c, c), but does not 
contain (c, a). Again, this fact can be used to reduce Bipartite 
Independent Set to CCSP(G).

Finally, let R Î G be non-2-decomposable. For simplicity 
assume R ternary. There is a triple (a, b, c) such that (a, b, z), 
(a, y, c), (x, b, c) belong to R for some x, y, z, but (a, b, c) does 
not. We show that either a binary relation which is not a 
thick mapping can be pp-defined in G, or two thick map-
pings that are not noncrossing, or all the tuples can be cho-
sen such that a = b = c = 0, x = y = z = 1 (we assume 0 and 1 are 
elements of the domain we can use here), and R restricted to 
{0, 1} is RODD−3. Therefore a reduction of Linear Equations to 
CCSP(G) can be found.

5. CONCLUSION
We have completed the study of CSP extended with cardi-
nality constraints, and proved a dichotomy theorem charac-
terizing the complexity of the problem for every constraint 
language G over an arbitrary finite domain D. Dichotomy 
theorems over non-Boolean domains are notoriously hard to 
prove, but possibly due to the rather restrictive nature of the 
CCSP problem, we managed to obtain a complete character-
ization. One can think of several natural variants with more 
expressive power, for example, the domain is {1, 2, 3, 4},  
and we have upper bounds on the cardinalities of 1 and 2, 
while there are lower bounds on the cardinalities of 3 and 
4. Therefore, upper and/or lower bounds instead of exact 
cardinality requirements, bounds only on a subset of val-
ues, bounds on the total cardinality of a subset of values, etc. 
give lots of interesting problems to look at. However, some 
of these questions seem to be very difficult, as a dichotomy 
result would immediately imply the Feder–Vardi Dichotomy 
Conjecture (after all, we do not fully understand CSP even 
without cardinality constraints).

Another natural direction is to consider optimization 
variants (minimize/maximize the number of times certain 
values appear) and determine the approximability of the 
resulting problems. In the Boolean case, the approximabil-
ity of the MinOnes/MaxOnes problems, where the task is 
to find a satisfying assignment minimizing/maximizing 
the number of variables receiving value 1, was classified by 
Khanna et al.25 Again, not being able to solve the Feder–Vardi 
conjecture limits what immediate progress we can expect in 
the study of non-Boolean domains.

Finally, one can look at CCSP from the viewpoint of 
parameterized complexity. The basic issues of parameter-
ized complexity is whether an algorithm of running time 
f (k) ⋅ nc exists, where k is some parameter of the input (for 
example, the size of the solution we are looking for), f (k) is 
an arbitrary function depending on k, and c is a universal 
constant independent of k. For example, in Boolean CCSP, 
one can answer in time nO(k) whether there is a solution with 
exactly k variables set to 1, but it would be preferable to find 
an algorithm with running time of the form f (k) ⋅ nc, that is, 
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where the combinatorial explosion is restricted to k and the 
exponent of n is independent of k. We can ask what those 
Boolean constraint languages G are for which the problem 
of finding a solution with exactly/at most/at least k vari-
ables having 1 can be solved in such running time. These 
questions have been investigated and completely answered 
in Kratsch et al. and Marx.27, 30 Generalization of some of 
these results to arbitrary non-Boolean domains have been 
obtained very recently by the authors.11�
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