
September 2010 | vol. 53 | no. 9 | communications of the acm 99

doi:10.1145/1810891.1810914

Constraint Satisfaction Problems
and Global Cardinality Constraints
By Andrei A. Bulatov and Dániel Marx

Abstract
In a constraint satisfaction problem (CSP) the goal is to find
an assignment of a given set of variables subject to speci-
fied constraints. A global cardinality constraint is an addi-
tional requirement that prescribes how many variables
must be assigned a certain value. We study the complexity
of the problem CCSP(G), the CSP with global cardinality
constraints that allows only relations from the set G. The
main result of this paper characterizes sets G that give rise
to problems solvable in polynomial time, and states that the
remaining such problems are NP-complete.

1. CONSTRAINT PROBLEMS
1.1. Constraint satisfaction problem
Among formalisms unifying and classifying various com-
binatorial problems the Constraint Satisfaction Problem (or
CSP) is one of the most successful ones. In this problem, we
are given a set of variables and a collection of restrictions—
constraints—on the allowed combinations of values of the
variables; the goal is to find an assignment to the variables
so that all constraints are satisfied. Usually constraints are
imposed on small sets of variables; thus, the CSP formalizes
the idea of finding a global solution bound by local restric-
tions. The Sudoku puzzle gives a popular toy example of CSP.
We need to assign values—numbers from 1 to 9—to vari-
ables—entries of the puzzle so that the values of variables in
a row, column, or 3 × 3 block are different. Another toy exam-
ple whose CSP encoding is less obvious is the 8-Queen prob-
lem: place eight queens on a 8 × 8 chessboard so that they
do not hit each other.15 To represent it as a CSP we consider
the columns {a, b, c, d, e, f, g, h} (see Figure 1) as variables
that can be assigned values from the set of rows, and the
assigned value shows the position of a queen in this column.

Many combinatorial problems readily fall into this
framework. For example, in the Graph 3-Coloring prob-
lem, the vertices of a given graph are variables to receive
one of the three colors, and assignments are constrained
by the requirement that adjacent vertices receive different
colors. Thus, this problem is a CSP. The list of examples
can be extended by other combinatorial problems like
Satisfiability, problems in scheduling, temporal and spatial
reasoning, and many others.

CSPs have been studied from both practical and theoreti-
cal perspectives. On the practical side, the expressive power
of the CSP allows to model a wide range of real-world prob-
lems from planning24 and scheduling,35 frequency assign-
ment problems,17 to image processing,32 to programming
language analysis,33 to natural language understanding.1
A number of commercial and freeware solvers exist capable

of solving a wide range of CSPs of nearly industrial scale,
and methods of solving constraint problems are develop-
ing rapidly.15 On the theoretical side, researchers focus on
several directions such as the complexity of CSPs prob-
lems, efficient algorithms for CSPs, where such algorithms
exist, and connections of CSPs with other combinatorial
problems.3, 8, 10, 13, 18, 21, 22, 26, 31, 34

1.2. Global constraints
The ‘pure’ CSP described above is sometimes not enough
to model practical problems, as some constraints that have
to be satisfied are not ‘local’ in the sense that they cannot
be viewed as applied to only a limited number of variables.
Constraints of this type are called global. Global constraints
are very diverse; the current Global Constraint Catalog
(see http://www.emn.fr/x-info/sdemasse/gccat/) lists 313
types of such constraints. In this paper we focus on global
cardinality constraints.6, 14

Some of the global constraints such as the surjectivity of a
solution, that is, the requirement that all variables take dis-
tinct values (cf. the Sudoku puzzle), allow simulation by local

The original version of this paper was published in the
Proceedings of the 24th Annual IEEE Symposium on Logic
in Computer Science (Los Angeles, CA, Aug. 11–14, 2009),
419–428.

a

1

2

3

4

5

Va
lu

es

6

7

8

cb d

Variables

e f g h

Figure 1. The 8-Queen problem.

100 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

is often called a constraint language. Same restrictions can
be applied to problems with cardinality constraints. We use
CCSP(G) to denote such problem.

Problems of the form CSP(G) and CCSP(G) span a wide
range of combinatorial problems such as ones in Figure 3,
and many others.
Graph 3-Coloring. Let denote the disequality rela-
tion on a 3-element set, that is, the binary relation con-
taining all pairs (a, b) of elements from the set such that
a ¹ b:

(Observe that we write pairs, and later longer tuples of ele-
ments vertically, so members of the relation are the columns
of the matrix.) Then the 3-Coloring problem equals CSP(G3−

Col) where .
2-Satisfiability. Recall that a literal is a propositional
variable or its negation. A disjunction of literals (of 2 liter-
als) is called a clause (a 2-clause). A propositional formula
that is a conjunction of clauses (2-clauses) is said to be a
conjunctive normal form, or a CNF (2-CNF) for short. In the
2-Satisfiability problem, given a 2-CNF, the goal is to find an
assignment to its variables that makes the formula true. If
the set of variables of the CNF is V then every clause defines
a constraint on a pair of variables that forbids exactly one
combination of values. Let G2−SAT be the following set of 4
binary relations, each of which omits a certain pair:

Then CSP(G2−SAT) represents 2-Satisfiability and it is known
to be polynomial-time solvable.
3-Satisfiability. Analogously to 2-SAT, let G3−SAT be the
set consisting of eight ternary relations on {0, 1}, each of
which omits a certain triple. Then CSP(G3−SAT) represents
3-Satisfiability and it is NP-complete.
Independent Set. An independent set in a graph is a set of
vertices, no two of which are connected with an edge. In the
Independent Set problem, given a graph and a natural num-
ber k, the question is whether or not there exists an indepen-
dent set of size k. Let

that is, RIS = excludes only (1, 1), and GIS = {RIS}. Now, to
reduce Independent Set to the CSP the vertices of a given
graph are treated as variables and the constraint RIS is
imposed on every pair of adjacent vertices. For any solu-
tion of such CSP the variables (vertices) assigned 1 form
an independent set in the graph. To express the restric-
tion on the size of an independent set we can use a car-
dinality constraint that requires that exactly k variables

constraints. Surjectivity can be enforced by requiring that
every two variables receive distinct values. However, some-
times it is not possible. In this paper we focus on one type
of such ‘truly’ global constraints, cardinality constraints, that
impose restrictions on the number of variables assigned
certain values, see Figure 2. For instance, in the 3-Coloring
problem, a cardinality constraint may require that at least
half of the vertices of the graph are colored red.

1.3. Complexity of constraints
As the general CSP is NP-hard, the study of its complexity
focuses on considering restricted versions of the problem.
There are two principal ways to restrict the CSP, both of them
can be applied to CSPs with cardinality constraints as well.

The first approach restricts the way constraints interact.
The interaction of constraints can be represented by the
primal graph whose vertices are variables, and two vertices
are connected if and only if they belong to the scope of a
constraint. This approach was motivated by the observation
that if the primal graph is acyclic or close to acyclic in a well-
defined sense (has bounded treewidth), then CSP becomes
polynomial-time solvable.20 Interestingly, attempts to char-
acterize conjunctive queries to databases that can be pro-
cessed efficiently led to the same question.26 After a series
of recent breakthrough results21, 31 the structure of polyno-
mial-time solvable CSPs of this type is largely understood.

The second approach to restrict the CSP is to limit the
allowed types of constraints. It can be expressed formally as
follows. Let the possible values of variables in the problem
be taken from a set D (the domain). In this paper, we always
assume D to be finite. Then every constraint that can be
imposed on a set of k variables is a list of all allowed com-
binations of values these variables can take simultaneously,
that is, a k-ary relation on D. If now we fix a set G of such rela-
tions on D and allow constraints to be chosen only from G,
we arrive to the problem denoted CSP(G). In this context, G

Figure 2. Formal definition of CSP and CCSP.

CSP
Let D be a (finite) set (the domain). Every instance I = (V,C) of the
problem CSP consists of:

•  a set V of variables, and
•  a set C of constraints. Every constraint is a pair 〈s, R〉, where

— �s = (v1, … , vk) is a tuple of variables from V, not necessarily
distinct, and

— R is a k-ary relation over D.
A solution of I = (V, C) is a mapping j : V → D such that for any
constraint 〈s, R〉, we have j (s) ∈ R.

CCSP
A global cardinality constraint for an instance I = (V,C) is a mapping
p: D →  such that Sa ∈D p(a) = |V|. Solution j satisfies p if |j −1(a)| =
p(a) for every a ∈ D. The question is whether or not there is a solution
satisfying one of the given cardinality constraints.

CSP(G) and CCSP(G)
Let G be a set (finite or infinite) of relations on D, called a constraint
language. The problems CSP(G) and CCSP(G) include those instances
of CSP and CCSP, respectively, that use only relations from G.

september 2010 | vol. 53 | no. 9 | communications of the acm 101

are assigned 1. Therefore Independent Set is equivalent to
CCSP(GIS). The Independent Set problem is well known to
be NP-complete.

Despite such expressive power, problems of the form
CSP(G) probably cannot capture all combinatorial prob-
lems. As is easily seen, all CSPs belong to the class NP. Some
of them, such as 3-Coloring or 3-SAT are NP-complete,
while others, for example, 2-SAT, belong to the class P,
that is, solvable in polynomial time. If P ¹ NP, there is an
infinite hierarchy of complexity classes between P and NP
such that problems from different classes are not reduc-
ible to each other in a natural sense.28 However, all known
problems CSP(G) turn out to be either in P or NP-complete.
This phenomenon is known as complexity dichotomy.18
The dichotomy phenomenon was first discovered by
Schaefer34 for CSPs with 2-element domain, and was
later confirmed in many particular cases.3, 7, 9 This caused
Feder and Vardi to pose a conjecture, called the Dichotomy
Conjecture, that every problem CSP(G) is either solvable
in polynomial time or is NP-complete. The Dichotomy
Conjecture remains open till now.

Remarkably, the phenomenon of complexity

dichotomy extends inside P, although a weaker notion of
reduction is needed for this. To date, only four complex-
ity classes and a series of very similar classes inside P are
known such that CSP(G) can be complete in.2, 29 In some
cases the lack of problems CSP(G) of intermediate com-
plexity is shown.29

In this paper, we report on a dichotomy theorem for CSPs
with cardinality constraints. The next section describes a
dynamic programming algorithm that solves CCSPs when-
ever it can be solved efficiently. In Section 3, we outline the
algebraic approach to the CSP and CCSP and show how
it can be used to formulate the dichotomy theorem for
the CCSP. Finally, in Section 4 we present the main ideas
behind the hardness result. A longer version of the paper
can be found in.12

2. EASY CASES OF CCSP
2.1. Boolean CCSP
To gain some intuition we start with the Boolean CSP and
CCSP, in which values are taken from the set {0, 1}. The
dichotomy result for Boolean CSPs34 identifies six types of
tractable relations, that is, those which give rise to a CSP
solvable in polynomial time. Among these relations are
those representable by a 2-CNF, solution spaces of systems
of linear equations over the 2-element field, and some oth-
ers. If a constraint language G is not composed from rela-
tions of one of these six types, CSP(G) is NP-complete. For
CCSPs, a dichotomy result was proved in Creignou et al.14
The structure of tractable CCSPs is much simpler. Let R=2

 and
R≠2

 denote the equality and disequality relations on {0, 1}.
Then CCSP(G) is solvable in polynomial time if and only
if every relation from G can be expressed by a conjunction
of R=2

 and R≠2
 clauses, and the two constant constraints 0

and 1. Otherwise the Bipartite Independent Set or Linear
Equations problems can be reduced to CCSP(G), and the
problem is NP-complete.

The polynomial-time solvable cases can be handled by
a standard application of dynamic programming. Suppose
that the instance is given by a set of binary equality/disequal-
ity clauses (see Figure 4 for a concrete example). Consider
the graph formed by the binary clauses. There are at most
two possible assignments for each connected component
of the graph: setting the value of a variable uniquely deter-
mines the values of all the other variables in the component.
Thus the problem is to select one of the two assignments for
each component. Trying all possibilities would be exponen-
tial in the number of components. Instead, for i = 1, 2, …,
we compute the set Pi of all possible pairs (x, y) such that
there is a partial solution on the first i components contain-
ing exactly x zeros and exactly y ones. It is not difficult to see
that Pi+1 can be efficiently computed if Pi is already known.

2.2. Generalizations
We generalize the results of Creignou et al.14 for arbi-
trary finite sets and arbitrary constraint languages. As
usual, the characterization for arbitrary finite domains
is significantly more complex and technical than for
the 2-element domain. As a straightforward general-
ization of the 2-element case, we can observe that the

Bipartite Independent Set.  We say that a graph is bipartite if the ver-
tices can be partitioned into two classes X and Y such that every edge
connects a vertex of X and a vertex of Y. In the Bipartite Independent
Set problem, we are looking for a independent set containing exactly
kX vertices of X and kY vertices of Y. This problem is equivalent to a
CCSP over the domain {0X, 0Y, 1X, 1Y} where each edge is represented
by the binary relation

and we require kX variables with value 1X and kY variables with value
1Y in the solution. Bipartite Independent Set is known to be NP-hard.
The variant of the problem, where we require an independent set of
size k in a bipartite graph (without specifying the number of vertices
in each class) is polynomial-time solvable; however, this variant can-
not be expressed as a CCSP.

Linear Equations.  In the regular Linear Equations problem the
question is, given a system of linear equations over a finite field,
decide whether it is consistent or not. The version of this problem
allowing global cardinality constraints asks whether such a system
has a solution that assigns each of the elements from the field to
a prescribed number of variables. While Linear Equations without
cardinality constraints is polynomial-time solvable, cardinality con-
straints make it NP-complete,5 even if the variables are over the two
element field and every equation is of the form x + y + z = 1. This
means that CCSP({RODD−3}) is NP-complete, where

is the ternary relation satisfied by an odd number of 1s.

Figure 3. More examples of CSPs and CCSPs.

102 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

problem is polynomial-time solvable if every relation can
be expressed by graphs of bijective mappings. For a map-
ping j: A ® A, the graph of j is the binary relation consist-
ing of pairs of the form (a, j (a) ), a Î A. In this case, setting
a single value in a component uniquely determines all
the values in the component. Therefore, if the domain
is D, then there are at most |D| possible assignments in
each component, and the same dynamic programming
technique can be applied (but this time the set Pi contains
|D|-tuples instead of pairs).

One might be tempted to guess that the class described
in the previous paragraph is the only class where CCSP
is polynomial-time solvable. However, it turns out that
there are more general tractable classes. First, suppose
that the domain is partitioned into equivalence classes,
and the binary constraints are mappings between the sets
of equivalence classes. This means that the values in the
same equivalence class are completely interchangeable.
Thus it is sufficient to keep one representative from each
class, and then the problem can be solved by the algo-
rithm sketched in the previous paragraph. Again, one
might believe that this construction gives all the tracta-
ble classes, but the example in Figure 5 shows that there
are more complicated constraint languages, where CCSP

is polynomial-time solvable, but we have to do two-level
dynamic programming on the subcomponents of each
component. It is not difficult to make this example more
complicated in such a way that we have to look at sub-
subcomponents and perform multiple levels of dynamic
programming. This suggests that it would be difficult to
characterize the tractable relations in a simple combina-
torial way.

2.3. Algorithm for the tractable CCSP problems
In this section, we present a general algorithm for solving
CCSP. We prove our dichotomy theorem by showing that for
every finite constraint language G, either this algorithm solves
CCSP(G) in polynomial time, or CCSP(G) is NP-complete. In
this section, we cannot give a full characterization of those
constraint languages G for which the algorithm works: we
postpone it to Section 3.3, as it can be done most conveniently
using the algebraic tools introduced in the next section.

The first condition that we require is that every relation
in G is defined by its binary projections. Formally, we say
that r-ary relation R is 2-decomposable, if there are binary
relations Rij (1 £ i < j £ r) such that (a1, …, ar) Î R if and only if
(ai, aj) Î Rij for every 1 £ i < j £ r. For example, the relation R
in Figure 5 is 2-decomposable, as it is shown by the relations

On the other hand, relation RODD−3 of Figure 3 is not 2-decom-
posable: all three of the corresponding relations R12, R13, R23
contain the pair (0, 0), but tuple (0, 0, 0) is not in R.

If a constraint is 2-decomposable, then it can be expressed
by a set of binary constraints. Thus in the following, we can
assume that every constraint of the CCSP instance is binary.

The algorithm finds all cardinality constraints that
are satisfied by solutions of the instance. First, given an
instance, we make sure that every variable v is associated
with a domain Dv that contains all the values that are useful
for this variable. That is, if 〈(v, w), R〉 is a constraint, then Dv
is exactly {x | (x, y) Î R}, or in other words, Dv is exactly the
set of values that the pairs of R contain at the position corre-
sponding to v. This is achieved by the standard propagation
algorithm, see, e.g., Freuder19.

A binary constraint 〈(v, w), R〉 is trivial if R = Dv × Dw, allowing
any combination of values from the domains of v and w. Let G
be the graph formed by the nontrivial binary constraints of the
problem. If graph G is disconnected, then arbitrary satisfying
assignments for the connected components can be combined
to obtain a satisfying assignment for the instance. Therefore,
the algorithm recurses on the problems induced by con-
nected components, and then merges the solutions using the
same dynamic programming approach as for Boolean CCSP
(Figure 4). If G is connected, the algorithm chooses an arbi-
trary variable v and tries to substitute every possible value of
Dv into v. This way, we get |Dv| new instances and it is clear that
the original problem has a solution satisfying a cardinality

Example 1. Let G = {=2, ¹2} contain the binary equality and disequality
relations. Consider the following instance of CCSP(G) with 15 variables
and 13 constraints:

C1 C3 C4C2

Each component has exactly two satisfying assignments: either the
“black” variables have value 0 and the “white” variables have value
1, or vice versa. Let set Pi contain all possible pairs (x, y) such that
the union of the first i components have a solution with x 0’s and y
1’s. Then

  P1 = {(2, 3), (3, 2)}
  P2 = {(3, 5), (4, 4), (5, 3)}
  P3 = {(4, 7), (5, 6), (6, 5), (7, 4)}
  P4 = {(5, 10), (6, 9), (7, 8), (8, 7), (9, 6), (10, 5)}

If component Ci has bi black and wi white vertices, then clearly a pair
(x, y) is in Ci if and only if either (x − bi, yi − wi) Î Pi − 1 or (x − wi, yi − bi)
Î Pi − 1. This gives us an efficient way of computing Pi if Pi − 1 has been
computed.

Figure 4. Using dynamic programming to solve Boolean CCSP with
binary equalities and disequalities.

september 2010 | vol. 53 | no. 9 | communications of the acm 103

constraint if and only if one of the new instances has such a
solution. Thus in this case, the problem can be solved by recur-
sively solving |Dv| instances and taking the union of the set of
cardinality constraints satisfied by these instances.

There is no question that the scheme described above
finds every cardinality constraint satisfied by the instance.
The only issue is whether the running time is polynomial:
branching into |Dv| directions in the case when G is con-
nected can create an exponentially large recursion tree. We
identify a useful special case that guarantees a polynomial
bound on the size of the recursion tree. After substituting
a value into v, we can rerun the propagation algorithm to
reduce the domains of the variables by throwing away those
values that are no longer useful. The key property that we
require is the following:

Key Property: If G is connected, then no matter what
value we substitute, propagation strictly decreases
the domain of every variable.

If this property is true, then the algorithm has to terminate
after at most |D| substitutions, and therefore the height of
the recursion tree is at most |D|, which is constant for a fixed
constraint language. This gives us a polynomial bound on
the size of the recursion tree.

Are there constraint languages G for which the key prop-
erty described above holds? Yes, there are, for example, if
every binary relation is the graph of a bijective mapping and
G is connected, then substituting any value to a variable v
decreases the domain of every other variable to a single ele-
ment. As mentioned earlier, it is not easy to give a simple

combinatorial characterization of those sets G for which the
algorithm works (in the next section, we characterize them
in a more algebraic way). We can at least give some necessary
conditions that show what kind of generalizations of map-
pings should we deal with.

Let R be a binary relation from a set A to set B, that is,
R Í A × B. Relation R is said to be a thick mapping if when-
ever pairs (a, c), (a, d), (b, c) belong to R, the pair (b, d)
also belongs to R. As is easily seen, any thick mapping R
has two associated equivalence relations a and b on A and
B, respectively, such that R can be thought of as a mapping
from the set of equivalence classes of a to that of b.

To give some intuition why it is a problem if a relation is not
a thick mapping, consider the relation R = {(a, c), (a, d), (b, c)}.
Suppose that there are only two variables v, w and there is a sin-
gle constraint 〈(v, w), R〉. In this case, the domains are Dv = {a,
b} and Dw = {c, d}. The constraint is nontrivial, thus the graph
G is connected. But if we assign value a to variable v, then the
domain size of w does not decrease: b and d are both possible.
Thus for this relation, the algorithm does not have the prop-
erty that every substitution decreases every domain, and we
cannot guarantee a polynomial bound on the recursion tree.

Unfortunately, requiring that every relation is a thick
mapping is not sufficient for tractability, as thick map-
pings can interact with each other in a way that makes CCSP
hard. Therefore in order to the problem CCSP(G) for a set G
of thick mappings to be easy, more restrictions have to be
imposed on G. Such a condition called noncrossing requires
that if two thick mappings induce equivalence relations a
and b on a certain set, then for any equivalence class C of a
and a class D of b that are not disjoint, either C Í D or D Í C.
We need even stronger conditions: not only relations from G
must be noncrossing thick mappings, but also certain rela-
tions derived from them. A detailed explanation is given in
the next section.

3. ALGEBRAIC APPROACH
One of the main difficulties in studying problems CSP(G) and
CCSP(G) is: How can one describe or characterize a constraint
language (possibly infinite)? A combinatorial characteriza-
tion is very often impossible, so two alternative approaches
have been widely used, one through logic and another one
through algebra. Here we use the algebraic one.

3.1. Primitive positive definitions
In a CSP, possible combinations of values of certain variables
can be constrained even if there is no explicit constraint
imposed on them, see Figure 6. That is, we can use the con-
straints in G to build “gadgets” that enforce a constraint
relation on a certain set of variables. Note that, as in Figure
6, the constraint relation expressed by the gadget does not
necessarily belong to G. This means that for every constraint
language G, there is a set of implicit constraints that do not
belong to G, but can still be expressed by instances of CSP(G).

How can we characterize all the implicit constraints of
a constraint language G? It turns out that the implicit con-
straints that can be expressed in instances of CSP(G) admit a
simple logic representation. Treating relations in G as predi-
cates, one can construct logic formulas from them, and use

Example 2. We claim that CCSP({R}) is polynomial-time solvable for
the relation

Consider the graph on the variables where two variables are connect-
ed if and only if they appear together in a constraint. As in Figure 4,
for each component, we compute a set containing all possible cardi-
nality vectors, and then use dynamic programming. In each compo-
nent, we have to consider only two cases: either every variable is in
{1, 2, 3, 4, 5} or every variable is in {a, b, c, d, e}. If every variable of
component K is in {1, 2, 3, 4, 5}, then R can be expressed by the unary
constant relation 1, and the binary relation R' = {(2, 3), (4, 5)}. The bina-
ry relations partition component K into sub-components K1, … , Kt. Since
R' is the graph of a mapping, there are at most 2 possible assignments
for each sub-component. Thus we can use dynamic programming to
compute the set of all possible cardinality vectors on K that use only
the values in {1, 2, 3, 4, 5}. If every variable of K is in {a, b, c, d, e}, then
R can be expressed as the unary constant relation c and the binary
relation R" = {(a, b), (d, e)}. Again, binary relation R" partitions K into
sub-components, and we can use dynamic programming on them. Ob-
serve that the sub-components formed by R' and the sub-components
formed by R" can be different: in the first case, u and v are adjacent if
they appear in the second and third coordinates of a constraint, while
in the second case, u and v are adjacent if they appear in the first and
second coordinates of a constraint.

Figure 5. A two-level dynamic programming algorithm for CCSP.

104 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

these formulas to express other predicates (relations). The
type of formulas that is just right for representing implicit
constraints is called primitive positive. Primitive positive
(pp-) formulas include predicates from G (atomic formu-
las) and the equality, conjunctions of atomic formulas, and
existential quantifiers. Relations (or predicates) that can be
expressed by using pp-formulas with predicates from G are
said to be pp-definable in G.

Jeavons et al.23 proved that pp-definitions give rise to
reductions between CSPs: If G and D are constraint lan-
guages on the same set such that D is finite and every
relation in D is pp-definable in G, then CSP(D) is polyno-
mial-time reducible to CSP(G) (can be improved to loga-
rithmic-space reducibility). Thus, when proving hardness
of CSPs one can use any relations pp-definable in the given
constraint language. Very often ‘gadgets’ used in complex-
ity proofs can be expressed as pp-definitions, so primitive
positive definitions generalize and unify gadget reductions.

In CSPs with cardinality constraints, it is not obvious
that adding pp-definable relations to the constraint lan-
guage does not increase hardness. The difficulty is that
introducing gadgets (like the one in Figure 6) means
adding auxiliary variables, and the values appearing on
these variables can affect the cardinality constraints.
Nevertheless, we can show that adding a new constraint
R′ to the constraint language of a CSP with cardinality
constraints does not change the complexity if R′ is pp-
definable without using the equality relation. Relations
expressible in such a weaker way are called pp-definable
without equality. In fact, relations that are pp-definable in
a certain G with or without equality can only be different by
certain redundant parts that are not so important for con-
straint problems. Therefore, we can essentially assume

that G is closed under pp-definitions, and hence we can
use the algebraic framework discussed in more detail in
the next section.

3.2. Polymorphisms and invariants
Although pp-definitions are helpful in hardness proofs,
they do not resolve the main difficulty of studying the com-
plexity of CSPs, as they do not help much in describing
constraint languages. However, pp-definitions provide a
bridge to a tool that allows to do that. Polymorphisms can be
viewed as a sort of extended symmetries of relations. Let R
be a relation on some set D and f a function on the same set
that may depend on more than one variable; let f be n-ary,
that is, depends on n variables. The function f is a polymor-
phism of R if for any choice of tuples a–1, …, –an from R the
tuple f (–a1, … ,–an) obtained by component-wise application
of f also belongs to R. Relation R in this case is said to be
an invariant of f. Polymorphisms and invariants naturally
extend to constraint languages and functions: A function is
a polymorphism of a constraint language if it is a polymor-
phism of every relation in it, and a relation is an invariant
of a set of functions if it is an invariant of every function in
the set. For constraint languages G, and set of functions C,
by Pol G we denote the set of all polymorphisms of G, and
Inv C the set of all invariants of C, see Figure 7.

Sets of the form Pol G and Inv C have a number of inter-
esting properties, see, e.g., Denecke and Wismath.16 For
any set C of functions Inv C is a relational clone, that is,
constraint language D such that every relation pp-definable
in D also belongs to D. Therefore Jeavons’ result (and this
paper’s analogous result) can be stated in terms of polymor-
phisms: If G and D are constraint languages on the same set
such that D is finite and every polymorphism of G is also a
polymorphism of D, then CSP(D) is polynomial-time reduc-
ible to CSP(G). For CCSP we only have to add the require-
ment that relations in D do not contain redundancies.

For any constraint language G the set Pol G is a clone,
that is, a set of functions that contains the identity func-
tions, and closed under compositions. Clones have been a
subject of intensive study in algebra for decades; the results
of those studies are readily available to be applied to con-
straint problems.

Clearly, large constraint languages have few polymor-
phisms. Thus, a number of important properties of relations
can be inferred merely from the existence of polymorphisms
of certain types. A ternary function h on a set D is said to be
majority function if h(x, x, y) = h(x, y, x) = h(y, x, x) = x for any
x, y Î D. If a constraint language has a polymorphism that
is a majority function, then the constraint language is
2-decomposable. A ternary operation m is called Maltsev if
m(x, y, y) = m(y, y, x) = x for any x, y Î D. Any binary relation hav-
ing a Maltsev polymorphism is a thick mapping, see Figure 8.

For regular CSPs, complexity questions are usually
reduced one step further, to universal algebras and their
varieties. Most of the strong complexity results about CSPs
are obtained this way.3, 7, 9 Moreover, research on CSP com-
plexity have revolutionized certain fields of algebra, see, e.g.,
Barto and Kozik.4 For our result, however, we do not need
more algebra than polymorphisms.

Example 3.8 Let G be a constraint language containing a single
binary relation R over the set D = {0, 1, 2}, where R is given by R =
{(0, 0), (0, 1), (1, 0), (1, 2), (2, 1), (2, 2)}. Consider the instance of CSP(G)
with the set of variables {v1, v2, v3, v4} and set of constraints {C1, C2,
C3, C4, C5}, where C1 = 〈(v1, v2), R〉, C2 = 〈(v1, v3), R〉, C3 = 〈(v2, v3), R〉,
C4 = 〈(v2, v4), R〉, C5 = 〈(v3, v4), R〉. There is no explicit constraint on the
pair (v1, v4). However, by considering all solutions to the instance, it
can be shown that the possible pairs of values which can be taken
by this pair of variables are precisely the elements of the relation
R' = R È{(1, 1)}. Thus this instance can be considered as a “gadget”
implementing R' using only the relations R.

C1

C3

C2 C5

C4

v2

v4

v3

v1

The relation R' can be expressed as the following primitive positive
(pp-) definition:

R'(x, y) = ∃z, t(R(x, z)∧R(x, t)∧R(z, t)∧R(z, y)∧R(t, y) ).

Figure 6. Implicit constraints.

september 2010 | vol. 53 | no. 9 | communications of the acm 105

3.3. Easy cardinality constraints: The full result
We can finally explain the main result in details. A function
f is said to be conservative if it always equal to one of its argu-
ments. For instance, a ternary function f is conservative if
f (a, b, c) Î {a, b, c} for any a, b, c. The main result can be
stated compactly the following way:

Main Theorem Let G be a finite constraint language. If G
has a majority polymorphism and has a conservative Maltsev
polymorphism, then CCSP(G) is polynomial-time solvable.
Otherwise, the problem is NP-complete.

We can show that if a constraint language G satisfies the
conditions above, then the problem can be solved in poly-
nomial time by the algorithm presented in Section 2.3. Let D
be the set of binary relations pp-definable in G. Since G has
a majority polymorphism, it is 2-decomposable; hence, every
constraint with a relation R Î G can be replaced with a collec-
tion of binary constraints, the ‘projections’ of R, which are pp-
definable in G and thus belong to D. Therefore we only need to
verify that the Key Property (Section 2.3) always holds. Due to
2-decomposability, G can be replaced with D. This constraint
language has a Maltsev polymorphism, and this makes its
relations thick mappings. Suppose now that the graph G of a
problem from CCSP(D) is connected. For any two variables v,
w the set of all allowed combinations of their values is a binary
relation, denoted Rvw and an implicit constraint. Since D con-
tains all binary relations pp-definable in D, we have Rvw Î D.
Thus Rvw is a thick mapping from Dv to Dw. The connectedness
of G and the fact that all relations in D are noncrossing can
be used to show that Rvw is a nontrivial thick mapping. Let a
and b be equivalence relations it induces on Dv and Dw, respec-
tively. If we fix a value a Î Dv then the possible values of w are
restricted to one equivalence class of b, a proper subset of Dw.
As this is true for all variables w, the key property follows.

The Main Theorem also leads to a more combinatorial
characterization of tractable problems CCSP(G): Such a
problem is tractable if and only if G is 2-decomposable, and
the binary relations pp-definable in G are noncrossing thick
mappings.

What remains now is to show that otherwise the problem
is hard.

4. HARD CSPS WITH CARDINALITY CONSTRAINTS
If one of the three conditions on a constraint language
G (a) 2-decomposability, (b) all binary pp-definable rela-
tions are thick mappings, and (c) all such binary rela-
tions are noncrossing does not hold, we show that either
Bipartite Independent Set or Linear Equation is reducible
to CCSP(G), thus showing that CCSP(G) is NP-complete.
This part is technical, but we outline the intuition behind
the technique.

Suppose first that a binary relation R is pp-definable in G,
but is not a thick mapping. This means that for some a, b,
c, d pairs (a, c), (a, d), (b, c) belong to R while (b, d) does not.
If a, b, c, d are distinct values, then R contains a fragment
that looks like RBIS. We exploit this fact to reduce Bipartite
Independent Set to CCSP(G) and conclude NP-hardness in
this case. In general, it is possible that some of a, b, c, d coin-
cide. However, a case analysis shows that reduction from
Bipartite Independent Set is possible in all cases.

If there exist two thick mappings pp-definable in G that
are not noncrossing, then there are also two equivalence
relations with this property; denote them a and b. Since they

All relations

Relational
clone of G

G

Inv C Pol G
Clone of C

S
ets of functionsS

et
s

of
 r

el
at

io
ns

All functions

C

Figure 7. Pol and Inv.

Majority implies 2-decomposability.
Let R be a ternary relation and h a majority function, which is a poly-
morphism of R. We show that any triple (a, b, c) such that each of
(a, b), (b, c), and (a, c) is extendible to a triple from R, belongs to R.
This means the 2-decomposability of R in this case. By the assump-
tion, there are (a, b, z), (a, y, c), (x, b, c) Î R for some x, y, z. Since h is
a majority polymorphism of R we have

and (a, b, c) belongs to R.
Maltsev implies thick mapping.
Let R be a binary relation and m its Maltsev polymorphism. We have
to prove that for any (a, c), (a, d), (b, c) Î R the pair (b, d) also belong to
R. It follows from a single application of the Maltsev polymorphism:

Linear equations.
As another example of a property of relations expressible by a poly-
morphism, we consider relations that are solution spaces of systems
of linear equations over a finite field F. Then if a relation R has such
representation it is an invariant of the affine function f(x, y, z) = x − y +
z, where +, − are operations of the field F. Indeed, let A ⋅ x = b be the
system defining R, and x, y, z Î R.
Then

A ⋅ f(x, y, z) = A ⋅ (x − y + z) = A ⋅ x − A ⋅ y + A ⋅ z = b.

In fact, the converse can also be shown: if R is invariant under f then
it is the solution space of a certain system of linear equations.

Figure 8. Examples of polymorphism.

106 communications of the acm | september 2010 | vol. 53 | no. 9

research highlights

are not noncrossing, some a-class and some b-class overlap,
but are not subsets of one another. Hence for some a, b, c,
we have (a, b) is in a but not in b, and (b, c) is in b but not in
a. If we can restrict a and b onto {a, b, c} somehow, then
the product of binary relations a ° b given by a pp-formula
∃ z a(x, z) ∧ b(z, y), contains (a, a), (a, c), (c, c), but does not
contain (c, a). Again, this fact can be used to reduce Bipartite
Independent Set to CCSP(G).

Finally, let R Î G be non-2-decomposable. For simplicity
assume R ternary. There is a triple (a, b, c) such that (a, b, z),
(a, y, c), (x, b, c) belong to R for some x, y, z, but (a, b, c) does
not. We show that either a binary relation which is not a
thick mapping can be pp-defined in G, or two thick map-
pings that are not noncrossing, or all the tuples can be cho-
sen such that a = b = c = 0, x = y = z = 1 (we assume 0 and 1 are
elements of the domain we can use here), and R restricted to
{0, 1} is RODD−3. Therefore a reduction of Linear Equations to
CCSP(G) can be found.

5. CONCLUSION
We have completed the study of CSP extended with cardi-
nality constraints, and proved a dichotomy theorem charac-
terizing the complexity of the problem for every constraint
language G over an arbitrary finite domain D. Dichotomy
theorems over non-Boolean domains are notoriously hard to
prove, but possibly due to the rather restrictive nature of the
CCSP problem, we managed to obtain a complete character-
ization. One can think of several natural variants with more
expressive power, for example, the domain is {1, 2, 3, 4},
and we have upper bounds on the cardinalities of 1 and 2,
while there are lower bounds on the cardinalities of 3 and
4. Therefore, upper and/or lower bounds instead of exact
cardinality requirements, bounds only on a subset of val-
ues, bounds on the total cardinality of a subset of values, etc.
give lots of interesting problems to look at. However, some
of these questions seem to be very difficult, as a dichotomy
result would immediately imply the Feder–Vardi Dichotomy
Conjecture (after all, we do not fully understand CSP even
without cardinality constraints).

Another natural direction is to consider optimization
variants (minimize/maximize the number of times certain
values appear) and determine the approximability of the
resulting problems. In the Boolean case, the approximabil-
ity of the MinOnes/MaxOnes problems, where the task is
to find a satisfying assignment minimizing/maximizing
the number of variables receiving value 1, was classified by
Khanna et al.25 Again, not being able to solve the Feder–Vardi
conjecture limits what immediate progress we can expect in
the study of non-Boolean domains.

Finally, one can look at CCSP from the viewpoint of
parameterized complexity. The basic issues of parameter-
ized complexity is whether an algorithm of running time
f (k) ⋅ nc exists, where k is some parameter of the input (for
example, the size of the solution we are looking for), f (k) is
an arbitrary function depending on k, and c is a universal
constant independent of k. For example, in Boolean CCSP,
one can answer in time nO(k) whether there is a solution with
exactly k variables set to 1, but it would be preferable to find
an algorithm with running time of the form f (k) ⋅ nc, that is,

  1. � Allen, J. Natural Language Understanding.
Benjamin Cummihgs, 1994.

  2. � Allender, E., Bauland, M., Immerman,
N., Schnoor, H., Vollmer, H. The
complexity of satisfiability problems:
Refining Schaefer’s theorem. J. Comput.
Syst. Sci. 75, 4 (2009), 245–254.

  3. �B arto, L., Kozik, M. Constraint
satisfaction problems of bounded
width. In FOCS (2009), 595–603.

  4. �B arto, L., Kozik, M. New conditions for
Taylor varieties and CSP. In LICS,
2010. to appear.

  5. �B azgan, C., Karpinski, M. On the
complexity of global constraint
satisfaction. In ISAAC (2005), 624–633.

  6. �B essière. C., Hebrard, E., Hnich, B.,
Walsh, T. The complexity of global
constraints. In AAAI (2004), 112–117.

  7. �B ulatov, A. Tractable conservative
constraint satisfaction problems. In
LICS (2003), 321–330.

  8. �B ulatov, A., Jeavons, P., Krokhin, A.
Functions of multiple-valued logic
and the complexity of constraint
satisfaction: A short survey. In ISMVL
(2003), 343–351.

  9. �B ulatov, A.A. A dichotomy theorem for
constraint satisfaction problems on a
3-element set. J. ACM 53, 1 (2006),
66–120.

10. �B ulatov, A.A., Krokhin, A.A., Larose, B.
Dualities for constraint satisfaction
problems. In Complexity of
Constraints (2008), 93–124.

11. �B ulatov, A.A., Marx, D. Constraint
satisfaction parameterized by solution
size. Manuscript.

12. �B ulatov, A.A., Marx, D. The complexity
of global cardinality constraints. In
LICS (2009), 419–428.

13. �B ulatov, A.A., Valeriote, M. Recent
results on the algebraic approach to
the csp. In Complexity of Constraints
(2008), 68–92.

14. �C reignou, N., Schnoor, H., Schnoor,
I. Non-uniform boolean constraint
satisfaction problems with cardinality
constraint. In CSL (2008), 109–123.

15. �D echter, R. Constraint Processing.
Morgan Kaufmann Publishers, 2003.

16. �D enecke, K., Wismath, S. Universal
Algebra and Applications in
Theoretical Computer Science.
Chapman and Hall, CRC Press, 2002.

17. �D unkin, N., Bater, J., Jeavons, P.,
Cohen, D. Toward high order constraint
represenations for the frequency
assignment problem. Technical
Report CSD-TR-98–05, Department
of Computer Science, Royal Holloway,
University of London, Egham, Surrey,
UK, 1998.

18. �F eder, T., Vardi, M. The computational
structure of monotone monadic SNP

and constraint satisfaction: A study
through datalog and group theory.
SIAM J. Comput. 28 (1998), 57–104.

19. �F reuder, E. Synthesizing constraint
expressions. Commun. ACM 21, (1978)
958–966.

20. �F reuder, E.C. Complexity of k-tree
structured constraint satisfaction
problems. In Proceedings of AAAI-90
(Boston, MA, 1990), 4–9.

21. �G rohe, M. The complexity of
homomorphism and constraint
satisfaction problems seen from the
other side. J. ACM 54, 1 (2007).

22. �H ell, P., Nesetril, J. Colouring,
constraint satisfaction, and complexity.
Comput. Sci. Rev. 2, 3 (2008), 143–163.

23. �J eavons, P., Cohen, D., Gyssens, M.
Closure properties of constraints.
J. ACM 44 (1997), 527–548.

24. � Kautz, H.A., Selman, B. Planning as
satisfiability. In ECAI (1992), 359–363.

25. � Khanna, S., Sudan, M., Trevisan, L.,
Williamson, D.P. The approximability
of constraint satisfaction problems.
SIAM J. Comput. 30, 6 (2001)
1863–1920.

26. � Kolaitis, P., Vardi, M. Conjunctive-
query containment and constraint
satisfaction. J. Comput. Syst. Sci. 61
(2000), 302–332.

27 � Kratsch, S., Marx, D., Wahlström,
M. Parameterized complexity and
kernelizability of Max Ones and Exact
Ones problems. Submitted, 2010.

28. �L adner, R. On the structure of
polynomial time reducibility. J. ACM 22
(1975), 155–171.

29. �L arose, B., Tesson, P. Universal algebra
and hardness results for constraint
satisfaction problems. In ICALP
(2007), 267–278.

30. � Marx, D. Parameterized complexity
of constraint satisfaction problems.
Comput. Complex. 14, 2 (2005),
153–183. Special issue “Conference on
Computational Complexity (CCC) 2004”.

31. � Marx, D. Tractable hypergraph
properties for constraint satisfaction
and conjunctive queries. In STOC
(2010), to appear.

32. � Montanari, U. Networks of
constraints: Fundamental properties
and applications to picture
processing. Inf. Sci. 7 (1974), 95–132.

33. �N adel, B. Constraint satisfaction in
Prolog: Complexity and theory-based
heuristics. Inf. Sci. 83, 3–4 (1995),
113–131.

34. � Schaefer, T. The complexity of
satisfiability problems. In STOC
(1978), 216–226.

35. � van Beek, P. Reasoning about
qualitative temporal information. Artif.
Intell. 58 (1992), 297–326.

where the combinatorial explosion is restricted to k and the
exponent of n is independent of k. We can ask what those
Boolean constraint languages G are for which the problem
of finding a solution with exactly/at most/at least k vari-
ables having 1 can be solved in such running time. These
questions have been investigated and completely answered
in Kratsch et al. and Marx.27, 30 Generalization of some of
these results to arbitrary non-Boolean domains have been
obtained very recently by the authors.11�

References

Andrei A. Bulatov (abulatov@cs.sfu.ca),
School of Computing Science, Simon
Fraser Univerity, 8888 University Drive,
Burnaby, BC, Canada.

Dániel Marx (dmarx@cs.bme.hu), School
of Computer Science, Tel Aviv University,
Tel Aviv, Israel.

© 2010 ACM 0001-0782/10/0900 $10.00

