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Abstract

The homomorphism problem for relational structures is atrabt way of formulating
constraint satisfaction problems (CSP) and various problie database theory. The
decision version of the homomorphism problem received aflattention in literature;
in particular, the way the graph-theoretical structurehaf variables and constraints
influences the complexity of the problem is intensively sdd Here we study the
problem of enumerating all the solutions with polynomialagefrom a similar point
of view. It turns out that the enumeration problem behavesg déferently from the
decision version. We give evidence that it is unlikely thathearacterization result
similar to the decision version can be obtained. Neverfisel#e show nontrivial cases
where enumeration can be done with polynomial delay.
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1. Introduction

Constraint satisfaction problems (CSP) form a rich clasalgdrithmic problems
with applications in many areas of computer science. We or@ption database sys-
tems, where CSPs appear in the guise of the conjunctive quetainment problem
and the closely related problem of evaluating conjunctiverigs. It has been observed
by Feder and Vardi [13] that as abstract problems, CSPs anetmorphism problems
for relational structures. Algorithms for and the comptexif constraint satisfaction
problems have been intensely studied (e.g. [18, 9, 3, 4)only for the standard deci-
sion problems but also optimization versions (e.g. [2, 21 22]) and counting versions
(e.q.[10, 6, 7,12]) of CSPs.

In this paper we study th€SP enumeration problerthat is, problem of comput-
ing all solutions for a given CSP instance. More specificallg are interested in the
guestion which structural restrictions on CSP instancesajuee tractable enumera-
tion problems. “Structural restrictions” are restrictioon the structure induced by the
constraints on the variables. Examples of structuralictigtns are “every variable oc-
curs in at most 5 constraints” and “the constraints form arlechypergrapf’. This
can most easily be made precise if we view CSPs as homomaorhablems: Given
two relational structure&, B, decide if there is a homomorphism frafito B. Here the
elements of the structure correspond to the variables of the CSP and the elements of
the structuré® correspond to the possible values. Structural restristéoe restrictions
on the structuré\. If A is a class of structures, th&bP (A, —) denotes the restric-
tion of the general CSP (or homomorphism problem) where ligfe Hand side” input
structureA is taken from the classl. ECSP(A, —) denotes the corresponding enu-
meration problem: Given two relational structutes .4 andB, compute the set of all
homomorphisms from to B. The enumeration problem is of particular interest in the
database context, where we are usually not only interestéteiquestion of whether
the answer to a query is nonempty, but want to compute aletujpl the answer. We
will also briefly discuss the correspondisgarchproblem, denoteHCSP (A, —): Find
a solution if one exists.

It has been shown in [1] th&CSP(A, —) can be solved in polynomial time if
and only if the number of solutions (that is, homomorphisfosgall instances is poly-
nomially bounded in terms of the input size and that this ésdhse if and only if the
structures in the clasd have bounded fractional edge cover number. However, ysuall
we cannot expect the number of solutions to be polynomiathisycase, we may ask
which conditions ond guarantee thdCSP (A, —) has a polynomial delay algorithm.
A polynomial delay algorithnfior an enumeration problem is required to produce the
first solution in polynomial time and then iteratively com@uwall solutions (each so-
lution only once), leaving only polynomial time between tauccessive solutions. In
particular, this guarantees that the algorithms complitsslations inpolynomial total
time that is, in time polynomial in the input size plus outpuisiz

3The other type of restrictions studied in the literature @PGre “constraint language restrictions”, that
is, restrictions on the structure imposed by the constralations on the values. An example of a constraint
language restriction is “all clauses of a SAT instance, e\as a Boolean CSP, are Horn clauses”.



Itis easy to see thd&CSP (A, —) has a polynomial delay algorithm if the clads
has bounded tree width. It is also easy to see that there assed4 of unbounded
tree width such thaECSP (A, —) has a polynomial delay algorithm. It follows from
our results that examples of such classes are the class gffiddl or the class of all
complete graphs with a loop on every vertex. It is known thatdecision problem
CSP(A, —) is in polynomial time if and only if the cores of the structsiia .A have
bounded tree width [16] (provided the arity of the constimis bounded, and under
some reasonable complexity theoretic assumptiongprdof a relational structur&
is a minimal substructurd’ C A such that there is a homomorphism frainto A;
minimality is with respect to inclusion. It is easy to seetthladcores of a structure are
isomorphic. Hence we usually speak of “the” core of a stectilote that the core of
a grid (and of any other bipartite graph with at least one gdge single edge, and the
core of a complete graph with all loops present (and of angroginaph with a loop)
is a single vertex with a loop on it. The core of a complete grajih no loops is the
graph itself. As a polynomial delay algorithm for an enuntieraalgorithms yields
a polynomial time algorithm for the corresponding decisgwoblem, it follows that
ECSP(A, —) can only have a polynomial delay algorithm if the cores ofdtractures
in A have bounded tree width. Unfortunately, there are exangfletassesA that
have cores of bounded tree width, but for whitGSP (A, —) has no polynomial delay
algorithm unless P= NP (see Example 1).

Our main algorithmic results show thBCSP (A, —) has a polynomial delay algo-
rithm if the cores of the structures i have bounded tree width and if, in addition,
they can be reached in a sequence of “small steps&mdomorphisnof a structure is
a homomorphism of a structure to itself. rétractionis an endomorphism that is the
identity mapping on its image. Every structure has a ratyadbp its core. However,
in general, the only way to map a structure to its core may beoligpsing the whole
structure at once. As an example, consider a path with a ladpth endpoints. The
core consists of a single vertex with a loop. (More precidbly two cores are the two
endpoints with their loops.) The only endomorphism of thiacture to a proper sub-
structure maps the whole structure to its core. Comparentitiisa path that only has
a loop on one endpoint. Again, the core is a single vertex aithop, but now we can
reach the core by a sequence of retractions, mapping a p&hgthn to a subpath
of lengthn — 1 and then to a subpath of length— 2 et cetera. We prove that jfl
is a class of structures whose cores have bounded tree widtbaam be reached by a
sequence of retractions each of which only moves a boundetheuof vertices, then
ECSP(A, —) has a polynomial delay algorithm (Theorem 3).

We also consider more general sequences of retractionsdomerphism from a
structure to its core. We say that a sequence of endomorpHiem a structured
to a substructurd; C Ag, from A; to a substructurd.,, ..., to a structuré\,, has
bounded widthf A,, and, for each < n, the “difference betweeA; andA;_;" has
bounded tree width. We prove that if we are given a sequeneaadmorphisms of
bounded width together with the input structétethen we can compute all solutions
by a polynomial delay algorithm. Unfortunately, in genera cannot compute such
a sequence of endomorphisms efficiently. We prove that ewewifdth 1 it is NP-
complete to decide whether such a sequence exists (TheQrékie 2lso show that the
existence of a sequence of bounded width endomorphismg & sufficient criterion



for tractability if this sequence is not explicitly givenr@osition 1).

In the last section, we briefly discuss the problem of cormgupirojections of solu-
tions of a CSP, which is equivalent to the problem of evahgationjunctive queries in
relational databases. This problem is significantly haraled we show that our criteria
for tractability beyond bounded tree width cannot be ex¢eh@Example 3).

Finally, we remark that our results are far from giving a cdetg classification
of the classesA for which ECSP(A, —) has a polynomial delay algorithm and those
classes for which it does not. Indeed, we show that it will igcdlt to obtain such a
classification, because such a classification would implglatien to the notoriously
openCSP dichotomy conjectutd Feder and Vardi [13] (see Section 3 for details).

2. Preliminaries

Relational structures. A vocabularyr is a finite set ofelation symbol®f specified
arities. Arelational structureA overr consists of a finite sed called theuniverseof
A and for each relation symb@ € 7, say, of arityr, anr-ary relationR*» C A". Note
that we require vocabularies and structures to be finiterdcsireA is asubstructure
of astructuré if A C BandR* C R® forall R € 7. We write A C B to denote that
A is a substructure d andA C B to denote thaf\ is apropersubstructure oB, that
is, A C B andA # B. A substructuréd C B is inducedif for all R € 7, say, of arity
r, we haveR* = R® N A". For a subsel C B, we writeB[A] to denote the induced
substructure o with universeA.

Homomorphisms. We often abbreviate tupl€s, ..., ax) by a. If ¢ is a mapping
whose domain contains, . . ., a;, we writep(a) to abbreviatédp(ay), ..., p(ak)). A
homomorphisnfrom a relational structuré to a relational structur® is a mapping
¢ : A — B such that for allR € 7 and all tuplesa € R* we havep(a) € RE.
An endomorphisnof A is a homomorphism from to A, and aretraction of A is
an endomorphism such that for al € A it holds thath(h(a)) = h(a). A partial
homomorphisnon C' C A to B is a homomorphism ok [C] to B. It is sometimes use-
ful when designing examples to exclude certain homomonpisr endomorphisms.
The simplest way to do that is to use unary relations. For @kanif R is a unary
relation anda) € R* we say that has colorR. Now if b € B does not have color
R then no homomorphism from to B mapsa to b. If A is ar-structure andp is a
mapping withdom(p) = A, thenp(A) is ther-structure with universe(A) and with
R¢®) = {p(a) | a € R*}. Note that a mapping : A — B is a homomorphism from
AtoBifand only if (A) is a substructure (not necessarily inducedpof

Two structuresA andB are homomorphically equivalerit there is a homomor-
phism fromA to B and also a homomorphism froBito A. Note that if structured
and A’ are homomorphically equivalent, then for every structBirthere is a homo-
morphism fromA to B if and only if there is a homomorphism frofd to B; in other
words: the instanced\, B) and(A’, B) of the decision CSP are equivalent. However,
the two instances may have vastly different sizes, and theptexity of solving the
search and enumeration problems for them can also be qffiteedit. Homomorphic
equivalence is closely related to the concept of the corestfiecture: A structuré\
is acoreif there is no homomorphism from to a proper substructure @f. A core



of a structureA is a substructurd’ C A such that there is a homomorphism frém
to A’ andA’ is a core. Equivalently, a core of a structure can be definednamimal
substructured’ of A such that there is a homomorphism fraimnto A’. Obviously,
every core of a structure is homomorphically equivalenh structure. We observe
another basic fact about cores:

Observation 1. Let A andB be homomorphically equivalent structures, andieand
B’ be cores of\ andB, respectively. Thed’ andB’ are isomorphic. In particular, all
cores of a structuré are isomorphic. Therefore, we often spealthefcore ofA.

Observation 2. It is easy to see that it is NP-hard to decide, given strustire B,
whetherA is isomorphic to the core d@. (For an arbitrary grapty, let A be a triangle
andB the disjoint union ofG with A. ThenA is a core ofB if and only if G is 3-
colorable.) Hell and NeSetfil [17] proved that it is co-dBmplete to decide whether
a graphis a core.

Tree decompositions. A tree decompositioof a graphG is a pair(T, B), whereT is
atree andB is a mapping that associates with every nodeV (T') a setB; C V(G)
such that (1) for every € V(G) the set{t € V(T)|v € B} is connected irl’,
and (2) for every € E(G) thereis a& € V(T) such thaie C B;. The setsB;, for
t € V(T), are called thagsof the decomposition. It is sometimes convenientto have
the treeT” in a tree decomposition rooted; we always assume it is.Witlth of a tree
decomposition(7T, B) is max{|B;| | t € V(T)} — 1. Thetree widthof a graphG,
denoted by tW(G), is the minimum of the widths of all tree decompositiongbf

We need to transfer some of the notions of graph theory tdrarpirelational
structures. Th&aifman graph(also known aprimal graph of a relational structure
A over vocabularyr is the graphG(A) with vertex setA and an edge between
andb if a # b and there is a relation symbét € 7, say, of arityr, and a tuple
(ai,...,a,) € R* suchthau,b € {ay,...,a,}. We can now transfer graph-theoretic
notions to relational structures. In particular, a sulis&l A is connectedhn a structure
A if it is connected inG(A). A tree decompositionf a structureA can simply be
defined to be a tree-decomposition@{A). Equivalently, a tree decomposition of
A can be defined directly by replacing the second conditioméndefinition of tree
decompositions of graphs by (2’) for evefy € 7 and(ay,...,a,) € R" thereis a
t € V(T')suchthafay,...,a,} C B;. AclassC of structures habounded tree width
if there is aw € N such that twA) < w for all A € C. A classC of structures has
bounded tree width modulo homomorphic equivaleiftieere is aw € N such that
everyA € C is homomorphically equivalent to a structure of tree widtmast w.

Observation 3. A structureA is homomorphically equivalent to a structure of tree
width at mostw if and only if the core ofA has tree width at most.

The Constraint Satisfaction Problem. For two classesd and B of structures, the
Constraint Satisfaction ProblenSP (A, B), is the following problem:

CSP(A, B)

Instance:A € A,Be B
Problem: Decide if there is a homomorphism frgm
AtoB.




The CSP is a decision problem. The variation of it we studyhia paper is the
following enumeration problem:

ECSP(A, B)

Instance:A € A, B € B

Problem: Output all the homomorphisms frofato
B.

We shall also refer to the search probl&f@'SP (A, B), in which the goal is to find
one solution of a CSP-instance or output ‘no’ if a solutiorslaot exist.

If one of the classedl, 5 is the class of all finite structures, then we denote the cor-
responding CSPs ySP (A, —), CSP(—, B) (respectivelyECSP (A, —), ECSP(—, B),
SCSP(A, —), SCSP(—, B)).

The decision CSP has been intensely studied. In partiddlasibeen shown, under
standard complexity-theoretic assumptions, that if asafasf structures has bounded
arity thenCSP(C, —) is solvable in polynomial time if and only & has bounded tree
width modulo homomorphic equivalence [16] whereas if thigyaf C is not bounded
thenCSP(C, —) is fixed-parameter tractable if and onlydfhas bounded submodular
width [23].

Problems of the fornCSP(—, C) have been studied mostly in the case wigen
is 1-element. Problems of this type are sometimes refeorexshon-uniform It is
conjectured that every non-uniform problem is either dolan polynomial time or
NP-complete (the so-callddichotomy Conjectuie[13]. Although this conjecture is
proved in several particular cases [18, 8, 9, 3], in its galfferm it is believed to be
very difficult.

A search CSP is clearly no easier than the correspondingidagiroblem. While
any non-uniform search proble®®SP(—, C) is polynomial time reducible to its deci-
sion versionCSP(—,C) [11], nothing is known about the complexity of search prob-
lemsSCSP(C, —) except the result we state in Section 3. Regarding enurnarafi
CSPs, some initial results on the complexity of non-unif@numerating problems
have been reported in [26]. Also, the question of enumegatoiutions "projected”
over a given set of variables has been investigated in [15].

3. Tractable structures for enumeration

Since even an easy CSP may have exponentially many solutiomsnodel of
choice for ‘easy’ enumeration problems is algorithms wittypomial delay [20]. An
algorithm Alg is said to solve a CSRith polynomial delayw.p.d. for short) if there
is a polynomialp(n) such that, for every instance of size Alg outputs ‘no’ in a
time bounded by(n) if there is no solution, otherwise it generates all solwitmthe
instance such that no solution is output twice, the firsttsmius output after at most
p(n) steps after the computation starts, and time between dingtivo consequent
solutions does not exceedn ).

If a class of relational structuréshas bounded arity, the aforementioned result of
Grohe [16] imposes strong restrictions on enumerationlprod solvable w.p.d.



Observation 4. If a class of relational structureéswith bounded arity does not have
bounded tree width modulo homomorphic equivalence, 6P (C, —) is not solv-
able w.p.d., unless FRTW1].

Unlike for the decision version, the converse is not truedebd, the following
example shows that bounded tree width modulo homomorphivalgnce does not
imply enumerability w.p.d. This also has been noted in [25].

Example 1. Let Ay be the disjointunion of &-clique and aloopandled = {Ay | k£ >
1}. Clearly, the core of each graph ih has bounded tree width (in fact, it is a sin-
gle element), henc€SP (A, —) is polynomial-time solvable. For an arbitrary graph
B without loops, letB’ be the disjoint union oB and a loop. It is clear that there is
always a trivial homomorphism fromy, (for any & > 1) to B’ that maps everything
into the loop. There exist homomorphisms different from titidal one if and only

if B contains ak-clique. Thus if we are able to check in polynomial time wlegth
there is a second homomorphism, then we are able to tBshafs ak-clique. There-
fore, althoughCSP (A, —) andSCSP(.A, —) are polynomial-time solvable, a w.p.d.
enumeration algorithm fdECSP (A, —) would imply P= NP.

It is not difficult to show thaECSP(C, —) is enumerable w.p.d. & has bounded
tree width. Instead of giving a direct proof we shall deriiestfrom a more general
result in Section 6.

Thus enumerability w.p.d. has a different tractabilityterion than the decision
version, and this criterion lies somewhere between boutr@edwidth and bounded
tree width modulo homomorphic equivalence. Thus in ordenture that the solutions
can be enumerated w.p.d., we have to make further restr&ctio the way the structure
can be mapped to its bounded tree width core. The main newittfiof the paper
requires that the core is reached by “small steps”:

Definition 1. Let A be a relational structure with universe We say thatA has a
sequence of endomorphisms of widtif there are subsetd = Ay > 4; D ... D
A, # () and homomorphisms;, ..., ¢, such that

1. ¢; is a homomorphism fromh[A4,_1] to A[A;],
3. for everyd < i < n, the tree width ofA[4; \ A;1.] is at mostk;
4. A[A,] has tree width at mogt

If v1,...,p, areretractions o [Ao], . . ., A[A,_1], then we say that has a sequence
of retractions of widthk.

In Section 4, we show that enumeration dr, B) can be done w.p.d. if a sequence
of bounded width endomorphisms faris given in the input. Unfortunately, we cannot
claim thatE CSP (A, —) can be done w.p.d. if every structuredrhas such a sequence,
since we do not know how to find such sequences efficiently.att, fas we show
in Section 5, it is hard to check if a width-1 sequence existsaf given structure.
Furthermore, we construct a clagsvhere every structure has a width-2 sequence, but
ECSP(A, —) cannot be done w.p.d., unlessPNP. This means that it is not possible



to get around the problem of not being able to find the seque(foe example, by

finding sequences with somewhat larger width or by constrg¢he sequence during
the enumeration). Thus having a bounded width sequencedofneorphisms is not
the right tractability criterion. We then investigate a moestrictive notion, where the
bound is not on the tree width of the difference of the layarsdn the number of

elements in the differences and show that this yields enaitioarw.p.d.

However, in the rest of the section, we give evidence thatrestation problems
solvable w.p.d. cannot be characterized in simple terntedd, a description of enu-
meration problems solvable w.p.d. would imply a descriptddnon-uniform decision
problems solvable in polynomial time. This is shown via aalagous result for the
search version of the problem, which might be of indepenti¢atest. ByA ® B we
denote the disjoint union of relational structufeandB.

Lemma 1. LetB be a relational structure thatis a core, and &t be {A®B | A —
B}. ThenCSP(—,B) is solvable in polynomial time if and only if so is the problem
SCSP(Cg, —).

ProOOEF If the decision problenCSP(—,B) is solvable in polynomial time we can
construct an algorithm that given an instariged B, C) of SCSP(Cg, —) computes a
solution in polynomial time. The algorithm starts by conipgtan homomorphisnp
from A @B to B. Such a homomorphism exists by the definitiofgfnd can be com-
puted in polynomial time because, by the aforementionadtres[11], if CSP(—,B)
is solvable in polynomial time then so$CSP(—,B). Then the algorithm decides by
brute force whether or not there exists a homomorphisfnom B to C (note that this
can be done in polynomial time becadkés fixed). If such a homomorphism does not
exist then we can certainly guarantee that there is no homamsm fromA ¢ B to C.
Otherwise, the required homomorphism is obtained as theositiony’ o .
Conversely, assume that we have an algorithm Alg that finddutien of any in-
stance ofJSP(Cg, —) in polynomial time, sayp(n). We construct from it an algorithm
that solve<CSP(—, B). Given an instancéA, B) of CSP(—, B) we call algorithm Alg
with input A @& B andB. Additionally we count the number of steps performed by Alg
in such a way that we stop if Alg has not finishedpifr) steps. If Alg produces a
correct answer then we have to be able to obtain from it a hoonpinism fromA to B.
If Alg’s answer is not correct or the clock reach€®s) steps we know that Alg failed.
The only possible reason for that is thath B does not belong t6p, which implies
thatA is not homomorphic t@. m]

In what follows we transfer this result to enumeration peos$. LetA be a class
of relational structures. The clag§ consists of all structures built as follows: Take
A € Aand add to itA| independent vertices.

Lemma 2. Let.A be a class of relational structures. ThB@SP (A, —) is solvable in
polynomial time if and only iECSP(.A’, —) is solvable w.p.d.

PrROOF If ECSP(A, —) is enumerable w.p.d., then for any structérec A’ it takes
time polynomial in|A’| to find the first solution. Sincd’ is only twice of the size of
the corresponding structufg it takes only polynomial time to solVeCSP (A, —).



Conversely, given a structudg = AU T € A, whereA € A and[ is the set of
independent elements, and any strucfitir@he first homomorphism from’ toB can
be found in polynomial time, sinc&CSP (A, —) is polynomial time solvable and the
independent vertices can be mapped arbitrarily. Let thgicden of this homomor-
phism ontaA bey. Then while enumerating all possidg|*! extensions of we buy
enough time to enumerate all homomorphisms febe B using brute force. ]

4. Sequence of bounded width endomorphisms

In this section we show that for every fixéd all the homomorphisms from to
B can be enumerated with polynomial delay if a sequence othwidindomorphisms
of A is given in the input. Throughout this section, we considdixed sequence
Ag,..., A, andyy, ..., @, as in the definition of a sequence of widthendomor-
phisms (Definition 1). For brevity, we denatéA;] by A,.

We will enumerate the homomorphisms frénto B by first enumerating the homo-
morphisms fromA,,, A,,_1, ... to B and then transforming them to homomorphisms
from A to B using the homomorphisms. We obtain the homomorphisms frady by
extending the homomorphisms frain ; to the setd; \ A;+1; Lemma 3 below will be
useful for this purpose. In order to avoid producing a homgghsm multiple times,
we need a delicate classification (see Definitions 2 and 3hmbtions elementary
homomorphisms and index of a homomorphism).

Lemma 3. Let A, B be relational structures and; C X, C A subsets, and let
go be a homomorphism frofi[X;] to B. For every fixedk, there is a polynomial-
time algorithmHOMOMORPHISM-EXT (A, B, X, X5, go) that decides whethey, can
be extended to a homomorphism frémX5] to B, if the tree width of the induced
substructureA [ X5 \ X;] is at mostk.

PROOE LetY = X, \ X;. We construct a structufg and an expansioB* of B in
such a way that Gaifman graph ®fequalsG(A[Y]) and there is a homomorphism
fromY toB* if and only if there is one from\[X5] to B extendingy,. SinceG(A[Y])
has tree widttk, this can be checked in polynomial time.

ForeachR ¢ 7, say,(-ary, andeach = (a1, ...,a;) € R* suchthafay,...,a;}N
Y # ), we introduce a new relational symbal, as follows. Let(a;,,...,a;, ) be
the list of all elements froray,...,a;} NY wherei; < ... < i, and for some
is # it it may happen that;, = a;,. ThenR, is m-ary, it is interpreted orYY as
RY ={(ai,,...,a;,)}, and it is interpreted oB* as

RE" = {(biy,...,bi,,) | (b1,...,be) € R®andb; = go(a;) fora; € X1}

In a sense, relationB, describe all possible restrictions that the fixed valuegher
elements fromX; impose on possible values for elements frgm

It is straightforward that a homomorphism frarmto B* exists if and only if there
exists a homomorphism fromi[X5] to B extendinggo. Indeed, the restriction of any
homomorphism\[X;] to B extendinggy, ontoY is a homomorphism fronY to B*.
Conversely, ifp is a homomorphism frofy to B* thengy U ¢ is a homomorphism of
A[X,] to B. Finally, the Gaifman graph &f equalsG(A[Y]). O



Definition 2. Theindexof a homomorphisnp from A to B is the largest such thatp
can be written ag = 1 o ¢ o ... o ¢ for some homomorphism from A; to B. In
particular, ife cannot be written ag = v o 1, then the index op is 0.

Observe that if the index af is at least, then there is a unique such thatp =
o o...o0p1: This follows from the fact thap; o ... o o1 IS a surjective mapping
from A to A, thus ifyy’ andy” differon A, them)’op;0.. .01 andy” opso.. .00
differ on A.

Definition 3. A homomorphism) from A, to B is elementaryif it cannot be written
asy = 9’ o pir1. A homomorphism iseducibleif it is not elementary.

Lemma 4. If ahomomorphisny from A; to B is elementary, thep = yop,o...0¢;
has index exactly. Conversely, if homomorphismfrom A to B has index and can be
written asy = Yo ;0. ..0¢1, then the homomorphismfrom A, to B is elementary.

PROOF By definition,p = 1) o p; o ... 0 ¢ has index at least If ¢ has index at
leastt + 1, theny = 19’ o 411 0 ;0 ... 0 1. By the uniqueness of the, we have
1 = 1’ o pry1, cONtradicting the fact thap is elementary. Thus the index ¢f is
exactlyt.

For the second part, suppose tifas not elementary, i.et) = ¢’ o ;11 for some
homomorphism)’ from A;.; toB. Now p = v’ o 11 01 0... 01, thus the index
of pis atleast + 1. ]

Lemma 4 suggests a way of enumerating all the homomorphiemsAf to B with-
out repetitions: fot = 0,...,n, we enumerate all the elementary homomorphisms
from A, to B, and for each such homomorphigimwe computey = 1o 0...0p;.
To this end, we need the following characterization of eletagy homomorphisms:

Lemma 5. A homomorphisnp from A; to B is reducible if and only if

(1) ¥v(z) = ¢(y) for everyz,y € A; with oip1(x) = @ir1(y), i.e., for every
z € A1, ¢(z) has the same valug for everyz € ¢, (2), and

(2) the mapping defined by () := b, is a homomorphism from,,; to B.

PROOF Suppose first that both conditions hold. Ther= ¢’ o ;11 (Wherey)' is as
defined in the second condition). Singéis a homomorphism frond,; to B, this
means that) reducible.

Next we show that iy reducible, then both conditions hold. Suppose that
" o pi11, wherey' is a homomorphism from,, ; to B. If there are two elements
x,y such thatp, 1 (z) = piq1(y) andy(z) # ¢¥(y), then we have a contradiction
asy(z) = ¥ (pi1(2)) = ¥ (pr+1(y)) = ¥(y). Sincep,yq is onto Ay, the map-
ping ¢” is the same as the mapping defined in the second condition. Thu§is a
homomorphism fronf;, to B. a

Lemma 5 gives a way of testing in polynomial time whether aagihomomor-
phismy is elementary: we have to test whether one of the two conditéwe violated.
We state this in a more general form: we can test in polynotimed whether a partial
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mappinggy can be extended to an elementary homomorphistif the structure in-
duced by the elements wheggis not defined has bounded tree width (see Lemma 7).
We fix values every possible way in which the conditions of besrb can be violated
and use WMOMORPHISM-EXT to check whether there is an extension compatible
with this choice. That is, we fix values every possible wayt theces a violation of
one of the two conditions in Lemma 5 and then we check whethean be extended

in a way compatible with these fixed values. For example, forea the violation of

(1) in Lemma 5, we need choogeandy with .11 (x) = @41 (y) and fix different
values fory(x) andv(y). To enforce the violation of condition (2), the obvious thin
to do is to select a relatioR*++* of A;,, a tuplea € R*+1, a tupleb ¢ R®, and

fix values such that’’ mapsa to b. However, this would require going through all
tuplesb not appearingn a relationkR®. We follow a somewhat different approach to
enumerate the possible violations more efficiently. We rikedollowing definition:

Definition 4. Given a relationR® of arity r, abad prefixis a tuple(bs, ...,bs) € B*
with s < r such that

1. there is no tuplé€by, ..., bs,bsy1,...,b,) € RE foranyb,q,...,b. € B, and
2. thereis atupléby, ..., bs_1,cs,Cop1,---,¢) € RE for somecs, ..., ¢, € B.

If (b1,...,b.) ¢ RE, then there is a uniqué < s < r such that the tuple
(b1,...,bs) is a bad prefix: there has to be arsuch that(b,, ..., bs) cannot be ex-
tended to a tuple oR®, but(by,...,bs_1) can.

Lemma 6. The relationR® has at mostR®| - (| B| — 1) - » bad prefixes, whereis the
arity of the relation.

PROOF By definition, for every bad prefitb., . . ., bs), there is a tuple
(bi,...,bs_1,Cs,Cs01,---,¢) € RB.

Fix such a tuple for each bad prefix. Let us count how many befixes are assigned
to a tuple inRB. At most|B| — 1 bad prefixes of lengtk can be associated with
a tuple: the bad prefix has to agree on the first 1 coordinates, and it has to be
different on thes-th coordinate. Therefore, the total number of bad prefiseg most
|RE| - (|B| — 1) - D

Lemma 7. Let X be a subset ofi; and letgy be a mapping fronX to B. For every
fixedk, there is a polynomial-time algorithEBLEMENTARY-EXT (¢, X, o) that decides
whetherg, can be extended to an elementary homomorphism fpto B, if the tree
width of the structure induced b¥; — X is at mostk.

PrOOF We try to find a homomorphismthat violates one of the coadgiin Lemma5.
In order to do so, we try every possible way in which the caadg can be violated.
First, we enumerate every possible way condition (1) canibted. For this pur-
pose, we enumerate every quadru@te, xo, b1, bs) with z1, 20 € Ay, pri1(21) =
wrr1(x2), b1, be € B, andby # be. We try to find an extension @f with go(z1) = by
andgo(xz2) = bo; itis clear that if such an extension exists, then it is amneletary
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homomorphism fromd; to B. If x; € X andgo(x1) # by, then such an extension
does not exist (and similarly fars). Otherwise we can set’ = X U {z1, 22} and
extendgo by defininggo(xz1) = b1 andgo(z2) = b (if it is not already defined so).
Now we can apply Algorithm BMOMORPHISM-EXT (A, B, X', A;, go) to check ifgg
can be extended frod¥’ to A;.

Next we try to find an extension that satisfies the first coaditf Lemma 5 but
violates the second. If’ is not a homomorphism, then there is a relati®re 7 and
atuplea = (z1,,...,,2,) € R® with 21,...,2, € A;1 such that)’(a) ¢ RE. We
enumerate everit € 7, tuplea € RN A7, and every bad prefifo;, . . ., b,) of R®.
Let z; be an arbitrary element oA; with ;41 (z;) = z;. We extendy, by defining
go(x;) = b; for everyl < i < s. If go(x;) was already defined to have a different
value, then we skip to the next bad prefix. Otherwise we getension ofg, to
X' = X U{z1,...,z5}. We show that ifgy can be further extended froi’ to a
homomorphism) from A; to B (which can be checked by callingdthOMORPHISM
ExT(A,B, X', A4, g0)), then this homomorphism is an elementary homomorphism.
Suppose thap does not violate (1) of Lemma 5 and kgt be as defined by the second
condition. Sincey(z;) = z;, we have that)'(z;) = ¢¥(z;) = b; for1 < i < s.
Thus(¢/(2), ..., (2.)) € R® (since(by,, ..., b,) is abad prefix), which means that
1" is not a homomorphism and the second condition is violatduwrdfore, ifgy has
an elementary extension that satisfies the first conditiohvésiates the second, then
our algorithm finds an elementary extension when the apjateprelationR, tuple
a, and bad prefixb,,...,bs) are considered. Thus we can conclude that algorithm
ELEMENTARY-EXT(¢, X', go) finds an elementary extensiongfif it exists. ]

We enumerate the elementary homomorphisms in a specific defimed by the
following precedence relation.

Definition 5. Let ¢ be an elementary homomorphism fram to B and lety be an
elementary homomorphism frod; to B for somej > . Homomorphismy is the
parentof ¢ (¢ is achild of ¥) if ¢ restricted tad; 1 can be written agoyp;o...0p; 0.
Ancestoranddescendantelations are defined as the reflexive transitive closurbef t
parent and child relations, respectively.

Note that an elementary homomorphism frégmto B has exactly one parent for
i < n and a homomorphism from,, to B has no parent. Fix an arbitrary ordering
of the elements ofd. For0 < i < n and0 < j < |4; \ Ai+1], let 4; ; be the
union of A;;, and the firstj elements of4; \ A;;:. Note that4;, = A;+1 and
AijAN\A) = Aie

Lemma 8. Let ¢ be a mapping from4; ; to B that can be extended to an elemen-
tary homomorphism from,; to B. Assume that a sequence of widtendomorphisms

is given forA. For every fixedk, there is a polynomial-delay, polynomial-space al-
gorithm ELEMENTARY-ENUM(4, 7, ¢) that enumerates all the elementary homomor-
phisms fromA; to B that extendsg) and all the descendants of these homomorphisms.

PROOFE If j < |A4;\ A;+1], then we enumerate every eleméwtf B, and extend) by
definingy’(a;,j+1) = b andy’(z) = ¢ (z) for everyz € A; ;. For every such)’, we
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Input: Integersd < i <n,0 < j <|A; \ A;+1|, mappingy from A, ; to B.

Output: Every elementary homomorphism fraiy) to B that extendg) and all
descendants of these homomorphisms.

Stepl if j<|A4;\ A;41] thendo

Step1.1 forall b€ Bdo

Step1.1.1 extendy to ¢’ with ¢’ (a; j+1) = b

Step 1.1.2 if ELEMENTARY-EXT (4, A; j+1,¢") = truedo
Step 1.1.2.1 ELEMENTARY-ENUM(4, j + 1,4)

Step2 if j=[A4;\ Ait1]

Step2.1  output

Step2.2 for k:=1toi— 1thendo

Step2.2.1 Y =1 0PY;0...0Pp1o

Step 2.2.2 if ELEMENTARY-EXT(k, Ak+1, %) = truethen do
Step2.2.2.1 ELEMENTARY-ENUM(k, 0, ¢%)

Figure 1: Algorithm EEEMENTARY-ENUM(%, 7, ¢)

use Algorithm EEMENTARY-EXT (i, A; j1+1,%’) of Lemma 7 to check whether this
extensiony’ can be further extended to an elementary homomorphism fpto B.

If so, then we recursively call EMENTARY-ENUM(i, 7 + 1,%’). Note that by the
assumption thap has an extension to an elementary homomorphism figto B, at
least one choice df € B results in a recursive call.

If j = |Ai\A;+1| (Whichmeansthad; ; = A;), themy is an elementary homomor-
phismA; fromB, which we output. Forevery < k <i—1, letyy = pop;0...005 12
be a mapping fromd;; (i.e., Ax o) to B. Itis clear from the definition that if an
elementary homomorphisip of Ay is a child of, theny extendsy,. For every
1 <k < i-1, we call EEMENTARY-EXT(k,0, ) of Lemma 7 to check i)y
can be extended to an elementary homomorphism fagnto B, and if so, then we
make a recursive call EMENTARY-ENUM(k, 0, ). It is clear that these recursive
calls enumerate every child (and therefore every descénhalfan. Furthermore, as the
different recursive calls enumerate different childrendsk is different in each call),
each descendant is enumerated exactly once.

Observe that the recursion depth@g|A|), the time spent at each node of the
recursion tree is polynomial and we output an elementarydmanphism at every leaf
node (a leaf node is possible onlyjif= |A; \ A;11]). Thus the delay between two
outputs is polynomial and the space requirement is alsanpotyal. a

By calling ELEMENTARY-ENUM(n, 0, go) (Wheregy is a trivial mapping fronf)
to B), we can enumerate all the elementary homomorphisms. Bglkervation in
Lemma 4, this means that we can enumerate all the homomarpffiemA to B.

Theorem 1. For every fixedk, there is a polynomial-delay, polynomial-space algo-
rithm that, given structured\, B, and a sequence of width endomorphisms aof,
enumerates all the homomorphisms frénto B.
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The following example shows that Theorem 1 does not proviceaplete descrip-
tion of classes of structures solvable w.p.d.

Example 2. Let A be the class of structures that are the disjoint union of p foal a
core. ObviouslySCSP (A, —) is polynomial time solvable. Recall that we denoted by
A’ the class of all structures built by takingdac .4 and adding to itA| independent
vertices. By Lemma ZECSP(A’, —) is solvable with polynomial delay. However, it

is not hard to see that’ does not have a sequence of endomorphisms of bounded tree
width.

Furthermore, as we will see in the next section it is hard, énggal, to find a
sequence of bounded width endomorphims. Still, we can firsjaence of endomor-
phisms for a structurd if we impose additional restrictions on the sequence. This i
done in Section 6.

5. Hardness results

The first result of this section shows that finding a sequefieadomorphisms of
bounded width can be difficult even in the simplest cases.

Theorem 2. It is NP-complete to decide if a structure has a sequencewidih en-
domorphisms or a sequence of 1-width retractions to the.core

PrROOF The proof is by reduction from 3SAT. Let be a CNF formula wit vari-
ables andn clauses. We construct a relational structéréa colored graph) whose
core has tree width 1. We show théathas a sequence of endomorphisms to the core if
and only if A has a sequence of retractions if and only ifs satisfiable.

Construction. The core ofA has 6 nodes called, f, 1,2, 3 (see Figure 2). Vertex
has a self-loop and is connected to every other vertex ofdhe ¢Jsing distinct colors
on the vertices of the core, we can ensure that this strucduneleed a core (in fact
that the identity is its only endomorphism) and that the é®renique.

Z1 €1 L, an

C1i1 Ci2 C1,3 Cm,1 Cm,;2 Cm,3

Figure 2: The structuré constructed in the reduction.

Let us build a treel’ the following way. There is a distinguished vertex named
r’ that will be called the root of the tree. This node is conngatith » nodesu;
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(i = 1,...,n) andm nodesc; (j = 1,...,m). Each nodevy; (i = 1,...,n) is
connected to two descendantsandz;. Also we add for everynodg (j = 1,...,m)
three new nodes; , (¢ = 1,2, 3) to which it is connected. We add colors to the nodes
in T so that every node can only be mapped either to itself or todhe This enforces
that every endomorphism dfis also a retraction. Also, by adding appropriately colors
we can place some restrictions on to which element of the @gigen element of”
can be mapped. In particular, nodgsi = 1,...,n can only be mapped tbor f,
nodes;, j = 1,...,m can only be mapped th 2 or 3, and the rest of nodes @f can
only be mapped to.

We add some additional edges connecting the leavés thifusT will no longer be
a tree. These edges encode the structure of the forgufahe ¢-th literal of thej-th
clause is the literat; (resp.,z;), then connect; ; with z; (resp.z;).

To complete the description of the structure, we define theotions between
the core and’. Vertex f is connected with each; (: = 1,...,n) whereas vertexis
connected with each; (i = 1,...,n). Each vertex;, (¢ = 1,2, 3) is connected with
exactly two of verticed, 2, 3 of the core: in particular it is not connected to verfex
but connected to the other two. Finallyjs connected to each;, z; (1 = 1,...,n),
ce(G=1,...,m€=1,273).

Endomorphisms=- assignment ofy). Assume tha#\ has a sequence @fwidth en-
domorphisms to the core. Let be the first endomorphism, which, as we observed
before, must be a retraction.

Assume thatp maps some vertex of 7' to the core. Notice that if a vertexof
T is mapped to the core, then the parenta$ also mapped to the core: this follows
from the fact that vertices, ..., v,, c1, ..., cm, ¥’ have no connections to the core.
Therefore, we can assume that the root vert@t 7" is mapped to the core, in particular
tor. As every descendant of is not connected to, it follows that it must be mapped
to the core. Hence every nodgi = 1,...,n) is mapped either to or f and every
¢;j(j =1,...,m)is mapped to eithet, 2 or 3.

Define an assignment gf by setting variable:; to true if and only ifv; is mapped
to t. We claim that this is a satisfying assignment. For eveey 1,...,m, let/ be
the node in the core to whicfy is mapped. We claim that theth literal of thej-th
clause is true in the assignment and hence the clause iBeshti&ssume first that the
£-th literal is the positive literak;. If z; was assigned the value false, then this means
v; IS mapped tgf. As f is not connected t@;, necessarilyt; is mapped to the core.
Similarly, if ¢; is mapped tc it follows thatc; , is mapped to-. By constructionz;
andc; ¢ are connected, which creates the following cycle in theisestmapped to the
core: ', v;, T;, ¢j ¢, ¢;, contradicting the assumption that the vertices mappetido t
core induce a graph with tree width In a similar way, if the/-th literal is z;, then
vertexz; is mapped to the core, again creating a cycle.

Assignment of ) = retractions. Assume that) has a satisfying assignment. We
construct a retractiop; as follows. Ifz; is true (resp., false) in the assignment, then
we map vertex; (resp.z;) tor and we map its ancestoyto ¢ (resp.,f). For everyj,
there is anl < ¢ < 3 such that theé-th literal of thej-th clause is true. For every such
j and/, vertexc; . is mapped to- and vertex; is mapped td. Furthermore vertex
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r’ is mapped ta. From the fact that the assignment is satisfying, it folldiat the
leaves ofl" that are mapped to the core are independent. This meanfi¢heeitices
in A — 1 (A) induce a graph with tree width 1.

After applying retractionp;, the vertices outside the core are of the formz,,
or c;¢. These vertices induce a set of stars and independenteg(tmce the degree
of every vertexc; ¢ is at most 1), thus they induce a graph with tree width at most 1
Therefore, we can map these vertices tay a single retraction. |

The second result shows tHa€'SP (A, —) can be hard even if every structuredn
has a sequence of width-2 endomorphisms. Note that thi# issncomparable with
Theorem 2, since an enumeration algorithm (in theory) da¢shacessarily have to
compute a sequence of endomorphisms. We need the folloaigné:

Lemma 9. If G is a planar graph, then it is possible to find a partitioi;, V%) of its
vertices in polynomial time such th&{V;] and G[V>] have tree width at most

PROOF A planar embedding off can be found in polynomial time [19]; let us fix a
planar embedding ofi. Define thelevelof a vertex as follows: vertices of the outer
face have level 1, and a vertex is on le¢é&r somef > 1 if it is on the outer face after
deleting every vertex of level less thén Observe that the level numbers of adjacent
vertices differ by at most 1. Lét; (resp.,V2) be the vertices with odd (resp., even)
level number. A connected component®@f;] contains vertices with the same level
number, which means that this component is outerplanagertiteedding of5 gives an
embedding of7[V;] where every vertex is on the infinite face of the embeddingisTh
G[V4] (and similarly,G[V2]) is outerplanar, and it is well known that every outerplanar
graph has tree width at most 2 (cf. [5]). a

Proposition 1. There is a class4 of relational structures such that every structure
from A has a sequence of width 2 endomorphisms to the core, andtsatthé problem
ECSP(A, —) is not solvable w.p.d., unleg3 = N P.

PROOF Let A be a class of graphs built in the following way. Take a 3-calde

planar graphG and its partition(V4, V,) according to Lemma 9. Using colorings we

can ensure tha¥ is a core. Then we take a disjoint union of this graph with anigie

T having all the colors and a cofgy;, of G[V;]. Let A denote the resulting structure.
CLAaM 1. A has a sequence of width-2 endomorphisms.

Let ¢ be a 3-coloring of7 that is a homomorphism into the triangle, andthe
bijective mapping frontz; to G[V;]. Theny; is defined to act ag on G, asy’ on G}
and identically oril". Endomorphisng; is just the 3-coloring of7 U G; induced by
¥. The images ofp; andy, areT U G[V;] andT, respectively, so all the conditions
on a sequence of width-2 homomorphisms are easily checkable

CLAIM 2. The RANAR GRAPH 3-COLORING PROBLEMis polynomial-time Tur-
ing reducible taECSP(A, —).

Given a planar grapff we find its partition(V;, V») and create a structute as de-
scribed above. Then we apply an algorithm that enumeratetists toECSP(A, —)
We may assume that such an algorithm stops with some timedbregardless whether
G is 3-colorable or not. If the algorithm succeeds we can navdpce a 3-coloring of
G. a
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6. Finite extensions

We can find a sequence of endomorphisms for a struétufreve impose two more
restrictions on such a sequence.

A retractiony of a structureA is called ak-retractionif at mostk nodes change
their value according tg. A structure is &-coreif the only k-retraction is the identity.
A k-core of a structure is any-core obtained by a sequenceiefetractions.

Let A be a structure and lgg, B’ C A. We say thatB and B’ are A-identicalif
there exists endomorphismsy’ of A such thatpo(B) = B’ andy’(B’) = B. Notice
that the definition implies that[B] andA[B’] are isomorphic.

Lemma 10. Let A be a structure, letp be ak-retraction, and lety) be a retraction
(not necessarily &-retraction) such that its image (A) = B is ak-core. ThenB and
©(B) are A-identical.

PROOF Let B’ be the substructure d§ containing allb € B such thatp(b) = b.
Observe that there are at méstlements iB — B’. Now consider the mappingo ¢.
This mapping acts as the identity 8@ Furthermore, it sends every elemenfiof B’

to some element d&. Consequently the restrictionof 1o ¢ to B is an endomorphism
of B which acts as the identity d&’. Indeed,y has to be an automorphism. To see
it, notice that otherwise we could find a powergfy™ = x o - - - x, that would be a
proper retraction and sincg® must act as the identity on any elementBsfit would
contradict the fact thaB is ak-core. Consequently; and certify thatB andp(B)
areA-identical. m]

Lemma 11. All k-cores of a structuré\ are isomorphic.

PrROOF Let B and C be two k-cores obtained following different sequenceskef
retractions. Letpy, ..., p, be the sequence @fretractions that producés. and for
i=1,...,ndefiney] tobey; o...oy;. We prove by induction that

*) ©i(B) and B areA-identical.

The case = 1 can be solved just by assuming that is the identity mapping.
For the inductive step we need to prove that, (B) andyj(B) are A-identical. In
order to do this we apply Lemma 10. We just need to find a retnacif A whose
image isy}(B). By inductive hypothesis there exists endomorphisnad y’ of A
such thaty(B) = ¢}(B) andx'(¢5(B)) = B. Consider the mapping o ¢ o x’
where is the retraction with imagé given by the hypothesis of the Lemma. We
havey o 1 o x'(A) = x o9 o X' (¢4 (B)) = ¢ (B). Consequently, some power of this
mapping gives the desired retraction. This finishes thefb().

We have just seen thét has a substructukg/, (B) which is isomorphic tdB. By a
symmetric argument we conclude tfiatontains as a substructure an isomorphic copy
of C. HenceB andC are isomorphic. ]

The following result follows from Lemma 11 and Theorem 1.
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Theorem 3. Let & > 0 be a positive integer and l&t be a class of structures such
that thek-core of every structure i has tree width at mogt. Then, the enumeration
problemECSP(C, —) is solvable w.p.d.

ProoOF From Lemma 11 it follows that given an instange, B) of ECSP(C, —) it

is possible to compute by greedy search theore of A along with the sequence of
k-retractions leading to it. Since every sequencg-oétractions is also a sequence of
width £ endomorphisms it follows from Theorem 1 that one can enuteéngolyno-
mial time all homomorphisms from to B.

O

Corollary 1. If C is a class of structures of bounded tree width tB&tSP(C, —) is
solvable w.p.d.

7. Conjunctive queries

When making a query to a database the user usually needsaio ghtues of only
those variables (attributes) (s)he is interested in. Im$eof homomorphisms this can
be translated as follows: For relational structute®, and a subsét’ C A, we aim to
list those mappings frori to B which can be extended to a full homomorphism from
A to B. In other words, we would like to enumerate all the mappingafY” to B
that arise as the restriction of some homomorphism féota B. Clearly, this problem
significantly differs from the regular enumeration proble® mapping fromY to
B can be extendible to a homomorphism in many ways, possitggrpolynomially
many, and an enumeration algorithm would list all of themthi@worst case scenario
it would list them before turning to the next partial mappin§this happens it may
destroy polynomiality of the delay between outputting @msive solutions.

In this section we treat the @NJUNCTIVE QUERY EVALUATION PROBLEM as
follows.

CQE(A, B)

Instance:A e A, BeB,Y CA

Problem: Output all partial mappings frovi to B
extendible to a homomorphism fromnto B.

It follows from [16] that if a class4 of bounded arity does not have bounded tree
width modulo homomorphic equivalence th€QE(A, —) is not solvable w.p.d., un-
less FPE W[1]. We present two new results about computing the solutiopsdw.
The first one shows that the problefiQE (A, —) is solvable w.p.d. if4 is a class
of structures of bounded tree width. The second one clai@ts thodulo some com-
plexity assumptions, in contrast to enumeration problérissdgannot be generalized to
structures with-cores of bounded tree width fér> 2.

Theorem 4. If Ais a class of structures of bounded width tH&QE (A, —) is solvable
w.p.d.
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PROOF Let(A,B,Y) be aninstance dfQE(.A, —). Fix arbitrary orderings ol and
B, which induce a natural lexicographic ordering on the phrtiappings front” to B.
More precisely, letr and¢ be any partial mappings froi to B which we consider as
mappings fromy” to B U { L} by setting every undefined elementto Then we say
thaty precedes lexicographically if there exists someg € Y, such thatp(y) < ¥(y)
andp(y') = ¢(y') for everyy’ € Y with iy’ < y where L < b for everyb € B.

It can be easily derived, from Lemma 3, a polynomial-timeoallpm that com-
putes, given a partial mappiggfrom Y to B, the next partial partial mappingin the
lexicographical order that extends to an homomomorphism & to B or reports that
such a partial mapping does not exist. To achieve this it ig macessary to compute
the largesy € Y and smallesb € B with b > ¢(y) such thatp, , can be extended to
an homomorphism from to B wherey, ; is the partial mapping defined as

/ p(y) ity <y
oyp(y) =1 b ify =y
i if y >y

This can be achieved in polynomial time by Lemma 3 since thebwer of choices for
(y,b) is polynomial.

Clearly, if suchy andb exist then we can sep to ¢, ;, whereas otherwise we
can conclude that no partial mapping larger thain the lexicographical order can be
extended. Using this procedure one can derive an algoritQ@- BOUNDED-WIDTH
(in Figure 3) that outputs all solutions w.p.d. In a nutshatjorithm CQE-BUNDED-
WIDTH computes in lexicographical order all partial mappingsfio to B that extend
to an homomorphism frond to B and outputs only those that are defined over the
wholeY'. |

Figure 3: Algorithm CQE-BUNDED-WIDTH

Input: Relational structure4, B, andY = {y1,...,y,} C A
Output: A list of mappingsy: Y — B extendible to a homomorphism fronto B

Stepl setm =0, =0,S; = B, i € [{], complete=false

Step 2 while not completedo

Step 2.1 if m < ¢thendo

Step2.1.1 searchS,,+1 until ab € Sy, +1 is found such that there exists a homomorphism extending
@ U {ym+1 — b} andremoveall members of5,,+1 preceding inclusive

Step2.1.2  if such a existsthen sety := ¢ U {ym+1 = b}, m:=m+1

Step 2.1.3 else

Step 2.1.3.1 if m # 0 then sety = |,

Step 2.1.3.2 else secomplete:true

Step 2.2 else then do

Step2.2.1 output ¢

Step2.2.2  sety := Q|y,,...ym_13}. m =L —1

endwhile

Ym—1} andSnz+1 = B, m:=m—1

,,,,,

Theorem 4 does not generalize to classes of structures vhomes have bounded
width.
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Example 3. Recall that the MiLTICOLORED CLIQUE problem (cf. [14]) is formulated
as follows: Given a numbérand a vertex-colored graph, decide if the graph contains
a k-clique all vertices of which are colored different colorBhis problem isW[1]-
complete, i.e., has no timgk)n° algorithm for any functiory and constant, unless
FPT= W[1]. We reduce this problem ©8QE(A, —) whereA is the class of structures
whose 2-cores are 2-element described below.

Let us consider relational structures with two binary and tmary relations. This
structure can be thought of as a graph whose vertices and éage one of the two
colors, say, red and blue, accordingly to which of the twaabyunary relations they
belong to. LetA; be the relational structure with univer$e,, ..., ar,y1,...,yx},
whereay, ..., ay, are red whiley,, ...,y are blue. Theday,...,ax} induces a red
clique, that is every;, a; (¢, j are not necessarily different) are connected with a red
edge, and eacj is connected ta; with a blue edge. Itis not hard to see that every pair
of a red and blue vertices induces a 2-core of this struceed = {A; | k € N}.

The reduction of the MLTICOLORED CLIQUE problem toCQE(A, —) goes as
follows. LetG = (V, E) be k-colored graph whose coloring induces a partitiori/of
into classesB, ..., Bx. Then we define structures, B and a sety” C A. We set
A =AY ={y,...,yx}. ThenletB = VU {by,...,b;}, the elements oV are
colored red and the induced substructf¥] is the graphG (without coloring) whose
edges are colored also red and in which we add a red loop ty eeele. Finally,
b1, ..., b, are made blue and eaéhis connected with a blue edge with every vertex
from B;.

It is not hard to see that any homomorphism mdgps,...,a;} to V andY to
{b1,..., b}, and that the number of homomorphisms that do not agréé daes not
exceedk”. Moreover,GG contains ak-colored clique if and only if there is a homo-
morphism fromA to B that mapsY” onto{by,...,b;}. If there existed an algorithm
solvingCQE(A, —) w.p.d., say, time needed to compute the first and every coeseq
solution is bounded by a polynomiga{n), then time needed to list all solutions is at
mostk*p(n). This means that MLTICOLORED CLIQUE is FPT, a contradiction.
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