

Important separators and spiders

Dániel Marx

Tel Aviv University, Israel

Bertinoro Workshop on Algorithms and Graphs

December 8, 2009, Bertinoro, Italy

- 6 Bounding the number of "important" separators.
- 6 Two applications:
 - △ FPT algorithm for multiway cut.
 - Erdős-Pósa property for "spiders."

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in *R*. **Definition:** $\delta(R)$ is an (X, Y)-separator if $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in *R*. **Definition:** $\delta(R)$ is an (X, Y)-separator if $X \subseteq R$ and $R \cap Y = \emptyset$. **Definition:** An (X, Y)-separator $\delta(R)$ is **important** if there is no (X, Y)-separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a separator is important.

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in *R*. **Definition:** $\delta(R)$ is an (X, Y)-separator if $X \subseteq R$ and $R \cap Y = \emptyset$. **Definition:** An (X, Y)-separator $\delta(R)$ is **important** if there is no (X, Y)-separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a separator is important.

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in *R*. **Definition:** $\delta(R)$ is an (X, Y)-separator if $X \subseteq R$ and $R \cap Y = \emptyset$. **Definition:** An (X, Y)-separator $\delta(R)$ is **important** if there is no (X, Y)-separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a separator is important.

The number of important separators can be exponentially large.

Example:

This graph has exactly $2^{k/2}$ important (X, Y)-separators of size at most k.

Theorem: There are at most 4^k important (X, Y)-separators of size at most k. (Proof is implicit in [Chen, Liu, Lu 2007], worse bound in [M. 2004].)

Theorem: There are at most 4^k important (X, Y)-separators of size at most k.

Proof: Let λ be the minimum (*X*, *Y*)-separator size and let $\delta(R_{max})$ be the unique important separator of size λ and R_{max} is maximal.

First we show that $R_{\max} \subseteq R$ for every important separator $\delta(R)$.

Theorem: There are at most 4^k important (X, Y)-separators of size at most k.

Proof: Let λ be the minimum (*X*, *Y*)-separator size and let $\delta(R_{max})$ be the unique important separator of size λ and R_{max} is maximal.

First we show that $R_{\max} \subseteq R$ for every important separator $\delta(R)$.

By the submodularity of δ :

$$\begin{split} |\delta(R_{\max})| + |\delta(R)| &\geq |\delta(R_{\max} \cap R)| + |\delta(R_{\max} \cup R)| \\ \lambda &\geq \lambda \\ & \downarrow \\ |\delta(R_{\max} \cup R)| \leq |\delta(R)| \\ & \downarrow \\ & \downarrow \\ & \text{If } R \neq R_{\max} \cup R \text{, then } \delta(R) \text{ is not important.} \end{split}$$

Thus the important (X, Y)- and (R_{max}, Y) -separators are the same. \Rightarrow We can assume $X = R_{max}$.

Important separators and spiders – p.5/18

Lemma: There are at most 4^k important (X, Y)-separators of size at most k.

Search tree algorithm for finding all these separators:

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the separator or not.

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important (X, Y)-separator of size at most k - 1 in $G \setminus uv$.

Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -separator of size at most k in G.

Lemma: There are at most 4^k important (X, Y)-separators of size at most k.

Search tree algorithm for finding all these separators:

An (arbitrary) edge uv leaving $X = R_{max}$ is either in the separator or not.

Branch 1: If $uv \in S$, then $S \setminus uv$ is an important

(*X*, *Y*)-separator of size at most k - 1 in $G \setminus uv$.

 \Rightarrow k decreases by one, λ decreases by at most 1.

Branch 2: If $uv \notin S$, then S is an important $(X \cup v, Y)$ -separator of size at most k in G.

 \Rightarrow k remains the same, λ increases by 1.

The measure $2k - \lambda$ decreases in each step.

 \Rightarrow Height of the search tree $\leq 2k \Rightarrow \leq 2^{2k}$ important separators.

Example: The bound 4^k is essentially tight.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-separator of size k.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-separator of size k.

Example: The bound 4^k is essentially tight.

Any subtree with k leaves gives an important (X, Y)-separator of size k. The number of subtrees with k leaves is the Catalan number

$$C_{k-1} = rac{1}{k} inom{2k-2}{k-1} \geq 4^k / \operatorname{poly}(k).$$

Important separators and spiders – p.7/18

Example: At most $k \cdot 4^k$ edges incident to *t* can be part of an inclusionwise minimal s - t cut of size at most *k*.

Example: At most $k \cdot 4^k$ edges incident to *t* can be part of an inclusionwise minimal s - t cut of size at most *k*.

Proof: We show that every such edge is in an important separator of size at most k.

Suppose that $vt \in \delta(R)$ and $|\delta(R)| = k$.

Example: At most $k \cdot 4^k$ edges incident to *t* can be part of an inclusionwise minimal s - t cut of size at most *k*.

Proof: We show that every such edge is in an important separator of size at most k.

Suppose that $vt \in \delta(R)$ and $|\delta(R)| = k$. There is an important (s, t)-separator $\delta(R')$ with $R \subseteq R'$ and $|\delta(R')| \leq k$. Clearly, $vt \in \delta(R')$: $v \in R$, hence $v \in R'$.

Task: Given a graph *G*, a set *T* of vertices, and an integer *k*, find a **multiway cut** *S* of at most *k* edges: each component of $G \setminus S$ contains at most one vertex of *T*.

Polynomial for |T| = 2, but NP-hard for any fixed $|T| \ge 3$ [Dalhaus et al. 1994].

Trivial to solve in polynomial time for fixed k (in time $n^{O(k)}$).

Theorem: MULTIWAY CUT can be solved in time $4^k \cdot n^{O(1)}$, i.e., it is fixed-parameter tractable (FPT) parameterized by *k*.

Intuition: Consider a $t \in T$. A subset of the solution *S* is a $(t, T \setminus t)$ -separator.

Intuition: Consider a $t \in T$. A subset of the solution *S* is a $(t, T \setminus t)$ -separator.

There are many such separators.

Intuition: Consider a $t \in T$. A subset of the solution *S* is a $(t, T \setminus t)$ -separator.

There are many such separators.

Intuition: Consider a $t \in T$. A subset of the solution *S* is a $(t, T \setminus t)$ -separator.

There are many such separators.

But a separator farther from t and closer to $T \setminus t$ seems to be more useful.

Lemma: Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -separator.

Lemma: Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -separator.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

Lemma: Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -separator.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

If $\delta(R)$ is not important, then there is an important separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace *S* with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

Lemma: Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -separator.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

If $\delta(R)$ is not important, then there is an important separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace *S* with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

S' is a multiway cut: A *u*-*v* path in $G \setminus S'$ implies a *u*-*t* path, a contradiction.

Lemma: Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -separator.

Proof: Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

If $\delta(R)$ is not important, then there is an important separator $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace *S* with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

S' is a multiway cut: A *u*-*v* path in $G \setminus S'$ implies a *u*-*t* path, a contradiction.

Algorithm for MULTIWAY CUT

- 1. If every vertex of T is in a different component, then we are done.
- 2. Let $t \in T$ be a vertex with that is not separated from every $T \setminus t$.
- 3. Branch on a choice of an important $(t, T \setminus t)$ separator *S* of size at most *k*.
- 4. Set $G := G \setminus S$ and k := k |S|.
- 5. Go to step 1.

We branch into at most 4^k directions at most k times.

Algorithm for MULTIWAY CUT

- 1. If every vertex of T is in a different component, then we are done.
- 2. Let $t \in T$ be a vertex with that is not separated from every $T \setminus t$.
- 3. Branch on a choice of an important $(t, T \setminus t)$ separator *S* of size at most *k*.
- 4. Set $G := G \setminus S$ and k := k |S|.
- 5. Go to step 1.

We branch into at most 4^k directions at most k times. Better estimate of the search tree size:

- 6 When choosing the important separator, $2k \lambda$ decreases at each branching, until λ reaches 0.
- When choosing the next vertex t, λ changes from 0 to positive, thus $2k \lambda$ does not increase.

Size of the search tree is at most 2^{2k} .

Open questions

- **6 Open:** Is there an $f(k) \cdot n^{O(1)}$ time algorithm for MULTIWAY CUT in directed graphs? Open even for |T| = 2.
- 6 MULTITERMINAL CUT: pairs $(s_1, t_1), ..., (s_\ell, t_\ell)$ have to be separated by deleting k edges (vertices).
- 6 MULTITERMINAL CUT can be solved in time $f(k, \ell) \cdot n^{O(1)}$.
- **Open:** Is there an $f(k) \cdot n^{O(1)}$ time algorithm for MULTITERMINAL CUT?

Let *A* and *B* be two disjoint sets of vertices in *G*. A *d*-spider with center *v* is a set of *d* edge disjoint paths connecting $v \in A$ with *B*.

Suppose for simplicity that every vertex of A has degree d.

Let *A* and *B* be two disjoint sets of vertices in *G*. A *d*-spider with center *v* is a set of *d* edge disjoint paths connecting $v \in A$ with *B*.

Suppose for simplicity that every vertex of A has degree d.

Theorem: There is a function $f(k, d) = 2^{O(kd)}$ such that for every graph *G* and disjoint sets *A*, *B* either

- 6 there are k edge-disjoint d-spiders, or
- 6 there is a set D of at most f(k, d) edges that intersects every d-spider.

Theorem: There is a function f(k, d) such that for every graph *G* and disjoint sets *A*, *B* either

- 6 there are *k* edge-disjoint *d*-spiders, or
- ⁶ there is a set D of at most f(k, d) edges that intersects every d-spider.

Proof: Suppose that there are k' < k disjoint *d*-spiders with centers $U = \{v_1, ..., v_{k'}\}$, but there are no k' + 1 disjoint spiders.

Let *D* be the union of all the important (v_i, B) -separators of size at most *kd* for $1 \le i \le k'$.

 \Rightarrow size of D is at most $f(k, d) := k \cdot 4^{kd} \cdot kd$.

We claim that *D* intersects every *d*-spider.

Remember: *D* contains every important (v_i , *B*)-separator of size $\leq kd$.

Remember: *D* contains every important (v_i , *B*)-separator of size $\leq kd$.

Remember: D contains every important (v_i , B)-separator of size $\leq kd$.

Remember: *D* contains every important (v_i , *B*)-separator of size $\leq kd$.

Remember: *D* contains every important (v_i , *B*)-separator of size $\leq kd$.

An edge of *C* is green if it is the first edge in *C* of any of the paths of the k' spiders

- \Rightarrow there are k'd green edges.
- \Rightarrow there are $\leq d 1$ non-green edges.

Remember: *D* contains every important (v_i , *B*)-separator of size $\leq kd$.

An edge of *C* is green if it is the first edge in *C* of any of the paths of the k'spiders

- \Rightarrow there are k'd green edges.
- \Rightarrow there are $\leq d 1$ non-green edges.
- ⇒ Spider *S* contains a green edge xy⇒ Spider *S* connects *x* and *B*.

Remember: *D* contains every important (v_i , *B*)-separator of size $\leq kd$.

An edge of *C* is green if it is the first edge in *C* of any of the paths of the k'spiders

- \Rightarrow there are k'd green edges.
- \Rightarrow there are $\leq d 1$ non-green edges.
- ⇒ Spider *S* contains a green edge xy⇒ Spider *S* connects *x* and *B*.

Remember: *D* contains every important (v_i , *B*)-separator of size $\leq kd$.

Spider *S* connects *x* and *B*.

Let *R* be the set of vertices reachable from v_i in $G \setminus C$: $x \in R$ and $R \cap B = \emptyset$

 $\delta(R)$ is a (v_i , B)-separator of size < kd

Remember: D contains every important (v_i , B)-separator of size $\leq kd$.

Spider *S* connects *x* and *B*.

Let *R* be the set of vertices reachable from v_i in $G \setminus C$: $x \in R$ and $R \cap B = \emptyset$

 $\delta(R)$ is a (v_i, B) -separator of size < kd $\Rightarrow D$ contains a separator $\delta(R')$ with $R \subseteq R'$.

 $x \in R' \Rightarrow \delta(R')$ separates x and B $\Rightarrow D \supseteq \delta(R')$ intersects the spider S.

Algorithmic questions

Packing

Theorem: [M. 2006] It can be decided in time $f(k, d) \cdot n^{O(1)}$ if there are k disjoint *d*-spiders.

Algorithm uses the following two ideas:

- A matroid describes which subset of edges incident to A can be the start edges of disjoint paths to B (well-known).
- Given a represented matroid whose elements are partitioned into blocks of size *d*, it can be decided in time *f*(*k*, *d*) · *n*^{O(1)} if there are *k* blocks whose union is independent [M. 2006].

More combinatorial algorithm?

Algorithmic questions

Packing

Theorem: [M. 2006] It can be decided in time $f(k, d) \cdot n^{O(1)}$ if there are k disjoint *d*-spiders.

Algorithm uses the following two ideas:

- A matroid describes which subset of edges incident to A can be the start edges of disjoint paths to B (well-known).
- Given a represented matroid whose elements are partitioned into blocks of size *d*, it can be decided in time *f*(*k*, *d*) · *n*^{O(1)} if there are *k* blocks whose union is independent [M. 2006].

More combinatorial algorithm?

Covering

Can we find in $f(k, d) \cdot n^{O(1)}$ time k edges covering the d-spiders?

- 6 A simple (but essentially tight) bound on the number of important separators.
- 6 Useful for FPT algorithms.
- 6 Erdős-Pósa property for spiders. Is the function f(k, d) really exponential?
- 6 Some open algorithmic questions.