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Overview

Bounding the number of “important” separators.

Two applications:

FPT algorithm for multiway cut.

Erdős-Pósa property for “spiders.”
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Important separators

Definition: δ(R) is the set of edges with exactly one endpoint in R.

Definition: δ(R) is an (X ,Y )-separator if X ⊆ R and R ∩ Y = ∅.
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Definition: δ(R) is the set of edges with exactly one endpoint in R.

Definition: δ(R) is an (X ,Y )-separator if X ⊆ R and R ∩ Y = ∅.

Definition: An (X , Y )-separator δ(R) is important if there is no
(X , Y )-separator δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a separator is important.
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Important separators

Definition: δ(R) is the set of edges with exactly one endpoint in R.

Definition: δ(R) is an (X ,Y )-separator if X ⊆ R and R ∩ Y = ∅.

Definition: An (X , Y )-separator δ(R) is important if there is no
(X , Y )-separator δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.
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Important separators

The number of important separators can be exponentially large.

Example:

X

Y

k/21 2

This graph has exactly 2k/2 important (X ,Y )-separators of size at most k .

Theorem: There are at most 4k important (X , Y )-separators of size at most k .

(Proof is implicit in [Chen, Liu, Lu 2007], worse bound in [M. 2004].)
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Important separators

Theorem: There are at most 4k important (X , Y )-separators of size at most k .

Proof: Let λ be the minimum (X , Y )-separator size and let δ(Rmax) be the

unique important separator of size λ and Rmax is maximal.

First we show that Rmax ⊆ R for every important separator δ(R).
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Important separators

Theorem: There are at most 4k important (X , Y )-separators of size at most k .

Proof: Let λ be the minimum (X , Y )-separator size and let δ(Rmax) be the

unique important separator of size λ and Rmax is maximal.

First we show that Rmax ⊆ R for every important separator δ(R).

By the submodularity of δ:

|δ(Rmax)| + |δ(R)| ≥ |δ(Rmax ∩ R)| + |δ(Rmax ∪ R)|

λ ≥ λ

⇓

|δ(Rmax ∪ R)| ≤ |δ(R)|

⇓

If R 6= Rmax ∪ R, then δ(R) is not important.

Thus the important (X ,Y )- and (Rmax, Y )-separators are the same.

⇒ We can assume X = Rmax. Important separators and spiders – p.5/18



Important separators

Lemma: There are at most 4k important (X ,Y )-separators of size at most k .

Search tree algorithm for finding all these separators:

An (arbitrary) edge uv leaving X = Rmax is either in the separator or not.

Branch 1: If uv ∈ S , then S \ uv is an important
(X , Y )-separator of size at most k − 1 in G \ uv .

Branch 2: If uv 6∈ S , then S is an important
(X ∪ v , Y )-separator of size at most k in G .

X = Rmax Y
vu
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Important separators

Lemma: There are at most 4k important (X ,Y )-separators of size at most k .

Search tree algorithm for finding all these separators:

An (arbitrary) edge uv leaving X = Rmax is either in the separator or not.

Branch 1: If uv ∈ S , then S \ uv is an important
(X , Y )-separator of size at most k − 1 in G \ uv .

⇒ k decreases by one, λ decreases by at most 1.

Branch 2: If uv 6∈ S , then S is an important
(X ∪ v , Y )-separator of size at most k in G .

⇒ k remains the same, λ increases by 1.

X = Rmax Y
vu

The measure 2k − λ decreases in each step.

⇒ Height of the search tree ≤ 2k ⇒ ≤ 22k important separators.
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Important separators

Example: The bound 4k is essentially tight.

X

Y
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Important separators

Example: The bound 4k is essentially tight.

Y

X

Any subtree with k leaves gives an important (X , Y )-separator of size k .
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Important separators

Example: The bound 4k is essentially tight.

X

Y

Any subtree with k leaves gives an important (X , Y )-separator of size k .

The number of subtrees with k leaves is the Catalan number

Ck−1 =
1

k

(

2k − 2

k − 1

)

≥ 4k/poly(k).
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Important separators

Example: At most k · 4k edges incident to t can be part of an inclusionwise
minimal s − t cut of size at most k .
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Important separators

Example: At most k · 4k edges incident to t can be part of an inclusionwise
minimal s − t cut of size at most k .

Proof: We show that every such edge is in an important separator of size at
most k .

v

R

ts

Suppose that vt ∈ δ(R) and |δ(R)| = k .
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Important separators

Example: At most k · 4k edges incident to t can be part of an inclusionwise
minimal s − t cut of size at most k .

Proof: We show that every such edge is in an important separator of size at
most k .

v

R ′

R

s t

Suppose that vt ∈ δ(R) and |δ(R)| = k .
There is an important (s, t)-separator δ(R ′) with R ⊆ R ′ and |δ(R ′)| ≤ k .

Clearly, vt ∈ δ(R ′): v ∈ R, hence v ∈ R ′.
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MULTIWAY CUT

Task: Given a graph G , a set T of vertices, and an integer k , find a multiway
cut S of at most k edges: each component of G \ S contains at most one
vertex of T .

Polynomial for |T | = 2, but NP-hard for any fixed |T | ≥ 3 [Dalhaus et al. 1994].

Trivial to solve in polynomial time for fixed k (in time nO(k)).

Theorem: MULTIWAY CUT can be solved in time 4k · nO(1), i.e., it is
fixed-parameter tractable (FPT) parameterized by k .
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MULTIWAY CUT

Intuition: Consider a t ∈ T . A subset of the solution S is a

(t, T \ t)-separator.

t
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Intuition: Consider a t ∈ T . A subset of the solution S is a

(t, T \ t)-separator.

t

There are many such separators.
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MULTIWAY CUT

Intuition: Consider a t ∈ T . A subset of the solution S is a

(t, T \ t)-separator.

t

There are many such separators.

But a separator farther from t and closer to T \ t seems to be more useful.
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MULTIWAY CUT and important separators

Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S that

contains an important (t, T \ t)-separator.
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MULTIWAY CUT and important separators

Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S that

contains an important (t, T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S .
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MULTIWAY CUT and important separators

Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S that

contains an important (t, T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S .

R ′

R

t

If δ(R) is not important, then there is an important separator δ(R ′) with R ⊂ R ′

and |δ(R ′)| ≤ |δ(R)|. Replace S with S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
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MULTIWAY CUT and important separators

Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S that

contains an important (t, T \ t)-separator.

Proof: Let R be the vertices reachable from t in G \ S for a solution S .
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If δ(R) is not important, then there is an important separator δ(R ′) with R ⊂ R ′

and |δ(R ′)| ≤ |δ(R)|. Replace S with S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |

S ′ is a multiway cut: A u-v path in G \ S ′ implies a u-t path, a contradiction.
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MULTIWAY CUT and important separators

Lemma: Let t ∈ T . The MULTIWAY CUT problem has a solution S that
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and |δ(R ′)| ≤ |δ(R)|. Replace S with S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |
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Algorithm for MULTIWAY CUT

1. If every vertex of T is in a different component, then we are done.

2. Let t ∈ T be a vertex with that is not separated from every T \ t.

3. Branch on a choice of an important (t,T \ t) separator S of size at most k .

4. Set G := G \ S and k := k − |S |.

5. Go to step 1.

We branch into at most 4k directions at most k times.
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Algorithm for MULTIWAY CUT

1. If every vertex of T is in a different component, then we are done.

2. Let t ∈ T be a vertex with that is not separated from every T \ t.

3. Branch on a choice of an important (t,T \ t) separator S of size at most k .

4. Set G := G \ S and k := k − |S |.

5. Go to step 1.

We branch into at most 4k directions at most k times.
Better estimate of the search tree size:

When choosing the important separator, 2k − λ decreases at each
branching, until λ reaches 0.

When choosing the next vertex t, λ changes from 0 to positive, thus 2k − λ

does not increase.

Size of the search tree is at most 22k .
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Open questions

Open: Is there an f (k) · nO(1) time algorithm for MULTIWAY CUT in directed

graphs? Open even for |T | = 2.

MULTITERMINAL CUT: pairs (s1, t1), ... , (sℓ, tℓ) have to be separated by
deleting k edges (vertices).

MULTITERMINAL CUT can be solved in time f (k, ℓ) · nO(1).

Open: Is there an f (k) · nO(1) time algorithm for MULTITERMINAL CUT?
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Spiders

Let A and B be two disjoint sets of vertices in G . A d-spider with center v is a

set of d edge disjoint paths connecting v ∈ A with B.

Suppose for simplicity that every vertex of A has degree d .

A B
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Spiders

Let A and B be two disjoint sets of vertices in G . A d-spider with center v is a

set of d edge disjoint paths connecting v ∈ A with B.

Suppose for simplicity that every vertex of A has degree d .

A B

Theorem: There is a function f (k, d) = 2O(kd) such that for every graph G and

disjoint sets A, B either

there are k edge-disjoint d-spiders, or

there is a set D of at most f (k, d) edges that intersects every d-spider.
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Spiders

Theorem: There is a function f (k, d) such that for every graph G and disjoint

sets A, B either

there are k edge-disjoint d-spiders, or

there is a set D of at most f (k, d) edges that intersects every d-spider.

Proof: Suppose that there are k ′ < k disjoint d-spiders with centers

U = {v1, ... , vk′}, but there are no k ′ + 1 disjoint spiders.

Let D be the union of all the important (vi , B)-separators of size at most kd for
1 ≤ i ≤ k ′.

⇒ size of D is at most f (k, d) := k · 4kd · kd .

We claim that D intersects every d-spider.
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Spiders

Remember: D contains every important (vi , B)-separator of size ≤ kd .
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Spiders

Remember: D contains every important (vi , B)-separator of size ≤ kd .

Consider a spider S with center v . As there are no k ′ + 1 spiders with centers

U ∪ v , there is a (U ∪ v , B)-separator C with |C | < (k ′ + 1)d .
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Spiders

Remember: D contains every important (vi , B)-separator of size ≤ kd .

Consider a spider S with center v . As there are no k ′ + 1 spiders with centers

U ∪ v , there is a (U ∪ v , B)-separator C with |C | < (k ′ + 1)d .

An edge of C is green if it is the first
edge in C of any of the paths of the k ′

spiders
⇒ there are k ′d green edges.

⇒ there are ≤ d − 1 non-green edges.

B

v

C
v1

vk′

U

A

Important separators and spiders – p.16/18



Spiders

Remember: D contains every important (vi , B)-separator of size ≤ kd .

Consider a spider S with center v . As there are no k ′ + 1 spiders with centers

U ∪ v , there is a (U ∪ v , B)-separator C with |C | < (k ′ + 1)d .

An edge of C is green if it is the first
edge in C of any of the paths of the k ′

spiders
⇒ there are k ′d green edges.

⇒ there are ≤ d − 1 non-green edges.

⇒ Spider S contains a green edge xy

⇒ Spider S connects x and B.
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U
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Spiders

Remember: D contains every important (vi , B)-separator of size ≤ kd .

Consider a spider S with center v . As there are no k ′ + 1 spiders with centers

U ∪ v , there is a (U ∪ v , B)-separator C with |C | < (k ′ + 1)d .

An edge of C is green if it is the first
edge in C of any of the paths of the k ′

spiders
⇒ there are k ′d green edges.

⇒ there are ≤ d − 1 non-green edges.

⇒ Spider S contains a green edge xy

⇒ Spider S connects x and B.
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Spiders

Remember: D contains every important (vi , B)-separator of size ≤ kd .

Consider a spider S with center v . As there are no k ′ + 1 spiders with centers

U ∪ v , there is a (U ∪ v , B)-separator C with |C | < (k ′ + 1)d .

Spider S connects x and B.

Let R be the set of vertices reachable
from vi in G \ C : x ∈ R and R ∩ B = ∅

δ(R) is a (vi , B)-separator of size < kd

y

R

Bx

δ(R)

vi
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Spiders

Remember: D contains every important (vi , B)-separator of size ≤ kd .

Consider a spider S with center v . As there are no k ′ + 1 spiders with centers

U ∪ v , there is a (U ∪ v , B)-separator C with |C | < (k ′ + 1)d .

Spider S connects x and B.

Let R be the set of vertices reachable
from vi in G \ C : x ∈ R and R ∩ B = ∅

δ(R) is a (vi , B)-separator of size < kd

⇒ D contains a separator δ(R ′) with

R ⊆ R ′.

x ∈ R ′ ⇒ δ(R ′) separates x and B

⇒ D ⊇ δ(R ′) intersects the spider S .

y

R ′

δ(R ′)

vi

δ(R)

x B

R
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Algorithmic questions

Packing

Theorem: [M. 2006] It can be decided in time f (k, d) · nO(1) if there are k

disjoint d-spiders.

Algorithm uses the following two ideas:

A matroid describes which subset of edges incident to A can be the start

edges of disjoint paths to B (well-known).

Given a represented matroid whose elements are partitioned into blocks of

size d , it can be decided in time f (k, d) · nO(1) if there are k blocks whose
union is independent [M. 2006].

More combinatorial algorithm?
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Algorithmic questions

Packing

Theorem: [M. 2006] It can be decided in time f (k, d) · nO(1) if there are k

disjoint d-spiders.

Algorithm uses the following two ideas:

A matroid describes which subset of edges incident to A can be the start

edges of disjoint paths to B (well-known).

Given a represented matroid whose elements are partitioned into blocks of

size d , it can be decided in time f (k, d) · nO(1) if there are k blocks whose
union is independent [M. 2006].

More combinatorial algorithm?

Covering

Can we find in f (k, d) · nO(1) time k edges covering the d-spiders?
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Conclusions

A simple (but essentially tight) bound on the number of important

separators.

Useful for FPT algorithms.

Erdős-Pósa property for spiders. Is the function f (k, d) really exponential?

Some open algorithmic questions.
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