Important separators and parameterized algorithms

Dániel Marx¹

¹Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

School on Parameterized Algorithms and Complexity Będlewo, Poland August 21, 2014

1

Definition: $\delta(R)$ is the set of edges with exactly one endpoint in R. **Definition:** A set S of edges is a **minimal** (X, Y)-**cut** if there is no X - Y path in $G \setminus S$ and no proper subset of S breaks every X - Y path.

Observation: Every minimal (X, Y)-cut S can be expressed as $S = \delta(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$.

Definition

A minimal (X, Y)-cut $\delta(R)$ is **important** if there is no (X, Y)-cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important $(\delta(R)$ is important if $R = R_{max}$).

Definition

A minimal (X, Y)-cut $\delta(R)$ is **important** if there is no (X, Y)-cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important $(\delta(R)$ is important if $R = R_{max}$).

Important cuts

Definition

A minimal (X, Y)-cut $\delta(R)$ is **important** if there is no (X, Y)-cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$.

Note: Can be checked in polynomial time if a cut is important $(\delta(R)$ is important if $R = R_{max}$).

Theorem

There are at most 4^k important (X, Y)-cuts of size at most k.

Important cuts

Lemma:

At most $k \cdot 4^k$ edges incident to t can be part of an inclusionwise minimal s - t cut of size at most k.

Simple application

Lemma:

At most $k \cdot 4^k$ edges incident to t can be part of an inclusionwise minimal s - t cut of size at most k.

Proof: We show that every such edge is contained in an important (s, t)-cut of size at most k.

Suppose that $vt \in \delta(R)$ and $|\delta(R)| = k$.

Simple application

Lemma:

At most $k \cdot 4^k$ edges incident to t can be part of an inclusionwise minimal s - t cut of size at most k.

Proof: We show that every such edge is contained in an important (s, t)-cut of size at most k.

Suppose that $vt \in \delta(R)$ and $|\delta(R)| = k$.

There is an important (s, t)-cut $\delta(R')$ with $R \subseteq R'$ and $|\delta(R')| \leq k$. Clearly, $vt \in \delta(R')$: $v \in R$, hence $v \in R'$.

Simple application

It is possible that n is "large" even if k is "small."

It is possible that n is "large" even if k is "small."

It is possible that n is "large" even if k is "small."

It is possible that n is "large" even if k is "small."

It is possible that n is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

It is possible that n is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

It is possible that n is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

It is possible that n is "large" even if k is "small."

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Lemma

If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Lemma

If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

Proof: Add a new vertex *t*. Every edge tt_i is part of an (inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the previous lemma.

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Lemma

If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

Proof: Add a new vertex *t*. Every edge tt_i is part of an (inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the previous lemma.

Is the opposite possible, i.e., S_i separates every t_j except t_i ?

Lemma

If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

Proof: Add a new vertex *t*. Every edge tt_i is part of an (inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the previous lemma.

Lemma

If S_i separates t_j from s if and only $j \neq i$ and every S_i has size at most k, then $n \leq (k+1) \cdot 4^{k+1}$.

Lower bound: in a binary tree of height k, any of the 2^k leaves can be the only reachable leaf after removing k edges.

Definition: A multiway cut of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

Polynomial for |T| = 2, but NP-hard for any fixed $|T| \ge 3$.

Multiway Cut

Definition: A multiway cut of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

Theorem

MULTIWAY CUT on planar graphs can be solved in time $2^{O(|\mathcal{T}|)} \cdot n^{O(\sqrt{|\mathcal{T}|})}$.

Theorem

MULTIWAY CUT on planar graphs is W[1]-hard parameterized by $|\mathcal{T}|$. MULTIWAY CUT **Definition:** A multiway cut of a set of terminals T is a set S of edges such that each component of $G \setminus S$ contains at most one vertex of T.

Trivial to solve in polynomial time for fixed k (in time $n^{O(k)}$).

Theorem

MULTIWAY CUT can be solved in time $4^k \cdot n^{O(1)}$, i.e., it is fixed-parameter tractable (FPT) parameterized by the size k of the solution.

Multiway Cut

Let $t \in T$. The MULTIWAY CUT problem has a solution S that contains an important $(t, T \setminus t)$ -cut.

- If every vertex of T is in a different component, then we are done.
- 2 Let $t \in T$ be a vertex that is not separated from every $T \setminus t$.
- Solution Branch on a choice of an important $(t, T \setminus t)$ cut S of size at most k.
- Set $G := G \setminus S$ and k := k |S|.
- 6 Go to step 1.

We can give a 4^k bound on the size of the search tree.

Algorithm for MULTIWAY CUT

Theorem

MULTICUT can be solved in time $f(k, \ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).

Multicut

Theorem

MULTICUT can be solved in time $f(k, \ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).

Proof: The solution partitions $\{s_1, t_1, \ldots, s_\ell, t_\ell\}$ into components. Guess this partition, contract the vertices in a class, and solve MULTIWAY CUT.

Multicut

Theorem

MULTICUT can be solved in time $f(k, \ell) \cdot n^{O(1)}$ (FPT parameterized by combined parameters k and ℓ).

Proof: The solution partitions $\{s_1, t_1, \ldots, s_\ell, t_\ell\}$ into components. Guess this partition, contract the vertices in a class, and solve MULTIWAY CUT.

Much more involved:

Theorem

MULTICUT is FPT parameterized by the size k of the solution.

Multicut

Definition: $\vec{\delta}(R)$ is the set of edges leaving *R*. **Observation:** Every inclusionwise-minimal directed (X, Y)-cut *S* can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$. **Definition:** A minimal (X, Y)-cut $\vec{\delta}(R)$ is **important** if there is no (X, Y)-cut $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \le |\vec{\delta}(R)|$.

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving *R*. **Observation:** Every inclusionwise-minimal directed (X, Y)-cut *S* can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$. **Definition:** A minimal (X, Y)-cut $\vec{\delta}(R)$ is **important** if there is no (X, Y)-cut $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \le |\vec{\delta}(R)|$.

Directed graphs

Definition: $\vec{\delta}(R)$ is the set of edges leaving *R*. **Observation:** Every inclusionwise-minimal directed (X, Y)-cut *S* can be expressed as $S = \vec{\delta}(R)$ for some $X \subseteq R$ and $R \cap Y = \emptyset$. **Definition:** A minimal (X, Y)-cut $\vec{\delta}(R)$ is **important** if there is no (X, Y)-cut $\vec{\delta}(R')$ with $R \subset R'$ and $|\vec{\delta}(R')| \le |\vec{\delta}(R)|$. The proof for the undirected case goes through for the directed case:

Theorem

There are at most 4^k important directed (X, Y)-cuts of size at most k.

Directed graphs

Pushing Lemma (for undirected graphs) Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Directed counterexample:

Unique solution with k = 1 edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size). DIRECTED MULTIWAY CUT

Pushing Lemma (for undirected graphs) Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Directed counterexample:

Unique solution with k = 1 edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size). DIRECTED MULTIWAY CUT

Pushing Lemma (for undirected graphs) Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Directed counterexample:

Unique solution with k = 1 edges, but it is not an important cut (boundary of $\{s, a\}$, but the boundary of $\{s, a, b\}$ has same size). DIRECTED MULTIWAY CUT

Pushing Lemma (for undirected graphs) Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Problem in the undirected proof:

Replacing R by R' cannot create a $t \to u$ path, but can create a $u \to t$ path. DIRECTED MULTIWAY CUT

Pushing Lemma (for undirected graphs) Let $t \in T$. The MULTIWAY CUT problem has a solution *S* that contains an important $(t, T \setminus t)$ -cut.

Using additional techniques, one can show:

Theorem DIRECTED MULTIWAY CUT is FPT parameterized by the size k of the solution.

DIRECTED MULTIWAY CUT

Theorem

DIRECTED MULTICUT is W[1]-hard parameterized by k.

Theorem DIRECTED MULTICUT is W[1]-hard parameterized by *k*.

But the case $\ell = 2$ can be reduced to DIRECTED MULTIWAY CUT:

Theorem DIRECTED MULTICUT is W[1]-hard parameterized by *k*.

But the case $\ell = 2$ can be reduced to DIRECTED MULTIWAY CUT:

Theorem DIRECTED MULTICUT is W[1]-hard parameterized by *k*.

But the case $\ell = 2$ can be reduced to DIRECTED MULTIWAY CUT:

Theorem

DIRECTED MULTICUT is W[1]-hard parameterized by k.

Corollary

DIRECTED MULTICUT with $\ell = 2$ is FPT parameterized by the size k of the solution.

Open questions:

Is DIRECTED MULTICUT with $\ell = 3$ FPT?

Is DIRECTED MULTICUT FPT parameterized by k and ℓ ?

Theorem DIRECTED MULTICUT is W[1]-hard parameterized by k on DAGs.

Theorem DIRECTED MULTICUT is NP-hard for $\ell = 2$ on DAGs.

Theorem

DIRECTED MULTICUT is FPT parameterized by k and ℓ on DAGs.

11

Skew Multicut

SKEW MULTICUT problem has a solution S that contains an important $(s_{\ell}, \{t_1, \ldots, t_{\ell}\})$ -cut.

Skew Multicut

SKEW MULTICUT problem has a solution S that contains an important $(s_{\ell}, \{t_1, \ldots, t_{\ell}\})$ -cut.

Theorem

SKEW MULTICUT can be solved in time $4^k \cdot n^{O(1)}$. SKEW MULTICUT

SKEW MULTICUT problem has a solution S that contains an important $(s_{\ell}, \{t_1, \ldots, t_{\ell}\})$ -cut.

Proof: Similar to the undirected pushing lemma. Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

SKEW MULTICUT problem has a solution S that contains an important $(s_{\ell}, \{t_1, \ldots, t_{\ell}\})$ -cut.

Proof: Similar to the undirected pushing lemma. Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

SKEW MULTICUT problem has a solution *S* that contains an important $(s_{\ell}, \{t_1, \ldots, t_{\ell}\})$ -cut.

Proof: Similar to the undirected pushing lemma. Let *R* be the vertices reachable from t in $G \setminus S$ for a solution *S*.

 $\delta(R)$ is not important, then there is an important cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace *S* with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

Pushing Lemma

SKEW MULTICUT problem has a solution *S* that contains an important $(s_{\ell}, \{t_1, \ldots, t_{\ell}\})$ -cut.

Proof: Similar to the undirected pushing lemma. Let *R* be the vertices reachable from *t* in $G \setminus S$ for a solution *S*.

 $\delta(R)$ is not important, then there is an important cut $\delta(R')$ with $R \subset R'$ and $|\delta(R')| \leq |\delta(R)|$. Replace S with $S' := (S \setminus \delta(R)) \cup \delta(R') \Rightarrow |S'| \leq |S|$

S' is a skew multicut: (1) There is no s_{ℓ} - t_j path in $G \setminus S'$ for any j and (2) a s_i - t_j path in $G \setminus S'$ implies a s_{ℓ} - t_j path, a contradiction. Pushing Lemma DIRECTED FEEDBACK VERTEX/EDGE SET Input: Directed graph G, integer kFind: A set S of k vertices/edges such that $G \setminus S$ is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the edge version here.

Theorem

DIRECTED FEEDBACK EDGE SET is FPT parameterized by the size k of the solution.

Solution uses the technique of **iterative compression**.

DIRECTED FEEDBACK VERTEX SET

DIRECTED FEEDBACK EDGE SET COMPRESSIONInput:Directed graph G, integer k,
a set W of k + 1 edges such that $G \setminus W$
is acyclicFind:A set S of k edges such that $G \setminus S$ is
acyclic.

Easier than the original problem, as the extra input W gives us useful structural information about G.

Lemma

The compression problem is FPT parameterized by k.

DIRECTED FEEDBACK EDGE SET COMPRESSIONInput:Directed graph G, integer k,
a set W of k + 1 vertices such that $G \setminus W$
is acyclicFind:A set S of k edges such that $G \setminus S$ is
acyclic.

Easier than the original problem, as the extra input W gives us useful structural information about G.

Lemma

The compression problem is FPT parameterized by k.

A useful trick for edge deletion problems: we define the compression problem in a way that a solution of k + 1 vertices are given and we have to find a solution of k edges.

By guessing the order of {w₁,..., w_{k+1}} in the acyclic ordering of G \ S, we can assume that w₁ < w₂ < ··· < w_{k+1} in G \ S [(k + 1)! possibilities].

Claim:

 $G \setminus S$ is acyclic and has an ordering with $w_1 < w_2 < \cdots < w_{k+1}$ \downarrow S covers every $s_i \rightarrow t_j$ path for every $i \ge j$ \downarrow $G \setminus S$ is acyclic

Claim:

 $G \setminus S$ is acyclic and has an ordering with $w_1 < w_2 < \cdots < w_{k+1}$ \downarrow S covers every $s_i \rightarrow t_j$ path for every $i \ge j$ \downarrow $G \setminus S$ is acyclic

Claim:

 $G \setminus S$ is acyclic and has an ordering with $w_1 < w_2 < \cdots < w_{k+1}$ $\downarrow \\ S$ covers every $s_i \rightarrow t_j$ path for every $i \ge j$ $\downarrow \\ G \setminus S$ is acyclic

⇒ We can solve the compression problem by (k + 1)! applications of SKEW MULTICUT.

We have given a $f(k)n^{O(1)}$ algorithm for the following problem:

Nice, but how do we get a solution W of size k + 1?

Iterative compression

We have given a $f(k)n^{O(1)}$ algorithm for the following problem:

DIRECTED FEEDBACK EDGE SET COMPRESSION	
Input:	Directed graph G , integer k ,
	a set W of $k+1$ vertices such that $G\setminus W$
	is acyclic
Find	Find: A set S of k edges such that $G \setminus S$
i mu.	acyclic.

Nice, but how do we get a solution W of size k + 1? We get it for free!

Powerful technique: **iterative compression**.

Iterative compression

Let v_1, \ldots, v_n be the edges of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$.

For every i = 1, ..., n, we find a set S_i of at most k edges such that $G_i \setminus S_i$ is acyclic.

Iterative compression

Let v_1, \ldots, v_n be the edges of G and let G_i be the subgraph induced by $\{v_1, \ldots, v_i\}$.

For every i = 1, ..., n, we find a set S_i of at most k edges such that $G_i \setminus S_i$ is acyclic.

- For i = 1, we have the trivial solution $S_i = \emptyset$.
- Suppose we have a solution S_i for G_i . Let W_i contain the head of each edge in S_i . Then $W_i \cup \{v_{i+1}\}$ is a set of at most k + 1 vertices whose removal makes G_{i+1} acyclic.
- Use the compression algorithm for G_{i+1} with the set $W_i \cup \{v_{i+1}\}$.
 - If there is no solution of size k for G_{i+1} , then we can stop.
 - Otherwise the compression algorithm gives a solution S_{i+1} of size k for G_{i+1}.

We call the compression algorithm n times, everything else is polynomial.

 \Rightarrow Directed Feedback Edge Set is FPT. Iterative compression So far we have seen:

- Definition of important cuts.
- Combinatorial bound on the number of important cuts.
- Pushing argument: we can assume that the solution contains an important cut. Solves MULTIWAY CUT, SKEW MULTICUT.
- Iterative compression reduces DIRECTED FEEDBACK VERTEX SET to SKEW MULTICUT.

Next:

• Randomized sampling of important separators.

