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Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y )-cut if there is no
X −Y path in G \ S and no proper subset of S breaks every X −Y
path.
Observation: Every minimal (X ,Y )-cut S can be expressed as S =
δ(R) for some X ⊆ R and R ∩ Y = ∅.
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Definition
A minimal (X ,Y )-cut δ(R) is important if there is no (X ,Y )-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).
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Definition
A minimal (X ,Y )-cut δ(R) is important if there is no (X ,Y )-cut
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Theorem
There are at most 4k important (X ,Y )-cuts of size at most k .
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Lemma:
At most k · 4k edges incident to t can be part of an inclusionwise
minimal s − t cut of size at most k .

Proof: We show that every such edge is contained in an important
(s, t)-cut of size at most k .

Suppose that vt ∈ δ(R) and |δ(R)| = k .
There is an important (s, t)-cut δ(R ′) with R ⊆ R ′ and |δ(R ′)| ≤ k .
Clearly, vt ∈ δ(R ′): v ∈ R , hence v ∈ R ′.

Simple application 3
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Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.
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Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Lower bound: in a binary tree of height k , any of the 2k leaves
can be the only reachable leaf after removing k edges.

s
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Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Polynomial for |T | = 2, but NP-hard for any fixed |T | ≥ 3 .
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Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Theorem
Multiway Cut on planar graphs can be solved in time
2O(|T |) · nO(

√
|T |).

Theorem
Multiway Cut on planar graphs is W[1]-hard parameterized by
|T |.
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Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Trivial to solve in polynomial time for fixed k (in time nO(k)).

Theorem
Multiway cut can be solved in time 4k · nO(1), i.e., it is
fixed-parameter tractable (FPT) parameterized by the size k of the
solution.

Multiway Cut 6



Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

1 If every vertex of T is in a different component, then we are
done.

2 Let t ∈ T be a vertex that is not separated from every T \ t.
3 Branch on a choice of an important (t,T \ t) cut S of size at

most k .
4 Set G := G \ S and k := k − |S |.
5 Go to step 1.

We can give a 4k bound on the size of the search tree.

Algorithm for Multiway Cut 7



Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si -ti path
for any i .

Theorem
Multicut can be solved in time f (k , `) · nO(1) (FPT
parameterized by combined parameters k and `).

Proof: The solution partitions {s1, t1, . . . , s`, t`} into components.
Guess this partition, contract the vertices in a class, and solve
Multiway Cut.

Much more involved:

Theorem
Multicut is FPT parameterized by the size k of the solution.
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Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y )-cut S
can be expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y )-cut ~δ(R) is important if there is no
(X ,Y )-cut ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.
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Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y )-cut S
can be expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y )-cut ~δ(R) is important if there is no
(X ,Y )-cut ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.
The proof for the undirected case goes through for the directed case:

Theorem
There are at most 4k important directed (X ,Y )-cuts of size at
most k .

Directed graphs 9



The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Directed counterexample:

s t
a

b

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s, a, b} has same size).

Directed Multiway Cut 10
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The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Problem in the undirected proof:

v

u
t

R

R ′

Replacing R by R ′ cannot create a t → u path, but can create a
u → t path.

Directed Multiway Cut 10



The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Using additional techniques, one can show:

Theorem
Directed Multiway Cut is FPT parameterized by the size k of
the solution.

Directed Multiway Cut 10



Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem
Directed Multicut is W[1]-hard parameterized by k .
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But the case ` = 2 can be reduced to Directed Multiway Cut:
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Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem
Directed Multicut is W[1]-hard parameterized by k .

Corollary
Directed Multicut with ` = 2 is FPT parameterized by the
size k of the solution.

Open questions:

? Is Directed Multicut with ` = 3 FPT?
Is Directed Multicut FPT parameterized by k and `?
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Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem
Directed Multicut is W[1]-hard parameterized by k on DAGs.

Theorem
Directed Multicut is NP-hard for ` = 2 on DAGs.

Theorem
Directed Multicut is FPT parameterized by k and ` on DAGs.

Directed Multicut 11



Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .
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Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

Pushing Lemma
Skew Multicut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.
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Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .
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s4
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s1

Pushing Lemma
Skew Multicut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.

Theorem
Skew Multicut can be solved in time 4k · nO(1).
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Pushing Lemma
Skew Multicut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.

Proof: Similar to the undirected pushing lemma. Let R be the
vertices reachable from t in G \ S for a solution S .

s` t`

t1
t2
. . .R

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |

S ′ is a skew multicut: (1) There is no s`-tj path in G \ S ′ for any j
and (2) a si -tj path in G \ S ′ implies a s`-tj path, a contradiction.

Pushing Lemma 13
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Directed Feedback Vertex/Edge Set
Input: Directed graph G , integer k

Find: A set S of k vertices/edges such that G \ S
is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the
edge version here.

Theorem
Directed Feedback Edge Set is FPT parameterized by the
size k of the solution.

Solution uses the technique of iterative compression.

Directed Feedback Vertex Set 14



Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 edges such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Easier than the original problem, as the extra input W gives us
useful structural information about G .

Lemma
The compression problem is FPT parameterized by k .

A useful trick for edge deletion problems: we define the
compression problem in a way that a solution of k + 1 vertices are
given and we have to find a solution of k edges.

The compression problem 15
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Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

t4s1t1 s2t2 s3t3 s4
By guessing the order of {w1, . . . ,wk+1} in the acyclic
ordering of G \ S , we can assume that w1 < w2 < · · · < wk+1
in G \ S [(k + 1)! possibilities].

⇒ We can solve the compression problem by (k + 1)! applications
of Skew Multicut.

The compression problem 16
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We have given a f (k)nO(1) algorithm for the following problem:

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 vertices such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Nice, but how do we get a solution W of size k + 1?

We get it for free!
Powerful technique: iterative compression.

Iterative compression 17
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Let v1, . . . , vn be the edges of G and let Gi be the subgraph
induced by {v1, . . . , vi}.

For every i = 1, . . . , n, we find a set Si of at most k edges such
that Gi \ Si is acyclic.

For i = 1, we have the trivial solution Si = ∅.
Suppose we have a solution Si for Gi . Let Wi contain the head
of each edge in Si . Then Wi ∪ {vi+1} is a set of at most k + 1
vertices whose removal makes Gi+1 acyclic.
Use the compression algorithm for Gi+1 with the set
Wi ∪ {vi+1}.

If there is no solution of size k for Gi+1, then we can stop.
Otherwise the compression algorithm gives a solution Si+1 of
size k for Gi+1.

We call the compression algorithm n times, everything else is
polynomial.
⇒ Directed Feedback Edge Set is FPT.

Iterative compression 18
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So far we have seen:
Definition of important cuts.
Combinatorial bound on the number of important cuts.
Pushing argument: we can assume that the solution contains
an important cut. Solves Multiway Cut, Skew
Multicut.
Iterative compression reduces Directed Feedback
Vertex Set to Skew Multicut.

Next:
Randomized sampling of important separators.
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