
Important separators and parameterized
algorithms

Dániel Marx1

1Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI)

Budapest, Hungary

School on Parameterized Algorithms and Complexity
Będlewo, Poland
August 21, 2014 1

Definition: δ(R) is the set of edges with exactly one endpoint in R .
Definition: A set S of edges is a minimal (X ,Y)-cut if there is no
X −Y path in G \ S and no proper subset of S breaks every X −Y
path.
Observation: Every minimal (X ,Y)-cut S can be expressed as S =
δ(R) for some X ⊆ R and R ∩ Y = ∅.

R

δ(R)

Y
X

Important cuts 2

Definition
A minimal (X ,Y)-cut δ(R) is important if there is no (X ,Y)-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).

R

δ(R)

Y
X

Important cuts 2

Definition
A minimal (X ,Y)-cut δ(R) is important if there is no (X ,Y)-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).

R ′

δ(R)

R

δ(R ′)
X

Y

Important cuts 2

Definition
A minimal (X ,Y)-cut δ(R) is important if there is no (X ,Y)-cut
δ(R ′) with R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|.

Note: Can be checked in polynomial time if a cut is important
(δ(R) is important if R = Rmax).

R

δ(R)

X
Y

Important cuts 2

Theorem
There are at most 4k important (X ,Y)-cuts of size at most k .

R

δ(R)

X
Y

Important cuts 2

Lemma:
At most k · 4k edges incident to t can be part of an inclusionwise
minimal s − t cut of size at most k .

Proof: We show that every such edge is contained in an important
(s, t)-cut of size at most k .

Suppose that vt ∈ δ(R) and |δ(R)| = k .
There is an important (s, t)-cut δ(R ′) with R ⊆ R ′ and |δ(R ′)| ≤ k .
Clearly, vt ∈ δ(R ′): v ∈ R , hence v ∈ R ′.

Simple application 3

Lemma:
At most k · 4k edges incident to t can be part of an inclusionwise
minimal s − t cut of size at most k .

Proof: We show that every such edge is contained in an important
(s, t)-cut of size at most k .

v

R
ts

Suppose that vt ∈ δ(R) and |δ(R)| = k .

There is an important (s, t)-cut δ(R ′) with R ⊆ R ′ and |δ(R ′)| ≤ k .
Clearly, vt ∈ δ(R ′): v ∈ R , hence v ∈ R ′.

Simple application 3

Lemma:
At most k · 4k edges incident to t can be part of an inclusionwise
minimal s − t cut of size at most k .

Proof: We show that every such edge is contained in an important
(s, t)-cut of size at most k .

v

R

R ′

s t

Suppose that vt ∈ δ(R) and |δ(R)| = k .
There is an important (s, t)-cut δ(R ′) with R ⊆ R ′ and |δ(R ′)| ≤ k .
Clearly, vt ∈ δ(R ′): v ∈ R , hence v ∈ R ′.

Simple application 3

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 4

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 4

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S2

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 4

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S3

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 4

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 4

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S2

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 4

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S3

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 4

Let s, t1, . . . , tn be vertices and S1, . . . , Sn be sets of at most k
edges such that Si separates ti from s, but Si does not separate tj
from s for any j 6= i .
It is possible that n is “large” even if k is “small.”

s

t6t5t4t3t2t1

S3

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 4

t1 t2 t3 t4 t5 t6

s

t

S3

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 4

s

t6t5t4t3t2t1

t

S2

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 4

s

t6t5t4t3t2t1

t

S1

Is the opposite possible, i.e., Si separates every tj except ti?

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Proof: Add a new vertex t. Every edge tti is part of an
(inclusionwise minimal) (s, t)-cut of size at most k + 1. Use the
previous lemma.

Anti isolation 4

Lemma
If Si separates tj from s if and only j 6= i and every Si has size at
most k , then n ≤ (k + 1) · 4k+1.

Lower bound: in a binary tree of height k , any of the 2k leaves
can be the only reachable leaf after removing k edges.

s

Anti isolation 5

Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Polynomial for |T | = 2, but NP-hard for any fixed |T | ≥ 3 .

Multiway Cut 6

Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Theorem
Multiway Cut on planar graphs can be solved in time
2O(|T |) · nO(

√
|T |).

Theorem
Multiway Cut on planar graphs is W[1]-hard parameterized by
|T |.

Multiway Cut 6

Definition: A multiway cut of a set of terminals T is a set S of
edges such that each component of G \ S contains at most one
vertex of T .

Multiway Cut

Input: Graph G , set T of vertices, inte-
ger k

Find: A multiway cut S of at most k
edges. t4

t5

t4

t3

t2t1

Trivial to solve in polynomial time for fixed k (in time nO(k)).

Theorem
Multiway cut can be solved in time 4k · nO(1), i.e., it is
fixed-parameter tractable (FPT) parameterized by the size k of the
solution.

Multiway Cut 6

Pushing Lemma
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

1 If every vertex of T is in a different component, then we are
done.

2 Let t ∈ T be a vertex that is not separated from every T \ t.
3 Branch on a choice of an important (t,T \ t) cut S of size at

most k .
4 Set G := G \ S and k := k − |S |.
5 Go to step 1.

We can give a 4k bound on the size of the search tree.

Algorithm for Multiway Cut 7

Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si -ti path
for any i .

Theorem
Multicut can be solved in time f (k , `) · nO(1) (FPT
parameterized by combined parameters k and `).

Proof: The solution partitions {s1, t1, . . . , s`, t`} into components.
Guess this partition, contract the vertices in a class, and solve
Multiway Cut.

Much more involved:

Theorem
Multicut is FPT parameterized by the size k of the solution.

Multicut 8

Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si -ti path
for any i .

Theorem
Multicut can be solved in time f (k , `) · nO(1) (FPT
parameterized by combined parameters k and `).

Proof: The solution partitions {s1, t1, . . . , s`, t`} into components.
Guess this partition, contract the vertices in a class, and solve
Multiway Cut.

Much more involved:

Theorem
Multicut is FPT parameterized by the size k of the solution.

Multicut 8

Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si -ti path
for any i .

Theorem
Multicut can be solved in time f (k , `) · nO(1) (FPT
parameterized by combined parameters k and `).

Proof: The solution partitions {s1, t1, . . . , s`, t`} into components.
Guess this partition, contract the vertices in a class, and solve
Multiway Cut.

Much more involved:

Theorem
Multicut is FPT parameterized by the size k of the solution.

Multicut 8

Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y)-cut S
can be expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y)-cut ~δ(R) is important if there is no
(X ,Y)-cut ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.

R

~δ(R)

YX

Directed graphs 9

Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y)-cut S
can be expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y)-cut ~δ(R) is important if there is no
(X ,Y)-cut ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.

R ′

~δ(R ′)

R

~δ(R)

YX

Directed graphs 9

Definition: ~δ(R) is the set of edges leaving R .
Observation: Every inclusionwise-minimal directed (X ,Y)-cut S
can be expressed as S = ~δ(R) for some X ⊆ R and R ∩ Y = ∅.
Definition: A minimal (X ,Y)-cut ~δ(R) is important if there is no
(X ,Y)-cut ~δ(R ′) with R ⊂ R ′ and |~δ(R ′)| ≤ |~δ(R)|.
The proof for the undirected case goes through for the directed case:

Theorem
There are at most 4k important directed (X ,Y)-cuts of size at
most k .

Directed graphs 9

The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Directed counterexample:

s t
a

b

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s, a, b} has same size).

Directed Multiway Cut 10

The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Directed counterexample:

s t
a

b

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s, a, b} has same size).

Directed Multiway Cut 10

The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Directed counterexample:

b

a
ts

Unique solution with k = 1 edges, but it is not an important cut
(boundary of {s, a}, but the boundary of {s, a, b} has same size).

Directed Multiway Cut 10

The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Problem in the undirected proof:

v

u
t

R

R ′

Replacing R by R ′ cannot create a t → u path, but can create a
u → t path.

Directed Multiway Cut 10

The undirected approach does not work: the pushing lemma is not
true.

Pushing Lemma (for undirected graphs)
Let t ∈ T . The Multiway Cut problem has a solution S that
contains an important (t,T \ t)-cut.

Using additional techniques, one can show:

Theorem
Directed Multiway Cut is FPT parameterized by the size k of
the solution.

Directed Multiway Cut 10

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem
Directed Multicut is W[1]-hard parameterized by k .

Directed Multicut 11

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem
Directed Multicut is W[1]-hard parameterized by k .

But the case ` = 2 can be reduced to Directed Multiway Cut:

t1s1

t2 s2

Directed Multicut 11

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem
Directed Multicut is W[1]-hard parameterized by k .

But the case ` = 2 can be reduced to Directed Multiway Cut:

x y

s2t2

s1 t1

Directed Multicut 11

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem
Directed Multicut is W[1]-hard parameterized by k .

But the case ` = 2 can be reduced to Directed Multiway Cut:

x y

s2t2

s1 t1

Directed Multicut 11

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem
Directed Multicut is W[1]-hard parameterized by k .

Corollary
Directed Multicut with ` = 2 is FPT parameterized by the
size k of the solution.

Open questions:

? Is Directed Multicut with ` = 3 FPT?
Is Directed Multicut FPT parameterized by k and `?

Directed Multicut 11

Directed Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of edges such that G \ S has no si → ti path
for any i .

Theorem
Directed Multicut is W[1]-hard parameterized by k on DAGs.

Theorem
Directed Multicut is NP-hard for ` = 2 on DAGs.

Theorem
Directed Multicut is FPT parameterized by k and ` on DAGs.

Directed Multicut 11

Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

Skew Multicut 12

Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

Pushing Lemma
Skew Multicut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.

Skew Multicut 12

Skew Multicut
Input: Graph G , pairs (s1, t1), . . ., (s`, t`), integer k

Find: A set S of k directed edges such that G \ S con-
tains no si → tj path for any i ≥ j .

t4

t3

t2

t1

s4

s3

s2

s1

Pushing Lemma
Skew Multicut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.

Theorem
Skew Multicut can be solved in time 4k · nO(1).

Skew Multicut 12

Pushing Lemma
Skew Multicut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.

Proof: Similar to the undirected pushing lemma. Let R be the
vertices reachable from t in G \ S for a solution S .

s` t`

t1
t2
. . .R

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |

S ′ is a skew multicut: (1) There is no s`-tj path in G \ S ′ for any j
and (2) a si -tj path in G \ S ′ implies a s`-tj path, a contradiction.

Pushing Lemma 13

Pushing Lemma
Skew Multicut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.

Proof: Similar to the undirected pushing lemma. Let R be the
vertices reachable from t in G \ S for a solution S .

s` t`

t1
t2
. . .R

R ′

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |

S ′ is a skew multicut: (1) There is no s`-tj path in G \ S ′ for any j
and (2) a si -tj path in G \ S ′ implies a s`-tj path, a contradiction.

Pushing Lemma 13

Pushing Lemma
Skew Multicut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.

Proof: Similar to the undirected pushing lemma. Let R be the
vertices reachable from t in G \ S for a solution S .

s` t`

t1
t2
. . .

si
R

R ′

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |

S ′ is a skew multicut: (1) There is no s`-tj path in G \ S ′ for any j
and (2) a si -tj path in G \ S ′ implies a s`-tj path, a contradiction.

Pushing Lemma 13

Pushing Lemma
Skew Multicut problem has a solution S that contains an
important (s`, {t1, . . . , t`})-cut.

Proof: Similar to the undirected pushing lemma. Let R be the
vertices reachable from t in G \ S for a solution S .

s` t`

t1
t2
. . .

si
R

R ′

δ(R) is not important, then there is an important cut δ(R ′) with
R ⊂ R ′ and |δ(R ′)| ≤ |δ(R)|. Replace S with
S ′ := (S \ δ(R)) ∪ δ(R ′) ⇒ |S ′| ≤ |S |

S ′ is a skew multicut: (1) There is no s`-tj path in G \ S ′ for any j
and (2) a si -tj path in G \ S ′ implies a s`-tj path, a contradiction.

Pushing Lemma 13

Directed Feedback Vertex/Edge Set
Input: Directed graph G , integer k

Find: A set S of k vertices/edges such that G \ S
is acyclic.

Note: Edge and vertex versions are equivalent, we will consider the
edge version here.

Theorem
Directed Feedback Edge Set is FPT parameterized by the
size k of the solution.

Solution uses the technique of iterative compression.

Directed Feedback Vertex Set 14

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 edges such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Easier than the original problem, as the extra input W gives us
useful structural information about G .

Lemma
The compression problem is FPT parameterized by k .

A useful trick for edge deletion problems: we define the
compression problem in a way that a solution of k + 1 vertices are
given and we have to find a solution of k edges.

The compression problem 15

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 vertices such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Easier than the original problem, as the extra input W gives us
useful structural information about G .

Lemma
The compression problem is FPT parameterized by k .

A useful trick for edge deletion problems: we define the
compression problem in a way that a solution of k + 1 vertices are
given and we have to find a solution of k edges.

The compression problem 15

Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

t4s1t1 s2t2 s3t3 s4
By guessing the order of {w1, . . . ,wk+1} in the acyclic
ordering of G \ S , we can assume that w1 < w2 < · · · < wk+1
in G \ S [(k + 1)! possibilities].

⇒ We can solve the compression problem by (k + 1)! applications
of Skew Multicut.

The compression problem 16

Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

t4s1t1 s2t2 s3t3 s4
Claim:

G \ S is acyclic and has an ordering with w1 < w2 < · · · < wk+1
⇓

S covers every si → tj path for every i ≥ j
⇓

G \ S is acyclic

⇒ We can solve the compression problem by (k + 1)! applications
of Skew Multicut.

The compression problem 16

Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

s4t3 s3t2 s2t1 s1 t4
Claim:

G \ S is acyclic and has an ordering with w1 < w2 < · · · < wk+1
⇓

S covers every si → tj path for every i ≥ j
⇓

G \ S is acyclic

⇒ We can solve the compression problem by (k + 1)! applications
of Skew Multicut.

The compression problem 16

Proof: Let W = {w1, . . . ,wk+1}
Let us split each wi into an edge −→ti si .

s4t3 s3t2 s2t1 s1 t4
Claim:

G \ S is acyclic and has an ordering with w1 < w2 < · · · < wk+1
⇓

S covers every si → tj path for every i ≥ j
⇓

G \ S is acyclic

⇒ We can solve the compression problem by (k + 1)! applications
of Skew Multicut.

The compression problem 16

We have given a f (k)nO(1) algorithm for the following problem:

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 vertices such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Nice, but how do we get a solution W of size k + 1?

We get it for free!
Powerful technique: iterative compression.

Iterative compression 17

We have given a f (k)nO(1) algorithm for the following problem:

Directed Feedback Edge Set Compression
Input: Directed graph G , integer k ,

a set W of k + 1 vertices such that G \W
is acyclic

Find: A set S of k edges such that G \ S is
acyclic.

Nice, but how do we get a solution W of size k + 1?

We get it for free!
Powerful technique: iterative compression.

Iterative compression 17

Let v1, . . . , vn be the edges of G and let Gi be the subgraph
induced by {v1, . . . , vi}.

For every i = 1, . . . , n, we find a set Si of at most k edges such
that Gi \ Si is acyclic.

For i = 1, we have the trivial solution Si = ∅.
Suppose we have a solution Si for Gi . Let Wi contain the head
of each edge in Si . Then Wi ∪ {vi+1} is a set of at most k + 1
vertices whose removal makes Gi+1 acyclic.
Use the compression algorithm for Gi+1 with the set
Wi ∪ {vi+1}.

If there is no solution of size k for Gi+1, then we can stop.
Otherwise the compression algorithm gives a solution Si+1 of
size k for Gi+1.

We call the compression algorithm n times, everything else is
polynomial.
⇒ Directed Feedback Edge Set is FPT.

Iterative compression 18

Let v1, . . . , vn be the edges of G and let Gi be the subgraph
induced by {v1, . . . , vi}.

For every i = 1, . . . , n, we find a set Si of at most k edges such
that Gi \ Si is acyclic.

For i = 1, we have the trivial solution Si = ∅.
Suppose we have a solution Si for Gi . Let Wi contain the head
of each edge in Si . Then Wi ∪ {vi+1} is a set of at most k + 1
vertices whose removal makes Gi+1 acyclic.
Use the compression algorithm for Gi+1 with the set
Wi ∪ {vi+1}.

If there is no solution of size k for Gi+1, then we can stop.
Otherwise the compression algorithm gives a solution Si+1 of
size k for Gi+1.

We call the compression algorithm n times, everything else is
polynomial.
⇒ Directed Feedback Edge Set is FPT.

Iterative compression 18

So far we have seen:
Definition of important cuts.
Combinatorial bound on the number of important cuts.
Pushing argument: we can assume that the solution contains
an important cut. Solves Multiway Cut, Skew
Multicut.
Iterative compression reduces Directed Feedback
Vertex Set to Skew Multicut.

Next:
Randomized sampling of important separators.

Outline 19

